Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.119
      1 /*	$NetBSD: if_tap.c,v 1.119 2020/09/27 13:44:47 roy Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.119 2020/09/27 13:44:47 roy Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/atomic.h>
     45 #include <sys/conf.h>
     46 #include <sys/cprng.h>
     47 #include <sys/device.h>
     48 #include <sys/file.h>
     49 #include <sys/filedesc.h>
     50 #include <sys/intr.h>
     51 #include <sys/kauth.h>
     52 #include <sys/kernel.h>
     53 #include <sys/kmem.h>
     54 #include <sys/module.h>
     55 #include <sys/mutex.h>
     56 #include <sys/condvar.h>
     57 #include <sys/poll.h>
     58 #include <sys/proc.h>
     59 #include <sys/select.h>
     60 #include <sys/sockio.h>
     61 #include <sys/stat.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/systm.h>
     64 
     65 #include <net/if.h>
     66 #include <net/if_dl.h>
     67 #include <net/if_ether.h>
     68 #include <net/if_tap.h>
     69 #include <net/bpf.h>
     70 
     71 #include "ioconf.h"
     72 
     73 /*
     74  * sysctl node management
     75  *
     76  * It's not really possible to use a SYSCTL_SETUP block with
     77  * current module implementation, so it is easier to just define
     78  * our own function.
     79  *
     80  * The handler function is a "helper" in Andrew Brown's sysctl
     81  * framework terminology.  It is used as a gateway for sysctl
     82  * requests over the nodes.
     83  *
     84  * tap_log allows the module to log creations of nodes and
     85  * destroy them all at once using sysctl_teardown.
     86  */
     87 static int	tap_node;
     88 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     89 static void	sysctl_tap_setup(struct sysctllog **);
     90 
     91 struct tap_softc {
     92 	device_t	sc_dev;
     93 	struct ethercom	sc_ec;
     94 	int		sc_flags;
     95 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
     96 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
     97 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
     98 #define TAP_GOING	0x00000008	/* interface is being destroyed */
     99 	struct selinfo	sc_rsel;
    100 	pid_t		sc_pgid; /* For async. IO */
    101 	kmutex_t	sc_lock;
    102 	kcondvar_t	sc_cv;
    103 	void		*sc_sih;
    104 	struct timespec sc_atime;
    105 	struct timespec sc_mtime;
    106 	struct timespec sc_btime;
    107 };
    108 
    109 /* autoconf(9) glue */
    110 
    111 static int	tap_match(device_t, cfdata_t, void *);
    112 static void	tap_attach(device_t, device_t, void *);
    113 static int	tap_detach(device_t, int);
    114 
    115 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    116     tap_match, tap_attach, tap_detach, NULL);
    117 extern struct cfdriver tap_cd;
    118 
    119 /* Real device access routines */
    120 static int	tap_dev_close(struct tap_softc *);
    121 static int	tap_dev_read(int, struct uio *, int);
    122 static int	tap_dev_write(int, struct uio *, int);
    123 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    124 static int	tap_dev_poll(int, int, struct lwp *);
    125 static int	tap_dev_kqfilter(int, struct knote *);
    126 
    127 /* Fileops access routines */
    128 static int	tap_fops_close(file_t *);
    129 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    130     kauth_cred_t, int);
    131 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    132     kauth_cred_t, int);
    133 static int	tap_fops_ioctl(file_t *, u_long, void *);
    134 static int	tap_fops_poll(file_t *, int);
    135 static int	tap_fops_stat(file_t *, struct stat *);
    136 static int	tap_fops_kqfilter(file_t *, struct knote *);
    137 
    138 static const struct fileops tap_fileops = {
    139 	.fo_name = "tap",
    140 	.fo_read = tap_fops_read,
    141 	.fo_write = tap_fops_write,
    142 	.fo_ioctl = tap_fops_ioctl,
    143 	.fo_fcntl = fnullop_fcntl,
    144 	.fo_poll = tap_fops_poll,
    145 	.fo_stat = tap_fops_stat,
    146 	.fo_close = tap_fops_close,
    147 	.fo_kqfilter = tap_fops_kqfilter,
    148 	.fo_restart = fnullop_restart,
    149 };
    150 
    151 /* Helper for cloning open() */
    152 static int	tap_dev_cloner(struct lwp *);
    153 
    154 /* Character device routines */
    155 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    156 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    157 static int	tap_cdev_read(dev_t, struct uio *, int);
    158 static int	tap_cdev_write(dev_t, struct uio *, int);
    159 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    160 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    161 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    162 
    163 const struct cdevsw tap_cdevsw = {
    164 	.d_open = tap_cdev_open,
    165 	.d_close = tap_cdev_close,
    166 	.d_read = tap_cdev_read,
    167 	.d_write = tap_cdev_write,
    168 	.d_ioctl = tap_cdev_ioctl,
    169 	.d_stop = nostop,
    170 	.d_tty = notty,
    171 	.d_poll = tap_cdev_poll,
    172 	.d_mmap = nommap,
    173 	.d_kqfilter = tap_cdev_kqfilter,
    174 	.d_discard = nodiscard,
    175 	.d_flag = D_OTHER | D_MPSAFE
    176 };
    177 
    178 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    179 
    180 /* kqueue-related routines */
    181 static void	tap_kqdetach(struct knote *);
    182 static int	tap_kqread(struct knote *, long);
    183 
    184 /*
    185  * Those are needed by the ifnet interface, and would typically be
    186  * there for any network interface driver.
    187  * Some other routines are optional: watchdog and drain.
    188  */
    189 static void	tap_start(struct ifnet *);
    190 static void	tap_stop(struct ifnet *, int);
    191 static int	tap_init(struct ifnet *);
    192 static int	tap_ioctl(struct ifnet *, u_long, void *);
    193 
    194 /* Internal functions */
    195 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    196 static void	tap_softintr(void *);
    197 
    198 /*
    199  * tap is a clonable interface, although it is highly unrealistic for
    200  * an Ethernet device.
    201  *
    202  * Here are the bits needed for a clonable interface.
    203  */
    204 static int	tap_clone_create(struct if_clone *, int);
    205 static int	tap_clone_destroy(struct ifnet *);
    206 
    207 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    208 					tap_clone_create,
    209 					tap_clone_destroy);
    210 
    211 /* Helper functions shared by the two cloning code paths */
    212 static struct tap_softc *	tap_clone_creator(int);
    213 int	tap_clone_destroyer(device_t);
    214 
    215 static struct sysctllog *tap_sysctl_clog;
    216 
    217 #ifdef _MODULE
    218 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    219 #endif
    220 
    221 static u_int tap_count;
    222 
    223 void
    224 tapattach(int n)
    225 {
    226 
    227 	/*
    228 	 * Nothing to do here, initialization is handled by the
    229 	 * module initialization code in tapinit() below).
    230 	 */
    231 }
    232 
    233 static void
    234 tapinit(void)
    235 {
    236 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    237 
    238 	if (error) {
    239 		aprint_error("%s: unable to register cfattach\n",
    240 		    tap_cd.cd_name);
    241 		(void)config_cfdriver_detach(&tap_cd);
    242 		return;
    243 	}
    244 
    245 	if_clone_attach(&tap_cloners);
    246 	sysctl_tap_setup(&tap_sysctl_clog);
    247 #ifdef _MODULE
    248 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    249 #endif
    250 }
    251 
    252 static int
    253 tapdetach(void)
    254 {
    255 	int error = 0;
    256 
    257 	if_clone_detach(&tap_cloners);
    258 #ifdef _MODULE
    259 	error = devsw_detach(NULL, &tap_cdevsw);
    260 	if (error != 0)
    261 		goto out2;
    262 #endif
    263 
    264 	if (tap_count != 0) {
    265 		error = EBUSY;
    266 		goto out1;
    267 	}
    268 
    269 	error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    270 	if (error != 0)
    271 		goto out1;
    272 
    273 	sysctl_teardown(&tap_sysctl_clog);
    274 
    275 	return 0;
    276 
    277  out1:
    278 #ifdef _MODULE
    279 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    280  out2:
    281 #endif
    282 	if_clone_attach(&tap_cloners);
    283 
    284 	return error;
    285 }
    286 
    287 /* Pretty much useless for a pseudo-device */
    288 static int
    289 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    290 {
    291 
    292 	return 1;
    293 }
    294 
    295 void
    296 tap_attach(device_t parent, device_t self, void *aux)
    297 {
    298 	struct tap_softc *sc = device_private(self);
    299 	struct ifnet *ifp;
    300 	const struct sysctlnode *node;
    301 	int error;
    302 	uint8_t enaddr[ETHER_ADDR_LEN] =
    303 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    304 	char enaddrstr[3 * ETHER_ADDR_LEN];
    305 
    306 	sc->sc_dev = self;
    307 	sc->sc_sih = NULL;
    308 	getnanotime(&sc->sc_btime);
    309 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    310 	sc->sc_flags = 0;
    311 	selinit(&sc->sc_rsel);
    312 
    313 	cv_init(&sc->sc_cv, "tapread");
    314 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
    315 
    316 	if (!pmf_device_register(self, NULL, NULL))
    317 		aprint_error_dev(self, "couldn't establish power handler\n");
    318 
    319 	/*
    320 	 * In order to obtain unique initial Ethernet address on a host,
    321 	 * do some randomisation.  It's not meant for anything but avoiding
    322 	 * hard-coding an address.
    323 	 */
    324 	cprng_fast(&enaddr[3], 3);
    325 
    326 	aprint_verbose_dev(self, "Ethernet address %s\n",
    327 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    328 
    329 	/*
    330 	 * One should note that an interface must do multicast in order
    331 	 * to support IPv6.
    332 	 */
    333 	ifp = &sc->sc_ec.ec_if;
    334 	strcpy(ifp->if_xname, device_xname(self));
    335 	ifp->if_softc	= sc;
    336 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    337 #ifdef NET_MPSAFE
    338 	ifp->if_extflags = IFEF_MPSAFE;
    339 #endif
    340 	ifp->if_ioctl	= tap_ioctl;
    341 	ifp->if_start	= tap_start;
    342 	ifp->if_stop	= tap_stop;
    343 	ifp->if_init	= tap_init;
    344 	IFQ_SET_READY(&ifp->if_snd);
    345 
    346 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    347 
    348 	/* Those steps are mandatory for an Ethernet driver. */
    349 	error = if_initialize(ifp);
    350 	if (error != 0) {
    351 		aprint_error_dev(self, "if_initialize failed(%d)\n", error);
    352 		pmf_device_deregister(self);
    353 		mutex_destroy(&sc->sc_lock);
    354 		seldestroy(&sc->sc_rsel);
    355 
    356 		return; /* Error */
    357 	}
    358 	ifp->if_percpuq = if_percpuq_create(ifp);
    359 	ether_ifattach(ifp, enaddr);
    360 	/* Opening the device will bring the link state up. */
    361 	ifp->if_link_state = LINK_STATE_DOWN;
    362 	if_register(ifp);
    363 
    364 	/*
    365 	 * Add a sysctl node for that interface.
    366 	 *
    367 	 * The pointer transmitted is not a string, but instead a pointer to
    368 	 * the softc structure, which we can use to build the string value on
    369 	 * the fly in the helper function of the node.  See the comments for
    370 	 * tap_sysctl_handler for details.
    371 	 *
    372 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    373 	 * component.  However, we can allocate a number ourselves, as we are
    374 	 * the only consumer of the net.link.<iface> node.  In this case, the
    375 	 * unit number is conveniently used to number the node.  CTL_CREATE
    376 	 * would just work, too.
    377 	 */
    378 	if ((error = sysctl_createv(NULL, 0, NULL,
    379 	    &node, CTLFLAG_READWRITE,
    380 	    CTLTYPE_STRING, device_xname(self), NULL,
    381 	    tap_sysctl_handler, 0, (void *)sc, 18,
    382 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    383 	    CTL_EOL)) != 0)
    384 		aprint_error_dev(self,
    385 		    "sysctl_createv returned %d, ignoring\n", error);
    386 }
    387 
    388 /*
    389  * When detaching, we do the inverse of what is done in the attach
    390  * routine, in reversed order.
    391  */
    392 static int
    393 tap_detach(device_t self, int flags)
    394 {
    395 	struct tap_softc *sc = device_private(self);
    396 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    397 	int error;
    398 
    399 	sc->sc_flags |= TAP_GOING;
    400 	tap_stop(ifp, 1);
    401 	if_down(ifp);
    402 
    403 	if (sc->sc_sih != NULL) {
    404 		softint_disestablish(sc->sc_sih);
    405 		sc->sc_sih = NULL;
    406 	}
    407 
    408 	/*
    409 	 * Destroying a single leaf is a very straightforward operation using
    410 	 * sysctl_destroyv.  One should be sure to always end the path with
    411 	 * CTL_EOL.
    412 	 */
    413 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    414 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    415 		aprint_error_dev(self,
    416 		    "sysctl_destroyv returned %d, ignoring\n", error);
    417 	ether_ifdetach(ifp);
    418 	if_detach(ifp);
    419 	seldestroy(&sc->sc_rsel);
    420 	mutex_destroy(&sc->sc_lock);
    421 	cv_destroy(&sc->sc_cv);
    422 
    423 	pmf_device_deregister(self);
    424 
    425 	return 0;
    426 }
    427 
    428 /*
    429  * This is the function where we SEND packets.
    430  *
    431  * There is no 'receive' equivalent.  A typical driver will get
    432  * interrupts from the hardware, and from there will inject new packets
    433  * into the network stack.
    434  *
    435  * Once handled, a packet must be freed.  A real driver might not be able
    436  * to fit all the pending packets into the hardware, and is allowed to
    437  * return before having sent all the packets.  It should then use the
    438  * if_flags flag IFF_OACTIVE to notify the upper layer.
    439  *
    440  * There are also other flags one should check, such as IFF_PAUSE.
    441  *
    442  * It is our duty to make packets available to BPF listeners.
    443  *
    444  * You should be aware that this function is called by the Ethernet layer
    445  * at splnet().
    446  *
    447  * When the device is opened, we have to pass the packet(s) to the
    448  * userland.  For that we stay in OACTIVE mode while the userland gets
    449  * the packets, and we send a signal to the processes waiting to read.
    450  *
    451  * wakeup(sc) is the counterpart to the tsleep call in
    452  * tap_dev_read, while selnotify() is used for kevent(2) and
    453  * poll(2) (which includes select(2)) listeners.
    454  */
    455 static void
    456 tap_start(struct ifnet *ifp)
    457 {
    458 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    459 	struct mbuf *m0;
    460 
    461 	mutex_enter(&sc->sc_lock);
    462 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    463 		/* Simply drop packets */
    464 		for (;;) {
    465 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    466 			if (m0 == NULL)
    467 				goto done;
    468 
    469 			if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len);
    470 			bpf_mtap(ifp, m0, BPF_D_OUT);
    471 
    472 			m_freem(m0);
    473 		}
    474 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    475 		ifp->if_flags |= IFF_OACTIVE;
    476 		cv_broadcast(&sc->sc_cv);
    477 		selnotify(&sc->sc_rsel, 0, 1);
    478 		if (sc->sc_flags & TAP_ASYNCIO) {
    479 			kpreempt_disable();
    480 			softint_schedule(sc->sc_sih);
    481 			kpreempt_enable();
    482 		}
    483 	}
    484 done:
    485 	mutex_exit(&sc->sc_lock);
    486 }
    487 
    488 static void
    489 tap_softintr(void *cookie)
    490 {
    491 	struct tap_softc *sc;
    492 	struct ifnet *ifp;
    493 	int a, b;
    494 
    495 	sc = cookie;
    496 
    497 	if (sc->sc_flags & TAP_ASYNCIO) {
    498 		ifp = &sc->sc_ec.ec_if;
    499 		if (ifp->if_flags & IFF_RUNNING) {
    500 			a = POLL_IN;
    501 			b = POLLIN | POLLRDNORM;
    502 		} else {
    503 			a = POLL_HUP;
    504 			b = 0;
    505 		}
    506 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    507 	}
    508 }
    509 
    510 /*
    511  * A typical driver will only contain the following handlers for
    512  * ioctl calls, except SIOCSIFPHYADDR.
    513  * The latter is a hack I used to set the Ethernet address of the
    514  * faked device.
    515  *
    516  * Note that ether_ioctl() has to be called under splnet().
    517  */
    518 static int
    519 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    520 {
    521 	int s, error;
    522 
    523 	s = splnet();
    524 
    525 	switch (cmd) {
    526 	case SIOCSIFPHYADDR:
    527 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    528 		break;
    529 	default:
    530 		error = ether_ioctl(ifp, cmd, data);
    531 		if (error == ENETRESET)
    532 			error = 0;
    533 		break;
    534 	}
    535 
    536 	splx(s);
    537 
    538 	return error;
    539 }
    540 
    541 /*
    542  * Helper function to set Ethernet address.  This has been replaced by
    543  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    544  */
    545 static int
    546 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    547 {
    548 	const struct sockaddr *sa = &ifra->ifra_addr;
    549 
    550 	if (sa->sa_family != AF_LINK)
    551 		return EINVAL;
    552 
    553 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    554 
    555 	return 0;
    556 }
    557 
    558 /*
    559  * _init() would typically be called when an interface goes up,
    560  * meaning it should configure itself into the state in which it
    561  * can send packets.
    562  */
    563 static int
    564 tap_init(struct ifnet *ifp)
    565 {
    566 	ifp->if_flags |= IFF_RUNNING;
    567 
    568 	tap_start(ifp);
    569 
    570 	return 0;
    571 }
    572 
    573 /*
    574  * _stop() is called when an interface goes down.  It is our
    575  * responsability to validate that state by clearing the
    576  * IFF_RUNNING flag.
    577  *
    578  * We have to wake up all the sleeping processes to have the pending
    579  * read requests cancelled.
    580  */
    581 static void
    582 tap_stop(struct ifnet *ifp, int disable)
    583 {
    584 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    585 
    586 	mutex_enter(&sc->sc_lock);
    587 	ifp->if_flags &= ~IFF_RUNNING;
    588 	cv_broadcast(&sc->sc_cv);
    589 	selnotify(&sc->sc_rsel, 0, 1);
    590 	if (sc->sc_flags & TAP_ASYNCIO) {
    591 		kpreempt_disable();
    592 		softint_schedule(sc->sc_sih);
    593 		kpreempt_enable();
    594 	}
    595 	mutex_exit(&sc->sc_lock);
    596 }
    597 
    598 /*
    599  * The 'create' command of ifconfig can be used to create
    600  * any numbered instance of a given device.  Thus we have to
    601  * make sure we have enough room in cd_devs to create the
    602  * user-specified instance.  config_attach_pseudo will do this
    603  * for us.
    604  */
    605 static int
    606 tap_clone_create(struct if_clone *ifc, int unit)
    607 {
    608 
    609 	if (tap_clone_creator(unit) == NULL) {
    610 		aprint_error("%s%d: unable to attach an instance\n",
    611 		    tap_cd.cd_name, unit);
    612 		return ENXIO;
    613 	}
    614 	atomic_inc_uint(&tap_count);
    615 	return 0;
    616 }
    617 
    618 /*
    619  * tap(4) can be cloned by two ways:
    620  *   using 'ifconfig tap0 create', which will use the network
    621  *     interface cloning API, and call tap_clone_create above.
    622  *   opening the cloning device node, whose minor number is TAP_CLONER.
    623  *     See below for an explanation on how this part work.
    624  */
    625 static struct tap_softc *
    626 tap_clone_creator(int unit)
    627 {
    628 	cfdata_t cf;
    629 
    630 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
    631 	cf->cf_name = tap_cd.cd_name;
    632 	cf->cf_atname = tap_ca.ca_name;
    633 	if (unit == -1) {
    634 		/* let autoconf find the first free one */
    635 		cf->cf_unit = 0;
    636 		cf->cf_fstate = FSTATE_STAR;
    637 	} else {
    638 		cf->cf_unit = unit;
    639 		cf->cf_fstate = FSTATE_NOTFOUND;
    640 	}
    641 
    642 	return device_private(config_attach_pseudo(cf));
    643 }
    644 
    645 /*
    646  * The clean design of if_clone and autoconf(9) makes that part
    647  * really straightforward.  The second argument of config_detach
    648  * means neither QUIET nor FORCED.
    649  */
    650 static int
    651 tap_clone_destroy(struct ifnet *ifp)
    652 {
    653 	struct tap_softc *sc = ifp->if_softc;
    654 	int error = tap_clone_destroyer(sc->sc_dev);
    655 
    656 	if (error == 0)
    657 		atomic_dec_uint(&tap_count);
    658 	return error;
    659 }
    660 
    661 int
    662 tap_clone_destroyer(device_t dev)
    663 {
    664 	cfdata_t cf = device_cfdata(dev);
    665 	int error;
    666 
    667 	if ((error = config_detach(dev, 0)) != 0)
    668 		aprint_error_dev(dev, "unable to detach instance\n");
    669 	kmem_free(cf, sizeof(*cf));
    670 
    671 	return error;
    672 }
    673 
    674 /*
    675  * tap(4) is a bit of an hybrid device.  It can be used in two different
    676  * ways:
    677  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    678  *  2. open /dev/tap, get a new interface created and read/write off it.
    679  *     That interface is destroyed when the process that had it created exits.
    680  *
    681  * The first way is managed by the cdevsw structure, and you access interfaces
    682  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    683  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    684  *
    685  * The second way is the so-called "cloning" device.  It's a special minor
    686  * number (chosen as the maximal number, to allow as much tap devices as
    687  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    688  * call ends in tap_cdev_open.  The actual place where it is handled is
    689  * tap_dev_cloner.
    690  *
    691  * An tap device cannot be opened more than once at a time, so the cdevsw
    692  * part of open() does nothing but noting that the interface is being used and
    693  * hence ready to actually handle packets.
    694  */
    695 
    696 static int
    697 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    698 {
    699 	struct tap_softc *sc;
    700 
    701 	if (minor(dev) == TAP_CLONER)
    702 		return tap_dev_cloner(l);
    703 
    704 	sc = device_lookup_private(&tap_cd, minor(dev));
    705 	if (sc == NULL)
    706 		return ENXIO;
    707 
    708 	/* The device can only be opened once */
    709 	if (sc->sc_flags & TAP_INUSE)
    710 		return EBUSY;
    711 	sc->sc_flags |= TAP_INUSE;
    712 	if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);
    713 
    714 	return 0;
    715 }
    716 
    717 /*
    718  * There are several kinds of cloning devices, and the most simple is the one
    719  * tap(4) uses.  What it does is change the file descriptor with a new one,
    720  * with its own fileops structure (which maps to the various read, write,
    721  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    722  * then actually creates the new tap devices.
    723  *
    724  * Once those two steps are successful, we can re-wire the existing file
    725  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    726  * structure as needed (notably f_devunit gets filled with the fifth parameter
    727  * passed, the unit of the tap device which will allows us identifying the
    728  * device later), and returns EMOVEFD.
    729  *
    730  * That magic value is interpreted by sys_open() which then replaces the
    731  * current file descriptor by the new one (through a magic member of struct
    732  * lwp, l_dupfd).
    733  *
    734  * The tap device is flagged as being busy since it otherwise could be
    735  * externally accessed through the corresponding device node with the cdevsw
    736  * interface.
    737  */
    738 
    739 static int
    740 tap_dev_cloner(struct lwp *l)
    741 {
    742 	struct tap_softc *sc;
    743 	file_t *fp;
    744 	int error, fd;
    745 
    746 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    747 		return error;
    748 
    749 	if ((sc = tap_clone_creator(-1)) == NULL) {
    750 		fd_abort(curproc, fp, fd);
    751 		return ENXIO;
    752 	}
    753 
    754 	sc->sc_flags |= TAP_INUSE;
    755 
    756 	return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
    757 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    758 }
    759 
    760 /*
    761  * While all other operations (read, write, ioctl, poll and kqfilter) are
    762  * really the same whether we are in cdevsw or fileops mode, the close()
    763  * function is slightly different in the two cases.
    764  *
    765  * As for the other, the core of it is shared in tap_dev_close.  What
    766  * it does is sufficient for the cdevsw interface, but the cloning interface
    767  * needs another thing:  the interface is destroyed when the processes that
    768  * created it closes it.
    769  */
    770 static int
    771 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
    772 {
    773 	struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
    774 
    775 	if (sc == NULL)
    776 		return ENXIO;
    777 
    778 	return tap_dev_close(sc);
    779 }
    780 
    781 /*
    782  * It might happen that the administrator used ifconfig to externally destroy
    783  * the interface.  In that case, tap_fops_close will be called while
    784  * tap_detach is already happening.  If we called it again from here, we
    785  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    786  */
    787 static int
    788 tap_fops_close(file_t *fp)
    789 {
    790 	struct tap_softc *sc;
    791 	int unit = fp->f_devunit;
    792 	int error;
    793 
    794 	sc = device_lookup_private(&tap_cd, unit);
    795 	if (sc == NULL)
    796 		return ENXIO;
    797 
    798 	/* tap_dev_close currently always succeeds, but it might not
    799 	 * always be the case. */
    800 	KERNEL_LOCK(1, NULL);
    801 	if ((error = tap_dev_close(sc)) != 0) {
    802 		KERNEL_UNLOCK_ONE(NULL);
    803 		return error;
    804 	}
    805 
    806 	/* Destroy the device now that it is no longer useful,
    807 	 * unless it's already being destroyed. */
    808 	if ((sc->sc_flags & TAP_GOING) != 0) {
    809 		KERNEL_UNLOCK_ONE(NULL);
    810 		return 0;
    811 	}
    812 
    813 	error = tap_clone_destroyer(sc->sc_dev);
    814 	KERNEL_UNLOCK_ONE(NULL);
    815 	return error;
    816 }
    817 
    818 static int
    819 tap_dev_close(struct tap_softc *sc)
    820 {
    821 	struct ifnet *ifp;
    822 	int s;
    823 
    824 	s = splnet();
    825 	/* Let tap_start handle packets again */
    826 	ifp = &sc->sc_ec.ec_if;
    827 	ifp->if_flags &= ~IFF_OACTIVE;
    828 
    829 	/* Purge output queue */
    830 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    831 		struct mbuf *m;
    832 
    833 		for (;;) {
    834 			IFQ_DEQUEUE(&ifp->if_snd, m);
    835 			if (m == NULL)
    836 				break;
    837 
    838 			if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len);
    839 			bpf_mtap(ifp, m, BPF_D_OUT);
    840 			m_freem(m);
    841 		}
    842 	}
    843 	splx(s);
    844 
    845 	if (sc->sc_sih != NULL) {
    846 		softint_disestablish(sc->sc_sih);
    847 		sc->sc_sih = NULL;
    848 	}
    849 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    850 	if_link_state_change(ifp, LINK_STATE_DOWN);
    851 
    852 	return 0;
    853 }
    854 
    855 static int
    856 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    857 {
    858 
    859 	return tap_dev_read(minor(dev), uio, flags);
    860 }
    861 
    862 static int
    863 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    864     kauth_cred_t cred, int flags)
    865 {
    866 	int error;
    867 
    868 	KERNEL_LOCK(1, NULL);
    869 	error = tap_dev_read(fp->f_devunit, uio, flags);
    870 	KERNEL_UNLOCK_ONE(NULL);
    871 	return error;
    872 }
    873 
    874 static int
    875 tap_dev_read(int unit, struct uio *uio, int flags)
    876 {
    877 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    878 	struct ifnet *ifp;
    879 	struct mbuf *m, *n;
    880 	int error = 0;
    881 
    882 	if (sc == NULL)
    883 		return ENXIO;
    884 
    885 	getnanotime(&sc->sc_atime);
    886 
    887 	ifp = &sc->sc_ec.ec_if;
    888 	if ((ifp->if_flags & IFF_UP) == 0)
    889 		return EHOSTDOWN;
    890 
    891 	/* In the TAP_NBIO case, we have to make sure we won't be sleeping */
    892 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    893 		if (!mutex_tryenter(&sc->sc_lock))
    894 			return EWOULDBLOCK;
    895 	} else
    896 		mutex_enter(&sc->sc_lock);
    897 
    898 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    899 		ifp->if_flags &= ~IFF_OACTIVE;
    900 		if (sc->sc_flags & TAP_NBIO)
    901 			error = EWOULDBLOCK;
    902 		else
    903 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
    904 
    905 		if (error != 0) {
    906 			mutex_exit(&sc->sc_lock);
    907 			return error;
    908 		}
    909 		/* The device might have been downed */
    910 		if ((ifp->if_flags & IFF_UP) == 0) {
    911 			mutex_exit(&sc->sc_lock);
    912 			return EHOSTDOWN;
    913 		}
    914 	}
    915 
    916 	IFQ_DEQUEUE(&ifp->if_snd, m);
    917 	mutex_exit(&sc->sc_lock);
    918 
    919 	ifp->if_flags &= ~IFF_OACTIVE;
    920 	if (m == NULL) {
    921 		error = 0;
    922 		goto out;
    923 	}
    924 
    925 	if_statadd2(ifp, if_opackets, 1,
    926 	    if_obytes, m->m_len);		/* XXX only first in chain */
    927 	bpf_mtap(ifp, m, BPF_D_OUT);
    928 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
    929 		goto out;
    930 	if (m == NULL)
    931 		goto out;
    932 
    933 	/*
    934 	 * One read is one packet.
    935 	 */
    936 	do {
    937 		error = uiomove(mtod(m, void *),
    938 		    uimin(m->m_len, uio->uio_resid), uio);
    939 		m = n = m_free(m);
    940 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    941 
    942 	if (m != NULL)
    943 		m_freem(m);
    944 
    945 out:
    946 	return error;
    947 }
    948 
    949 static int
    950 tap_fops_stat(file_t *fp, struct stat *st)
    951 {
    952 	int error = 0;
    953 	struct tap_softc *sc;
    954 	int unit = fp->f_devunit;
    955 
    956 	(void)memset(st, 0, sizeof(*st));
    957 
    958 	KERNEL_LOCK(1, NULL);
    959 	sc = device_lookup_private(&tap_cd, unit);
    960 	if (sc == NULL) {
    961 		error = ENXIO;
    962 		goto out;
    963 	}
    964 
    965 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    966 	st->st_atimespec = sc->sc_atime;
    967 	st->st_mtimespec = sc->sc_mtime;
    968 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    969 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    970 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    971 out:
    972 	KERNEL_UNLOCK_ONE(NULL);
    973 	return error;
    974 }
    975 
    976 static int
    977 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    978 {
    979 
    980 	return tap_dev_write(minor(dev), uio, flags);
    981 }
    982 
    983 static int
    984 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
    985     kauth_cred_t cred, int flags)
    986 {
    987 	int error;
    988 
    989 	KERNEL_LOCK(1, NULL);
    990 	error = tap_dev_write(fp->f_devunit, uio, flags);
    991 	KERNEL_UNLOCK_ONE(NULL);
    992 	return error;
    993 }
    994 
    995 static int
    996 tap_dev_write(int unit, struct uio *uio, int flags)
    997 {
    998 	struct tap_softc *sc =
    999 	    device_lookup_private(&tap_cd, unit);
   1000 	struct ifnet *ifp;
   1001 	struct mbuf *m, **mp;
   1002 	size_t len = 0;
   1003 	int error = 0;
   1004 
   1005 	if (sc == NULL)
   1006 		return ENXIO;
   1007 
   1008 	getnanotime(&sc->sc_mtime);
   1009 	ifp = &sc->sc_ec.ec_if;
   1010 
   1011 	/* One write, one packet, that's the rule */
   1012 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1013 	if (m == NULL) {
   1014 		if_statinc(ifp, if_ierrors);
   1015 		return ENOBUFS;
   1016 	}
   1017 	m->m_pkthdr.len = uio->uio_resid;
   1018 
   1019 	mp = &m;
   1020 	while (error == 0 && uio->uio_resid > 0) {
   1021 		if (*mp != m) {
   1022 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1023 			if (*mp == NULL) {
   1024 				error = ENOBUFS;
   1025 				break;
   1026 			}
   1027 		}
   1028 		(*mp)->m_len = uimin(MHLEN, uio->uio_resid);
   1029 		len += (*mp)->m_len;
   1030 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1031 		mp = &(*mp)->m_next;
   1032 	}
   1033 	if (error) {
   1034 		if_statinc(ifp, if_ierrors);
   1035 		m_freem(m);
   1036 		return error;
   1037 	}
   1038 
   1039 	m_set_rcvif(m, ifp);
   1040 
   1041 	if_statadd2(ifp, if_ipackets, 1, if_ibytes, len);
   1042 	bpf_mtap(ifp, m, BPF_D_IN);
   1043 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0)
   1044 		return error;
   1045 	if (m == NULL)
   1046 		return 0;
   1047 
   1048 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1049 
   1050 	return 0;
   1051 }
   1052 
   1053 static int
   1054 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
   1055 {
   1056 
   1057 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1058 }
   1059 
   1060 static int
   1061 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1062 {
   1063 
   1064 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1065 }
   1066 
   1067 static int
   1068 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1069 {
   1070 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1071 
   1072 	if (sc == NULL)
   1073 		return ENXIO;
   1074 
   1075 	switch (cmd) {
   1076 	case FIONREAD:
   1077 		{
   1078 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1079 			struct mbuf *m;
   1080 			int s;
   1081 
   1082 			s = splnet();
   1083 			IFQ_POLL(&ifp->if_snd, m);
   1084 
   1085 			if (m == NULL)
   1086 				*(int *)data = 0;
   1087 			else
   1088 				*(int *)data = m->m_pkthdr.len;
   1089 			splx(s);
   1090 			return 0;
   1091 		}
   1092 	case TIOCSPGRP:
   1093 	case FIOSETOWN:
   1094 		return fsetown(&sc->sc_pgid, cmd, data);
   1095 	case TIOCGPGRP:
   1096 	case FIOGETOWN:
   1097 		return fgetown(sc->sc_pgid, cmd, data);
   1098 	case FIOASYNC:
   1099 		if (*(int *)data) {
   1100 			if (sc->sc_sih == NULL) {
   1101 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1102 				    tap_softintr, sc);
   1103 				if (sc->sc_sih == NULL)
   1104 					return EBUSY; /* XXX */
   1105 			}
   1106 			sc->sc_flags |= TAP_ASYNCIO;
   1107 		} else {
   1108 			sc->sc_flags &= ~TAP_ASYNCIO;
   1109 			if (sc->sc_sih != NULL) {
   1110 				softint_disestablish(sc->sc_sih);
   1111 				sc->sc_sih = NULL;
   1112 			}
   1113 		}
   1114 		return 0;
   1115 	case FIONBIO:
   1116 		if (*(int *)data)
   1117 			sc->sc_flags |= TAP_NBIO;
   1118 		else
   1119 			sc->sc_flags &= ~TAP_NBIO;
   1120 		return 0;
   1121 	case TAPGIFNAME:
   1122 		{
   1123 			struct ifreq *ifr = (struct ifreq *)data;
   1124 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1125 
   1126 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1127 			return 0;
   1128 		}
   1129 	default:
   1130 		return ENOTTY;
   1131 	}
   1132 }
   1133 
   1134 static int
   1135 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1136 {
   1137 
   1138 	return tap_dev_poll(minor(dev), events, l);
   1139 }
   1140 
   1141 static int
   1142 tap_fops_poll(file_t *fp, int events)
   1143 {
   1144 
   1145 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1146 }
   1147 
   1148 static int
   1149 tap_dev_poll(int unit, int events, struct lwp *l)
   1150 {
   1151 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1152 	int revents = 0;
   1153 
   1154 	if (sc == NULL)
   1155 		return POLLERR;
   1156 
   1157 	if (events & (POLLIN | POLLRDNORM)) {
   1158 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1159 		struct mbuf *m;
   1160 		int s;
   1161 
   1162 		s = splnet();
   1163 		IFQ_POLL(&ifp->if_snd, m);
   1164 
   1165 		if (m != NULL)
   1166 			revents |= events & (POLLIN | POLLRDNORM);
   1167 		else {
   1168 			mutex_spin_enter(&sc->sc_lock);
   1169 			selrecord(l, &sc->sc_rsel);
   1170 			mutex_spin_exit(&sc->sc_lock);
   1171 		}
   1172 		splx(s);
   1173 	}
   1174 	revents |= events & (POLLOUT | POLLWRNORM);
   1175 
   1176 	return revents;
   1177 }
   1178 
   1179 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1180 	tap_kqread };
   1181 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1182 	filt_seltrue };
   1183 
   1184 static int
   1185 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1186 {
   1187 
   1188 	return tap_dev_kqfilter(minor(dev), kn);
   1189 }
   1190 
   1191 static int
   1192 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1193 {
   1194 
   1195 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1196 }
   1197 
   1198 static int
   1199 tap_dev_kqfilter(int unit, struct knote *kn)
   1200 {
   1201 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1202 
   1203 	if (sc == NULL)
   1204 		return ENXIO;
   1205 
   1206 	KERNEL_LOCK(1, NULL);
   1207 	switch(kn->kn_filter) {
   1208 	case EVFILT_READ:
   1209 		kn->kn_fop = &tap_read_filterops;
   1210 		break;
   1211 	case EVFILT_WRITE:
   1212 		kn->kn_fop = &tap_seltrue_filterops;
   1213 		break;
   1214 	default:
   1215 		KERNEL_UNLOCK_ONE(NULL);
   1216 		return EINVAL;
   1217 	}
   1218 
   1219 	kn->kn_hook = sc;
   1220 	mutex_spin_enter(&sc->sc_lock);
   1221 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1222 	mutex_spin_exit(&sc->sc_lock);
   1223 	KERNEL_UNLOCK_ONE(NULL);
   1224 	return 0;
   1225 }
   1226 
   1227 static void
   1228 tap_kqdetach(struct knote *kn)
   1229 {
   1230 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1231 
   1232 	KERNEL_LOCK(1, NULL);
   1233 	mutex_spin_enter(&sc->sc_lock);
   1234 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1235 	mutex_spin_exit(&sc->sc_lock);
   1236 	KERNEL_UNLOCK_ONE(NULL);
   1237 }
   1238 
   1239 static int
   1240 tap_kqread(struct knote *kn, long hint)
   1241 {
   1242 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1243 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1244 	struct mbuf *m;
   1245 	int s, rv;
   1246 
   1247 	KERNEL_LOCK(1, NULL);
   1248 	s = splnet();
   1249 	IFQ_POLL(&ifp->if_snd, m);
   1250 
   1251 	if (m == NULL)
   1252 		kn->kn_data = 0;
   1253 	else
   1254 		kn->kn_data = m->m_pkthdr.len;
   1255 	splx(s);
   1256 	rv = (kn->kn_data != 0 ? 1 : 0);
   1257 	KERNEL_UNLOCK_ONE(NULL);
   1258 	return rv;
   1259 }
   1260 
   1261 /*
   1262  * sysctl management routines
   1263  * You can set the address of an interface through:
   1264  * net.link.tap.tap<number>
   1265  *
   1266  * Note the consistent use of tap_log in order to use
   1267  * sysctl_teardown at unload time.
   1268  *
   1269  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1270  * blocks register a function in a special section of the kernel
   1271  * (called a link set) which is used at init_sysctl() time to cycle
   1272  * through all those functions to create the kernel's sysctl tree.
   1273  *
   1274  * It is not possible to use link sets in a module, so the
   1275  * easiest is to simply call our own setup routine at load time.
   1276  *
   1277  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1278  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1279  * whole kernel sysctl tree is built, it is not possible to add any
   1280  * permanent node.
   1281  *
   1282  * It should be noted that we're not saving the sysctlnode pointer
   1283  * we are returned when creating the "tap" node.  That structure
   1284  * cannot be trusted once out of the calling function, as it might
   1285  * get reused.  So we just save the MIB number, and always give the
   1286  * full path starting from the root for later calls to sysctl_createv
   1287  * and sysctl_destroyv.
   1288  */
   1289 static void
   1290 sysctl_tap_setup(struct sysctllog **clog)
   1291 {
   1292 	const struct sysctlnode *node;
   1293 	int error = 0;
   1294 
   1295 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1296 	    CTLFLAG_PERMANENT,
   1297 	    CTLTYPE_NODE, "link", NULL,
   1298 	    NULL, 0, NULL, 0,
   1299 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1300 		return;
   1301 
   1302 	/*
   1303 	 * The first four parameters of sysctl_createv are for management.
   1304 	 *
   1305 	 * The four that follows, here starting with a '0' for the flags,
   1306 	 * describe the node.
   1307 	 *
   1308 	 * The next series of four set its value, through various possible
   1309 	 * means.
   1310 	 *
   1311 	 * Last but not least, the path to the node is described.  That path
   1312 	 * is relative to the given root (third argument).  Here we're
   1313 	 * starting from the root.
   1314 	 */
   1315 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1316 	    CTLFLAG_PERMANENT,
   1317 	    CTLTYPE_NODE, "tap", NULL,
   1318 	    NULL, 0, NULL, 0,
   1319 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1320 		return;
   1321 	tap_node = node->sysctl_num;
   1322 }
   1323 
   1324 /*
   1325  * The helper functions make Andrew Brown's interface really
   1326  * shine.  It makes possible to create value on the fly whether
   1327  * the sysctl value is read or written.
   1328  *
   1329  * As shown as an example in the man page, the first step is to
   1330  * create a copy of the node to have sysctl_lookup work on it.
   1331  *
   1332  * Here, we have more work to do than just a copy, since we have
   1333  * to create the string.  The first step is to collect the actual
   1334  * value of the node, which is a convenient pointer to the softc
   1335  * of the interface.  From there we create the string and use it
   1336  * as the value, but only for the *copy* of the node.
   1337  *
   1338  * Then we let sysctl_lookup do the magic, which consists in
   1339  * setting oldp and newp as required by the operation.  When the
   1340  * value is read, that means that the string will be copied to
   1341  * the user, and when it is written, the new value will be copied
   1342  * over in the addr array.
   1343  *
   1344  * If newp is NULL, the user was reading the value, so we don't
   1345  * have anything else to do.  If a new value was written, we
   1346  * have to check it.
   1347  *
   1348  * If it is incorrect, we can return an error and leave 'node' as
   1349  * it is:  since it is a copy of the actual node, the change will
   1350  * be forgotten.
   1351  *
   1352  * Upon a correct input, we commit the change to the ifnet
   1353  * structure of our interface.
   1354  */
   1355 static int
   1356 tap_sysctl_handler(SYSCTLFN_ARGS)
   1357 {
   1358 	struct sysctlnode node;
   1359 	struct tap_softc *sc;
   1360 	struct ifnet *ifp;
   1361 	int error;
   1362 	size_t len;
   1363 	char addr[3 * ETHER_ADDR_LEN];
   1364 	uint8_t enaddr[ETHER_ADDR_LEN];
   1365 
   1366 	node = *rnode;
   1367 	sc = node.sysctl_data;
   1368 	ifp = &sc->sc_ec.ec_if;
   1369 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1370 	node.sysctl_data = addr;
   1371 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1372 	if (error || newp == NULL)
   1373 		return error;
   1374 
   1375 	len = strlen(addr);
   1376 	if (len < 11 || len > 17)
   1377 		return EINVAL;
   1378 
   1379 	/* Commit change */
   1380 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1381 		return EINVAL;
   1382 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1383 	return error;
   1384 }
   1385 
   1386 /*
   1387  * Module infrastructure
   1388  */
   1389 #include "if_module.h"
   1390 
   1391 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
   1392