if_tap.c revision 1.119 1 /* $NetBSD: if_tap.c,v 1.119 2020/09/27 13:44:47 roy Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.119 2020/09/27 13:44:47 roy Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/atomic.h>
45 #include <sys/conf.h>
46 #include <sys/cprng.h>
47 #include <sys/device.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/intr.h>
51 #include <sys/kauth.h>
52 #include <sys/kernel.h>
53 #include <sys/kmem.h>
54 #include <sys/module.h>
55 #include <sys/mutex.h>
56 #include <sys/condvar.h>
57 #include <sys/poll.h>
58 #include <sys/proc.h>
59 #include <sys/select.h>
60 #include <sys/sockio.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_tap.h>
69 #include <net/bpf.h>
70
71 #include "ioconf.h"
72
73 /*
74 * sysctl node management
75 *
76 * It's not really possible to use a SYSCTL_SETUP block with
77 * current module implementation, so it is easier to just define
78 * our own function.
79 *
80 * The handler function is a "helper" in Andrew Brown's sysctl
81 * framework terminology. It is used as a gateway for sysctl
82 * requests over the nodes.
83 *
84 * tap_log allows the module to log creations of nodes and
85 * destroy them all at once using sysctl_teardown.
86 */
87 static int tap_node;
88 static int tap_sysctl_handler(SYSCTLFN_PROTO);
89 static void sysctl_tap_setup(struct sysctllog **);
90
91 struct tap_softc {
92 device_t sc_dev;
93 struct ethercom sc_ec;
94 int sc_flags;
95 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
96 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
97 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
98 #define TAP_GOING 0x00000008 /* interface is being destroyed */
99 struct selinfo sc_rsel;
100 pid_t sc_pgid; /* For async. IO */
101 kmutex_t sc_lock;
102 kcondvar_t sc_cv;
103 void *sc_sih;
104 struct timespec sc_atime;
105 struct timespec sc_mtime;
106 struct timespec sc_btime;
107 };
108
109 /* autoconf(9) glue */
110
111 static int tap_match(device_t, cfdata_t, void *);
112 static void tap_attach(device_t, device_t, void *);
113 static int tap_detach(device_t, int);
114
115 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
116 tap_match, tap_attach, tap_detach, NULL);
117 extern struct cfdriver tap_cd;
118
119 /* Real device access routines */
120 static int tap_dev_close(struct tap_softc *);
121 static int tap_dev_read(int, struct uio *, int);
122 static int tap_dev_write(int, struct uio *, int);
123 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
124 static int tap_dev_poll(int, int, struct lwp *);
125 static int tap_dev_kqfilter(int, struct knote *);
126
127 /* Fileops access routines */
128 static int tap_fops_close(file_t *);
129 static int tap_fops_read(file_t *, off_t *, struct uio *,
130 kauth_cred_t, int);
131 static int tap_fops_write(file_t *, off_t *, struct uio *,
132 kauth_cred_t, int);
133 static int tap_fops_ioctl(file_t *, u_long, void *);
134 static int tap_fops_poll(file_t *, int);
135 static int tap_fops_stat(file_t *, struct stat *);
136 static int tap_fops_kqfilter(file_t *, struct knote *);
137
138 static const struct fileops tap_fileops = {
139 .fo_name = "tap",
140 .fo_read = tap_fops_read,
141 .fo_write = tap_fops_write,
142 .fo_ioctl = tap_fops_ioctl,
143 .fo_fcntl = fnullop_fcntl,
144 .fo_poll = tap_fops_poll,
145 .fo_stat = tap_fops_stat,
146 .fo_close = tap_fops_close,
147 .fo_kqfilter = tap_fops_kqfilter,
148 .fo_restart = fnullop_restart,
149 };
150
151 /* Helper for cloning open() */
152 static int tap_dev_cloner(struct lwp *);
153
154 /* Character device routines */
155 static int tap_cdev_open(dev_t, int, int, struct lwp *);
156 static int tap_cdev_close(dev_t, int, int, struct lwp *);
157 static int tap_cdev_read(dev_t, struct uio *, int);
158 static int tap_cdev_write(dev_t, struct uio *, int);
159 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
160 static int tap_cdev_poll(dev_t, int, struct lwp *);
161 static int tap_cdev_kqfilter(dev_t, struct knote *);
162
163 const struct cdevsw tap_cdevsw = {
164 .d_open = tap_cdev_open,
165 .d_close = tap_cdev_close,
166 .d_read = tap_cdev_read,
167 .d_write = tap_cdev_write,
168 .d_ioctl = tap_cdev_ioctl,
169 .d_stop = nostop,
170 .d_tty = notty,
171 .d_poll = tap_cdev_poll,
172 .d_mmap = nommap,
173 .d_kqfilter = tap_cdev_kqfilter,
174 .d_discard = nodiscard,
175 .d_flag = D_OTHER | D_MPSAFE
176 };
177
178 #define TAP_CLONER 0xfffff /* Maximal minor value */
179
180 /* kqueue-related routines */
181 static void tap_kqdetach(struct knote *);
182 static int tap_kqread(struct knote *, long);
183
184 /*
185 * Those are needed by the ifnet interface, and would typically be
186 * there for any network interface driver.
187 * Some other routines are optional: watchdog and drain.
188 */
189 static void tap_start(struct ifnet *);
190 static void tap_stop(struct ifnet *, int);
191 static int tap_init(struct ifnet *);
192 static int tap_ioctl(struct ifnet *, u_long, void *);
193
194 /* Internal functions */
195 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
196 static void tap_softintr(void *);
197
198 /*
199 * tap is a clonable interface, although it is highly unrealistic for
200 * an Ethernet device.
201 *
202 * Here are the bits needed for a clonable interface.
203 */
204 static int tap_clone_create(struct if_clone *, int);
205 static int tap_clone_destroy(struct ifnet *);
206
207 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
208 tap_clone_create,
209 tap_clone_destroy);
210
211 /* Helper functions shared by the two cloning code paths */
212 static struct tap_softc * tap_clone_creator(int);
213 int tap_clone_destroyer(device_t);
214
215 static struct sysctllog *tap_sysctl_clog;
216
217 #ifdef _MODULE
218 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
219 #endif
220
221 static u_int tap_count;
222
223 void
224 tapattach(int n)
225 {
226
227 /*
228 * Nothing to do here, initialization is handled by the
229 * module initialization code in tapinit() below).
230 */
231 }
232
233 static void
234 tapinit(void)
235 {
236 int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
237
238 if (error) {
239 aprint_error("%s: unable to register cfattach\n",
240 tap_cd.cd_name);
241 (void)config_cfdriver_detach(&tap_cd);
242 return;
243 }
244
245 if_clone_attach(&tap_cloners);
246 sysctl_tap_setup(&tap_sysctl_clog);
247 #ifdef _MODULE
248 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
249 #endif
250 }
251
252 static int
253 tapdetach(void)
254 {
255 int error = 0;
256
257 if_clone_detach(&tap_cloners);
258 #ifdef _MODULE
259 error = devsw_detach(NULL, &tap_cdevsw);
260 if (error != 0)
261 goto out2;
262 #endif
263
264 if (tap_count != 0) {
265 error = EBUSY;
266 goto out1;
267 }
268
269 error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
270 if (error != 0)
271 goto out1;
272
273 sysctl_teardown(&tap_sysctl_clog);
274
275 return 0;
276
277 out1:
278 #ifdef _MODULE
279 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
280 out2:
281 #endif
282 if_clone_attach(&tap_cloners);
283
284 return error;
285 }
286
287 /* Pretty much useless for a pseudo-device */
288 static int
289 tap_match(device_t parent, cfdata_t cfdata, void *arg)
290 {
291
292 return 1;
293 }
294
295 void
296 tap_attach(device_t parent, device_t self, void *aux)
297 {
298 struct tap_softc *sc = device_private(self);
299 struct ifnet *ifp;
300 const struct sysctlnode *node;
301 int error;
302 uint8_t enaddr[ETHER_ADDR_LEN] =
303 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
304 char enaddrstr[3 * ETHER_ADDR_LEN];
305
306 sc->sc_dev = self;
307 sc->sc_sih = NULL;
308 getnanotime(&sc->sc_btime);
309 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
310 sc->sc_flags = 0;
311 selinit(&sc->sc_rsel);
312
313 cv_init(&sc->sc_cv, "tapread");
314 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
315
316 if (!pmf_device_register(self, NULL, NULL))
317 aprint_error_dev(self, "couldn't establish power handler\n");
318
319 /*
320 * In order to obtain unique initial Ethernet address on a host,
321 * do some randomisation. It's not meant for anything but avoiding
322 * hard-coding an address.
323 */
324 cprng_fast(&enaddr[3], 3);
325
326 aprint_verbose_dev(self, "Ethernet address %s\n",
327 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
328
329 /*
330 * One should note that an interface must do multicast in order
331 * to support IPv6.
332 */
333 ifp = &sc->sc_ec.ec_if;
334 strcpy(ifp->if_xname, device_xname(self));
335 ifp->if_softc = sc;
336 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
337 #ifdef NET_MPSAFE
338 ifp->if_extflags = IFEF_MPSAFE;
339 #endif
340 ifp->if_ioctl = tap_ioctl;
341 ifp->if_start = tap_start;
342 ifp->if_stop = tap_stop;
343 ifp->if_init = tap_init;
344 IFQ_SET_READY(&ifp->if_snd);
345
346 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
347
348 /* Those steps are mandatory for an Ethernet driver. */
349 error = if_initialize(ifp);
350 if (error != 0) {
351 aprint_error_dev(self, "if_initialize failed(%d)\n", error);
352 pmf_device_deregister(self);
353 mutex_destroy(&sc->sc_lock);
354 seldestroy(&sc->sc_rsel);
355
356 return; /* Error */
357 }
358 ifp->if_percpuq = if_percpuq_create(ifp);
359 ether_ifattach(ifp, enaddr);
360 /* Opening the device will bring the link state up. */
361 ifp->if_link_state = LINK_STATE_DOWN;
362 if_register(ifp);
363
364 /*
365 * Add a sysctl node for that interface.
366 *
367 * The pointer transmitted is not a string, but instead a pointer to
368 * the softc structure, which we can use to build the string value on
369 * the fly in the helper function of the node. See the comments for
370 * tap_sysctl_handler for details.
371 *
372 * Usually sysctl_createv is called with CTL_CREATE as the before-last
373 * component. However, we can allocate a number ourselves, as we are
374 * the only consumer of the net.link.<iface> node. In this case, the
375 * unit number is conveniently used to number the node. CTL_CREATE
376 * would just work, too.
377 */
378 if ((error = sysctl_createv(NULL, 0, NULL,
379 &node, CTLFLAG_READWRITE,
380 CTLTYPE_STRING, device_xname(self), NULL,
381 tap_sysctl_handler, 0, (void *)sc, 18,
382 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
383 CTL_EOL)) != 0)
384 aprint_error_dev(self,
385 "sysctl_createv returned %d, ignoring\n", error);
386 }
387
388 /*
389 * When detaching, we do the inverse of what is done in the attach
390 * routine, in reversed order.
391 */
392 static int
393 tap_detach(device_t self, int flags)
394 {
395 struct tap_softc *sc = device_private(self);
396 struct ifnet *ifp = &sc->sc_ec.ec_if;
397 int error;
398
399 sc->sc_flags |= TAP_GOING;
400 tap_stop(ifp, 1);
401 if_down(ifp);
402
403 if (sc->sc_sih != NULL) {
404 softint_disestablish(sc->sc_sih);
405 sc->sc_sih = NULL;
406 }
407
408 /*
409 * Destroying a single leaf is a very straightforward operation using
410 * sysctl_destroyv. One should be sure to always end the path with
411 * CTL_EOL.
412 */
413 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
414 device_unit(sc->sc_dev), CTL_EOL)) != 0)
415 aprint_error_dev(self,
416 "sysctl_destroyv returned %d, ignoring\n", error);
417 ether_ifdetach(ifp);
418 if_detach(ifp);
419 seldestroy(&sc->sc_rsel);
420 mutex_destroy(&sc->sc_lock);
421 cv_destroy(&sc->sc_cv);
422
423 pmf_device_deregister(self);
424
425 return 0;
426 }
427
428 /*
429 * This is the function where we SEND packets.
430 *
431 * There is no 'receive' equivalent. A typical driver will get
432 * interrupts from the hardware, and from there will inject new packets
433 * into the network stack.
434 *
435 * Once handled, a packet must be freed. A real driver might not be able
436 * to fit all the pending packets into the hardware, and is allowed to
437 * return before having sent all the packets. It should then use the
438 * if_flags flag IFF_OACTIVE to notify the upper layer.
439 *
440 * There are also other flags one should check, such as IFF_PAUSE.
441 *
442 * It is our duty to make packets available to BPF listeners.
443 *
444 * You should be aware that this function is called by the Ethernet layer
445 * at splnet().
446 *
447 * When the device is opened, we have to pass the packet(s) to the
448 * userland. For that we stay in OACTIVE mode while the userland gets
449 * the packets, and we send a signal to the processes waiting to read.
450 *
451 * wakeup(sc) is the counterpart to the tsleep call in
452 * tap_dev_read, while selnotify() is used for kevent(2) and
453 * poll(2) (which includes select(2)) listeners.
454 */
455 static void
456 tap_start(struct ifnet *ifp)
457 {
458 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
459 struct mbuf *m0;
460
461 mutex_enter(&sc->sc_lock);
462 if ((sc->sc_flags & TAP_INUSE) == 0) {
463 /* Simply drop packets */
464 for (;;) {
465 IFQ_DEQUEUE(&ifp->if_snd, m0);
466 if (m0 == NULL)
467 goto done;
468
469 if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len);
470 bpf_mtap(ifp, m0, BPF_D_OUT);
471
472 m_freem(m0);
473 }
474 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
475 ifp->if_flags |= IFF_OACTIVE;
476 cv_broadcast(&sc->sc_cv);
477 selnotify(&sc->sc_rsel, 0, 1);
478 if (sc->sc_flags & TAP_ASYNCIO) {
479 kpreempt_disable();
480 softint_schedule(sc->sc_sih);
481 kpreempt_enable();
482 }
483 }
484 done:
485 mutex_exit(&sc->sc_lock);
486 }
487
488 static void
489 tap_softintr(void *cookie)
490 {
491 struct tap_softc *sc;
492 struct ifnet *ifp;
493 int a, b;
494
495 sc = cookie;
496
497 if (sc->sc_flags & TAP_ASYNCIO) {
498 ifp = &sc->sc_ec.ec_if;
499 if (ifp->if_flags & IFF_RUNNING) {
500 a = POLL_IN;
501 b = POLLIN | POLLRDNORM;
502 } else {
503 a = POLL_HUP;
504 b = 0;
505 }
506 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
507 }
508 }
509
510 /*
511 * A typical driver will only contain the following handlers for
512 * ioctl calls, except SIOCSIFPHYADDR.
513 * The latter is a hack I used to set the Ethernet address of the
514 * faked device.
515 *
516 * Note that ether_ioctl() has to be called under splnet().
517 */
518 static int
519 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
520 {
521 int s, error;
522
523 s = splnet();
524
525 switch (cmd) {
526 case SIOCSIFPHYADDR:
527 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
528 break;
529 default:
530 error = ether_ioctl(ifp, cmd, data);
531 if (error == ENETRESET)
532 error = 0;
533 break;
534 }
535
536 splx(s);
537
538 return error;
539 }
540
541 /*
542 * Helper function to set Ethernet address. This has been replaced by
543 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
544 */
545 static int
546 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
547 {
548 const struct sockaddr *sa = &ifra->ifra_addr;
549
550 if (sa->sa_family != AF_LINK)
551 return EINVAL;
552
553 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
554
555 return 0;
556 }
557
558 /*
559 * _init() would typically be called when an interface goes up,
560 * meaning it should configure itself into the state in which it
561 * can send packets.
562 */
563 static int
564 tap_init(struct ifnet *ifp)
565 {
566 ifp->if_flags |= IFF_RUNNING;
567
568 tap_start(ifp);
569
570 return 0;
571 }
572
573 /*
574 * _stop() is called when an interface goes down. It is our
575 * responsability to validate that state by clearing the
576 * IFF_RUNNING flag.
577 *
578 * We have to wake up all the sleeping processes to have the pending
579 * read requests cancelled.
580 */
581 static void
582 tap_stop(struct ifnet *ifp, int disable)
583 {
584 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
585
586 mutex_enter(&sc->sc_lock);
587 ifp->if_flags &= ~IFF_RUNNING;
588 cv_broadcast(&sc->sc_cv);
589 selnotify(&sc->sc_rsel, 0, 1);
590 if (sc->sc_flags & TAP_ASYNCIO) {
591 kpreempt_disable();
592 softint_schedule(sc->sc_sih);
593 kpreempt_enable();
594 }
595 mutex_exit(&sc->sc_lock);
596 }
597
598 /*
599 * The 'create' command of ifconfig can be used to create
600 * any numbered instance of a given device. Thus we have to
601 * make sure we have enough room in cd_devs to create the
602 * user-specified instance. config_attach_pseudo will do this
603 * for us.
604 */
605 static int
606 tap_clone_create(struct if_clone *ifc, int unit)
607 {
608
609 if (tap_clone_creator(unit) == NULL) {
610 aprint_error("%s%d: unable to attach an instance\n",
611 tap_cd.cd_name, unit);
612 return ENXIO;
613 }
614 atomic_inc_uint(&tap_count);
615 return 0;
616 }
617
618 /*
619 * tap(4) can be cloned by two ways:
620 * using 'ifconfig tap0 create', which will use the network
621 * interface cloning API, and call tap_clone_create above.
622 * opening the cloning device node, whose minor number is TAP_CLONER.
623 * See below for an explanation on how this part work.
624 */
625 static struct tap_softc *
626 tap_clone_creator(int unit)
627 {
628 cfdata_t cf;
629
630 cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
631 cf->cf_name = tap_cd.cd_name;
632 cf->cf_atname = tap_ca.ca_name;
633 if (unit == -1) {
634 /* let autoconf find the first free one */
635 cf->cf_unit = 0;
636 cf->cf_fstate = FSTATE_STAR;
637 } else {
638 cf->cf_unit = unit;
639 cf->cf_fstate = FSTATE_NOTFOUND;
640 }
641
642 return device_private(config_attach_pseudo(cf));
643 }
644
645 /*
646 * The clean design of if_clone and autoconf(9) makes that part
647 * really straightforward. The second argument of config_detach
648 * means neither QUIET nor FORCED.
649 */
650 static int
651 tap_clone_destroy(struct ifnet *ifp)
652 {
653 struct tap_softc *sc = ifp->if_softc;
654 int error = tap_clone_destroyer(sc->sc_dev);
655
656 if (error == 0)
657 atomic_dec_uint(&tap_count);
658 return error;
659 }
660
661 int
662 tap_clone_destroyer(device_t dev)
663 {
664 cfdata_t cf = device_cfdata(dev);
665 int error;
666
667 if ((error = config_detach(dev, 0)) != 0)
668 aprint_error_dev(dev, "unable to detach instance\n");
669 kmem_free(cf, sizeof(*cf));
670
671 return error;
672 }
673
674 /*
675 * tap(4) is a bit of an hybrid device. It can be used in two different
676 * ways:
677 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
678 * 2. open /dev/tap, get a new interface created and read/write off it.
679 * That interface is destroyed when the process that had it created exits.
680 *
681 * The first way is managed by the cdevsw structure, and you access interfaces
682 * through a (major, minor) mapping: tap4 is obtained by the minor number
683 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
684 *
685 * The second way is the so-called "cloning" device. It's a special minor
686 * number (chosen as the maximal number, to allow as much tap devices as
687 * possible). The user first opens the cloner (e.g., /dev/tap), and that
688 * call ends in tap_cdev_open. The actual place where it is handled is
689 * tap_dev_cloner.
690 *
691 * An tap device cannot be opened more than once at a time, so the cdevsw
692 * part of open() does nothing but noting that the interface is being used and
693 * hence ready to actually handle packets.
694 */
695
696 static int
697 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
698 {
699 struct tap_softc *sc;
700
701 if (minor(dev) == TAP_CLONER)
702 return tap_dev_cloner(l);
703
704 sc = device_lookup_private(&tap_cd, minor(dev));
705 if (sc == NULL)
706 return ENXIO;
707
708 /* The device can only be opened once */
709 if (sc->sc_flags & TAP_INUSE)
710 return EBUSY;
711 sc->sc_flags |= TAP_INUSE;
712 if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);
713
714 return 0;
715 }
716
717 /*
718 * There are several kinds of cloning devices, and the most simple is the one
719 * tap(4) uses. What it does is change the file descriptor with a new one,
720 * with its own fileops structure (which maps to the various read, write,
721 * ioctl functions). It starts allocating a new file descriptor with falloc,
722 * then actually creates the new tap devices.
723 *
724 * Once those two steps are successful, we can re-wire the existing file
725 * descriptor to its new self. This is done with fdclone(): it fills the fp
726 * structure as needed (notably f_devunit gets filled with the fifth parameter
727 * passed, the unit of the tap device which will allows us identifying the
728 * device later), and returns EMOVEFD.
729 *
730 * That magic value is interpreted by sys_open() which then replaces the
731 * current file descriptor by the new one (through a magic member of struct
732 * lwp, l_dupfd).
733 *
734 * The tap device is flagged as being busy since it otherwise could be
735 * externally accessed through the corresponding device node with the cdevsw
736 * interface.
737 */
738
739 static int
740 tap_dev_cloner(struct lwp *l)
741 {
742 struct tap_softc *sc;
743 file_t *fp;
744 int error, fd;
745
746 if ((error = fd_allocfile(&fp, &fd)) != 0)
747 return error;
748
749 if ((sc = tap_clone_creator(-1)) == NULL) {
750 fd_abort(curproc, fp, fd);
751 return ENXIO;
752 }
753
754 sc->sc_flags |= TAP_INUSE;
755
756 return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
757 (void *)(intptr_t)device_unit(sc->sc_dev));
758 }
759
760 /*
761 * While all other operations (read, write, ioctl, poll and kqfilter) are
762 * really the same whether we are in cdevsw or fileops mode, the close()
763 * function is slightly different in the two cases.
764 *
765 * As for the other, the core of it is shared in tap_dev_close. What
766 * it does is sufficient for the cdevsw interface, but the cloning interface
767 * needs another thing: the interface is destroyed when the processes that
768 * created it closes it.
769 */
770 static int
771 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
772 {
773 struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
774
775 if (sc == NULL)
776 return ENXIO;
777
778 return tap_dev_close(sc);
779 }
780
781 /*
782 * It might happen that the administrator used ifconfig to externally destroy
783 * the interface. In that case, tap_fops_close will be called while
784 * tap_detach is already happening. If we called it again from here, we
785 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
786 */
787 static int
788 tap_fops_close(file_t *fp)
789 {
790 struct tap_softc *sc;
791 int unit = fp->f_devunit;
792 int error;
793
794 sc = device_lookup_private(&tap_cd, unit);
795 if (sc == NULL)
796 return ENXIO;
797
798 /* tap_dev_close currently always succeeds, but it might not
799 * always be the case. */
800 KERNEL_LOCK(1, NULL);
801 if ((error = tap_dev_close(sc)) != 0) {
802 KERNEL_UNLOCK_ONE(NULL);
803 return error;
804 }
805
806 /* Destroy the device now that it is no longer useful,
807 * unless it's already being destroyed. */
808 if ((sc->sc_flags & TAP_GOING) != 0) {
809 KERNEL_UNLOCK_ONE(NULL);
810 return 0;
811 }
812
813 error = tap_clone_destroyer(sc->sc_dev);
814 KERNEL_UNLOCK_ONE(NULL);
815 return error;
816 }
817
818 static int
819 tap_dev_close(struct tap_softc *sc)
820 {
821 struct ifnet *ifp;
822 int s;
823
824 s = splnet();
825 /* Let tap_start handle packets again */
826 ifp = &sc->sc_ec.ec_if;
827 ifp->if_flags &= ~IFF_OACTIVE;
828
829 /* Purge output queue */
830 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
831 struct mbuf *m;
832
833 for (;;) {
834 IFQ_DEQUEUE(&ifp->if_snd, m);
835 if (m == NULL)
836 break;
837
838 if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len);
839 bpf_mtap(ifp, m, BPF_D_OUT);
840 m_freem(m);
841 }
842 }
843 splx(s);
844
845 if (sc->sc_sih != NULL) {
846 softint_disestablish(sc->sc_sih);
847 sc->sc_sih = NULL;
848 }
849 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
850 if_link_state_change(ifp, LINK_STATE_DOWN);
851
852 return 0;
853 }
854
855 static int
856 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
857 {
858
859 return tap_dev_read(minor(dev), uio, flags);
860 }
861
862 static int
863 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
864 kauth_cred_t cred, int flags)
865 {
866 int error;
867
868 KERNEL_LOCK(1, NULL);
869 error = tap_dev_read(fp->f_devunit, uio, flags);
870 KERNEL_UNLOCK_ONE(NULL);
871 return error;
872 }
873
874 static int
875 tap_dev_read(int unit, struct uio *uio, int flags)
876 {
877 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
878 struct ifnet *ifp;
879 struct mbuf *m, *n;
880 int error = 0;
881
882 if (sc == NULL)
883 return ENXIO;
884
885 getnanotime(&sc->sc_atime);
886
887 ifp = &sc->sc_ec.ec_if;
888 if ((ifp->if_flags & IFF_UP) == 0)
889 return EHOSTDOWN;
890
891 /* In the TAP_NBIO case, we have to make sure we won't be sleeping */
892 if ((sc->sc_flags & TAP_NBIO) != 0) {
893 if (!mutex_tryenter(&sc->sc_lock))
894 return EWOULDBLOCK;
895 } else
896 mutex_enter(&sc->sc_lock);
897
898 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
899 ifp->if_flags &= ~IFF_OACTIVE;
900 if (sc->sc_flags & TAP_NBIO)
901 error = EWOULDBLOCK;
902 else
903 error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
904
905 if (error != 0) {
906 mutex_exit(&sc->sc_lock);
907 return error;
908 }
909 /* The device might have been downed */
910 if ((ifp->if_flags & IFF_UP) == 0) {
911 mutex_exit(&sc->sc_lock);
912 return EHOSTDOWN;
913 }
914 }
915
916 IFQ_DEQUEUE(&ifp->if_snd, m);
917 mutex_exit(&sc->sc_lock);
918
919 ifp->if_flags &= ~IFF_OACTIVE;
920 if (m == NULL) {
921 error = 0;
922 goto out;
923 }
924
925 if_statadd2(ifp, if_opackets, 1,
926 if_obytes, m->m_len); /* XXX only first in chain */
927 bpf_mtap(ifp, m, BPF_D_OUT);
928 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
929 goto out;
930 if (m == NULL)
931 goto out;
932
933 /*
934 * One read is one packet.
935 */
936 do {
937 error = uiomove(mtod(m, void *),
938 uimin(m->m_len, uio->uio_resid), uio);
939 m = n = m_free(m);
940 } while (m != NULL && uio->uio_resid > 0 && error == 0);
941
942 if (m != NULL)
943 m_freem(m);
944
945 out:
946 return error;
947 }
948
949 static int
950 tap_fops_stat(file_t *fp, struct stat *st)
951 {
952 int error = 0;
953 struct tap_softc *sc;
954 int unit = fp->f_devunit;
955
956 (void)memset(st, 0, sizeof(*st));
957
958 KERNEL_LOCK(1, NULL);
959 sc = device_lookup_private(&tap_cd, unit);
960 if (sc == NULL) {
961 error = ENXIO;
962 goto out;
963 }
964
965 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
966 st->st_atimespec = sc->sc_atime;
967 st->st_mtimespec = sc->sc_mtime;
968 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
969 st->st_uid = kauth_cred_geteuid(fp->f_cred);
970 st->st_gid = kauth_cred_getegid(fp->f_cred);
971 out:
972 KERNEL_UNLOCK_ONE(NULL);
973 return error;
974 }
975
976 static int
977 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
978 {
979
980 return tap_dev_write(minor(dev), uio, flags);
981 }
982
983 static int
984 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
985 kauth_cred_t cred, int flags)
986 {
987 int error;
988
989 KERNEL_LOCK(1, NULL);
990 error = tap_dev_write(fp->f_devunit, uio, flags);
991 KERNEL_UNLOCK_ONE(NULL);
992 return error;
993 }
994
995 static int
996 tap_dev_write(int unit, struct uio *uio, int flags)
997 {
998 struct tap_softc *sc =
999 device_lookup_private(&tap_cd, unit);
1000 struct ifnet *ifp;
1001 struct mbuf *m, **mp;
1002 size_t len = 0;
1003 int error = 0;
1004
1005 if (sc == NULL)
1006 return ENXIO;
1007
1008 getnanotime(&sc->sc_mtime);
1009 ifp = &sc->sc_ec.ec_if;
1010
1011 /* One write, one packet, that's the rule */
1012 MGETHDR(m, M_DONTWAIT, MT_DATA);
1013 if (m == NULL) {
1014 if_statinc(ifp, if_ierrors);
1015 return ENOBUFS;
1016 }
1017 m->m_pkthdr.len = uio->uio_resid;
1018
1019 mp = &m;
1020 while (error == 0 && uio->uio_resid > 0) {
1021 if (*mp != m) {
1022 MGET(*mp, M_DONTWAIT, MT_DATA);
1023 if (*mp == NULL) {
1024 error = ENOBUFS;
1025 break;
1026 }
1027 }
1028 (*mp)->m_len = uimin(MHLEN, uio->uio_resid);
1029 len += (*mp)->m_len;
1030 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1031 mp = &(*mp)->m_next;
1032 }
1033 if (error) {
1034 if_statinc(ifp, if_ierrors);
1035 m_freem(m);
1036 return error;
1037 }
1038
1039 m_set_rcvif(m, ifp);
1040
1041 if_statadd2(ifp, if_ipackets, 1, if_ibytes, len);
1042 bpf_mtap(ifp, m, BPF_D_IN);
1043 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0)
1044 return error;
1045 if (m == NULL)
1046 return 0;
1047
1048 if_percpuq_enqueue(ifp->if_percpuq, m);
1049
1050 return 0;
1051 }
1052
1053 static int
1054 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
1055 {
1056
1057 return tap_dev_ioctl(minor(dev), cmd, data, l);
1058 }
1059
1060 static int
1061 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1062 {
1063
1064 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1065 }
1066
1067 static int
1068 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1069 {
1070 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1071
1072 if (sc == NULL)
1073 return ENXIO;
1074
1075 switch (cmd) {
1076 case FIONREAD:
1077 {
1078 struct ifnet *ifp = &sc->sc_ec.ec_if;
1079 struct mbuf *m;
1080 int s;
1081
1082 s = splnet();
1083 IFQ_POLL(&ifp->if_snd, m);
1084
1085 if (m == NULL)
1086 *(int *)data = 0;
1087 else
1088 *(int *)data = m->m_pkthdr.len;
1089 splx(s);
1090 return 0;
1091 }
1092 case TIOCSPGRP:
1093 case FIOSETOWN:
1094 return fsetown(&sc->sc_pgid, cmd, data);
1095 case TIOCGPGRP:
1096 case FIOGETOWN:
1097 return fgetown(sc->sc_pgid, cmd, data);
1098 case FIOASYNC:
1099 if (*(int *)data) {
1100 if (sc->sc_sih == NULL) {
1101 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1102 tap_softintr, sc);
1103 if (sc->sc_sih == NULL)
1104 return EBUSY; /* XXX */
1105 }
1106 sc->sc_flags |= TAP_ASYNCIO;
1107 } else {
1108 sc->sc_flags &= ~TAP_ASYNCIO;
1109 if (sc->sc_sih != NULL) {
1110 softint_disestablish(sc->sc_sih);
1111 sc->sc_sih = NULL;
1112 }
1113 }
1114 return 0;
1115 case FIONBIO:
1116 if (*(int *)data)
1117 sc->sc_flags |= TAP_NBIO;
1118 else
1119 sc->sc_flags &= ~TAP_NBIO;
1120 return 0;
1121 case TAPGIFNAME:
1122 {
1123 struct ifreq *ifr = (struct ifreq *)data;
1124 struct ifnet *ifp = &sc->sc_ec.ec_if;
1125
1126 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1127 return 0;
1128 }
1129 default:
1130 return ENOTTY;
1131 }
1132 }
1133
1134 static int
1135 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1136 {
1137
1138 return tap_dev_poll(minor(dev), events, l);
1139 }
1140
1141 static int
1142 tap_fops_poll(file_t *fp, int events)
1143 {
1144
1145 return tap_dev_poll(fp->f_devunit, events, curlwp);
1146 }
1147
1148 static int
1149 tap_dev_poll(int unit, int events, struct lwp *l)
1150 {
1151 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1152 int revents = 0;
1153
1154 if (sc == NULL)
1155 return POLLERR;
1156
1157 if (events & (POLLIN | POLLRDNORM)) {
1158 struct ifnet *ifp = &sc->sc_ec.ec_if;
1159 struct mbuf *m;
1160 int s;
1161
1162 s = splnet();
1163 IFQ_POLL(&ifp->if_snd, m);
1164
1165 if (m != NULL)
1166 revents |= events & (POLLIN | POLLRDNORM);
1167 else {
1168 mutex_spin_enter(&sc->sc_lock);
1169 selrecord(l, &sc->sc_rsel);
1170 mutex_spin_exit(&sc->sc_lock);
1171 }
1172 splx(s);
1173 }
1174 revents |= events & (POLLOUT | POLLWRNORM);
1175
1176 return revents;
1177 }
1178
1179 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1180 tap_kqread };
1181 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1182 filt_seltrue };
1183
1184 static int
1185 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1186 {
1187
1188 return tap_dev_kqfilter(minor(dev), kn);
1189 }
1190
1191 static int
1192 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1193 {
1194
1195 return tap_dev_kqfilter(fp->f_devunit, kn);
1196 }
1197
1198 static int
1199 tap_dev_kqfilter(int unit, struct knote *kn)
1200 {
1201 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1202
1203 if (sc == NULL)
1204 return ENXIO;
1205
1206 KERNEL_LOCK(1, NULL);
1207 switch(kn->kn_filter) {
1208 case EVFILT_READ:
1209 kn->kn_fop = &tap_read_filterops;
1210 break;
1211 case EVFILT_WRITE:
1212 kn->kn_fop = &tap_seltrue_filterops;
1213 break;
1214 default:
1215 KERNEL_UNLOCK_ONE(NULL);
1216 return EINVAL;
1217 }
1218
1219 kn->kn_hook = sc;
1220 mutex_spin_enter(&sc->sc_lock);
1221 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1222 mutex_spin_exit(&sc->sc_lock);
1223 KERNEL_UNLOCK_ONE(NULL);
1224 return 0;
1225 }
1226
1227 static void
1228 tap_kqdetach(struct knote *kn)
1229 {
1230 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1231
1232 KERNEL_LOCK(1, NULL);
1233 mutex_spin_enter(&sc->sc_lock);
1234 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1235 mutex_spin_exit(&sc->sc_lock);
1236 KERNEL_UNLOCK_ONE(NULL);
1237 }
1238
1239 static int
1240 tap_kqread(struct knote *kn, long hint)
1241 {
1242 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1243 struct ifnet *ifp = &sc->sc_ec.ec_if;
1244 struct mbuf *m;
1245 int s, rv;
1246
1247 KERNEL_LOCK(1, NULL);
1248 s = splnet();
1249 IFQ_POLL(&ifp->if_snd, m);
1250
1251 if (m == NULL)
1252 kn->kn_data = 0;
1253 else
1254 kn->kn_data = m->m_pkthdr.len;
1255 splx(s);
1256 rv = (kn->kn_data != 0 ? 1 : 0);
1257 KERNEL_UNLOCK_ONE(NULL);
1258 return rv;
1259 }
1260
1261 /*
1262 * sysctl management routines
1263 * You can set the address of an interface through:
1264 * net.link.tap.tap<number>
1265 *
1266 * Note the consistent use of tap_log in order to use
1267 * sysctl_teardown at unload time.
1268 *
1269 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1270 * blocks register a function in a special section of the kernel
1271 * (called a link set) which is used at init_sysctl() time to cycle
1272 * through all those functions to create the kernel's sysctl tree.
1273 *
1274 * It is not possible to use link sets in a module, so the
1275 * easiest is to simply call our own setup routine at load time.
1276 *
1277 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1278 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1279 * whole kernel sysctl tree is built, it is not possible to add any
1280 * permanent node.
1281 *
1282 * It should be noted that we're not saving the sysctlnode pointer
1283 * we are returned when creating the "tap" node. That structure
1284 * cannot be trusted once out of the calling function, as it might
1285 * get reused. So we just save the MIB number, and always give the
1286 * full path starting from the root for later calls to sysctl_createv
1287 * and sysctl_destroyv.
1288 */
1289 static void
1290 sysctl_tap_setup(struct sysctllog **clog)
1291 {
1292 const struct sysctlnode *node;
1293 int error = 0;
1294
1295 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1296 CTLFLAG_PERMANENT,
1297 CTLTYPE_NODE, "link", NULL,
1298 NULL, 0, NULL, 0,
1299 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1300 return;
1301
1302 /*
1303 * The first four parameters of sysctl_createv are for management.
1304 *
1305 * The four that follows, here starting with a '0' for the flags,
1306 * describe the node.
1307 *
1308 * The next series of four set its value, through various possible
1309 * means.
1310 *
1311 * Last but not least, the path to the node is described. That path
1312 * is relative to the given root (third argument). Here we're
1313 * starting from the root.
1314 */
1315 if ((error = sysctl_createv(clog, 0, NULL, &node,
1316 CTLFLAG_PERMANENT,
1317 CTLTYPE_NODE, "tap", NULL,
1318 NULL, 0, NULL, 0,
1319 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1320 return;
1321 tap_node = node->sysctl_num;
1322 }
1323
1324 /*
1325 * The helper functions make Andrew Brown's interface really
1326 * shine. It makes possible to create value on the fly whether
1327 * the sysctl value is read or written.
1328 *
1329 * As shown as an example in the man page, the first step is to
1330 * create a copy of the node to have sysctl_lookup work on it.
1331 *
1332 * Here, we have more work to do than just a copy, since we have
1333 * to create the string. The first step is to collect the actual
1334 * value of the node, which is a convenient pointer to the softc
1335 * of the interface. From there we create the string and use it
1336 * as the value, but only for the *copy* of the node.
1337 *
1338 * Then we let sysctl_lookup do the magic, which consists in
1339 * setting oldp and newp as required by the operation. When the
1340 * value is read, that means that the string will be copied to
1341 * the user, and when it is written, the new value will be copied
1342 * over in the addr array.
1343 *
1344 * If newp is NULL, the user was reading the value, so we don't
1345 * have anything else to do. If a new value was written, we
1346 * have to check it.
1347 *
1348 * If it is incorrect, we can return an error and leave 'node' as
1349 * it is: since it is a copy of the actual node, the change will
1350 * be forgotten.
1351 *
1352 * Upon a correct input, we commit the change to the ifnet
1353 * structure of our interface.
1354 */
1355 static int
1356 tap_sysctl_handler(SYSCTLFN_ARGS)
1357 {
1358 struct sysctlnode node;
1359 struct tap_softc *sc;
1360 struct ifnet *ifp;
1361 int error;
1362 size_t len;
1363 char addr[3 * ETHER_ADDR_LEN];
1364 uint8_t enaddr[ETHER_ADDR_LEN];
1365
1366 node = *rnode;
1367 sc = node.sysctl_data;
1368 ifp = &sc->sc_ec.ec_if;
1369 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1370 node.sysctl_data = addr;
1371 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1372 if (error || newp == NULL)
1373 return error;
1374
1375 len = strlen(addr);
1376 if (len < 11 || len > 17)
1377 return EINVAL;
1378
1379 /* Commit change */
1380 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1381 return EINVAL;
1382 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1383 return error;
1384 }
1385
1386 /*
1387 * Module infrastructure
1388 */
1389 #include "if_module.h"
1390
1391 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
1392