if_tap.c revision 1.113 1 /* $NetBSD: if_tap.c,v 1.113 2019/05/29 10:07:30 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.113 2019/05/29 10:07:30 msaitoh Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/atomic.h>
45 #include <sys/conf.h>
46 #include <sys/cprng.h>
47 #include <sys/device.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/intr.h>
51 #include <sys/kauth.h>
52 #include <sys/kernel.h>
53 #include <sys/kmem.h>
54 #include <sys/module.h>
55 #include <sys/mutex.h>
56 #include <sys/condvar.h>
57 #include <sys/poll.h>
58 #include <sys/proc.h>
59 #include <sys/select.h>
60 #include <sys/sockio.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_media.h>
69 #include <net/if_tap.h>
70 #include <net/bpf.h>
71
72 #include "ioconf.h"
73
74 /*
75 * sysctl node management
76 *
77 * It's not really possible to use a SYSCTL_SETUP block with
78 * current module implementation, so it is easier to just define
79 * our own function.
80 *
81 * The handler function is a "helper" in Andrew Brown's sysctl
82 * framework terminology. It is used as a gateway for sysctl
83 * requests over the nodes.
84 *
85 * tap_log allows the module to log creations of nodes and
86 * destroy them all at once using sysctl_teardown.
87 */
88 static int tap_node;
89 static int tap_sysctl_handler(SYSCTLFN_PROTO);
90 static void sysctl_tap_setup(struct sysctllog **);
91
92 /*
93 * Since we're an Ethernet device, we need the 2 following
94 * components: a struct ethercom and a struct ifmedia
95 * since we don't attach a PHY to ourselves.
96 * We could emulate one, but there's no real point.
97 */
98
99 struct tap_softc {
100 device_t sc_dev;
101 struct ifmedia sc_im;
102 struct ethercom sc_ec;
103 int sc_flags;
104 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
105 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
106 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
107 #define TAP_GOING 0x00000008 /* interface is being destroyed */
108 struct selinfo sc_rsel;
109 pid_t sc_pgid; /* For async. IO */
110 kmutex_t sc_lock;
111 kcondvar_t sc_cv;
112 void *sc_sih;
113 struct timespec sc_atime;
114 struct timespec sc_mtime;
115 struct timespec sc_btime;
116 };
117
118 /* autoconf(9) glue */
119
120 static int tap_match(device_t, cfdata_t, void *);
121 static void tap_attach(device_t, device_t, void *);
122 static int tap_detach(device_t, int);
123
124 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
125 tap_match, tap_attach, tap_detach, NULL);
126 extern struct cfdriver tap_cd;
127
128 /* Real device access routines */
129 static int tap_dev_close(struct tap_softc *);
130 static int tap_dev_read(int, struct uio *, int);
131 static int tap_dev_write(int, struct uio *, int);
132 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
133 static int tap_dev_poll(int, int, struct lwp *);
134 static int tap_dev_kqfilter(int, struct knote *);
135
136 /* Fileops access routines */
137 static int tap_fops_close(file_t *);
138 static int tap_fops_read(file_t *, off_t *, struct uio *,
139 kauth_cred_t, int);
140 static int tap_fops_write(file_t *, off_t *, struct uio *,
141 kauth_cred_t, int);
142 static int tap_fops_ioctl(file_t *, u_long, void *);
143 static int tap_fops_poll(file_t *, int);
144 static int tap_fops_stat(file_t *, struct stat *);
145 static int tap_fops_kqfilter(file_t *, struct knote *);
146
147 static const struct fileops tap_fileops = {
148 .fo_name = "tap",
149 .fo_read = tap_fops_read,
150 .fo_write = tap_fops_write,
151 .fo_ioctl = tap_fops_ioctl,
152 .fo_fcntl = fnullop_fcntl,
153 .fo_poll = tap_fops_poll,
154 .fo_stat = tap_fops_stat,
155 .fo_close = tap_fops_close,
156 .fo_kqfilter = tap_fops_kqfilter,
157 .fo_restart = fnullop_restart,
158 };
159
160 /* Helper for cloning open() */
161 static int tap_dev_cloner(struct lwp *);
162
163 /* Character device routines */
164 static int tap_cdev_open(dev_t, int, int, struct lwp *);
165 static int tap_cdev_close(dev_t, int, int, struct lwp *);
166 static int tap_cdev_read(dev_t, struct uio *, int);
167 static int tap_cdev_write(dev_t, struct uio *, int);
168 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
169 static int tap_cdev_poll(dev_t, int, struct lwp *);
170 static int tap_cdev_kqfilter(dev_t, struct knote *);
171
172 const struct cdevsw tap_cdevsw = {
173 .d_open = tap_cdev_open,
174 .d_close = tap_cdev_close,
175 .d_read = tap_cdev_read,
176 .d_write = tap_cdev_write,
177 .d_ioctl = tap_cdev_ioctl,
178 .d_stop = nostop,
179 .d_tty = notty,
180 .d_poll = tap_cdev_poll,
181 .d_mmap = nommap,
182 .d_kqfilter = tap_cdev_kqfilter,
183 .d_discard = nodiscard,
184 .d_flag = D_OTHER | D_MPSAFE
185 };
186
187 #define TAP_CLONER 0xfffff /* Maximal minor value */
188
189 /* kqueue-related routines */
190 static void tap_kqdetach(struct knote *);
191 static int tap_kqread(struct knote *, long);
192
193 /*
194 * Those are needed by the if_media interface.
195 */
196
197 static int tap_mediachange(struct ifnet *);
198 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
199
200 /*
201 * Those are needed by the ifnet interface, and would typically be
202 * there for any network interface driver.
203 * Some other routines are optional: watchdog and drain.
204 */
205
206 static void tap_start(struct ifnet *);
207 static void tap_stop(struct ifnet *, int);
208 static int tap_init(struct ifnet *);
209 static int tap_ioctl(struct ifnet *, u_long, void *);
210
211 /* Internal functions */
212 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
213 static void tap_softintr(void *);
214
215 /*
216 * tap is a clonable interface, although it is highly unrealistic for
217 * an Ethernet device.
218 *
219 * Here are the bits needed for a clonable interface.
220 */
221 static int tap_clone_create(struct if_clone *, int);
222 static int tap_clone_destroy(struct ifnet *);
223
224 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
225 tap_clone_create,
226 tap_clone_destroy);
227
228 /* Helper functions shared by the two cloning code paths */
229 static struct tap_softc * tap_clone_creator(int);
230 int tap_clone_destroyer(device_t);
231
232 static struct sysctllog *tap_sysctl_clog;
233
234 #ifdef _MODULE
235 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
236 #endif
237
238 static u_int tap_count;
239
240 void
241 tapattach(int n)
242 {
243
244 /*
245 * Nothing to do here, initialization is handled by the
246 * module initialization code in tapinit() below).
247 */
248 }
249
250 static void
251 tapinit(void)
252 {
253 int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
254
255 if (error) {
256 aprint_error("%s: unable to register cfattach\n",
257 tap_cd.cd_name);
258 (void)config_cfdriver_detach(&tap_cd);
259 return;
260 }
261
262 if_clone_attach(&tap_cloners);
263 sysctl_tap_setup(&tap_sysctl_clog);
264 #ifdef _MODULE
265 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
266 #endif
267 }
268
269 static int
270 tapdetach(void)
271 {
272 int error = 0;
273
274 if_clone_detach(&tap_cloners);
275 #ifdef _MODULE
276 error = devsw_detach(NULL, &tap_cdevsw);
277 if (error != 0)
278 goto out2;
279 #endif
280
281 if (tap_count != 0) {
282 error = EBUSY;
283 goto out1;
284 }
285
286 error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
287 if (error != 0)
288 goto out1;
289
290 sysctl_teardown(&tap_sysctl_clog);
291
292 return 0;
293
294 out1:
295 #ifdef _MODULE
296 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
297 out2:
298 #endif
299 if_clone_attach(&tap_cloners);
300
301 return error;
302 }
303
304 /* Pretty much useless for a pseudo-device */
305 static int
306 tap_match(device_t parent, cfdata_t cfdata, void *arg)
307 {
308
309 return 1;
310 }
311
312 void
313 tap_attach(device_t parent, device_t self, void *aux)
314 {
315 struct tap_softc *sc = device_private(self);
316 struct ifnet *ifp;
317 const struct sysctlnode *node;
318 int error;
319 uint8_t enaddr[ETHER_ADDR_LEN] =
320 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
321 char enaddrstr[3 * ETHER_ADDR_LEN];
322
323 sc->sc_dev = self;
324 sc->sc_sih = NULL;
325 getnanotime(&sc->sc_btime);
326 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
327 sc->sc_flags = 0;
328 selinit(&sc->sc_rsel);
329
330 cv_init(&sc->sc_cv, "tapread");
331 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
332
333 if (!pmf_device_register(self, NULL, NULL))
334 aprint_error_dev(self, "couldn't establish power handler\n");
335
336 /*
337 * In order to obtain unique initial Ethernet address on a host,
338 * do some randomisation. It's not meant for anything but avoiding
339 * hard-coding an address.
340 */
341 cprng_fast(&enaddr[3], 3);
342
343 aprint_verbose_dev(self, "Ethernet address %s\n",
344 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
345
346 /*
347 * Why 1000baseT? Why not? You can add more.
348 *
349 * Note that there are 3 steps: init, one or several additions to
350 * list of supported media, and in the end, the selection of one
351 * of them.
352 */
353 sc->sc_ec.ec_ifmedia = &sc->sc_im;
354 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
355 ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_1000_T, 0, NULL);
356 ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
357 ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_100_TX, 0, NULL);
358 ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
359 ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_10_T, 0, NULL);
360 ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
361 ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_AUTO, 0, NULL);
362 ifmedia_set(&sc->sc_im, IFM_ETHER | IFM_AUTO);
363
364 /*
365 * One should note that an interface must do multicast in order
366 * to support IPv6.
367 */
368 ifp = &sc->sc_ec.ec_if;
369 strcpy(ifp->if_xname, device_xname(self));
370 ifp->if_softc = sc;
371 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
372 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
373 #ifdef NET_MPSAFE
374 ifp->if_extflags |= IFEF_MPSAFE;
375 #endif
376 ifp->if_ioctl = tap_ioctl;
377 ifp->if_start = tap_start;
378 ifp->if_stop = tap_stop;
379 ifp->if_init = tap_init;
380 IFQ_SET_READY(&ifp->if_snd);
381
382 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
383
384 /* Those steps are mandatory for an Ethernet driver. */
385 error = if_initialize(ifp);
386 if (error != 0) {
387 aprint_error_dev(self, "if_initialize failed(%d)\n", error);
388 ifmedia_removeall(&sc->sc_im);
389 pmf_device_deregister(self);
390 mutex_destroy(&sc->sc_lock);
391 seldestroy(&sc->sc_rsel);
392
393 return; /* Error */
394 }
395 ifp->if_percpuq = if_percpuq_create(ifp);
396 ether_ifattach(ifp, enaddr);
397 if_register(ifp);
398
399 /*
400 * Add a sysctl node for that interface.
401 *
402 * The pointer transmitted is not a string, but instead a pointer to
403 * the softc structure, which we can use to build the string value on
404 * the fly in the helper function of the node. See the comments for
405 * tap_sysctl_handler for details.
406 *
407 * Usually sysctl_createv is called with CTL_CREATE as the before-last
408 * component. However, we can allocate a number ourselves, as we are
409 * the only consumer of the net.link.<iface> node. In this case, the
410 * unit number is conveniently used to number the node. CTL_CREATE
411 * would just work, too.
412 */
413 if ((error = sysctl_createv(NULL, 0, NULL,
414 &node, CTLFLAG_READWRITE,
415 CTLTYPE_STRING, device_xname(self), NULL,
416 tap_sysctl_handler, 0, (void *)sc, 18,
417 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
418 CTL_EOL)) != 0)
419 aprint_error_dev(self,
420 "sysctl_createv returned %d, ignoring\n", error);
421 }
422
423 /*
424 * When detaching, we do the inverse of what is done in the attach
425 * routine, in reversed order.
426 */
427 static int
428 tap_detach(device_t self, int flags)
429 {
430 struct tap_softc *sc = device_private(self);
431 struct ifnet *ifp = &sc->sc_ec.ec_if;
432 int error;
433
434 sc->sc_flags |= TAP_GOING;
435 tap_stop(ifp, 1);
436 if_down(ifp);
437
438 if (sc->sc_sih != NULL) {
439 softint_disestablish(sc->sc_sih);
440 sc->sc_sih = NULL;
441 }
442
443 /*
444 * Destroying a single leaf is a very straightforward operation using
445 * sysctl_destroyv. One should be sure to always end the path with
446 * CTL_EOL.
447 */
448 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
449 device_unit(sc->sc_dev), CTL_EOL)) != 0)
450 aprint_error_dev(self,
451 "sysctl_destroyv returned %d, ignoring\n", error);
452 ether_ifdetach(ifp);
453 if_detach(ifp);
454 ifmedia_removeall(&sc->sc_im);
455 seldestroy(&sc->sc_rsel);
456 mutex_destroy(&sc->sc_lock);
457 cv_destroy(&sc->sc_cv);
458
459 pmf_device_deregister(self);
460
461 return 0;
462 }
463
464 /*
465 * This function is called by the ifmedia layer to notify the driver
466 * that the user requested a media change. A real driver would
467 * reconfigure the hardware.
468 */
469 static int
470 tap_mediachange(struct ifnet *ifp)
471 {
472 return 0;
473 }
474
475 /*
476 * Here the user asks for the currently used media.
477 */
478 static void
479 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
480 {
481 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
482
483 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
484 }
485
486 /*
487 * This is the function where we SEND packets.
488 *
489 * There is no 'receive' equivalent. A typical driver will get
490 * interrupts from the hardware, and from there will inject new packets
491 * into the network stack.
492 *
493 * Once handled, a packet must be freed. A real driver might not be able
494 * to fit all the pending packets into the hardware, and is allowed to
495 * return before having sent all the packets. It should then use the
496 * if_flags flag IFF_OACTIVE to notify the upper layer.
497 *
498 * There are also other flags one should check, such as IFF_PAUSE.
499 *
500 * It is our duty to make packets available to BPF listeners.
501 *
502 * You should be aware that this function is called by the Ethernet layer
503 * at splnet().
504 *
505 * When the device is opened, we have to pass the packet(s) to the
506 * userland. For that we stay in OACTIVE mode while the userland gets
507 * the packets, and we send a signal to the processes waiting to read.
508 *
509 * wakeup(sc) is the counterpart to the tsleep call in
510 * tap_dev_read, while selnotify() is used for kevent(2) and
511 * poll(2) (which includes select(2)) listeners.
512 */
513 static void
514 tap_start(struct ifnet *ifp)
515 {
516 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
517 struct mbuf *m0;
518
519 mutex_enter(&sc->sc_lock);
520 if ((sc->sc_flags & TAP_INUSE) == 0) {
521 /* Simply drop packets */
522 for (;;) {
523 IFQ_DEQUEUE(&ifp->if_snd, m0);
524 if (m0 == NULL)
525 goto done;
526
527 ifp->if_opackets++;
528 bpf_mtap(ifp, m0, BPF_D_OUT);
529
530 m_freem(m0);
531 }
532 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
533 ifp->if_flags |= IFF_OACTIVE;
534 cv_broadcast(&sc->sc_cv);
535 selnotify(&sc->sc_rsel, 0, 1);
536 if (sc->sc_flags & TAP_ASYNCIO)
537 softint_schedule(sc->sc_sih);
538 }
539 done:
540 mutex_exit(&sc->sc_lock);
541 }
542
543 static void
544 tap_softintr(void *cookie)
545 {
546 struct tap_softc *sc;
547 struct ifnet *ifp;
548 int a, b;
549
550 sc = cookie;
551
552 if (sc->sc_flags & TAP_ASYNCIO) {
553 ifp = &sc->sc_ec.ec_if;
554 if (ifp->if_flags & IFF_RUNNING) {
555 a = POLL_IN;
556 b = POLLIN | POLLRDNORM;
557 } else {
558 a = POLL_HUP;
559 b = 0;
560 }
561 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
562 }
563 }
564
565 /*
566 * A typical driver will only contain the following handlers for
567 * ioctl calls, except SIOCSIFPHYADDR.
568 * The latter is a hack I used to set the Ethernet address of the
569 * faked device.
570 *
571 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
572 * called under splnet().
573 */
574 static int
575 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
576 {
577 int s, error;
578
579 s = splnet();
580
581 switch (cmd) {
582 case SIOCSIFPHYADDR:
583 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
584 break;
585 default:
586 error = ether_ioctl(ifp, cmd, data);
587 if (error == ENETRESET)
588 error = 0;
589 break;
590 }
591
592 splx(s);
593
594 return error;
595 }
596
597 /*
598 * Helper function to set Ethernet address. This has been replaced by
599 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
600 */
601 static int
602 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
603 {
604 const struct sockaddr *sa = &ifra->ifra_addr;
605
606 if (sa->sa_family != AF_LINK)
607 return EINVAL;
608
609 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
610
611 return 0;
612 }
613
614 /*
615 * _init() would typically be called when an interface goes up,
616 * meaning it should configure itself into the state in which it
617 * can send packets.
618 */
619 static int
620 tap_init(struct ifnet *ifp)
621 {
622 ifp->if_flags |= IFF_RUNNING;
623
624 tap_start(ifp);
625
626 return 0;
627 }
628
629 /*
630 * _stop() is called when an interface goes down. It is our
631 * responsability to validate that state by clearing the
632 * IFF_RUNNING flag.
633 *
634 * We have to wake up all the sleeping processes to have the pending
635 * read requests cancelled.
636 */
637 static void
638 tap_stop(struct ifnet *ifp, int disable)
639 {
640 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
641
642 mutex_enter(&sc->sc_lock);
643 ifp->if_flags &= ~IFF_RUNNING;
644 cv_broadcast(&sc->sc_cv);
645 selnotify(&sc->sc_rsel, 0, 1);
646 if (sc->sc_flags & TAP_ASYNCIO)
647 softint_schedule(sc->sc_sih);
648 mutex_exit(&sc->sc_lock);
649 }
650
651 /*
652 * The 'create' command of ifconfig can be used to create
653 * any numbered instance of a given device. Thus we have to
654 * make sure we have enough room in cd_devs to create the
655 * user-specified instance. config_attach_pseudo will do this
656 * for us.
657 */
658 static int
659 tap_clone_create(struct if_clone *ifc, int unit)
660 {
661
662 if (tap_clone_creator(unit) == NULL) {
663 aprint_error("%s%d: unable to attach an instance\n",
664 tap_cd.cd_name, unit);
665 return ENXIO;
666 }
667 atomic_inc_uint(&tap_count);
668 return 0;
669 }
670
671 /*
672 * tap(4) can be cloned by two ways:
673 * using 'ifconfig tap0 create', which will use the network
674 * interface cloning API, and call tap_clone_create above.
675 * opening the cloning device node, whose minor number is TAP_CLONER.
676 * See below for an explanation on how this part work.
677 */
678 static struct tap_softc *
679 tap_clone_creator(int unit)
680 {
681 cfdata_t cf;
682
683 cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
684 cf->cf_name = tap_cd.cd_name;
685 cf->cf_atname = tap_ca.ca_name;
686 if (unit == -1) {
687 /* let autoconf find the first free one */
688 cf->cf_unit = 0;
689 cf->cf_fstate = FSTATE_STAR;
690 } else {
691 cf->cf_unit = unit;
692 cf->cf_fstate = FSTATE_NOTFOUND;
693 }
694
695 return device_private(config_attach_pseudo(cf));
696 }
697
698 /*
699 * The clean design of if_clone and autoconf(9) makes that part
700 * really straightforward. The second argument of config_detach
701 * means neither QUIET nor FORCED.
702 */
703 static int
704 tap_clone_destroy(struct ifnet *ifp)
705 {
706 struct tap_softc *sc = ifp->if_softc;
707 int error = tap_clone_destroyer(sc->sc_dev);
708
709 if (error == 0)
710 atomic_dec_uint(&tap_count);
711 return error;
712 }
713
714 int
715 tap_clone_destroyer(device_t dev)
716 {
717 cfdata_t cf = device_cfdata(dev);
718 int error;
719
720 if ((error = config_detach(dev, 0)) != 0)
721 aprint_error_dev(dev, "unable to detach instance\n");
722 kmem_free(cf, sizeof(*cf));
723
724 return error;
725 }
726
727 /*
728 * tap(4) is a bit of an hybrid device. It can be used in two different
729 * ways:
730 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
731 * 2. open /dev/tap, get a new interface created and read/write off it.
732 * That interface is destroyed when the process that had it created exits.
733 *
734 * The first way is managed by the cdevsw structure, and you access interfaces
735 * through a (major, minor) mapping: tap4 is obtained by the minor number
736 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
737 *
738 * The second way is the so-called "cloning" device. It's a special minor
739 * number (chosen as the maximal number, to allow as much tap devices as
740 * possible). The user first opens the cloner (e.g., /dev/tap), and that
741 * call ends in tap_cdev_open. The actual place where it is handled is
742 * tap_dev_cloner.
743 *
744 * An tap device cannot be opened more than once at a time, so the cdevsw
745 * part of open() does nothing but noting that the interface is being used and
746 * hence ready to actually handle packets.
747 */
748
749 static int
750 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
751 {
752 struct tap_softc *sc;
753
754 if (minor(dev) == TAP_CLONER)
755 return tap_dev_cloner(l);
756
757 sc = device_lookup_private(&tap_cd, minor(dev));
758 if (sc == NULL)
759 return ENXIO;
760
761 /* The device can only be opened once */
762 if (sc->sc_flags & TAP_INUSE)
763 return EBUSY;
764 sc->sc_flags |= TAP_INUSE;
765 return 0;
766 }
767
768 /*
769 * There are several kinds of cloning devices, and the most simple is the one
770 * tap(4) uses. What it does is change the file descriptor with a new one,
771 * with its own fileops structure (which maps to the various read, write,
772 * ioctl functions). It starts allocating a new file descriptor with falloc,
773 * then actually creates the new tap devices.
774 *
775 * Once those two steps are successful, we can re-wire the existing file
776 * descriptor to its new self. This is done with fdclone(): it fills the fp
777 * structure as needed (notably f_devunit gets filled with the fifth parameter
778 * passed, the unit of the tap device which will allows us identifying the
779 * device later), and returns EMOVEFD.
780 *
781 * That magic value is interpreted by sys_open() which then replaces the
782 * current file descriptor by the new one (through a magic member of struct
783 * lwp, l_dupfd).
784 *
785 * The tap device is flagged as being busy since it otherwise could be
786 * externally accessed through the corresponding device node with the cdevsw
787 * interface.
788 */
789
790 static int
791 tap_dev_cloner(struct lwp *l)
792 {
793 struct tap_softc *sc;
794 file_t *fp;
795 int error, fd;
796
797 if ((error = fd_allocfile(&fp, &fd)) != 0)
798 return error;
799
800 if ((sc = tap_clone_creator(-1)) == NULL) {
801 fd_abort(curproc, fp, fd);
802 return ENXIO;
803 }
804
805 sc->sc_flags |= TAP_INUSE;
806
807 return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
808 (void *)(intptr_t)device_unit(sc->sc_dev));
809 }
810
811 /*
812 * While all other operations (read, write, ioctl, poll and kqfilter) are
813 * really the same whether we are in cdevsw or fileops mode, the close()
814 * function is slightly different in the two cases.
815 *
816 * As for the other, the core of it is shared in tap_dev_close. What
817 * it does is sufficient for the cdevsw interface, but the cloning interface
818 * needs another thing: the interface is destroyed when the processes that
819 * created it closes it.
820 */
821 static int
822 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
823 {
824 struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
825
826 if (sc == NULL)
827 return ENXIO;
828
829 return tap_dev_close(sc);
830 }
831
832 /*
833 * It might happen that the administrator used ifconfig to externally destroy
834 * the interface. In that case, tap_fops_close will be called while
835 * tap_detach is already happening. If we called it again from here, we
836 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
837 */
838 static int
839 tap_fops_close(file_t *fp)
840 {
841 struct tap_softc *sc;
842 int unit = fp->f_devunit;
843 int error;
844
845 sc = device_lookup_private(&tap_cd, unit);
846 if (sc == NULL)
847 return ENXIO;
848
849 /* tap_dev_close currently always succeeds, but it might not
850 * always be the case. */
851 KERNEL_LOCK(1, NULL);
852 if ((error = tap_dev_close(sc)) != 0) {
853 KERNEL_UNLOCK_ONE(NULL);
854 return error;
855 }
856
857 /* Destroy the device now that it is no longer useful,
858 * unless it's already being destroyed. */
859 if ((sc->sc_flags & TAP_GOING) != 0) {
860 KERNEL_UNLOCK_ONE(NULL);
861 return 0;
862 }
863
864 error = tap_clone_destroyer(sc->sc_dev);
865 KERNEL_UNLOCK_ONE(NULL);
866 return error;
867 }
868
869 static int
870 tap_dev_close(struct tap_softc *sc)
871 {
872 struct ifnet *ifp;
873 int s;
874
875 s = splnet();
876 /* Let tap_start handle packets again */
877 ifp = &sc->sc_ec.ec_if;
878 ifp->if_flags &= ~IFF_OACTIVE;
879
880 /* Purge output queue */
881 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
882 struct mbuf *m;
883
884 for (;;) {
885 IFQ_DEQUEUE(&ifp->if_snd, m);
886 if (m == NULL)
887 break;
888
889 ifp->if_opackets++;
890 bpf_mtap(ifp, m, BPF_D_OUT);
891 m_freem(m);
892 }
893 }
894 splx(s);
895
896 if (sc->sc_sih != NULL) {
897 softint_disestablish(sc->sc_sih);
898 sc->sc_sih = NULL;
899 }
900 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
901
902 return 0;
903 }
904
905 static int
906 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
907 {
908
909 return tap_dev_read(minor(dev), uio, flags);
910 }
911
912 static int
913 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
914 kauth_cred_t cred, int flags)
915 {
916 int error;
917
918 KERNEL_LOCK(1, NULL);
919 error = tap_dev_read(fp->f_devunit, uio, flags);
920 KERNEL_UNLOCK_ONE(NULL);
921 return error;
922 }
923
924 static int
925 tap_dev_read(int unit, struct uio *uio, int flags)
926 {
927 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
928 struct ifnet *ifp;
929 struct mbuf *m, *n;
930 int error = 0;
931
932 if (sc == NULL)
933 return ENXIO;
934
935 getnanotime(&sc->sc_atime);
936
937 ifp = &sc->sc_ec.ec_if;
938 if ((ifp->if_flags & IFF_UP) == 0)
939 return EHOSTDOWN;
940
941 /* In the TAP_NBIO case, we have to make sure we won't be sleeping */
942 if ((sc->sc_flags & TAP_NBIO) != 0) {
943 if (!mutex_tryenter(&sc->sc_lock))
944 return EWOULDBLOCK;
945 } else
946 mutex_enter(&sc->sc_lock);
947
948 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
949 ifp->if_flags &= ~IFF_OACTIVE;
950 if (sc->sc_flags & TAP_NBIO)
951 error = EWOULDBLOCK;
952 else
953 error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
954
955 if (error != 0) {
956 mutex_exit(&sc->sc_lock);
957 return error;
958 }
959 /* The device might have been downed */
960 if ((ifp->if_flags & IFF_UP) == 0) {
961 mutex_exit(&sc->sc_lock);
962 return EHOSTDOWN;
963 }
964 }
965
966 IFQ_DEQUEUE(&ifp->if_snd, m);
967 mutex_exit(&sc->sc_lock);
968
969 ifp->if_flags &= ~IFF_OACTIVE;
970 if (m == NULL) {
971 error = 0;
972 goto out;
973 }
974
975 ifp->if_opackets++;
976 bpf_mtap(ifp, m, BPF_D_OUT);
977
978 /*
979 * One read is one packet.
980 */
981 do {
982 error = uiomove(mtod(m, void *),
983 uimin(m->m_len, uio->uio_resid), uio);
984 m = n = m_free(m);
985 } while (m != NULL && uio->uio_resid > 0 && error == 0);
986
987 if (m != NULL)
988 m_freem(m);
989
990 out:
991 return error;
992 }
993
994 static int
995 tap_fops_stat(file_t *fp, struct stat *st)
996 {
997 int error = 0;
998 struct tap_softc *sc;
999 int unit = fp->f_devunit;
1000
1001 (void)memset(st, 0, sizeof(*st));
1002
1003 KERNEL_LOCK(1, NULL);
1004 sc = device_lookup_private(&tap_cd, unit);
1005 if (sc == NULL) {
1006 error = ENXIO;
1007 goto out;
1008 }
1009
1010 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1011 st->st_atimespec = sc->sc_atime;
1012 st->st_mtimespec = sc->sc_mtime;
1013 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1014 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1015 st->st_gid = kauth_cred_getegid(fp->f_cred);
1016 out:
1017 KERNEL_UNLOCK_ONE(NULL);
1018 return error;
1019 }
1020
1021 static int
1022 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1023 {
1024
1025 return tap_dev_write(minor(dev), uio, flags);
1026 }
1027
1028 static int
1029 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1030 kauth_cred_t cred, int flags)
1031 {
1032 int error;
1033
1034 KERNEL_LOCK(1, NULL);
1035 error = tap_dev_write(fp->f_devunit, uio, flags);
1036 KERNEL_UNLOCK_ONE(NULL);
1037 return error;
1038 }
1039
1040 static int
1041 tap_dev_write(int unit, struct uio *uio, int flags)
1042 {
1043 struct tap_softc *sc =
1044 device_lookup_private(&tap_cd, unit);
1045 struct ifnet *ifp;
1046 struct mbuf *m, **mp;
1047 int error = 0;
1048
1049 if (sc == NULL)
1050 return ENXIO;
1051
1052 getnanotime(&sc->sc_mtime);
1053 ifp = &sc->sc_ec.ec_if;
1054
1055 /* One write, one packet, that's the rule */
1056 MGETHDR(m, M_DONTWAIT, MT_DATA);
1057 if (m == NULL) {
1058 ifp->if_ierrors++;
1059 return ENOBUFS;
1060 }
1061 m->m_pkthdr.len = uio->uio_resid;
1062
1063 mp = &m;
1064 while (error == 0 && uio->uio_resid > 0) {
1065 if (*mp != m) {
1066 MGET(*mp, M_DONTWAIT, MT_DATA);
1067 if (*mp == NULL) {
1068 error = ENOBUFS;
1069 break;
1070 }
1071 }
1072 (*mp)->m_len = uimin(MHLEN, uio->uio_resid);
1073 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1074 mp = &(*mp)->m_next;
1075 }
1076 if (error) {
1077 ifp->if_ierrors++;
1078 m_freem(m);
1079 return error;
1080 }
1081
1082 m_set_rcvif(m, ifp);
1083
1084 if_percpuq_enqueue(ifp->if_percpuq, m);
1085
1086 return 0;
1087 }
1088
1089 static int
1090 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
1091 {
1092
1093 return tap_dev_ioctl(minor(dev), cmd, data, l);
1094 }
1095
1096 static int
1097 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1098 {
1099
1100 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1101 }
1102
1103 static int
1104 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1105 {
1106 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1107
1108 if (sc == NULL)
1109 return ENXIO;
1110
1111 switch (cmd) {
1112 case FIONREAD:
1113 {
1114 struct ifnet *ifp = &sc->sc_ec.ec_if;
1115 struct mbuf *m;
1116 int s;
1117
1118 s = splnet();
1119 IFQ_POLL(&ifp->if_snd, m);
1120
1121 if (m == NULL)
1122 *(int *)data = 0;
1123 else
1124 *(int *)data = m->m_pkthdr.len;
1125 splx(s);
1126 return 0;
1127 }
1128 case TIOCSPGRP:
1129 case FIOSETOWN:
1130 return fsetown(&sc->sc_pgid, cmd, data);
1131 case TIOCGPGRP:
1132 case FIOGETOWN:
1133 return fgetown(sc->sc_pgid, cmd, data);
1134 case FIOASYNC:
1135 if (*(int *)data) {
1136 if (sc->sc_sih == NULL) {
1137 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1138 tap_softintr, sc);
1139 if (sc->sc_sih == NULL)
1140 return EBUSY; /* XXX */
1141 }
1142 sc->sc_flags |= TAP_ASYNCIO;
1143 } else {
1144 sc->sc_flags &= ~TAP_ASYNCIO;
1145 if (sc->sc_sih != NULL) {
1146 softint_disestablish(sc->sc_sih);
1147 sc->sc_sih = NULL;
1148 }
1149 }
1150 return 0;
1151 case FIONBIO:
1152 if (*(int *)data)
1153 sc->sc_flags |= TAP_NBIO;
1154 else
1155 sc->sc_flags &= ~TAP_NBIO;
1156 return 0;
1157 case TAPGIFNAME:
1158 {
1159 struct ifreq *ifr = (struct ifreq *)data;
1160 struct ifnet *ifp = &sc->sc_ec.ec_if;
1161
1162 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1163 return 0;
1164 }
1165 default:
1166 return ENOTTY;
1167 }
1168 }
1169
1170 static int
1171 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1172 {
1173
1174 return tap_dev_poll(minor(dev), events, l);
1175 }
1176
1177 static int
1178 tap_fops_poll(file_t *fp, int events)
1179 {
1180
1181 return tap_dev_poll(fp->f_devunit, events, curlwp);
1182 }
1183
1184 static int
1185 tap_dev_poll(int unit, int events, struct lwp *l)
1186 {
1187 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1188 int revents = 0;
1189
1190 if (sc == NULL)
1191 return POLLERR;
1192
1193 if (events & (POLLIN | POLLRDNORM)) {
1194 struct ifnet *ifp = &sc->sc_ec.ec_if;
1195 struct mbuf *m;
1196 int s;
1197
1198 s = splnet();
1199 IFQ_POLL(&ifp->if_snd, m);
1200
1201 if (m != NULL)
1202 revents |= events & (POLLIN | POLLRDNORM);
1203 else {
1204 mutex_spin_enter(&sc->sc_lock);
1205 selrecord(l, &sc->sc_rsel);
1206 mutex_spin_exit(&sc->sc_lock);
1207 }
1208 splx(s);
1209 }
1210 revents |= events & (POLLOUT | POLLWRNORM);
1211
1212 return revents;
1213 }
1214
1215 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1216 tap_kqread };
1217 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1218 filt_seltrue };
1219
1220 static int
1221 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1222 {
1223
1224 return tap_dev_kqfilter(minor(dev), kn);
1225 }
1226
1227 static int
1228 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1229 {
1230
1231 return tap_dev_kqfilter(fp->f_devunit, kn);
1232 }
1233
1234 static int
1235 tap_dev_kqfilter(int unit, struct knote *kn)
1236 {
1237 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1238
1239 if (sc == NULL)
1240 return ENXIO;
1241
1242 KERNEL_LOCK(1, NULL);
1243 switch(kn->kn_filter) {
1244 case EVFILT_READ:
1245 kn->kn_fop = &tap_read_filterops;
1246 break;
1247 case EVFILT_WRITE:
1248 kn->kn_fop = &tap_seltrue_filterops;
1249 break;
1250 default:
1251 KERNEL_UNLOCK_ONE(NULL);
1252 return EINVAL;
1253 }
1254
1255 kn->kn_hook = sc;
1256 mutex_spin_enter(&sc->sc_lock);
1257 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1258 mutex_spin_exit(&sc->sc_lock);
1259 KERNEL_UNLOCK_ONE(NULL);
1260 return 0;
1261 }
1262
1263 static void
1264 tap_kqdetach(struct knote *kn)
1265 {
1266 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1267
1268 KERNEL_LOCK(1, NULL);
1269 mutex_spin_enter(&sc->sc_lock);
1270 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1271 mutex_spin_exit(&sc->sc_lock);
1272 KERNEL_UNLOCK_ONE(NULL);
1273 }
1274
1275 static int
1276 tap_kqread(struct knote *kn, long hint)
1277 {
1278 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1279 struct ifnet *ifp = &sc->sc_ec.ec_if;
1280 struct mbuf *m;
1281 int s, rv;
1282
1283 KERNEL_LOCK(1, NULL);
1284 s = splnet();
1285 IFQ_POLL(&ifp->if_snd, m);
1286
1287 if (m == NULL)
1288 kn->kn_data = 0;
1289 else
1290 kn->kn_data = m->m_pkthdr.len;
1291 splx(s);
1292 rv = (kn->kn_data != 0 ? 1 : 0);
1293 KERNEL_UNLOCK_ONE(NULL);
1294 return rv;
1295 }
1296
1297 /*
1298 * sysctl management routines
1299 * You can set the address of an interface through:
1300 * net.link.tap.tap<number>
1301 *
1302 * Note the consistent use of tap_log in order to use
1303 * sysctl_teardown at unload time.
1304 *
1305 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1306 * blocks register a function in a special section of the kernel
1307 * (called a link set) which is used at init_sysctl() time to cycle
1308 * through all those functions to create the kernel's sysctl tree.
1309 *
1310 * It is not possible to use link sets in a module, so the
1311 * easiest is to simply call our own setup routine at load time.
1312 *
1313 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1314 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1315 * whole kernel sysctl tree is built, it is not possible to add any
1316 * permanent node.
1317 *
1318 * It should be noted that we're not saving the sysctlnode pointer
1319 * we are returned when creating the "tap" node. That structure
1320 * cannot be trusted once out of the calling function, as it might
1321 * get reused. So we just save the MIB number, and always give the
1322 * full path starting from the root for later calls to sysctl_createv
1323 * and sysctl_destroyv.
1324 */
1325 static void
1326 sysctl_tap_setup(struct sysctllog **clog)
1327 {
1328 const struct sysctlnode *node;
1329 int error = 0;
1330
1331 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1332 CTLFLAG_PERMANENT,
1333 CTLTYPE_NODE, "link", NULL,
1334 NULL, 0, NULL, 0,
1335 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1336 return;
1337
1338 /*
1339 * The first four parameters of sysctl_createv are for management.
1340 *
1341 * The four that follows, here starting with a '0' for the flags,
1342 * describe the node.
1343 *
1344 * The next series of four set its value, through various possible
1345 * means.
1346 *
1347 * Last but not least, the path to the node is described. That path
1348 * is relative to the given root (third argument). Here we're
1349 * starting from the root.
1350 */
1351 if ((error = sysctl_createv(clog, 0, NULL, &node,
1352 CTLFLAG_PERMANENT,
1353 CTLTYPE_NODE, "tap", NULL,
1354 NULL, 0, NULL, 0,
1355 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1356 return;
1357 tap_node = node->sysctl_num;
1358 }
1359
1360 /*
1361 * The helper functions make Andrew Brown's interface really
1362 * shine. It makes possible to create value on the fly whether
1363 * the sysctl value is read or written.
1364 *
1365 * As shown as an example in the man page, the first step is to
1366 * create a copy of the node to have sysctl_lookup work on it.
1367 *
1368 * Here, we have more work to do than just a copy, since we have
1369 * to create the string. The first step is to collect the actual
1370 * value of the node, which is a convenient pointer to the softc
1371 * of the interface. From there we create the string and use it
1372 * as the value, but only for the *copy* of the node.
1373 *
1374 * Then we let sysctl_lookup do the magic, which consists in
1375 * setting oldp and newp as required by the operation. When the
1376 * value is read, that means that the string will be copied to
1377 * the user, and when it is written, the new value will be copied
1378 * over in the addr array.
1379 *
1380 * If newp is NULL, the user was reading the value, so we don't
1381 * have anything else to do. If a new value was written, we
1382 * have to check it.
1383 *
1384 * If it is incorrect, we can return an error and leave 'node' as
1385 * it is: since it is a copy of the actual node, the change will
1386 * be forgotten.
1387 *
1388 * Upon a correct input, we commit the change to the ifnet
1389 * structure of our interface.
1390 */
1391 static int
1392 tap_sysctl_handler(SYSCTLFN_ARGS)
1393 {
1394 struct sysctlnode node;
1395 struct tap_softc *sc;
1396 struct ifnet *ifp;
1397 int error;
1398 size_t len;
1399 char addr[3 * ETHER_ADDR_LEN];
1400 uint8_t enaddr[ETHER_ADDR_LEN];
1401
1402 node = *rnode;
1403 sc = node.sysctl_data;
1404 ifp = &sc->sc_ec.ec_if;
1405 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1406 node.sysctl_data = addr;
1407 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1408 if (error || newp == NULL)
1409 return error;
1410
1411 len = strlen(addr);
1412 if (len < 11 || len > 17)
1413 return EINVAL;
1414
1415 /* Commit change */
1416 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1417 return EINVAL;
1418 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1419 return error;
1420 }
1421
1422 /*
1423 * Module infrastructure
1424 */
1425 #include "if_module.h"
1426
1427 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
1428