if_tap.c revision 1.12.2.1 1 /* $NetBSD: if_tap.c,v 1.12.2.1 2006/02/04 14:18:52 simonb Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to the NetBSD Foundation
8 * by Quentin Garnier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
41 * device to the system, but can also be accessed by userland through a
42 * character device interface, which allows reading and injecting frames.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.12.2.1 2006/02/04 14:18:52 simonb Exp $");
47
48 #if defined(_KERNEL_OPT)
49 #include "bpfilter.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/ksyms.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 /*
76 * sysctl node management
77 *
78 * It's not really possible to use a SYSCTL_SETUP block with
79 * current LKM implementation, so it is easier to just define
80 * our own function.
81 *
82 * The handler function is a "helper" in Andrew Brown's sysctl
83 * framework terminology. It is used as a gateway for sysctl
84 * requests over the nodes.
85 *
86 * tap_log allows the module to log creations of nodes and
87 * destroy them all at once using sysctl_teardown.
88 */
89 static int tap_node;
90 static int tap_sysctl_handler(SYSCTLFN_PROTO);
91 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
92
93 /*
94 * Since we're an Ethernet device, we need the 3 following
95 * components: a leading struct device, a struct ethercom,
96 * and also a struct ifmedia since we don't attach a PHY to
97 * ourselves. We could emulate one, but there's no real
98 * point.
99 */
100
101 struct tap_softc {
102 struct device sc_dev;
103 struct ifmedia sc_im;
104 struct ethercom sc_ec;
105 int sc_flags;
106 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
107 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
108 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
109 #define TAP_GOING 0x00000008 /* interface is being destroyed */
110 struct selinfo sc_rsel;
111 pid_t sc_pgid; /* For async. IO */
112 struct lock sc_rdlock;
113 struct simplelock sc_kqlock;
114 };
115
116 /* autoconf(9) glue */
117
118 void tapattach(int);
119
120 static int tap_match(struct device *, struct cfdata *, void *);
121 static void tap_attach(struct device *, struct device *, void *);
122 static int tap_detach(struct device*, int);
123
124 /* Ethernet address helper functions */
125
126 static char *tap_ether_sprintf(char *, const u_char *);
127 static int tap_ether_aton(u_char *, char *);
128
129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
130 tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132
133 /* Real device access routines */
134 static int tap_dev_close(struct tap_softc *);
135 static int tap_dev_read(int, struct uio *, int);
136 static int tap_dev_write(int, struct uio *, int);
137 static int tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
138 static int tap_dev_poll(int, int, struct lwp *);
139 static int tap_dev_kqfilter(int, struct knote *);
140
141 /* Fileops access routines */
142 static int tap_fops_close(struct file *, struct lwp *);
143 static int tap_fops_read(struct file *, off_t *, struct uio *,
144 struct ucred *, int);
145 static int tap_fops_write(struct file *, off_t *, struct uio *,
146 struct ucred *, int);
147 static int tap_fops_ioctl(struct file *, u_long, void *,
148 struct lwp *);
149 static int tap_fops_poll(struct file *, int, struct lwp *);
150 static int tap_fops_kqfilter(struct file *, struct knote *);
151
152 static const struct fileops tap_fileops = {
153 tap_fops_read,
154 tap_fops_write,
155 tap_fops_ioctl,
156 fnullop_fcntl,
157 tap_fops_poll,
158 fbadop_stat,
159 tap_fops_close,
160 tap_fops_kqfilter,
161 };
162
163 /* Helper for cloning open() */
164 static int tap_dev_cloner(struct lwp *);
165
166 /* Character device routines */
167 static int tap_cdev_open(dev_t, int, int, struct lwp *);
168 static int tap_cdev_close(dev_t, int, int, struct lwp *);
169 static int tap_cdev_read(dev_t, struct uio *, int);
170 static int tap_cdev_write(dev_t, struct uio *, int);
171 static int tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
172 static int tap_cdev_poll(dev_t, int, struct lwp *);
173 static int tap_cdev_kqfilter(dev_t, struct knote *);
174
175 const struct cdevsw tap_cdevsw = {
176 tap_cdev_open, tap_cdev_close,
177 tap_cdev_read, tap_cdev_write,
178 tap_cdev_ioctl, nostop, notty,
179 tap_cdev_poll, nommap,
180 tap_cdev_kqfilter,
181 };
182
183 #define TAP_CLONER 0xfffff /* Maximal minor value */
184
185 /* kqueue-related routines */
186 static void tap_kqdetach(struct knote *);
187 static int tap_kqread(struct knote *, long);
188
189 /*
190 * Those are needed by the if_media interface.
191 */
192
193 static int tap_mediachange(struct ifnet *);
194 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
195
196 /*
197 * Those are needed by the ifnet interface, and would typically be
198 * there for any network interface driver.
199 * Some other routines are optional: watchdog and drain.
200 */
201
202 static void tap_start(struct ifnet *);
203 static void tap_stop(struct ifnet *, int);
204 static int tap_init(struct ifnet *);
205 static int tap_ioctl(struct ifnet *, u_long, caddr_t);
206
207 /* This is an internal function to keep tap_ioctl readable */
208 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
209
210 /*
211 * tap is a clonable interface, although it is highly unrealistic for
212 * an Ethernet device.
213 *
214 * Here are the bits needed for a clonable interface.
215 */
216 static int tap_clone_create(struct if_clone *, int);
217 static int tap_clone_destroy(struct ifnet *);
218
219 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
220 tap_clone_create,
221 tap_clone_destroy);
222
223 /* Helper functionis shared by the two cloning code paths */
224 static struct tap_softc * tap_clone_creator(int);
225 int tap_clone_destroyer(struct device *);
226
227 void
228 tapattach(int n)
229 {
230 int error;
231
232 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
233 if (error) {
234 aprint_error("%s: unable to register cfattach\n",
235 tap_cd.cd_name);
236 (void)config_cfdriver_detach(&tap_cd);
237 return;
238 }
239
240 if_clone_attach(&tap_cloners);
241 }
242
243 /* Pretty much useless for a pseudo-device */
244 static int
245 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
246 {
247 return (1);
248 }
249
250 void
251 tap_attach(struct device *parent, struct device *self, void *aux)
252 {
253 char enaddrstr[18];
254 u_int8_t enaddr[ETHER_ADDR_LEN] =
255 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
256 struct timeval tv;
257 struct tap_softc *sc = (struct tap_softc *)self;
258 struct ifnet *ifp;
259 const struct sysctlnode *node;
260 uint32_t ui;
261 int error;
262
263 aprint_normal("%s: faking Ethernet device\n",
264 self->dv_xname);
265
266 /*
267 * In order to obtain unique initial Ethernet address on a host,
268 * do some randomisation using the current uptime. It's not meant
269 * for anything but avoiding hard-coding an address.
270 */
271 getmicrouptime(&tv);
272 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
273 memcpy(enaddr+3, (u_int8_t *)&ui, 3);
274
275 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
276 tap_ether_sprintf(enaddrstr, enaddr));
277
278 /*
279 * Why 1000baseT? Why not? You can add more.
280 *
281 * Note that there are 3 steps: init, one or several additions to
282 * list of supported media, and in the end, the selection of one
283 * of them.
284 */
285 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
289 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
290 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
291 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
292 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
293 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
294
295 /*
296 * One should note that an interface must do multicast in order
297 * to support IPv6.
298 */
299 ifp = &sc->sc_ec.ec_if;
300 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
301 ifp->if_softc = sc;
302 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
303 ifp->if_ioctl = tap_ioctl;
304 ifp->if_start = tap_start;
305 ifp->if_stop = tap_stop;
306 ifp->if_init = tap_init;
307 IFQ_SET_READY(&ifp->if_snd);
308
309 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
310
311 /* Those steps are mandatory for an Ethernet driver, the fisrt call
312 * being common to all network interface drivers. */
313 if_attach(ifp);
314 ether_ifattach(ifp, enaddr);
315
316 sc->sc_flags = 0;
317
318 /*
319 * Add a sysctl node for that interface.
320 *
321 * The pointer transmitted is not a string, but instead a pointer to
322 * the softc structure, which we can use to build the string value on
323 * the fly in the helper function of the node. See the comments for
324 * tap_sysctl_handler for details.
325 */
326 if ((error = sysctl_createv(NULL, 0, NULL,
327 &node, CTLFLAG_READWRITE,
328 CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
329 tap_sysctl_handler, 0, sc, 18,
330 CTL_NET, AF_LINK, tap_node, sc->sc_dev.dv_unit, CTL_EOL)) != 0)
331 aprint_error("%s: sysctl_createv returned %d, ignoring\n",
332 sc->sc_dev.dv_xname, error);
333
334 /*
335 * Initialize the two locks for the device.
336 *
337 * We need a lock here because even though the tap device can be
338 * opened only once, the file descriptor might be passed to another
339 * process, say a fork(2)ed child.
340 *
341 * The Giant saves us from most of the hassle, but since the read
342 * operation can sleep, we don't want two processes to wake up at
343 * the same moment and both try and dequeue a single packet.
344 *
345 * The queue for event listeners (used by kqueue(9), see below) has
346 * to be protected, too, but we don't need the same level of
347 * complexity for that lock, so a simple spinning lock is fine.
348 */
349 lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
350 simple_lock_init(&sc->sc_kqlock);
351 }
352
353 /*
354 * When detaching, we do the inverse of what is done in the attach
355 * routine, in reversed order.
356 */
357 static int
358 tap_detach(struct device* self, int flags)
359 {
360 struct tap_softc *sc = (struct tap_softc *)self;
361 struct ifnet *ifp = &sc->sc_ec.ec_if;
362 int error, s;
363
364 /*
365 * Some processes might be sleeping on "tap", so we have to make
366 * them release their hold on the device.
367 *
368 * The LK_DRAIN operation will wait for every locked process to
369 * release their hold.
370 */
371 sc->sc_flags |= TAP_GOING;
372 s = splnet();
373 tap_stop(ifp, 1);
374 if_down(ifp);
375 splx(s);
376 lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
377
378 /*
379 * Destroying a single leaf is a very straightforward operation using
380 * sysctl_destroyv. One should be sure to always end the path with
381 * CTL_EOL.
382 */
383 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
384 sc->sc_dev.dv_unit, CTL_EOL)) != 0)
385 aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
386 sc->sc_dev.dv_xname, error);
387 ether_ifdetach(ifp);
388 if_detach(ifp);
389 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
390
391 return (0);
392 }
393
394 /*
395 * This function is called by the ifmedia layer to notify the driver
396 * that the user requested a media change. A real driver would
397 * reconfigure the hardware.
398 */
399 static int
400 tap_mediachange(struct ifnet *ifp)
401 {
402 return (0);
403 }
404
405 /*
406 * Here the user asks for the currently used media.
407 */
408 static void
409 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
410 {
411 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
412 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
413 }
414
415 /*
416 * This is the function where we SEND packets.
417 *
418 * There is no 'receive' equivalent. A typical driver will get
419 * interrupts from the hardware, and from there will inject new packets
420 * into the network stack.
421 *
422 * Once handled, a packet must be freed. A real driver might not be able
423 * to fit all the pending packets into the hardware, and is allowed to
424 * return before having sent all the packets. It should then use the
425 * if_flags flag IFF_OACTIVE to notify the upper layer.
426 *
427 * There are also other flags one should check, such as IFF_PAUSE.
428 *
429 * It is our duty to make packets available to BPF listeners.
430 *
431 * You should be aware that this function is called by the Ethernet layer
432 * at splnet().
433 *
434 * When the device is opened, we have to pass the packet(s) to the
435 * userland. For that we stay in OACTIVE mode while the userland gets
436 * the packets, and we send a signal to the processes waiting to read.
437 *
438 * wakeup(sc) is the counterpart to the tsleep call in
439 * tap_dev_read, while selnotify() is used for kevent(2) and
440 * poll(2) (which includes select(2)) listeners.
441 */
442 static void
443 tap_start(struct ifnet *ifp)
444 {
445 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
446 struct mbuf *m0;
447
448 if ((sc->sc_flags & TAP_INUSE) == 0) {
449 /* Simply drop packets */
450 for(;;) {
451 IFQ_DEQUEUE(&ifp->if_snd, m0);
452 if (m0 == NULL)
453 return;
454
455 ifp->if_opackets++;
456 #if NBPFILTER > 0
457 if (ifp->if_bpf)
458 bpf_mtap(ifp->if_bpf, m0);
459 #endif
460
461 m_freem(m0);
462 }
463 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
464 ifp->if_flags |= IFF_OACTIVE;
465 wakeup(sc);
466 selnotify(&sc->sc_rsel, 1);
467 if (sc->sc_flags & TAP_ASYNCIO)
468 fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
469 POLLIN|POLLRDNORM, NULL);
470 }
471 }
472
473 /*
474 * A typical driver will only contain the following handlers for
475 * ioctl calls, except SIOCSIFPHYADDR.
476 * The latter is a hack I used to set the Ethernet address of the
477 * faked device.
478 *
479 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
480 * called under splnet().
481 */
482 static int
483 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
484 {
485 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
486 struct ifreq *ifr = (struct ifreq *)data;
487 int s, error;
488
489 s = splnet();
490
491 switch (cmd) {
492 case SIOCSIFMEDIA:
493 case SIOCGIFMEDIA:
494 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
495 break;
496 case SIOCSIFPHYADDR:
497 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
498 break;
499 default:
500 error = ether_ioctl(ifp, cmd, data);
501 if (error == ENETRESET)
502 error = 0;
503 break;
504 }
505
506 splx(s);
507
508 return (error);
509 }
510
511 /*
512 * Helper function to set Ethernet address. This shouldn't be done there,
513 * and should actually be available to all Ethernet drivers, real or not.
514 */
515 static int
516 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
517 {
518 struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
519
520 if (sa->sa_family != AF_LINK)
521 return (EINVAL);
522
523 memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
524
525 return (0);
526 }
527
528 /*
529 * _init() would typically be called when an interface goes up,
530 * meaning it should configure itself into the state in which it
531 * can send packets.
532 */
533 static int
534 tap_init(struct ifnet *ifp)
535 {
536 ifp->if_flags |= IFF_RUNNING;
537
538 tap_start(ifp);
539
540 return (0);
541 }
542
543 /*
544 * _stop() is called when an interface goes down. It is our
545 * responsability to validate that state by clearing the
546 * IFF_RUNNING flag.
547 *
548 * We have to wake up all the sleeping processes to have the pending
549 * read requests cancelled.
550 */
551 static void
552 tap_stop(struct ifnet *ifp, int disable)
553 {
554 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
555
556 ifp->if_flags &= ~IFF_RUNNING;
557 wakeup(sc);
558 selnotify(&sc->sc_rsel, 1);
559 if (sc->sc_flags & TAP_ASYNCIO)
560 fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
561 }
562
563 /*
564 * The 'create' command of ifconfig can be used to create
565 * any numbered instance of a given device. Thus we have to
566 * make sure we have enough room in cd_devs to create the
567 * user-specified instance. config_attach_pseudo will do this
568 * for us.
569 */
570 static int
571 tap_clone_create(struct if_clone *ifc, int unit)
572 {
573 if (tap_clone_creator(unit) == NULL) {
574 aprint_error("%s%d: unable to attach an instance\n",
575 tap_cd.cd_name, unit);
576 return (ENXIO);
577 }
578
579 return (0);
580 }
581
582 /*
583 * tap(4) can be cloned by two ways:
584 * using 'ifconfig tap0 create', which will use the network
585 * interface cloning API, and call tap_clone_create above.
586 * opening the cloning device node, whose minor number is TAP_CLONER.
587 * See below for an explanation on how this part work.
588 *
589 * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
590 * autoconf(9) choose a unit number for us. This is what happens when
591 * the cloner is openend, while the ifcloner interface creates a device
592 * with a specific unit number.
593 */
594 static struct tap_softc *
595 tap_clone_creator(int unit)
596 {
597 struct cfdata *cf;
598
599 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
600 cf->cf_name = tap_cd.cd_name;
601 cf->cf_atname = tap_ca.ca_name;
602 cf->cf_unit = unit;
603 cf->cf_fstate = FSTATE_STAR;
604
605 return (struct tap_softc *)config_attach_pseudo(cf);
606 }
607
608 /*
609 * The clean design of if_clone and autoconf(9) makes that part
610 * really straightforward. The second argument of config_detach
611 * means neither QUIET nor FORCED.
612 */
613 static int
614 tap_clone_destroy(struct ifnet *ifp)
615 {
616 return tap_clone_destroyer((struct device *)ifp->if_softc);
617 }
618
619 int
620 tap_clone_destroyer(struct device *dev)
621 {
622 struct cfdata *cf = dev->dv_cfdata;
623 int error;
624
625 if ((error = config_detach(dev, 0)) != 0)
626 aprint_error("%s: unable to detach instance\n",
627 dev->dv_xname);
628 free(cf, M_DEVBUF);
629
630 return (error);
631 }
632
633 /*
634 * tap(4) is a bit of an hybrid device. It can be used in two different
635 * ways:
636 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
637 * 2. open /dev/tap, get a new interface created and read/write off it.
638 * That interface is destroyed when the process that had it created exits.
639 *
640 * The first way is managed by the cdevsw structure, and you access interfaces
641 * through a (major, minor) mapping: tap4 is obtained by the minor number
642 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
643 *
644 * The second way is the so-called "cloning" device. It's a special minor
645 * number (chosen as the maximal number, to allow as much tap devices as
646 * possible). The user first opens the cloner (e.g., /dev/tap), and that
647 * call ends in tap_cdev_open. The actual place where it is handled is
648 * tap_dev_cloner.
649 *
650 * An tap device cannot be opened more than once at a time, so the cdevsw
651 * part of open() does nothing but noting that the interface is being used and
652 * hence ready to actually handle packets.
653 */
654
655 static int
656 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
657 {
658 struct tap_softc *sc;
659
660 if (minor(dev) == TAP_CLONER)
661 return tap_dev_cloner(l);
662
663 sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
664 if (sc == NULL)
665 return (ENXIO);
666
667 /* The device can only be opened once */
668 if (sc->sc_flags & TAP_INUSE)
669 return (EBUSY);
670 sc->sc_flags |= TAP_INUSE;
671 return (0);
672 }
673
674 /*
675 * There are several kinds of cloning devices, and the most simple is the one
676 * tap(4) uses. What it does is change the file descriptor with a new one,
677 * with its own fileops structure (which maps to the various read, write,
678 * ioctl functions). It starts allocating a new file descriptor with falloc,
679 * then actually creates the new tap devices.
680 *
681 * Once those two steps are successful, we can re-wire the existing file
682 * descriptor to its new self. This is done with fdclone(): it fills the fp
683 * structure as needed (notably f_data gets filled with the fifth parameter
684 * passed, the unit of the tap device which will allows us identifying the
685 * device later), and returns EMOVEFD.
686 *
687 * That magic value is interpreted by sys_open() which then replaces the
688 * current file descriptor by the new one (through a magic member of struct
689 * proc, p_dupfd).
690 *
691 * The tap device is flagged as being busy since it otherwise could be
692 * externally accessed through the corresponding device node with the cdevsw
693 * interface.
694 */
695
696 static int
697 tap_dev_cloner(struct lwp *l)
698 {
699 struct tap_softc *sc;
700 struct file *fp;
701 int error, fd;
702
703 if ((error = falloc(l->l_proc, &fp, &fd)) != 0)
704 return (error);
705
706 if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
707 FILE_UNUSE(fp, l);
708 ffree(fp);
709 return (ENXIO);
710 }
711
712 sc->sc_flags |= TAP_INUSE;
713
714 return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
715 (void *)(intptr_t)sc->sc_dev.dv_unit);
716 }
717
718 /*
719 * While all other operations (read, write, ioctl, poll and kqfilter) are
720 * really the same whether we are in cdevsw or fileops mode, the close()
721 * function is slightly different in the two cases.
722 *
723 * As for the other, the core of it is shared in tap_dev_close. What
724 * it does is sufficient for the cdevsw interface, but the cloning interface
725 * needs another thing: the interface is destroyed when the processes that
726 * created it closes it.
727 */
728 static int
729 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
730 {
731 struct tap_softc *sc =
732 (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
733
734 if (sc == NULL)
735 return (ENXIO);
736
737 return tap_dev_close(sc);
738 }
739
740 /*
741 * It might happen that the administrator used ifconfig to externally destroy
742 * the interface. In that case, tap_fops_close will be called while
743 * tap_detach is already happening. If we called it again from here, we
744 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
745 */
746 static int
747 tap_fops_close(struct file *fp, struct lwp *l)
748 {
749 int unit = (intptr_t)fp->f_data;
750 struct tap_softc *sc;
751 int error;
752
753 sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
754 if (sc == NULL)
755 return (ENXIO);
756
757 /* tap_dev_close currently always succeeds, but it might not
758 * always be the case. */
759 if ((error = tap_dev_close(sc)) != 0)
760 return (error);
761
762 /* Destroy the device now that it is no longer useful,
763 * unless it's already being destroyed. */
764 if ((sc->sc_flags & TAP_GOING) != 0)
765 return (0);
766
767 return tap_clone_destroyer((struct device *)sc);
768 }
769
770 static int
771 tap_dev_close(struct tap_softc *sc)
772 {
773 struct ifnet *ifp;
774 int s;
775
776 s = splnet();
777 /* Let tap_start handle packets again */
778 ifp = &sc->sc_ec.ec_if;
779 ifp->if_flags &= ~IFF_OACTIVE;
780
781 /* Purge output queue */
782 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
783 struct mbuf *m;
784
785 for (;;) {
786 IFQ_DEQUEUE(&ifp->if_snd, m);
787 if (m == NULL)
788 break;
789
790 ifp->if_opackets++;
791 #if NBPFILTER > 0
792 if (ifp->if_bpf)
793 bpf_mtap(ifp->if_bpf, m);
794 #endif
795 }
796 }
797 splx(s);
798
799 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
800
801 return (0);
802 }
803
804 static int
805 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
806 {
807 return tap_dev_read(minor(dev), uio, flags);
808 }
809
810 static int
811 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
812 struct ucred *cred, int flags)
813 {
814 return tap_dev_read((intptr_t)fp->f_data, uio, flags);
815 }
816
817 static int
818 tap_dev_read(int unit, struct uio *uio, int flags)
819 {
820 struct tap_softc *sc =
821 (struct tap_softc *)device_lookup(&tap_cd, unit);
822 struct ifnet *ifp;
823 struct mbuf *m, *n;
824 int error = 0, s;
825
826 if (sc == NULL)
827 return (ENXIO);
828
829 ifp = &sc->sc_ec.ec_if;
830 if ((ifp->if_flags & IFF_UP) == 0)
831 return (EHOSTDOWN);
832
833 /*
834 * In the TAP_NBIO case, we have to make sure we won't be sleeping
835 */
836 if ((sc->sc_flags & TAP_NBIO) &&
837 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
838 return (EWOULDBLOCK);
839 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
840 if (error != 0)
841 return (error);
842
843 s = splnet();
844 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
845 ifp->if_flags &= ~IFF_OACTIVE;
846 splx(s);
847 /*
848 * We must release the lock before sleeping, and re-acquire it
849 * after.
850 */
851 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
852 if (sc->sc_flags & TAP_NBIO)
853 error = EWOULDBLOCK;
854 else
855 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
856
857 if (error != 0)
858 return (error);
859 /* The device might have been downed */
860 if ((ifp->if_flags & IFF_UP) == 0)
861 return (EHOSTDOWN);
862 if ((sc->sc_flags & TAP_NBIO) &&
863 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
864 return (EWOULDBLOCK);
865 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
866 if (error != 0)
867 return (error);
868 s = splnet();
869 }
870
871 IFQ_DEQUEUE(&ifp->if_snd, m);
872 ifp->if_flags &= ~IFF_OACTIVE;
873 splx(s);
874 if (m == NULL) {
875 error = 0;
876 goto out;
877 }
878
879 ifp->if_opackets++;
880 #if NBPFILTER > 0
881 if (ifp->if_bpf)
882 bpf_mtap(ifp->if_bpf, m);
883 #endif
884
885 /*
886 * One read is one packet.
887 */
888 do {
889 error = uiomove(mtod(m, caddr_t),
890 min(m->m_len, uio->uio_resid), uio);
891 MFREE(m, n);
892 m = n;
893 } while (m != NULL && uio->uio_resid > 0 && error == 0);
894
895 if (m != NULL)
896 m_freem(m);
897
898 out:
899 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
900 return (error);
901 }
902
903 static int
904 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
905 {
906 return tap_dev_write(minor(dev), uio, flags);
907 }
908
909 static int
910 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
911 struct ucred *cred, int flags)
912 {
913 return tap_dev_write((intptr_t)fp->f_data, uio, flags);
914 }
915
916 static int
917 tap_dev_write(int unit, struct uio *uio, int flags)
918 {
919 struct tap_softc *sc =
920 (struct tap_softc *)device_lookup(&tap_cd, unit);
921 struct ifnet *ifp;
922 struct mbuf *m, **mp;
923 int error = 0;
924 int s;
925
926 if (sc == NULL)
927 return (ENXIO);
928
929 ifp = &sc->sc_ec.ec_if;
930
931 /* One write, one packet, that's the rule */
932 MGETHDR(m, M_DONTWAIT, MT_DATA);
933 if (m == NULL) {
934 ifp->if_ierrors++;
935 return (ENOBUFS);
936 }
937 m->m_pkthdr.len = uio->uio_resid;
938
939 mp = &m;
940 while (error == 0 && uio->uio_resid > 0) {
941 if (*mp != m) {
942 MGET(*mp, M_DONTWAIT, MT_DATA);
943 if (*mp == NULL) {
944 error = ENOBUFS;
945 break;
946 }
947 }
948 (*mp)->m_len = min(MHLEN, uio->uio_resid);
949 error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
950 mp = &(*mp)->m_next;
951 }
952 if (error) {
953 ifp->if_ierrors++;
954 m_freem(m);
955 return (error);
956 }
957
958 ifp->if_ipackets++;
959 m->m_pkthdr.rcvif = ifp;
960
961 #if NBPFILTER > 0
962 if (ifp->if_bpf)
963 bpf_mtap(ifp->if_bpf, m);
964 #endif
965 s =splnet();
966 (*ifp->if_input)(ifp, m);
967 splx(s);
968
969 return (0);
970 }
971
972 static int
973 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
974 struct lwp *l)
975 {
976 return tap_dev_ioctl(minor(dev), cmd, data, l);
977 }
978
979 static int
980 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
981 {
982 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
983 }
984
985 static int
986 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
987 {
988 struct tap_softc *sc =
989 (struct tap_softc *)device_lookup(&tap_cd, unit);
990 int error = 0;
991
992 if (sc == NULL)
993 return (ENXIO);
994
995 switch (cmd) {
996 case FIONREAD:
997 {
998 struct ifnet *ifp = &sc->sc_ec.ec_if;
999 struct mbuf *m;
1000 int s;
1001
1002 s = splnet();
1003 IFQ_POLL(&ifp->if_snd, m);
1004
1005 if (m == NULL)
1006 *(int *)data = 0;
1007 else
1008 *(int *)data = m->m_pkthdr.len;
1009 splx(s);
1010 } break;
1011 case TIOCSPGRP:
1012 case FIOSETOWN:
1013 error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1014 break;
1015 case TIOCGPGRP:
1016 case FIOGETOWN:
1017 error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1018 break;
1019 case FIOASYNC:
1020 if (*(int *)data)
1021 sc->sc_flags |= TAP_ASYNCIO;
1022 else
1023 sc->sc_flags &= ~TAP_ASYNCIO;
1024 break;
1025 case FIONBIO:
1026 if (*(int *)data)
1027 sc->sc_flags |= TAP_NBIO;
1028 else
1029 sc->sc_flags &= ~TAP_NBIO;
1030 break;
1031 case TAPGIFNAME:
1032 {
1033 struct ifreq *ifr = (struct ifreq *)data;
1034 struct ifnet *ifp = &sc->sc_ec.ec_if;
1035
1036 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1037 } break;
1038 default:
1039 error = ENOTTY;
1040 break;
1041 }
1042
1043 return (0);
1044 }
1045
1046 static int
1047 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1048 {
1049 return tap_dev_poll(minor(dev), events, l);
1050 }
1051
1052 static int
1053 tap_fops_poll(struct file *fp, int events, struct lwp *l)
1054 {
1055 return tap_dev_poll((intptr_t)fp->f_data, events, l);
1056 }
1057
1058 static int
1059 tap_dev_poll(int unit, int events, struct lwp *l)
1060 {
1061 struct tap_softc *sc =
1062 (struct tap_softc *)device_lookup(&tap_cd, unit);
1063 int revents = 0;
1064
1065 if (sc == NULL)
1066 return (ENXIO);
1067
1068 if (events & (POLLIN|POLLRDNORM)) {
1069 struct ifnet *ifp = &sc->sc_ec.ec_if;
1070 struct mbuf *m;
1071 int s;
1072
1073 s = splnet();
1074 IFQ_POLL(&ifp->if_snd, m);
1075 splx(s);
1076
1077 if (m != NULL)
1078 revents |= events & (POLLIN|POLLRDNORM);
1079 else {
1080 simple_lock(&sc->sc_kqlock);
1081 selrecord(l, &sc->sc_rsel);
1082 simple_unlock(&sc->sc_kqlock);
1083 }
1084 }
1085 revents |= events & (POLLOUT|POLLWRNORM);
1086
1087 return (revents);
1088 }
1089
1090 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1091 tap_kqread };
1092 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1093 filt_seltrue };
1094
1095 static int
1096 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1097 {
1098 return tap_dev_kqfilter(minor(dev), kn);
1099 }
1100
1101 static int
1102 tap_fops_kqfilter(struct file *fp, struct knote *kn)
1103 {
1104 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1105 }
1106
1107 static int
1108 tap_dev_kqfilter(int unit, struct knote *kn)
1109 {
1110 struct tap_softc *sc =
1111 (struct tap_softc *)device_lookup(&tap_cd, unit);
1112
1113 if (sc == NULL)
1114 return (ENXIO);
1115
1116 switch(kn->kn_filter) {
1117 case EVFILT_READ:
1118 kn->kn_fop = &tap_read_filterops;
1119 break;
1120 case EVFILT_WRITE:
1121 kn->kn_fop = &tap_seltrue_filterops;
1122 break;
1123 default:
1124 return (1);
1125 }
1126
1127 kn->kn_hook = sc;
1128 simple_lock(&sc->sc_kqlock);
1129 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1130 simple_unlock(&sc->sc_kqlock);
1131 return (0);
1132 }
1133
1134 static void
1135 tap_kqdetach(struct knote *kn)
1136 {
1137 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1138
1139 simple_lock(&sc->sc_kqlock);
1140 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1141 simple_unlock(&sc->sc_kqlock);
1142 }
1143
1144 static int
1145 tap_kqread(struct knote *kn, long hint)
1146 {
1147 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1148 struct ifnet *ifp = &sc->sc_ec.ec_if;
1149 struct mbuf *m;
1150 int s;
1151
1152 s = splnet();
1153 IFQ_POLL(&ifp->if_snd, m);
1154
1155 if (m == NULL)
1156 kn->kn_data = 0;
1157 else
1158 kn->kn_data = m->m_pkthdr.len;
1159 splx(s);
1160 return (kn->kn_data != 0 ? 1 : 0);
1161 }
1162
1163 /*
1164 * sysctl management routines
1165 * You can set the address of an interface through:
1166 * net.link.tap.tap<number>
1167 *
1168 * Note the consistent use of tap_log in order to use
1169 * sysctl_teardown at unload time.
1170 *
1171 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1172 * blocks register a function in a special section of the kernel
1173 * (called a link set) which is used at init_sysctl() time to cycle
1174 * through all those functions to create the kernel's sysctl tree.
1175 *
1176 * It is not (currently) possible to use link sets in a LKM, so the
1177 * easiest is to simply call our own setup routine at load time.
1178 *
1179 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1180 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1181 * whole kernel sysctl tree is built, it is not possible to add any
1182 * permanent node.
1183 *
1184 * It should be noted that we're not saving the sysctlnode pointer
1185 * we are returned when creating the "tap" node. That structure
1186 * cannot be trusted once out of the calling function, as it might
1187 * get reused. So we just save the MIB number, and always give the
1188 * full path starting from the root for later calls to sysctl_createv
1189 * and sysctl_destroyv.
1190 */
1191 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1192 {
1193 const struct sysctlnode *node;
1194 int error = 0;
1195
1196 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1197 CTLFLAG_PERMANENT,
1198 CTLTYPE_NODE, "net", NULL,
1199 NULL, 0, NULL, 0,
1200 CTL_NET, CTL_EOL)) != 0)
1201 return;
1202
1203 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1204 CTLFLAG_PERMANENT,
1205 CTLTYPE_NODE, "link", NULL,
1206 NULL, 0, NULL, 0,
1207 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1208 return;
1209
1210 /*
1211 * The first four parameters of sysctl_createv are for management.
1212 *
1213 * The four that follows, here starting with a '0' for the flags,
1214 * describe the node.
1215 *
1216 * The next series of four set its value, through various possible
1217 * means.
1218 *
1219 * Last but not least, the path to the node is described. That path
1220 * is relative to the given root (third argument). Here we're
1221 * starting from the root.
1222 */
1223 if ((error = sysctl_createv(clog, 0, NULL, &node,
1224 CTLFLAG_PERMANENT,
1225 CTLTYPE_NODE, "tap", NULL,
1226 NULL, 0, NULL, 0,
1227 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1228 return;
1229 tap_node = node->sysctl_num;
1230 }
1231
1232 /*
1233 * The helper functions make Andrew Brown's interface really
1234 * shine. It makes possible to create value on the fly whether
1235 * the sysctl value is read or written.
1236 *
1237 * As shown as an example in the man page, the first step is to
1238 * create a copy of the node to have sysctl_lookup work on it.
1239 *
1240 * Here, we have more work to do than just a copy, since we have
1241 * to create the string. The first step is to collect the actual
1242 * value of the node, which is a convenient pointer to the softc
1243 * of the interface. From there we create the string and use it
1244 * as the value, but only for the *copy* of the node.
1245 *
1246 * Then we let sysctl_lookup do the magic, which consists in
1247 * setting oldp and newp as required by the operation. When the
1248 * value is read, that means that the string will be copied to
1249 * the user, and when it is written, the new value will be copied
1250 * over in the addr array.
1251 *
1252 * If newp is NULL, the user was reading the value, so we don't
1253 * have anything else to do. If a new value was written, we
1254 * have to check it.
1255 *
1256 * If it is incorrect, we can return an error and leave 'node' as
1257 * it is: since it is a copy of the actual node, the change will
1258 * be forgotten.
1259 *
1260 * Upon a correct input, we commit the change to the ifnet
1261 * structure of our interface.
1262 */
1263 static int
1264 tap_sysctl_handler(SYSCTLFN_ARGS)
1265 {
1266 struct sysctlnode node;
1267 struct tap_softc *sc;
1268 struct ifnet *ifp;
1269 int error;
1270 size_t len;
1271 char addr[18];
1272
1273 node = *rnode;
1274 sc = node.sysctl_data;
1275 ifp = &sc->sc_ec.ec_if;
1276 (void)tap_ether_sprintf(addr, LLADDR(ifp->if_sadl));
1277 node.sysctl_data = addr;
1278 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1279 if (error || newp == NULL)
1280 return (error);
1281
1282 len = strlen(addr);
1283 if (len < 11 || len > 17)
1284 return (EINVAL);
1285
1286 /* Commit change */
1287 if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
1288 return (EINVAL);
1289 return (error);
1290 }
1291
1292 /*
1293 * ether_aton implementation, not using a static buffer.
1294 */
1295 static int
1296 tap_ether_aton(u_char *dest, char *str)
1297 {
1298 int i;
1299 char *cp = str;
1300 u_char val[6];
1301
1302 #define set_value \
1303 if (*cp > '9' && *cp < 'a') \
1304 *cp -= 'A' - 10; \
1305 else if (*cp > '9') \
1306 *cp -= 'a' - 10; \
1307 else \
1308 *cp -= '0'
1309
1310 for (i = 0; i < 6; i++, cp++) {
1311 if (!isxdigit(*cp))
1312 return (1);
1313 set_value;
1314 val[i] = *cp++;
1315 if (isxdigit(*cp)) {
1316 set_value;
1317 val[i] *= 16;
1318 val[i] += *cp++;
1319 }
1320 if (*cp == ':' || i == 5)
1321 continue;
1322 else
1323 return (1);
1324 }
1325 memcpy(dest, val, 6);
1326 return (0);
1327 }
1328
1329 /*
1330 * ether_sprintf made thread-safer.
1331 *
1332 * Copied over from sys/net/if_ethersubr.c, with a change to avoid the use
1333 * of a static buffer.
1334 */
1335
1336 /*
1337 * Copyright (c) 1982, 1989, 1993
1338 * The Regents of the University of California. All rights reserved.
1339 *
1340 * Redistribution and use in source and binary forms, with or without
1341 * modification, are permitted provided that the following conditions
1342 * are met:
1343 * 1. Redistributions of source code must retain the above copyright
1344 * notice, this list of conditions and the following disclaimer.
1345 * 2. Redistributions in binary form must reproduce the above copyright
1346 * notice, this list of conditions and the following disclaimer in the
1347 * documentation and/or other materials provided with the distribution.
1348 * 3. Neither the name of the University nor the names of its contributors
1349 * may be used to endorse or promote products derived from this software
1350 * without specific prior written permission.
1351 *
1352 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
1353 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1354 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1355 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
1356 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
1357 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
1358 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
1359 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1360 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1361 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
1362 * SUCH DAMAGE.
1363 *
1364 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
1365 */
1366
1367 static char *
1368 tap_ether_sprintf(char *dest, const u_char *ap)
1369 {
1370 char *cp = dest;
1371 int i;
1372
1373 for (i = 0; i < 6; i++) {
1374 *cp++ = hexdigits[*ap >> 4];
1375 *cp++ = hexdigits[*ap++ & 0xf];
1376 *cp++ = ':';
1377 }
1378 *--cp = 0;
1379 return (dest);
1380 }
1381