Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.113
      1 /*	$NetBSD: if_tap.c,v 1.113 2019/05/29 10:07:30 msaitoh Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.113 2019/05/29 10:07:30 msaitoh Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/atomic.h>
     45 #include <sys/conf.h>
     46 #include <sys/cprng.h>
     47 #include <sys/device.h>
     48 #include <sys/file.h>
     49 #include <sys/filedesc.h>
     50 #include <sys/intr.h>
     51 #include <sys/kauth.h>
     52 #include <sys/kernel.h>
     53 #include <sys/kmem.h>
     54 #include <sys/module.h>
     55 #include <sys/mutex.h>
     56 #include <sys/condvar.h>
     57 #include <sys/poll.h>
     58 #include <sys/proc.h>
     59 #include <sys/select.h>
     60 #include <sys/sockio.h>
     61 #include <sys/stat.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/systm.h>
     64 
     65 #include <net/if.h>
     66 #include <net/if_dl.h>
     67 #include <net/if_ether.h>
     68 #include <net/if_media.h>
     69 #include <net/if_tap.h>
     70 #include <net/bpf.h>
     71 
     72 #include "ioconf.h"
     73 
     74 /*
     75  * sysctl node management
     76  *
     77  * It's not really possible to use a SYSCTL_SETUP block with
     78  * current module implementation, so it is easier to just define
     79  * our own function.
     80  *
     81  * The handler function is a "helper" in Andrew Brown's sysctl
     82  * framework terminology.  It is used as a gateway for sysctl
     83  * requests over the nodes.
     84  *
     85  * tap_log allows the module to log creations of nodes and
     86  * destroy them all at once using sysctl_teardown.
     87  */
     88 static int	tap_node;
     89 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     90 static void	sysctl_tap_setup(struct sysctllog **);
     91 
     92 /*
     93  * Since we're an Ethernet device, we need the 2 following
     94  * components: a struct ethercom and a struct ifmedia
     95  * since we don't attach a PHY to ourselves.
     96  * We could emulate one, but there's no real point.
     97  */
     98 
     99 struct tap_softc {
    100 	device_t	sc_dev;
    101 	struct ifmedia	sc_im;
    102 	struct ethercom	sc_ec;
    103 	int		sc_flags;
    104 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    105 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    106 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    107 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    108 	struct selinfo	sc_rsel;
    109 	pid_t		sc_pgid; /* For async. IO */
    110 	kmutex_t	sc_lock;
    111 	kcondvar_t	sc_cv;
    112 	void		*sc_sih;
    113 	struct timespec sc_atime;
    114 	struct timespec sc_mtime;
    115 	struct timespec sc_btime;
    116 };
    117 
    118 /* autoconf(9) glue */
    119 
    120 static int	tap_match(device_t, cfdata_t, void *);
    121 static void	tap_attach(device_t, device_t, void *);
    122 static int	tap_detach(device_t, int);
    123 
    124 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    125     tap_match, tap_attach, tap_detach, NULL);
    126 extern struct cfdriver tap_cd;
    127 
    128 /* Real device access routines */
    129 static int	tap_dev_close(struct tap_softc *);
    130 static int	tap_dev_read(int, struct uio *, int);
    131 static int	tap_dev_write(int, struct uio *, int);
    132 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    133 static int	tap_dev_poll(int, int, struct lwp *);
    134 static int	tap_dev_kqfilter(int, struct knote *);
    135 
    136 /* Fileops access routines */
    137 static int	tap_fops_close(file_t *);
    138 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    139     kauth_cred_t, int);
    140 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    141     kauth_cred_t, int);
    142 static int	tap_fops_ioctl(file_t *, u_long, void *);
    143 static int	tap_fops_poll(file_t *, int);
    144 static int	tap_fops_stat(file_t *, struct stat *);
    145 static int	tap_fops_kqfilter(file_t *, struct knote *);
    146 
    147 static const struct fileops tap_fileops = {
    148 	.fo_name = "tap",
    149 	.fo_read = tap_fops_read,
    150 	.fo_write = tap_fops_write,
    151 	.fo_ioctl = tap_fops_ioctl,
    152 	.fo_fcntl = fnullop_fcntl,
    153 	.fo_poll = tap_fops_poll,
    154 	.fo_stat = tap_fops_stat,
    155 	.fo_close = tap_fops_close,
    156 	.fo_kqfilter = tap_fops_kqfilter,
    157 	.fo_restart = fnullop_restart,
    158 };
    159 
    160 /* Helper for cloning open() */
    161 static int	tap_dev_cloner(struct lwp *);
    162 
    163 /* Character device routines */
    164 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    165 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    166 static int	tap_cdev_read(dev_t, struct uio *, int);
    167 static int	tap_cdev_write(dev_t, struct uio *, int);
    168 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    169 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    170 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    171 
    172 const struct cdevsw tap_cdevsw = {
    173 	.d_open = tap_cdev_open,
    174 	.d_close = tap_cdev_close,
    175 	.d_read = tap_cdev_read,
    176 	.d_write = tap_cdev_write,
    177 	.d_ioctl = tap_cdev_ioctl,
    178 	.d_stop = nostop,
    179 	.d_tty = notty,
    180 	.d_poll = tap_cdev_poll,
    181 	.d_mmap = nommap,
    182 	.d_kqfilter = tap_cdev_kqfilter,
    183 	.d_discard = nodiscard,
    184 	.d_flag = D_OTHER | D_MPSAFE
    185 };
    186 
    187 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    188 
    189 /* kqueue-related routines */
    190 static void	tap_kqdetach(struct knote *);
    191 static int	tap_kqread(struct knote *, long);
    192 
    193 /*
    194  * Those are needed by the if_media interface.
    195  */
    196 
    197 static int	tap_mediachange(struct ifnet *);
    198 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    199 
    200 /*
    201  * Those are needed by the ifnet interface, and would typically be
    202  * there for any network interface driver.
    203  * Some other routines are optional: watchdog and drain.
    204  */
    205 
    206 static void	tap_start(struct ifnet *);
    207 static void	tap_stop(struct ifnet *, int);
    208 static int	tap_init(struct ifnet *);
    209 static int	tap_ioctl(struct ifnet *, u_long, void *);
    210 
    211 /* Internal functions */
    212 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    213 static void	tap_softintr(void *);
    214 
    215 /*
    216  * tap is a clonable interface, although it is highly unrealistic for
    217  * an Ethernet device.
    218  *
    219  * Here are the bits needed for a clonable interface.
    220  */
    221 static int	tap_clone_create(struct if_clone *, int);
    222 static int	tap_clone_destroy(struct ifnet *);
    223 
    224 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    225 					tap_clone_create,
    226 					tap_clone_destroy);
    227 
    228 /* Helper functions shared by the two cloning code paths */
    229 static struct tap_softc *	tap_clone_creator(int);
    230 int	tap_clone_destroyer(device_t);
    231 
    232 static struct sysctllog *tap_sysctl_clog;
    233 
    234 #ifdef _MODULE
    235 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    236 #endif
    237 
    238 static u_int tap_count;
    239 
    240 void
    241 tapattach(int n)
    242 {
    243 
    244 	/*
    245 	 * Nothing to do here, initialization is handled by the
    246 	 * module initialization code in tapinit() below).
    247 	 */
    248 }
    249 
    250 static void
    251 tapinit(void)
    252 {
    253 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    254 
    255 	if (error) {
    256 		aprint_error("%s: unable to register cfattach\n",
    257 		    tap_cd.cd_name);
    258 		(void)config_cfdriver_detach(&tap_cd);
    259 		return;
    260 	}
    261 
    262 	if_clone_attach(&tap_cloners);
    263 	sysctl_tap_setup(&tap_sysctl_clog);
    264 #ifdef _MODULE
    265 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    266 #endif
    267 }
    268 
    269 static int
    270 tapdetach(void)
    271 {
    272 	int error = 0;
    273 
    274 	if_clone_detach(&tap_cloners);
    275 #ifdef _MODULE
    276 	error = devsw_detach(NULL, &tap_cdevsw);
    277 	if (error != 0)
    278 		goto out2;
    279 #endif
    280 
    281 	if (tap_count != 0) {
    282 		error = EBUSY;
    283 		goto out1;
    284 	}
    285 
    286 	error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    287 	if (error != 0)
    288 		goto out1;
    289 
    290 	sysctl_teardown(&tap_sysctl_clog);
    291 
    292 	return 0;
    293 
    294  out1:
    295 #ifdef _MODULE
    296 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    297  out2:
    298 #endif
    299 	if_clone_attach(&tap_cloners);
    300 
    301 	return error;
    302 }
    303 
    304 /* Pretty much useless for a pseudo-device */
    305 static int
    306 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    307 {
    308 
    309 	return 1;
    310 }
    311 
    312 void
    313 tap_attach(device_t parent, device_t self, void *aux)
    314 {
    315 	struct tap_softc *sc = device_private(self);
    316 	struct ifnet *ifp;
    317 	const struct sysctlnode *node;
    318 	int error;
    319 	uint8_t enaddr[ETHER_ADDR_LEN] =
    320 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    321 	char enaddrstr[3 * ETHER_ADDR_LEN];
    322 
    323 	sc->sc_dev = self;
    324 	sc->sc_sih = NULL;
    325 	getnanotime(&sc->sc_btime);
    326 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    327 	sc->sc_flags = 0;
    328 	selinit(&sc->sc_rsel);
    329 
    330 	cv_init(&sc->sc_cv, "tapread");
    331 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
    332 
    333 	if (!pmf_device_register(self, NULL, NULL))
    334 		aprint_error_dev(self, "couldn't establish power handler\n");
    335 
    336 	/*
    337 	 * In order to obtain unique initial Ethernet address on a host,
    338 	 * do some randomisation.  It's not meant for anything but avoiding
    339 	 * hard-coding an address.
    340 	 */
    341 	cprng_fast(&enaddr[3], 3);
    342 
    343 	aprint_verbose_dev(self, "Ethernet address %s\n",
    344 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    345 
    346 	/*
    347 	 * Why 1000baseT? Why not? You can add more.
    348 	 *
    349 	 * Note that there are 3 steps: init, one or several additions to
    350 	 * list of supported media, and in the end, the selection of one
    351 	 * of them.
    352 	 */
    353 	sc->sc_ec.ec_ifmedia = &sc->sc_im;
    354 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    355 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_1000_T, 0, NULL);
    356 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
    357 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_100_TX, 0, NULL);
    358 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    359 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_10_T, 0, NULL);
    360 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
    361 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_AUTO, 0, NULL);
    362 	ifmedia_set(&sc->sc_im, IFM_ETHER | IFM_AUTO);
    363 
    364 	/*
    365 	 * One should note that an interface must do multicast in order
    366 	 * to support IPv6.
    367 	 */
    368 	ifp = &sc->sc_ec.ec_if;
    369 	strcpy(ifp->if_xname, device_xname(self));
    370 	ifp->if_softc	= sc;
    371 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    372 	ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
    373 #ifdef NET_MPSAFE
    374 	ifp->if_extflags |= IFEF_MPSAFE;
    375 #endif
    376 	ifp->if_ioctl	= tap_ioctl;
    377 	ifp->if_start	= tap_start;
    378 	ifp->if_stop	= tap_stop;
    379 	ifp->if_init	= tap_init;
    380 	IFQ_SET_READY(&ifp->if_snd);
    381 
    382 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    383 
    384 	/* Those steps are mandatory for an Ethernet driver. */
    385 	error = if_initialize(ifp);
    386 	if (error != 0) {
    387 		aprint_error_dev(self, "if_initialize failed(%d)\n", error);
    388 		ifmedia_removeall(&sc->sc_im);
    389 		pmf_device_deregister(self);
    390 		mutex_destroy(&sc->sc_lock);
    391 		seldestroy(&sc->sc_rsel);
    392 
    393 		return; /* Error */
    394 	}
    395 	ifp->if_percpuq = if_percpuq_create(ifp);
    396 	ether_ifattach(ifp, enaddr);
    397 	if_register(ifp);
    398 
    399 	/*
    400 	 * Add a sysctl node for that interface.
    401 	 *
    402 	 * The pointer transmitted is not a string, but instead a pointer to
    403 	 * the softc structure, which we can use to build the string value on
    404 	 * the fly in the helper function of the node.  See the comments for
    405 	 * tap_sysctl_handler for details.
    406 	 *
    407 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    408 	 * component.  However, we can allocate a number ourselves, as we are
    409 	 * the only consumer of the net.link.<iface> node.  In this case, the
    410 	 * unit number is conveniently used to number the node.  CTL_CREATE
    411 	 * would just work, too.
    412 	 */
    413 	if ((error = sysctl_createv(NULL, 0, NULL,
    414 	    &node, CTLFLAG_READWRITE,
    415 	    CTLTYPE_STRING, device_xname(self), NULL,
    416 	    tap_sysctl_handler, 0, (void *)sc, 18,
    417 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    418 	    CTL_EOL)) != 0)
    419 		aprint_error_dev(self,
    420 		    "sysctl_createv returned %d, ignoring\n", error);
    421 }
    422 
    423 /*
    424  * When detaching, we do the inverse of what is done in the attach
    425  * routine, in reversed order.
    426  */
    427 static int
    428 tap_detach(device_t self, int flags)
    429 {
    430 	struct tap_softc *sc = device_private(self);
    431 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    432 	int error;
    433 
    434 	sc->sc_flags |= TAP_GOING;
    435 	tap_stop(ifp, 1);
    436 	if_down(ifp);
    437 
    438 	if (sc->sc_sih != NULL) {
    439 		softint_disestablish(sc->sc_sih);
    440 		sc->sc_sih = NULL;
    441 	}
    442 
    443 	/*
    444 	 * Destroying a single leaf is a very straightforward operation using
    445 	 * sysctl_destroyv.  One should be sure to always end the path with
    446 	 * CTL_EOL.
    447 	 */
    448 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    449 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    450 		aprint_error_dev(self,
    451 		    "sysctl_destroyv returned %d, ignoring\n", error);
    452 	ether_ifdetach(ifp);
    453 	if_detach(ifp);
    454 	ifmedia_removeall(&sc->sc_im);
    455 	seldestroy(&sc->sc_rsel);
    456 	mutex_destroy(&sc->sc_lock);
    457 	cv_destroy(&sc->sc_cv);
    458 
    459 	pmf_device_deregister(self);
    460 
    461 	return 0;
    462 }
    463 
    464 /*
    465  * This function is called by the ifmedia layer to notify the driver
    466  * that the user requested a media change.  A real driver would
    467  * reconfigure the hardware.
    468  */
    469 static int
    470 tap_mediachange(struct ifnet *ifp)
    471 {
    472 	return 0;
    473 }
    474 
    475 /*
    476  * Here the user asks for the currently used media.
    477  */
    478 static void
    479 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    480 {
    481 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    482 
    483 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    484 }
    485 
    486 /*
    487  * This is the function where we SEND packets.
    488  *
    489  * There is no 'receive' equivalent.  A typical driver will get
    490  * interrupts from the hardware, and from there will inject new packets
    491  * into the network stack.
    492  *
    493  * Once handled, a packet must be freed.  A real driver might not be able
    494  * to fit all the pending packets into the hardware, and is allowed to
    495  * return before having sent all the packets.  It should then use the
    496  * if_flags flag IFF_OACTIVE to notify the upper layer.
    497  *
    498  * There are also other flags one should check, such as IFF_PAUSE.
    499  *
    500  * It is our duty to make packets available to BPF listeners.
    501  *
    502  * You should be aware that this function is called by the Ethernet layer
    503  * at splnet().
    504  *
    505  * When the device is opened, we have to pass the packet(s) to the
    506  * userland.  For that we stay in OACTIVE mode while the userland gets
    507  * the packets, and we send a signal to the processes waiting to read.
    508  *
    509  * wakeup(sc) is the counterpart to the tsleep call in
    510  * tap_dev_read, while selnotify() is used for kevent(2) and
    511  * poll(2) (which includes select(2)) listeners.
    512  */
    513 static void
    514 tap_start(struct ifnet *ifp)
    515 {
    516 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    517 	struct mbuf *m0;
    518 
    519 	mutex_enter(&sc->sc_lock);
    520 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    521 		/* Simply drop packets */
    522 		for (;;) {
    523 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    524 			if (m0 == NULL)
    525 				goto done;
    526 
    527 			ifp->if_opackets++;
    528 			bpf_mtap(ifp, m0, BPF_D_OUT);
    529 
    530 			m_freem(m0);
    531 		}
    532 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    533 		ifp->if_flags |= IFF_OACTIVE;
    534 		cv_broadcast(&sc->sc_cv);
    535 		selnotify(&sc->sc_rsel, 0, 1);
    536 		if (sc->sc_flags & TAP_ASYNCIO)
    537 			softint_schedule(sc->sc_sih);
    538 	}
    539 done:
    540 	mutex_exit(&sc->sc_lock);
    541 }
    542 
    543 static void
    544 tap_softintr(void *cookie)
    545 {
    546 	struct tap_softc *sc;
    547 	struct ifnet *ifp;
    548 	int a, b;
    549 
    550 	sc = cookie;
    551 
    552 	if (sc->sc_flags & TAP_ASYNCIO) {
    553 		ifp = &sc->sc_ec.ec_if;
    554 		if (ifp->if_flags & IFF_RUNNING) {
    555 			a = POLL_IN;
    556 			b = POLLIN | POLLRDNORM;
    557 		} else {
    558 			a = POLL_HUP;
    559 			b = 0;
    560 		}
    561 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    562 	}
    563 }
    564 
    565 /*
    566  * A typical driver will only contain the following handlers for
    567  * ioctl calls, except SIOCSIFPHYADDR.
    568  * The latter is a hack I used to set the Ethernet address of the
    569  * faked device.
    570  *
    571  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    572  * called under splnet().
    573  */
    574 static int
    575 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    576 {
    577 	int s, error;
    578 
    579 	s = splnet();
    580 
    581 	switch (cmd) {
    582 	case SIOCSIFPHYADDR:
    583 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    584 		break;
    585 	default:
    586 		error = ether_ioctl(ifp, cmd, data);
    587 		if (error == ENETRESET)
    588 			error = 0;
    589 		break;
    590 	}
    591 
    592 	splx(s);
    593 
    594 	return error;
    595 }
    596 
    597 /*
    598  * Helper function to set Ethernet address.  This has been replaced by
    599  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    600  */
    601 static int
    602 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    603 {
    604 	const struct sockaddr *sa = &ifra->ifra_addr;
    605 
    606 	if (sa->sa_family != AF_LINK)
    607 		return EINVAL;
    608 
    609 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    610 
    611 	return 0;
    612 }
    613 
    614 /*
    615  * _init() would typically be called when an interface goes up,
    616  * meaning it should configure itself into the state in which it
    617  * can send packets.
    618  */
    619 static int
    620 tap_init(struct ifnet *ifp)
    621 {
    622 	ifp->if_flags |= IFF_RUNNING;
    623 
    624 	tap_start(ifp);
    625 
    626 	return 0;
    627 }
    628 
    629 /*
    630  * _stop() is called when an interface goes down.  It is our
    631  * responsability to validate that state by clearing the
    632  * IFF_RUNNING flag.
    633  *
    634  * We have to wake up all the sleeping processes to have the pending
    635  * read requests cancelled.
    636  */
    637 static void
    638 tap_stop(struct ifnet *ifp, int disable)
    639 {
    640 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    641 
    642 	mutex_enter(&sc->sc_lock);
    643 	ifp->if_flags &= ~IFF_RUNNING;
    644 	cv_broadcast(&sc->sc_cv);
    645 	selnotify(&sc->sc_rsel, 0, 1);
    646 	if (sc->sc_flags & TAP_ASYNCIO)
    647 		softint_schedule(sc->sc_sih);
    648 	mutex_exit(&sc->sc_lock);
    649 }
    650 
    651 /*
    652  * The 'create' command of ifconfig can be used to create
    653  * any numbered instance of a given device.  Thus we have to
    654  * make sure we have enough room in cd_devs to create the
    655  * user-specified instance.  config_attach_pseudo will do this
    656  * for us.
    657  */
    658 static int
    659 tap_clone_create(struct if_clone *ifc, int unit)
    660 {
    661 
    662 	if (tap_clone_creator(unit) == NULL) {
    663 		aprint_error("%s%d: unable to attach an instance\n",
    664 		    tap_cd.cd_name, unit);
    665 		return ENXIO;
    666 	}
    667 	atomic_inc_uint(&tap_count);
    668 	return 0;
    669 }
    670 
    671 /*
    672  * tap(4) can be cloned by two ways:
    673  *   using 'ifconfig tap0 create', which will use the network
    674  *     interface cloning API, and call tap_clone_create above.
    675  *   opening the cloning device node, whose minor number is TAP_CLONER.
    676  *     See below for an explanation on how this part work.
    677  */
    678 static struct tap_softc *
    679 tap_clone_creator(int unit)
    680 {
    681 	cfdata_t cf;
    682 
    683 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
    684 	cf->cf_name = tap_cd.cd_name;
    685 	cf->cf_atname = tap_ca.ca_name;
    686 	if (unit == -1) {
    687 		/* let autoconf find the first free one */
    688 		cf->cf_unit = 0;
    689 		cf->cf_fstate = FSTATE_STAR;
    690 	} else {
    691 		cf->cf_unit = unit;
    692 		cf->cf_fstate = FSTATE_NOTFOUND;
    693 	}
    694 
    695 	return device_private(config_attach_pseudo(cf));
    696 }
    697 
    698 /*
    699  * The clean design of if_clone and autoconf(9) makes that part
    700  * really straightforward.  The second argument of config_detach
    701  * means neither QUIET nor FORCED.
    702  */
    703 static int
    704 tap_clone_destroy(struct ifnet *ifp)
    705 {
    706 	struct tap_softc *sc = ifp->if_softc;
    707 	int error = tap_clone_destroyer(sc->sc_dev);
    708 
    709 	if (error == 0)
    710 		atomic_dec_uint(&tap_count);
    711 	return error;
    712 }
    713 
    714 int
    715 tap_clone_destroyer(device_t dev)
    716 {
    717 	cfdata_t cf = device_cfdata(dev);
    718 	int error;
    719 
    720 	if ((error = config_detach(dev, 0)) != 0)
    721 		aprint_error_dev(dev, "unable to detach instance\n");
    722 	kmem_free(cf, sizeof(*cf));
    723 
    724 	return error;
    725 }
    726 
    727 /*
    728  * tap(4) is a bit of an hybrid device.  It can be used in two different
    729  * ways:
    730  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    731  *  2. open /dev/tap, get a new interface created and read/write off it.
    732  *     That interface is destroyed when the process that had it created exits.
    733  *
    734  * The first way is managed by the cdevsw structure, and you access interfaces
    735  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    736  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    737  *
    738  * The second way is the so-called "cloning" device.  It's a special minor
    739  * number (chosen as the maximal number, to allow as much tap devices as
    740  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    741  * call ends in tap_cdev_open.  The actual place where it is handled is
    742  * tap_dev_cloner.
    743  *
    744  * An tap device cannot be opened more than once at a time, so the cdevsw
    745  * part of open() does nothing but noting that the interface is being used and
    746  * hence ready to actually handle packets.
    747  */
    748 
    749 static int
    750 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    751 {
    752 	struct tap_softc *sc;
    753 
    754 	if (minor(dev) == TAP_CLONER)
    755 		return tap_dev_cloner(l);
    756 
    757 	sc = device_lookup_private(&tap_cd, minor(dev));
    758 	if (sc == NULL)
    759 		return ENXIO;
    760 
    761 	/* The device can only be opened once */
    762 	if (sc->sc_flags & TAP_INUSE)
    763 		return EBUSY;
    764 	sc->sc_flags |= TAP_INUSE;
    765 	return 0;
    766 }
    767 
    768 /*
    769  * There are several kinds of cloning devices, and the most simple is the one
    770  * tap(4) uses.  What it does is change the file descriptor with a new one,
    771  * with its own fileops structure (which maps to the various read, write,
    772  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    773  * then actually creates the new tap devices.
    774  *
    775  * Once those two steps are successful, we can re-wire the existing file
    776  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    777  * structure as needed (notably f_devunit gets filled with the fifth parameter
    778  * passed, the unit of the tap device which will allows us identifying the
    779  * device later), and returns EMOVEFD.
    780  *
    781  * That magic value is interpreted by sys_open() which then replaces the
    782  * current file descriptor by the new one (through a magic member of struct
    783  * lwp, l_dupfd).
    784  *
    785  * The tap device is flagged as being busy since it otherwise could be
    786  * externally accessed through the corresponding device node with the cdevsw
    787  * interface.
    788  */
    789 
    790 static int
    791 tap_dev_cloner(struct lwp *l)
    792 {
    793 	struct tap_softc *sc;
    794 	file_t *fp;
    795 	int error, fd;
    796 
    797 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    798 		return error;
    799 
    800 	if ((sc = tap_clone_creator(-1)) == NULL) {
    801 		fd_abort(curproc, fp, fd);
    802 		return ENXIO;
    803 	}
    804 
    805 	sc->sc_flags |= TAP_INUSE;
    806 
    807 	return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
    808 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    809 }
    810 
    811 /*
    812  * While all other operations (read, write, ioctl, poll and kqfilter) are
    813  * really the same whether we are in cdevsw or fileops mode, the close()
    814  * function is slightly different in the two cases.
    815  *
    816  * As for the other, the core of it is shared in tap_dev_close.  What
    817  * it does is sufficient for the cdevsw interface, but the cloning interface
    818  * needs another thing:  the interface is destroyed when the processes that
    819  * created it closes it.
    820  */
    821 static int
    822 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
    823 {
    824 	struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
    825 
    826 	if (sc == NULL)
    827 		return ENXIO;
    828 
    829 	return tap_dev_close(sc);
    830 }
    831 
    832 /*
    833  * It might happen that the administrator used ifconfig to externally destroy
    834  * the interface.  In that case, tap_fops_close will be called while
    835  * tap_detach is already happening.  If we called it again from here, we
    836  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    837  */
    838 static int
    839 tap_fops_close(file_t *fp)
    840 {
    841 	struct tap_softc *sc;
    842 	int unit = fp->f_devunit;
    843 	int error;
    844 
    845 	sc = device_lookup_private(&tap_cd, unit);
    846 	if (sc == NULL)
    847 		return ENXIO;
    848 
    849 	/* tap_dev_close currently always succeeds, but it might not
    850 	 * always be the case. */
    851 	KERNEL_LOCK(1, NULL);
    852 	if ((error = tap_dev_close(sc)) != 0) {
    853 		KERNEL_UNLOCK_ONE(NULL);
    854 		return error;
    855 	}
    856 
    857 	/* Destroy the device now that it is no longer useful,
    858 	 * unless it's already being destroyed. */
    859 	if ((sc->sc_flags & TAP_GOING) != 0) {
    860 		KERNEL_UNLOCK_ONE(NULL);
    861 		return 0;
    862 	}
    863 
    864 	error = tap_clone_destroyer(sc->sc_dev);
    865 	KERNEL_UNLOCK_ONE(NULL);
    866 	return error;
    867 }
    868 
    869 static int
    870 tap_dev_close(struct tap_softc *sc)
    871 {
    872 	struct ifnet *ifp;
    873 	int s;
    874 
    875 	s = splnet();
    876 	/* Let tap_start handle packets again */
    877 	ifp = &sc->sc_ec.ec_if;
    878 	ifp->if_flags &= ~IFF_OACTIVE;
    879 
    880 	/* Purge output queue */
    881 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    882 		struct mbuf *m;
    883 
    884 		for (;;) {
    885 			IFQ_DEQUEUE(&ifp->if_snd, m);
    886 			if (m == NULL)
    887 				break;
    888 
    889 			ifp->if_opackets++;
    890 			bpf_mtap(ifp, m, BPF_D_OUT);
    891 			m_freem(m);
    892 		}
    893 	}
    894 	splx(s);
    895 
    896 	if (sc->sc_sih != NULL) {
    897 		softint_disestablish(sc->sc_sih);
    898 		sc->sc_sih = NULL;
    899 	}
    900 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    901 
    902 	return 0;
    903 }
    904 
    905 static int
    906 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    907 {
    908 
    909 	return tap_dev_read(minor(dev), uio, flags);
    910 }
    911 
    912 static int
    913 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    914     kauth_cred_t cred, int flags)
    915 {
    916 	int error;
    917 
    918 	KERNEL_LOCK(1, NULL);
    919 	error = tap_dev_read(fp->f_devunit, uio, flags);
    920 	KERNEL_UNLOCK_ONE(NULL);
    921 	return error;
    922 }
    923 
    924 static int
    925 tap_dev_read(int unit, struct uio *uio, int flags)
    926 {
    927 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    928 	struct ifnet *ifp;
    929 	struct mbuf *m, *n;
    930 	int error = 0;
    931 
    932 	if (sc == NULL)
    933 		return ENXIO;
    934 
    935 	getnanotime(&sc->sc_atime);
    936 
    937 	ifp = &sc->sc_ec.ec_if;
    938 	if ((ifp->if_flags & IFF_UP) == 0)
    939 		return EHOSTDOWN;
    940 
    941 	/* In the TAP_NBIO case, we have to make sure we won't be sleeping */
    942 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    943 		if (!mutex_tryenter(&sc->sc_lock))
    944 			return EWOULDBLOCK;
    945 	} else
    946 		mutex_enter(&sc->sc_lock);
    947 
    948 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    949 		ifp->if_flags &= ~IFF_OACTIVE;
    950 		if (sc->sc_flags & TAP_NBIO)
    951 			error = EWOULDBLOCK;
    952 		else
    953 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
    954 
    955 		if (error != 0) {
    956 			mutex_exit(&sc->sc_lock);
    957 			return error;
    958 		}
    959 		/* The device might have been downed */
    960 		if ((ifp->if_flags & IFF_UP) == 0) {
    961 			mutex_exit(&sc->sc_lock);
    962 			return EHOSTDOWN;
    963 		}
    964 	}
    965 
    966 	IFQ_DEQUEUE(&ifp->if_snd, m);
    967 	mutex_exit(&sc->sc_lock);
    968 
    969 	ifp->if_flags &= ~IFF_OACTIVE;
    970 	if (m == NULL) {
    971 		error = 0;
    972 		goto out;
    973 	}
    974 
    975 	ifp->if_opackets++;
    976 	bpf_mtap(ifp, m, BPF_D_OUT);
    977 
    978 	/*
    979 	 * One read is one packet.
    980 	 */
    981 	do {
    982 		error = uiomove(mtod(m, void *),
    983 		    uimin(m->m_len, uio->uio_resid), uio);
    984 		m = n = m_free(m);
    985 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    986 
    987 	if (m != NULL)
    988 		m_freem(m);
    989 
    990 out:
    991 	return error;
    992 }
    993 
    994 static int
    995 tap_fops_stat(file_t *fp, struct stat *st)
    996 {
    997 	int error = 0;
    998 	struct tap_softc *sc;
    999 	int unit = fp->f_devunit;
   1000 
   1001 	(void)memset(st, 0, sizeof(*st));
   1002 
   1003 	KERNEL_LOCK(1, NULL);
   1004 	sc = device_lookup_private(&tap_cd, unit);
   1005 	if (sc == NULL) {
   1006 		error = ENXIO;
   1007 		goto out;
   1008 	}
   1009 
   1010 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
   1011 	st->st_atimespec = sc->sc_atime;
   1012 	st->st_mtimespec = sc->sc_mtime;
   1013 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
   1014 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1015 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1016 out:
   1017 	KERNEL_UNLOCK_ONE(NULL);
   1018 	return error;
   1019 }
   1020 
   1021 static int
   1022 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1023 {
   1024 
   1025 	return tap_dev_write(minor(dev), uio, flags);
   1026 }
   1027 
   1028 static int
   1029 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1030     kauth_cred_t cred, int flags)
   1031 {
   1032 	int error;
   1033 
   1034 	KERNEL_LOCK(1, NULL);
   1035 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1036 	KERNEL_UNLOCK_ONE(NULL);
   1037 	return error;
   1038 }
   1039 
   1040 static int
   1041 tap_dev_write(int unit, struct uio *uio, int flags)
   1042 {
   1043 	struct tap_softc *sc =
   1044 	    device_lookup_private(&tap_cd, unit);
   1045 	struct ifnet *ifp;
   1046 	struct mbuf *m, **mp;
   1047 	int error = 0;
   1048 
   1049 	if (sc == NULL)
   1050 		return ENXIO;
   1051 
   1052 	getnanotime(&sc->sc_mtime);
   1053 	ifp = &sc->sc_ec.ec_if;
   1054 
   1055 	/* One write, one packet, that's the rule */
   1056 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1057 	if (m == NULL) {
   1058 		ifp->if_ierrors++;
   1059 		return ENOBUFS;
   1060 	}
   1061 	m->m_pkthdr.len = uio->uio_resid;
   1062 
   1063 	mp = &m;
   1064 	while (error == 0 && uio->uio_resid > 0) {
   1065 		if (*mp != m) {
   1066 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1067 			if (*mp == NULL) {
   1068 				error = ENOBUFS;
   1069 				break;
   1070 			}
   1071 		}
   1072 		(*mp)->m_len = uimin(MHLEN, uio->uio_resid);
   1073 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1074 		mp = &(*mp)->m_next;
   1075 	}
   1076 	if (error) {
   1077 		ifp->if_ierrors++;
   1078 		m_freem(m);
   1079 		return error;
   1080 	}
   1081 
   1082 	m_set_rcvif(m, ifp);
   1083 
   1084 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1085 
   1086 	return 0;
   1087 }
   1088 
   1089 static int
   1090 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
   1091 {
   1092 
   1093 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1094 }
   1095 
   1096 static int
   1097 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1098 {
   1099 
   1100 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1101 }
   1102 
   1103 static int
   1104 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1105 {
   1106 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1107 
   1108 	if (sc == NULL)
   1109 		return ENXIO;
   1110 
   1111 	switch (cmd) {
   1112 	case FIONREAD:
   1113 		{
   1114 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1115 			struct mbuf *m;
   1116 			int s;
   1117 
   1118 			s = splnet();
   1119 			IFQ_POLL(&ifp->if_snd, m);
   1120 
   1121 			if (m == NULL)
   1122 				*(int *)data = 0;
   1123 			else
   1124 				*(int *)data = m->m_pkthdr.len;
   1125 			splx(s);
   1126 			return 0;
   1127 		}
   1128 	case TIOCSPGRP:
   1129 	case FIOSETOWN:
   1130 		return fsetown(&sc->sc_pgid, cmd, data);
   1131 	case TIOCGPGRP:
   1132 	case FIOGETOWN:
   1133 		return fgetown(sc->sc_pgid, cmd, data);
   1134 	case FIOASYNC:
   1135 		if (*(int *)data) {
   1136 			if (sc->sc_sih == NULL) {
   1137 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1138 				    tap_softintr, sc);
   1139 				if (sc->sc_sih == NULL)
   1140 					return EBUSY; /* XXX */
   1141 			}
   1142 			sc->sc_flags |= TAP_ASYNCIO;
   1143 		} else {
   1144 			sc->sc_flags &= ~TAP_ASYNCIO;
   1145 			if (sc->sc_sih != NULL) {
   1146 				softint_disestablish(sc->sc_sih);
   1147 				sc->sc_sih = NULL;
   1148 			}
   1149 		}
   1150 		return 0;
   1151 	case FIONBIO:
   1152 		if (*(int *)data)
   1153 			sc->sc_flags |= TAP_NBIO;
   1154 		else
   1155 			sc->sc_flags &= ~TAP_NBIO;
   1156 		return 0;
   1157 	case TAPGIFNAME:
   1158 		{
   1159 			struct ifreq *ifr = (struct ifreq *)data;
   1160 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1161 
   1162 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1163 			return 0;
   1164 		}
   1165 	default:
   1166 		return ENOTTY;
   1167 	}
   1168 }
   1169 
   1170 static int
   1171 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1172 {
   1173 
   1174 	return tap_dev_poll(minor(dev), events, l);
   1175 }
   1176 
   1177 static int
   1178 tap_fops_poll(file_t *fp, int events)
   1179 {
   1180 
   1181 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1182 }
   1183 
   1184 static int
   1185 tap_dev_poll(int unit, int events, struct lwp *l)
   1186 {
   1187 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1188 	int revents = 0;
   1189 
   1190 	if (sc == NULL)
   1191 		return POLLERR;
   1192 
   1193 	if (events & (POLLIN | POLLRDNORM)) {
   1194 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1195 		struct mbuf *m;
   1196 		int s;
   1197 
   1198 		s = splnet();
   1199 		IFQ_POLL(&ifp->if_snd, m);
   1200 
   1201 		if (m != NULL)
   1202 			revents |= events & (POLLIN | POLLRDNORM);
   1203 		else {
   1204 			mutex_spin_enter(&sc->sc_lock);
   1205 			selrecord(l, &sc->sc_rsel);
   1206 			mutex_spin_exit(&sc->sc_lock);
   1207 		}
   1208 		splx(s);
   1209 	}
   1210 	revents |= events & (POLLOUT | POLLWRNORM);
   1211 
   1212 	return revents;
   1213 }
   1214 
   1215 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1216 	tap_kqread };
   1217 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1218 	filt_seltrue };
   1219 
   1220 static int
   1221 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1222 {
   1223 
   1224 	return tap_dev_kqfilter(minor(dev), kn);
   1225 }
   1226 
   1227 static int
   1228 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1229 {
   1230 
   1231 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1232 }
   1233 
   1234 static int
   1235 tap_dev_kqfilter(int unit, struct knote *kn)
   1236 {
   1237 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1238 
   1239 	if (sc == NULL)
   1240 		return ENXIO;
   1241 
   1242 	KERNEL_LOCK(1, NULL);
   1243 	switch(kn->kn_filter) {
   1244 	case EVFILT_READ:
   1245 		kn->kn_fop = &tap_read_filterops;
   1246 		break;
   1247 	case EVFILT_WRITE:
   1248 		kn->kn_fop = &tap_seltrue_filterops;
   1249 		break;
   1250 	default:
   1251 		KERNEL_UNLOCK_ONE(NULL);
   1252 		return EINVAL;
   1253 	}
   1254 
   1255 	kn->kn_hook = sc;
   1256 	mutex_spin_enter(&sc->sc_lock);
   1257 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1258 	mutex_spin_exit(&sc->sc_lock);
   1259 	KERNEL_UNLOCK_ONE(NULL);
   1260 	return 0;
   1261 }
   1262 
   1263 static void
   1264 tap_kqdetach(struct knote *kn)
   1265 {
   1266 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1267 
   1268 	KERNEL_LOCK(1, NULL);
   1269 	mutex_spin_enter(&sc->sc_lock);
   1270 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1271 	mutex_spin_exit(&sc->sc_lock);
   1272 	KERNEL_UNLOCK_ONE(NULL);
   1273 }
   1274 
   1275 static int
   1276 tap_kqread(struct knote *kn, long hint)
   1277 {
   1278 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1279 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1280 	struct mbuf *m;
   1281 	int s, rv;
   1282 
   1283 	KERNEL_LOCK(1, NULL);
   1284 	s = splnet();
   1285 	IFQ_POLL(&ifp->if_snd, m);
   1286 
   1287 	if (m == NULL)
   1288 		kn->kn_data = 0;
   1289 	else
   1290 		kn->kn_data = m->m_pkthdr.len;
   1291 	splx(s);
   1292 	rv = (kn->kn_data != 0 ? 1 : 0);
   1293 	KERNEL_UNLOCK_ONE(NULL);
   1294 	return rv;
   1295 }
   1296 
   1297 /*
   1298  * sysctl management routines
   1299  * You can set the address of an interface through:
   1300  * net.link.tap.tap<number>
   1301  *
   1302  * Note the consistent use of tap_log in order to use
   1303  * sysctl_teardown at unload time.
   1304  *
   1305  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1306  * blocks register a function in a special section of the kernel
   1307  * (called a link set) which is used at init_sysctl() time to cycle
   1308  * through all those functions to create the kernel's sysctl tree.
   1309  *
   1310  * It is not possible to use link sets in a module, so the
   1311  * easiest is to simply call our own setup routine at load time.
   1312  *
   1313  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1314  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1315  * whole kernel sysctl tree is built, it is not possible to add any
   1316  * permanent node.
   1317  *
   1318  * It should be noted that we're not saving the sysctlnode pointer
   1319  * we are returned when creating the "tap" node.  That structure
   1320  * cannot be trusted once out of the calling function, as it might
   1321  * get reused.  So we just save the MIB number, and always give the
   1322  * full path starting from the root for later calls to sysctl_createv
   1323  * and sysctl_destroyv.
   1324  */
   1325 static void
   1326 sysctl_tap_setup(struct sysctllog **clog)
   1327 {
   1328 	const struct sysctlnode *node;
   1329 	int error = 0;
   1330 
   1331 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1332 	    CTLFLAG_PERMANENT,
   1333 	    CTLTYPE_NODE, "link", NULL,
   1334 	    NULL, 0, NULL, 0,
   1335 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1336 		return;
   1337 
   1338 	/*
   1339 	 * The first four parameters of sysctl_createv are for management.
   1340 	 *
   1341 	 * The four that follows, here starting with a '0' for the flags,
   1342 	 * describe the node.
   1343 	 *
   1344 	 * The next series of four set its value, through various possible
   1345 	 * means.
   1346 	 *
   1347 	 * Last but not least, the path to the node is described.  That path
   1348 	 * is relative to the given root (third argument).  Here we're
   1349 	 * starting from the root.
   1350 	 */
   1351 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1352 	    CTLFLAG_PERMANENT,
   1353 	    CTLTYPE_NODE, "tap", NULL,
   1354 	    NULL, 0, NULL, 0,
   1355 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1356 		return;
   1357 	tap_node = node->sysctl_num;
   1358 }
   1359 
   1360 /*
   1361  * The helper functions make Andrew Brown's interface really
   1362  * shine.  It makes possible to create value on the fly whether
   1363  * the sysctl value is read or written.
   1364  *
   1365  * As shown as an example in the man page, the first step is to
   1366  * create a copy of the node to have sysctl_lookup work on it.
   1367  *
   1368  * Here, we have more work to do than just a copy, since we have
   1369  * to create the string.  The first step is to collect the actual
   1370  * value of the node, which is a convenient pointer to the softc
   1371  * of the interface.  From there we create the string and use it
   1372  * as the value, but only for the *copy* of the node.
   1373  *
   1374  * Then we let sysctl_lookup do the magic, which consists in
   1375  * setting oldp and newp as required by the operation.  When the
   1376  * value is read, that means that the string will be copied to
   1377  * the user, and when it is written, the new value will be copied
   1378  * over in the addr array.
   1379  *
   1380  * If newp is NULL, the user was reading the value, so we don't
   1381  * have anything else to do.  If a new value was written, we
   1382  * have to check it.
   1383  *
   1384  * If it is incorrect, we can return an error and leave 'node' as
   1385  * it is:  since it is a copy of the actual node, the change will
   1386  * be forgotten.
   1387  *
   1388  * Upon a correct input, we commit the change to the ifnet
   1389  * structure of our interface.
   1390  */
   1391 static int
   1392 tap_sysctl_handler(SYSCTLFN_ARGS)
   1393 {
   1394 	struct sysctlnode node;
   1395 	struct tap_softc *sc;
   1396 	struct ifnet *ifp;
   1397 	int error;
   1398 	size_t len;
   1399 	char addr[3 * ETHER_ADDR_LEN];
   1400 	uint8_t enaddr[ETHER_ADDR_LEN];
   1401 
   1402 	node = *rnode;
   1403 	sc = node.sysctl_data;
   1404 	ifp = &sc->sc_ec.ec_if;
   1405 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1406 	node.sysctl_data = addr;
   1407 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1408 	if (error || newp == NULL)
   1409 		return error;
   1410 
   1411 	len = strlen(addr);
   1412 	if (len < 11 || len > 17)
   1413 		return EINVAL;
   1414 
   1415 	/* Commit change */
   1416 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1417 		return EINVAL;
   1418 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1419 	return error;
   1420 }
   1421 
   1422 /*
   1423  * Module infrastructure
   1424  */
   1425 #include "if_module.h"
   1426 
   1427 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
   1428