Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.123
      1 /*	$NetBSD: if_tap.c,v 1.123 2021/09/26 01:16:10 thorpej Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.123 2021/09/26 01:16:10 thorpej Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/atomic.h>
     45 #include <sys/conf.h>
     46 #include <sys/cprng.h>
     47 #include <sys/device.h>
     48 #include <sys/file.h>
     49 #include <sys/filedesc.h>
     50 #include <sys/intr.h>
     51 #include <sys/kauth.h>
     52 #include <sys/kernel.h>
     53 #include <sys/kmem.h>
     54 #include <sys/module.h>
     55 #include <sys/mutex.h>
     56 #include <sys/condvar.h>
     57 #include <sys/poll.h>
     58 #include <sys/proc.h>
     59 #include <sys/select.h>
     60 #include <sys/sockio.h>
     61 #include <sys/stat.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/systm.h>
     64 
     65 #include <net/if.h>
     66 #include <net/if_dl.h>
     67 #include <net/if_ether.h>
     68 #include <net/if_tap.h>
     69 #include <net/bpf.h>
     70 
     71 #include "ioconf.h"
     72 
     73 /*
     74  * sysctl node management
     75  *
     76  * It's not really possible to use a SYSCTL_SETUP block with
     77  * current module implementation, so it is easier to just define
     78  * our own function.
     79  *
     80  * The handler function is a "helper" in Andrew Brown's sysctl
     81  * framework terminology.  It is used as a gateway for sysctl
     82  * requests over the nodes.
     83  *
     84  * tap_log allows the module to log creations of nodes and
     85  * destroy them all at once using sysctl_teardown.
     86  */
     87 static int	tap_node;
     88 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     89 static void	sysctl_tap_setup(struct sysctllog **);
     90 
     91 struct tap_softc {
     92 	device_t	sc_dev;
     93 	struct ethercom	sc_ec;
     94 	int		sc_flags;
     95 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
     96 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
     97 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
     98 #define TAP_GOING	0x00000008	/* interface is being destroyed */
     99 	struct selinfo	sc_rsel;
    100 	pid_t		sc_pgid; /* For async. IO */
    101 	kmutex_t	sc_lock;
    102 	kcondvar_t	sc_cv;
    103 	void		*sc_sih;
    104 	struct timespec sc_atime;
    105 	struct timespec sc_mtime;
    106 	struct timespec sc_btime;
    107 };
    108 
    109 /* autoconf(9) glue */
    110 
    111 static int	tap_match(device_t, cfdata_t, void *);
    112 static void	tap_attach(device_t, device_t, void *);
    113 static int	tap_detach(device_t, int);
    114 
    115 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    116     tap_match, tap_attach, tap_detach, NULL);
    117 extern struct cfdriver tap_cd;
    118 
    119 /* Real device access routines */
    120 static int	tap_dev_close(struct tap_softc *);
    121 static int	tap_dev_read(int, struct uio *, int);
    122 static int	tap_dev_write(int, struct uio *, int);
    123 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    124 static int	tap_dev_poll(int, int, struct lwp *);
    125 static int	tap_dev_kqfilter(int, struct knote *);
    126 
    127 /* Fileops access routines */
    128 static int	tap_fops_close(file_t *);
    129 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    130     kauth_cred_t, int);
    131 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    132     kauth_cred_t, int);
    133 static int	tap_fops_ioctl(file_t *, u_long, void *);
    134 static int	tap_fops_poll(file_t *, int);
    135 static int	tap_fops_stat(file_t *, struct stat *);
    136 static int	tap_fops_kqfilter(file_t *, struct knote *);
    137 
    138 static const struct fileops tap_fileops = {
    139 	.fo_name = "tap",
    140 	.fo_read = tap_fops_read,
    141 	.fo_write = tap_fops_write,
    142 	.fo_ioctl = tap_fops_ioctl,
    143 	.fo_fcntl = fnullop_fcntl,
    144 	.fo_poll = tap_fops_poll,
    145 	.fo_stat = tap_fops_stat,
    146 	.fo_close = tap_fops_close,
    147 	.fo_kqfilter = tap_fops_kqfilter,
    148 	.fo_restart = fnullop_restart,
    149 };
    150 
    151 /* Helper for cloning open() */
    152 static int	tap_dev_cloner(struct lwp *);
    153 
    154 /* Character device routines */
    155 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    156 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    157 static int	tap_cdev_read(dev_t, struct uio *, int);
    158 static int	tap_cdev_write(dev_t, struct uio *, int);
    159 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    160 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    161 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    162 
    163 const struct cdevsw tap_cdevsw = {
    164 	.d_open = tap_cdev_open,
    165 	.d_close = tap_cdev_close,
    166 	.d_read = tap_cdev_read,
    167 	.d_write = tap_cdev_write,
    168 	.d_ioctl = tap_cdev_ioctl,
    169 	.d_stop = nostop,
    170 	.d_tty = notty,
    171 	.d_poll = tap_cdev_poll,
    172 	.d_mmap = nommap,
    173 	.d_kqfilter = tap_cdev_kqfilter,
    174 	.d_discard = nodiscard,
    175 	.d_flag = D_OTHER | D_MPSAFE
    176 };
    177 
    178 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    179 
    180 /* kqueue-related routines */
    181 static void	tap_kqdetach(struct knote *);
    182 static int	tap_kqread(struct knote *, long);
    183 
    184 /*
    185  * Those are needed by the ifnet interface, and would typically be
    186  * there for any network interface driver.
    187  * Some other routines are optional: watchdog and drain.
    188  */
    189 static void	tap_start(struct ifnet *);
    190 static void	tap_stop(struct ifnet *, int);
    191 static int	tap_init(struct ifnet *);
    192 static int	tap_ioctl(struct ifnet *, u_long, void *);
    193 
    194 /* Internal functions */
    195 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    196 static void	tap_softintr(void *);
    197 
    198 /*
    199  * tap is a clonable interface, although it is highly unrealistic for
    200  * an Ethernet device.
    201  *
    202  * Here are the bits needed for a clonable interface.
    203  */
    204 static int	tap_clone_create(struct if_clone *, int);
    205 static int	tap_clone_destroy(struct ifnet *);
    206 
    207 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    208 					tap_clone_create,
    209 					tap_clone_destroy);
    210 
    211 /* Helper functions shared by the two cloning code paths */
    212 static struct tap_softc *	tap_clone_creator(int);
    213 int	tap_clone_destroyer(device_t);
    214 
    215 static struct sysctllog *tap_sysctl_clog;
    216 
    217 #ifdef _MODULE
    218 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    219 #endif
    220 
    221 static u_int tap_count;
    222 
    223 void
    224 tapattach(int n)
    225 {
    226 
    227 	/*
    228 	 * Nothing to do here, initialization is handled by the
    229 	 * module initialization code in tapinit() below).
    230 	 */
    231 }
    232 
    233 static void
    234 tapinit(void)
    235 {
    236 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    237 
    238 	if (error) {
    239 		aprint_error("%s: unable to register cfattach\n",
    240 		    tap_cd.cd_name);
    241 		(void)config_cfdriver_detach(&tap_cd);
    242 		return;
    243 	}
    244 
    245 	if_clone_attach(&tap_cloners);
    246 	sysctl_tap_setup(&tap_sysctl_clog);
    247 #ifdef _MODULE
    248 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    249 #endif
    250 }
    251 
    252 static int
    253 tapdetach(void)
    254 {
    255 	int error = 0;
    256 
    257 	if_clone_detach(&tap_cloners);
    258 #ifdef _MODULE
    259 	error = devsw_detach(NULL, &tap_cdevsw);
    260 	if (error != 0)
    261 		goto out2;
    262 #endif
    263 
    264 	if (tap_count != 0) {
    265 		error = EBUSY;
    266 		goto out1;
    267 	}
    268 
    269 	error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    270 	if (error != 0)
    271 		goto out1;
    272 
    273 	sysctl_teardown(&tap_sysctl_clog);
    274 
    275 	return 0;
    276 
    277  out1:
    278 #ifdef _MODULE
    279 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    280  out2:
    281 #endif
    282 	if_clone_attach(&tap_cloners);
    283 
    284 	return error;
    285 }
    286 
    287 /* Pretty much useless for a pseudo-device */
    288 static int
    289 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    290 {
    291 
    292 	return 1;
    293 }
    294 
    295 void
    296 tap_attach(device_t parent, device_t self, void *aux)
    297 {
    298 	struct tap_softc *sc = device_private(self);
    299 	struct ifnet *ifp;
    300 	const struct sysctlnode *node;
    301 	int error;
    302 	uint8_t enaddr[ETHER_ADDR_LEN] =
    303 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    304 	char enaddrstr[3 * ETHER_ADDR_LEN];
    305 
    306 	sc->sc_dev = self;
    307 	sc->sc_sih = NULL;
    308 	getnanotime(&sc->sc_btime);
    309 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    310 	sc->sc_flags = 0;
    311 	selinit(&sc->sc_rsel);
    312 
    313 	cv_init(&sc->sc_cv, "tapread");
    314 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
    315 
    316 	if (!pmf_device_register(self, NULL, NULL))
    317 		aprint_error_dev(self, "couldn't establish power handler\n");
    318 
    319 	/*
    320 	 * In order to obtain unique initial Ethernet address on a host,
    321 	 * do some randomisation.  It's not meant for anything but avoiding
    322 	 * hard-coding an address.
    323 	 */
    324 	cprng_fast(&enaddr[3], 3);
    325 
    326 	aprint_verbose_dev(self, "Ethernet address %s\n",
    327 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    328 
    329 	/*
    330 	 * One should note that an interface must do multicast in order
    331 	 * to support IPv6.
    332 	 */
    333 	ifp = &sc->sc_ec.ec_if;
    334 	strcpy(ifp->if_xname, device_xname(self));
    335 	ifp->if_softc	= sc;
    336 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    337 #ifdef NET_MPSAFE
    338 	ifp->if_extflags = IFEF_MPSAFE;
    339 #endif
    340 	ifp->if_ioctl	= tap_ioctl;
    341 	ifp->if_start	= tap_start;
    342 	ifp->if_stop	= tap_stop;
    343 	ifp->if_init	= tap_init;
    344 	IFQ_SET_READY(&ifp->if_snd);
    345 
    346 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    347 
    348 	/* Those steps are mandatory for an Ethernet driver. */
    349 	if_initialize(ifp);
    350 	ifp->if_percpuq = if_percpuq_create(ifp);
    351 	ether_ifattach(ifp, enaddr);
    352 	/* Opening the device will bring the link state up. */
    353 	ifp->if_link_state = LINK_STATE_DOWN;
    354 	if_register(ifp);
    355 
    356 	/*
    357 	 * Add a sysctl node for that interface.
    358 	 *
    359 	 * The pointer transmitted is not a string, but instead a pointer to
    360 	 * the softc structure, which we can use to build the string value on
    361 	 * the fly in the helper function of the node.  See the comments for
    362 	 * tap_sysctl_handler for details.
    363 	 *
    364 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    365 	 * component.  However, we can allocate a number ourselves, as we are
    366 	 * the only consumer of the net.link.<iface> node.  In this case, the
    367 	 * unit number is conveniently used to number the node.  CTL_CREATE
    368 	 * would just work, too.
    369 	 */
    370 	if ((error = sysctl_createv(NULL, 0, NULL,
    371 	    &node, CTLFLAG_READWRITE,
    372 	    CTLTYPE_STRING, device_xname(self), NULL,
    373 	    tap_sysctl_handler, 0, (void *)sc, 18,
    374 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    375 	    CTL_EOL)) != 0)
    376 		aprint_error_dev(self,
    377 		    "sysctl_createv returned %d, ignoring\n", error);
    378 }
    379 
    380 /*
    381  * When detaching, we do the inverse of what is done in the attach
    382  * routine, in reversed order.
    383  */
    384 static int
    385 tap_detach(device_t self, int flags)
    386 {
    387 	struct tap_softc *sc = device_private(self);
    388 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    389 	int error;
    390 
    391 	sc->sc_flags |= TAP_GOING;
    392 	tap_stop(ifp, 1);
    393 	if_down(ifp);
    394 
    395 	if (sc->sc_sih != NULL) {
    396 		softint_disestablish(sc->sc_sih);
    397 		sc->sc_sih = NULL;
    398 	}
    399 
    400 	/*
    401 	 * Destroying a single leaf is a very straightforward operation using
    402 	 * sysctl_destroyv.  One should be sure to always end the path with
    403 	 * CTL_EOL.
    404 	 */
    405 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    406 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    407 		aprint_error_dev(self,
    408 		    "sysctl_destroyv returned %d, ignoring\n", error);
    409 	ether_ifdetach(ifp);
    410 	if_detach(ifp);
    411 	seldestroy(&sc->sc_rsel);
    412 	mutex_destroy(&sc->sc_lock);
    413 	cv_destroy(&sc->sc_cv);
    414 
    415 	pmf_device_deregister(self);
    416 
    417 	return 0;
    418 }
    419 
    420 /*
    421  * This is the function where we SEND packets.
    422  *
    423  * There is no 'receive' equivalent.  A typical driver will get
    424  * interrupts from the hardware, and from there will inject new packets
    425  * into the network stack.
    426  *
    427  * Once handled, a packet must be freed.  A real driver might not be able
    428  * to fit all the pending packets into the hardware, and is allowed to
    429  * return before having sent all the packets.  It should then use the
    430  * if_flags flag IFF_OACTIVE to notify the upper layer.
    431  *
    432  * There are also other flags one should check, such as IFF_PAUSE.
    433  *
    434  * It is our duty to make packets available to BPF listeners.
    435  *
    436  * You should be aware that this function is called by the Ethernet layer
    437  * at splnet().
    438  *
    439  * When the device is opened, we have to pass the packet(s) to the
    440  * userland.  For that we stay in OACTIVE mode while the userland gets
    441  * the packets, and we send a signal to the processes waiting to read.
    442  *
    443  * wakeup(sc) is the counterpart to the tsleep call in
    444  * tap_dev_read, while selnotify() is used for kevent(2) and
    445  * poll(2) (which includes select(2)) listeners.
    446  */
    447 static void
    448 tap_start(struct ifnet *ifp)
    449 {
    450 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    451 	struct mbuf *m0;
    452 
    453 	mutex_enter(&sc->sc_lock);
    454 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    455 		/* Simply drop packets */
    456 		for (;;) {
    457 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    458 			if (m0 == NULL)
    459 				goto done;
    460 
    461 			if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len);
    462 			bpf_mtap(ifp, m0, BPF_D_OUT);
    463 
    464 			m_freem(m0);
    465 		}
    466 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    467 		ifp->if_flags |= IFF_OACTIVE;
    468 		cv_broadcast(&sc->sc_cv);
    469 		selnotify(&sc->sc_rsel, 0, 1);
    470 		if (sc->sc_flags & TAP_ASYNCIO) {
    471 			kpreempt_disable();
    472 			softint_schedule(sc->sc_sih);
    473 			kpreempt_enable();
    474 		}
    475 	}
    476 done:
    477 	mutex_exit(&sc->sc_lock);
    478 }
    479 
    480 static void
    481 tap_softintr(void *cookie)
    482 {
    483 	struct tap_softc *sc;
    484 	struct ifnet *ifp;
    485 	int a, b;
    486 
    487 	sc = cookie;
    488 
    489 	if (sc->sc_flags & TAP_ASYNCIO) {
    490 		ifp = &sc->sc_ec.ec_if;
    491 		if (ifp->if_flags & IFF_RUNNING) {
    492 			a = POLL_IN;
    493 			b = POLLIN | POLLRDNORM;
    494 		} else {
    495 			a = POLL_HUP;
    496 			b = 0;
    497 		}
    498 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    499 	}
    500 }
    501 
    502 /*
    503  * A typical driver will only contain the following handlers for
    504  * ioctl calls, except SIOCSIFPHYADDR.
    505  * The latter is a hack I used to set the Ethernet address of the
    506  * faked device.
    507  *
    508  * Note that ether_ioctl() has to be called under splnet().
    509  */
    510 static int
    511 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    512 {
    513 	int s, error;
    514 
    515 	s = splnet();
    516 
    517 	switch (cmd) {
    518 	case SIOCSIFPHYADDR:
    519 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    520 		break;
    521 	default:
    522 		error = ether_ioctl(ifp, cmd, data);
    523 		if (error == ENETRESET)
    524 			error = 0;
    525 		break;
    526 	}
    527 
    528 	splx(s);
    529 
    530 	return error;
    531 }
    532 
    533 /*
    534  * Helper function to set Ethernet address.  This has been replaced by
    535  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    536  */
    537 static int
    538 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    539 {
    540 	const struct sockaddr *sa = &ifra->ifra_addr;
    541 
    542 	if (sa->sa_family != AF_LINK)
    543 		return EINVAL;
    544 
    545 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    546 
    547 	return 0;
    548 }
    549 
    550 /*
    551  * _init() would typically be called when an interface goes up,
    552  * meaning it should configure itself into the state in which it
    553  * can send packets.
    554  */
    555 static int
    556 tap_init(struct ifnet *ifp)
    557 {
    558 	ifp->if_flags |= IFF_RUNNING;
    559 
    560 	tap_start(ifp);
    561 
    562 	return 0;
    563 }
    564 
    565 /*
    566  * _stop() is called when an interface goes down.  It is our
    567  * responsability to validate that state by clearing the
    568  * IFF_RUNNING flag.
    569  *
    570  * We have to wake up all the sleeping processes to have the pending
    571  * read requests cancelled.
    572  */
    573 static void
    574 tap_stop(struct ifnet *ifp, int disable)
    575 {
    576 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    577 
    578 	mutex_enter(&sc->sc_lock);
    579 	ifp->if_flags &= ~IFF_RUNNING;
    580 	cv_broadcast(&sc->sc_cv);
    581 	selnotify(&sc->sc_rsel, 0, 1);
    582 	if (sc->sc_flags & TAP_ASYNCIO) {
    583 		kpreempt_disable();
    584 		softint_schedule(sc->sc_sih);
    585 		kpreempt_enable();
    586 	}
    587 	mutex_exit(&sc->sc_lock);
    588 }
    589 
    590 /*
    591  * The 'create' command of ifconfig can be used to create
    592  * any numbered instance of a given device.  Thus we have to
    593  * make sure we have enough room in cd_devs to create the
    594  * user-specified instance.  config_attach_pseudo will do this
    595  * for us.
    596  */
    597 static int
    598 tap_clone_create(struct if_clone *ifc, int unit)
    599 {
    600 
    601 	if (tap_clone_creator(unit) == NULL) {
    602 		aprint_error("%s%d: unable to attach an instance\n",
    603 		    tap_cd.cd_name, unit);
    604 		return ENXIO;
    605 	}
    606 	atomic_inc_uint(&tap_count);
    607 	return 0;
    608 }
    609 
    610 /*
    611  * tap(4) can be cloned by two ways:
    612  *   using 'ifconfig tap0 create', which will use the network
    613  *     interface cloning API, and call tap_clone_create above.
    614  *   opening the cloning device node, whose minor number is TAP_CLONER.
    615  *     See below for an explanation on how this part work.
    616  */
    617 static struct tap_softc *
    618 tap_clone_creator(int unit)
    619 {
    620 	cfdata_t cf;
    621 
    622 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
    623 	cf->cf_name = tap_cd.cd_name;
    624 	cf->cf_atname = tap_ca.ca_name;
    625 	if (unit == -1) {
    626 		/* let autoconf find the first free one */
    627 		cf->cf_unit = 0;
    628 		cf->cf_fstate = FSTATE_STAR;
    629 	} else {
    630 		cf->cf_unit = unit;
    631 		cf->cf_fstate = FSTATE_NOTFOUND;
    632 	}
    633 
    634 	return device_private(config_attach_pseudo(cf));
    635 }
    636 
    637 /*
    638  * The clean design of if_clone and autoconf(9) makes that part
    639  * really straightforward.  The second argument of config_detach
    640  * means neither QUIET nor FORCED.
    641  */
    642 static int
    643 tap_clone_destroy(struct ifnet *ifp)
    644 {
    645 	struct tap_softc *sc = ifp->if_softc;
    646 	int error = tap_clone_destroyer(sc->sc_dev);
    647 
    648 	if (error == 0)
    649 		atomic_dec_uint(&tap_count);
    650 	return error;
    651 }
    652 
    653 int
    654 tap_clone_destroyer(device_t dev)
    655 {
    656 	cfdata_t cf = device_cfdata(dev);
    657 	int error;
    658 
    659 	if ((error = config_detach(dev, 0)) != 0)
    660 		aprint_error_dev(dev, "unable to detach instance\n");
    661 	kmem_free(cf, sizeof(*cf));
    662 
    663 	return error;
    664 }
    665 
    666 /*
    667  * tap(4) is a bit of an hybrid device.  It can be used in two different
    668  * ways:
    669  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    670  *  2. open /dev/tap, get a new interface created and read/write off it.
    671  *     That interface is destroyed when the process that had it created exits.
    672  *
    673  * The first way is managed by the cdevsw structure, and you access interfaces
    674  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    675  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    676  *
    677  * The second way is the so-called "cloning" device.  It's a special minor
    678  * number (chosen as the maximal number, to allow as much tap devices as
    679  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    680  * call ends in tap_cdev_open.  The actual place where it is handled is
    681  * tap_dev_cloner.
    682  *
    683  * An tap device cannot be opened more than once at a time, so the cdevsw
    684  * part of open() does nothing but noting that the interface is being used and
    685  * hence ready to actually handle packets.
    686  */
    687 
    688 static int
    689 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    690 {
    691 	struct tap_softc *sc;
    692 
    693 	if (minor(dev) == TAP_CLONER)
    694 		return tap_dev_cloner(l);
    695 
    696 	sc = device_lookup_private(&tap_cd, minor(dev));
    697 	if (sc == NULL)
    698 		return ENXIO;
    699 
    700 	/* The device can only be opened once */
    701 	if (sc->sc_flags & TAP_INUSE)
    702 		return EBUSY;
    703 	sc->sc_flags |= TAP_INUSE;
    704 	if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);
    705 
    706 	return 0;
    707 }
    708 
    709 /*
    710  * There are several kinds of cloning devices, and the most simple is the one
    711  * tap(4) uses.  What it does is change the file descriptor with a new one,
    712  * with its own fileops structure (which maps to the various read, write,
    713  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    714  * then actually creates the new tap devices.
    715  *
    716  * Once those two steps are successful, we can re-wire the existing file
    717  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    718  * structure as needed (notably f_devunit gets filled with the fifth parameter
    719  * passed, the unit of the tap device which will allows us identifying the
    720  * device later), and returns EMOVEFD.
    721  *
    722  * That magic value is interpreted by sys_open() which then replaces the
    723  * current file descriptor by the new one (through a magic member of struct
    724  * lwp, l_dupfd).
    725  *
    726  * The tap device is flagged as being busy since it otherwise could be
    727  * externally accessed through the corresponding device node with the cdevsw
    728  * interface.
    729  */
    730 
    731 static int
    732 tap_dev_cloner(struct lwp *l)
    733 {
    734 	struct tap_softc *sc;
    735 	file_t *fp;
    736 	int error, fd;
    737 
    738 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    739 		return error;
    740 
    741 	if ((sc = tap_clone_creator(-1)) == NULL) {
    742 		fd_abort(curproc, fp, fd);
    743 		return ENXIO;
    744 	}
    745 
    746 	sc->sc_flags |= TAP_INUSE;
    747 
    748 	return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
    749 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    750 }
    751 
    752 /*
    753  * While all other operations (read, write, ioctl, poll and kqfilter) are
    754  * really the same whether we are in cdevsw or fileops mode, the close()
    755  * function is slightly different in the two cases.
    756  *
    757  * As for the other, the core of it is shared in tap_dev_close.  What
    758  * it does is sufficient for the cdevsw interface, but the cloning interface
    759  * needs another thing:  the interface is destroyed when the processes that
    760  * created it closes it.
    761  */
    762 static int
    763 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
    764 {
    765 	struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
    766 
    767 	if (sc == NULL)
    768 		return ENXIO;
    769 
    770 	return tap_dev_close(sc);
    771 }
    772 
    773 /*
    774  * It might happen that the administrator used ifconfig to externally destroy
    775  * the interface.  In that case, tap_fops_close will be called while
    776  * tap_detach is already happening.  If we called it again from here, we
    777  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    778  */
    779 static int
    780 tap_fops_close(file_t *fp)
    781 {
    782 	struct tap_softc *sc;
    783 	int unit = fp->f_devunit;
    784 	int error;
    785 
    786 	sc = device_lookup_private(&tap_cd, unit);
    787 	if (sc == NULL)
    788 		return ENXIO;
    789 
    790 	/* tap_dev_close currently always succeeds, but it might not
    791 	 * always be the case. */
    792 	KERNEL_LOCK(1, NULL);
    793 	if ((error = tap_dev_close(sc)) != 0) {
    794 		KERNEL_UNLOCK_ONE(NULL);
    795 		return error;
    796 	}
    797 
    798 	/* Destroy the device now that it is no longer useful,
    799 	 * unless it's already being destroyed. */
    800 	if ((sc->sc_flags & TAP_GOING) != 0) {
    801 		KERNEL_UNLOCK_ONE(NULL);
    802 		return 0;
    803 	}
    804 
    805 	error = tap_clone_destroyer(sc->sc_dev);
    806 	KERNEL_UNLOCK_ONE(NULL);
    807 	return error;
    808 }
    809 
    810 static int
    811 tap_dev_close(struct tap_softc *sc)
    812 {
    813 	struct ifnet *ifp;
    814 	int s;
    815 
    816 	s = splnet();
    817 	/* Let tap_start handle packets again */
    818 	ifp = &sc->sc_ec.ec_if;
    819 	ifp->if_flags &= ~IFF_OACTIVE;
    820 
    821 	/* Purge output queue */
    822 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    823 		struct mbuf *m;
    824 
    825 		for (;;) {
    826 			IFQ_DEQUEUE(&ifp->if_snd, m);
    827 			if (m == NULL)
    828 				break;
    829 
    830 			if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len);
    831 			bpf_mtap(ifp, m, BPF_D_OUT);
    832 			m_freem(m);
    833 		}
    834 	}
    835 	splx(s);
    836 
    837 	if (sc->sc_sih != NULL) {
    838 		softint_disestablish(sc->sc_sih);
    839 		sc->sc_sih = NULL;
    840 	}
    841 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    842 	if_link_state_change(ifp, LINK_STATE_DOWN);
    843 
    844 	return 0;
    845 }
    846 
    847 static int
    848 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    849 {
    850 
    851 	return tap_dev_read(minor(dev), uio, flags);
    852 }
    853 
    854 static int
    855 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    856     kauth_cred_t cred, int flags)
    857 {
    858 	int error;
    859 
    860 	KERNEL_LOCK(1, NULL);
    861 	error = tap_dev_read(fp->f_devunit, uio, flags);
    862 	KERNEL_UNLOCK_ONE(NULL);
    863 	return error;
    864 }
    865 
    866 static int
    867 tap_dev_read(int unit, struct uio *uio, int flags)
    868 {
    869 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    870 	struct ifnet *ifp;
    871 	struct mbuf *m, *n;
    872 	int error = 0;
    873 
    874 	if (sc == NULL)
    875 		return ENXIO;
    876 
    877 	getnanotime(&sc->sc_atime);
    878 
    879 	ifp = &sc->sc_ec.ec_if;
    880 	if ((ifp->if_flags & IFF_UP) == 0)
    881 		return EHOSTDOWN;
    882 
    883 	/* In the TAP_NBIO case, we have to make sure we won't be sleeping */
    884 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    885 		if (!mutex_tryenter(&sc->sc_lock))
    886 			return EWOULDBLOCK;
    887 	} else
    888 		mutex_enter(&sc->sc_lock);
    889 
    890 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    891 		ifp->if_flags &= ~IFF_OACTIVE;
    892 		if (sc->sc_flags & TAP_NBIO)
    893 			error = EWOULDBLOCK;
    894 		else
    895 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
    896 
    897 		if (error != 0) {
    898 			mutex_exit(&sc->sc_lock);
    899 			return error;
    900 		}
    901 		/* The device might have been downed */
    902 		if ((ifp->if_flags & IFF_UP) == 0) {
    903 			mutex_exit(&sc->sc_lock);
    904 			return EHOSTDOWN;
    905 		}
    906 	}
    907 
    908 	IFQ_DEQUEUE(&ifp->if_snd, m);
    909 	mutex_exit(&sc->sc_lock);
    910 
    911 	ifp->if_flags &= ~IFF_OACTIVE;
    912 	if (m == NULL) {
    913 		error = 0;
    914 		goto out;
    915 	}
    916 
    917 	if_statadd2(ifp, if_opackets, 1,
    918 	    if_obytes, m->m_len);		/* XXX only first in chain */
    919 	bpf_mtap(ifp, m, BPF_D_OUT);
    920 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
    921 		goto out;
    922 	if (m == NULL)
    923 		goto out;
    924 
    925 	/*
    926 	 * One read is one packet.
    927 	 */
    928 	do {
    929 		error = uiomove(mtod(m, void *),
    930 		    uimin(m->m_len, uio->uio_resid), uio);
    931 		m = n = m_free(m);
    932 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    933 
    934 	if (m != NULL)
    935 		m_freem(m);
    936 
    937 out:
    938 	return error;
    939 }
    940 
    941 static int
    942 tap_fops_stat(file_t *fp, struct stat *st)
    943 {
    944 	int error = 0;
    945 	struct tap_softc *sc;
    946 	int unit = fp->f_devunit;
    947 
    948 	(void)memset(st, 0, sizeof(*st));
    949 
    950 	KERNEL_LOCK(1, NULL);
    951 	sc = device_lookup_private(&tap_cd, unit);
    952 	if (sc == NULL) {
    953 		error = ENXIO;
    954 		goto out;
    955 	}
    956 
    957 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    958 	st->st_atimespec = sc->sc_atime;
    959 	st->st_mtimespec = sc->sc_mtime;
    960 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    961 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    962 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    963 out:
    964 	KERNEL_UNLOCK_ONE(NULL);
    965 	return error;
    966 }
    967 
    968 static int
    969 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    970 {
    971 
    972 	return tap_dev_write(minor(dev), uio, flags);
    973 }
    974 
    975 static int
    976 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
    977     kauth_cred_t cred, int flags)
    978 {
    979 	int error;
    980 
    981 	KERNEL_LOCK(1, NULL);
    982 	error = tap_dev_write(fp->f_devunit, uio, flags);
    983 	KERNEL_UNLOCK_ONE(NULL);
    984 	return error;
    985 }
    986 
    987 static int
    988 tap_dev_write(int unit, struct uio *uio, int flags)
    989 {
    990 	struct tap_softc *sc =
    991 	    device_lookup_private(&tap_cd, unit);
    992 	struct ifnet *ifp;
    993 	struct mbuf *m, **mp;
    994 	size_t len = 0;
    995 	int error = 0;
    996 
    997 	if (sc == NULL)
    998 		return ENXIO;
    999 
   1000 	getnanotime(&sc->sc_mtime);
   1001 	ifp = &sc->sc_ec.ec_if;
   1002 
   1003 	/* One write, one packet, that's the rule */
   1004 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1005 	if (m == NULL) {
   1006 		if_statinc(ifp, if_ierrors);
   1007 		return ENOBUFS;
   1008 	}
   1009 	m->m_pkthdr.len = uio->uio_resid;
   1010 
   1011 	mp = &m;
   1012 	while (error == 0 && uio->uio_resid > 0) {
   1013 		if (*mp != m) {
   1014 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1015 			if (*mp == NULL) {
   1016 				error = ENOBUFS;
   1017 				break;
   1018 			}
   1019 		}
   1020 		(*mp)->m_len = uimin(MHLEN, uio->uio_resid);
   1021 		len += (*mp)->m_len;
   1022 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1023 		mp = &(*mp)->m_next;
   1024 	}
   1025 	if (error) {
   1026 		if_statinc(ifp, if_ierrors);
   1027 		m_freem(m);
   1028 		return error;
   1029 	}
   1030 
   1031 	m_set_rcvif(m, ifp);
   1032 
   1033 	if_statadd2(ifp, if_ipackets, 1, if_ibytes, len);
   1034 	bpf_mtap(ifp, m, BPF_D_IN);
   1035 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0)
   1036 		return error;
   1037 	if (m == NULL)
   1038 		return 0;
   1039 
   1040 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1041 
   1042 	return 0;
   1043 }
   1044 
   1045 static int
   1046 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
   1047 {
   1048 
   1049 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1050 }
   1051 
   1052 static int
   1053 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1054 {
   1055 
   1056 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1057 }
   1058 
   1059 static int
   1060 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1061 {
   1062 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1063 
   1064 	if (sc == NULL)
   1065 		return ENXIO;
   1066 
   1067 	switch (cmd) {
   1068 	case FIONREAD:
   1069 		{
   1070 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1071 			struct mbuf *m;
   1072 			int s;
   1073 
   1074 			s = splnet();
   1075 			IFQ_POLL(&ifp->if_snd, m);
   1076 
   1077 			if (m == NULL)
   1078 				*(int *)data = 0;
   1079 			else
   1080 				*(int *)data = m->m_pkthdr.len;
   1081 			splx(s);
   1082 			return 0;
   1083 		}
   1084 	case TIOCSPGRP:
   1085 	case FIOSETOWN:
   1086 		return fsetown(&sc->sc_pgid, cmd, data);
   1087 	case TIOCGPGRP:
   1088 	case FIOGETOWN:
   1089 		return fgetown(sc->sc_pgid, cmd, data);
   1090 	case FIOASYNC:
   1091 		if (*(int *)data) {
   1092 			if (sc->sc_sih == NULL) {
   1093 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1094 				    tap_softintr, sc);
   1095 				if (sc->sc_sih == NULL)
   1096 					return EBUSY; /* XXX */
   1097 			}
   1098 			sc->sc_flags |= TAP_ASYNCIO;
   1099 		} else {
   1100 			sc->sc_flags &= ~TAP_ASYNCIO;
   1101 			if (sc->sc_sih != NULL) {
   1102 				softint_disestablish(sc->sc_sih);
   1103 				sc->sc_sih = NULL;
   1104 			}
   1105 		}
   1106 		return 0;
   1107 	case FIONBIO:
   1108 		if (*(int *)data)
   1109 			sc->sc_flags |= TAP_NBIO;
   1110 		else
   1111 			sc->sc_flags &= ~TAP_NBIO;
   1112 		return 0;
   1113 	case TAPGIFNAME:
   1114 		{
   1115 			struct ifreq *ifr = (struct ifreq *)data;
   1116 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1117 
   1118 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1119 			return 0;
   1120 		}
   1121 	default:
   1122 		return ENOTTY;
   1123 	}
   1124 }
   1125 
   1126 static int
   1127 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1128 {
   1129 
   1130 	return tap_dev_poll(minor(dev), events, l);
   1131 }
   1132 
   1133 static int
   1134 tap_fops_poll(file_t *fp, int events)
   1135 {
   1136 
   1137 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1138 }
   1139 
   1140 static int
   1141 tap_dev_poll(int unit, int events, struct lwp *l)
   1142 {
   1143 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1144 	int revents = 0;
   1145 
   1146 	if (sc == NULL)
   1147 		return POLLERR;
   1148 
   1149 	if (events & (POLLIN | POLLRDNORM)) {
   1150 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1151 		struct mbuf *m;
   1152 		int s;
   1153 
   1154 		s = splnet();
   1155 		IFQ_POLL(&ifp->if_snd, m);
   1156 
   1157 		if (m != NULL)
   1158 			revents |= events & (POLLIN | POLLRDNORM);
   1159 		else {
   1160 			mutex_spin_enter(&sc->sc_lock);
   1161 			selrecord(l, &sc->sc_rsel);
   1162 			mutex_spin_exit(&sc->sc_lock);
   1163 		}
   1164 		splx(s);
   1165 	}
   1166 	revents |= events & (POLLOUT | POLLWRNORM);
   1167 
   1168 	return revents;
   1169 }
   1170 
   1171 static struct filterops tap_read_filterops = {
   1172 	.f_flags = FILTEROP_ISFD,
   1173 	.f_attach = NULL,
   1174 	.f_detach = tap_kqdetach,
   1175 	.f_event = tap_kqread,
   1176 };
   1177 
   1178 static struct filterops tap_seltrue_filterops = {
   1179 	.f_flags = FILTEROP_ISFD,
   1180 	.f_attach = NULL,
   1181 	.f_detach = tap_kqdetach,
   1182 	.f_event = filt_seltrue,
   1183 };
   1184 
   1185 static int
   1186 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1187 {
   1188 
   1189 	return tap_dev_kqfilter(minor(dev), kn);
   1190 }
   1191 
   1192 static int
   1193 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1194 {
   1195 
   1196 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1197 }
   1198 
   1199 static int
   1200 tap_dev_kqfilter(int unit, struct knote *kn)
   1201 {
   1202 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1203 
   1204 	if (sc == NULL)
   1205 		return ENXIO;
   1206 
   1207 	KERNEL_LOCK(1, NULL);
   1208 	switch(kn->kn_filter) {
   1209 	case EVFILT_READ:
   1210 		kn->kn_fop = &tap_read_filterops;
   1211 		break;
   1212 	case EVFILT_WRITE:
   1213 		kn->kn_fop = &tap_seltrue_filterops;
   1214 		break;
   1215 	default:
   1216 		KERNEL_UNLOCK_ONE(NULL);
   1217 		return EINVAL;
   1218 	}
   1219 
   1220 	kn->kn_hook = sc;
   1221 	mutex_spin_enter(&sc->sc_lock);
   1222 	selrecord_knote(&sc->sc_rsel, kn);
   1223 	mutex_spin_exit(&sc->sc_lock);
   1224 	KERNEL_UNLOCK_ONE(NULL);
   1225 	return 0;
   1226 }
   1227 
   1228 static void
   1229 tap_kqdetach(struct knote *kn)
   1230 {
   1231 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1232 
   1233 	KERNEL_LOCK(1, NULL);
   1234 	mutex_spin_enter(&sc->sc_lock);
   1235 	selremove_knote(&sc->sc_rsel, kn);
   1236 	mutex_spin_exit(&sc->sc_lock);
   1237 	KERNEL_UNLOCK_ONE(NULL);
   1238 }
   1239 
   1240 static int
   1241 tap_kqread(struct knote *kn, long hint)
   1242 {
   1243 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1244 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1245 	struct mbuf *m;
   1246 	int s, rv;
   1247 
   1248 	KERNEL_LOCK(1, NULL);
   1249 	s = splnet();
   1250 	IFQ_POLL(&ifp->if_snd, m);
   1251 
   1252 	if (m == NULL)
   1253 		kn->kn_data = 0;
   1254 	else
   1255 		kn->kn_data = m->m_pkthdr.len;
   1256 	splx(s);
   1257 	rv = (kn->kn_data != 0 ? 1 : 0);
   1258 	KERNEL_UNLOCK_ONE(NULL);
   1259 	return rv;
   1260 }
   1261 
   1262 /*
   1263  * sysctl management routines
   1264  * You can set the address of an interface through:
   1265  * net.link.tap.tap<number>
   1266  *
   1267  * Note the consistent use of tap_log in order to use
   1268  * sysctl_teardown at unload time.
   1269  *
   1270  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1271  * blocks register a function in a special section of the kernel
   1272  * (called a link set) which is used at init_sysctl() time to cycle
   1273  * through all those functions to create the kernel's sysctl tree.
   1274  *
   1275  * It is not possible to use link sets in a module, so the
   1276  * easiest is to simply call our own setup routine at load time.
   1277  *
   1278  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1279  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1280  * whole kernel sysctl tree is built, it is not possible to add any
   1281  * permanent node.
   1282  *
   1283  * It should be noted that we're not saving the sysctlnode pointer
   1284  * we are returned when creating the "tap" node.  That structure
   1285  * cannot be trusted once out of the calling function, as it might
   1286  * get reused.  So we just save the MIB number, and always give the
   1287  * full path starting from the root for later calls to sysctl_createv
   1288  * and sysctl_destroyv.
   1289  */
   1290 static void
   1291 sysctl_tap_setup(struct sysctllog **clog)
   1292 {
   1293 	const struct sysctlnode *node;
   1294 	int error = 0;
   1295 
   1296 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1297 	    CTLFLAG_PERMANENT,
   1298 	    CTLTYPE_NODE, "link", NULL,
   1299 	    NULL, 0, NULL, 0,
   1300 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1301 		return;
   1302 
   1303 	/*
   1304 	 * The first four parameters of sysctl_createv are for management.
   1305 	 *
   1306 	 * The four that follows, here starting with a '0' for the flags,
   1307 	 * describe the node.
   1308 	 *
   1309 	 * The next series of four set its value, through various possible
   1310 	 * means.
   1311 	 *
   1312 	 * Last but not least, the path to the node is described.  That path
   1313 	 * is relative to the given root (third argument).  Here we're
   1314 	 * starting from the root.
   1315 	 */
   1316 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1317 	    CTLFLAG_PERMANENT,
   1318 	    CTLTYPE_NODE, "tap", NULL,
   1319 	    NULL, 0, NULL, 0,
   1320 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1321 		return;
   1322 	tap_node = node->sysctl_num;
   1323 }
   1324 
   1325 /*
   1326  * The helper functions make Andrew Brown's interface really
   1327  * shine.  It makes possible to create value on the fly whether
   1328  * the sysctl value is read or written.
   1329  *
   1330  * As shown as an example in the man page, the first step is to
   1331  * create a copy of the node to have sysctl_lookup work on it.
   1332  *
   1333  * Here, we have more work to do than just a copy, since we have
   1334  * to create the string.  The first step is to collect the actual
   1335  * value of the node, which is a convenient pointer to the softc
   1336  * of the interface.  From there we create the string and use it
   1337  * as the value, but only for the *copy* of the node.
   1338  *
   1339  * Then we let sysctl_lookup do the magic, which consists in
   1340  * setting oldp and newp as required by the operation.  When the
   1341  * value is read, that means that the string will be copied to
   1342  * the user, and when it is written, the new value will be copied
   1343  * over in the addr array.
   1344  *
   1345  * If newp is NULL, the user was reading the value, so we don't
   1346  * have anything else to do.  If a new value was written, we
   1347  * have to check it.
   1348  *
   1349  * If it is incorrect, we can return an error and leave 'node' as
   1350  * it is:  since it is a copy of the actual node, the change will
   1351  * be forgotten.
   1352  *
   1353  * Upon a correct input, we commit the change to the ifnet
   1354  * structure of our interface.
   1355  */
   1356 static int
   1357 tap_sysctl_handler(SYSCTLFN_ARGS)
   1358 {
   1359 	struct sysctlnode node;
   1360 	struct tap_softc *sc;
   1361 	struct ifnet *ifp;
   1362 	int error;
   1363 	size_t len;
   1364 	char addr[3 * ETHER_ADDR_LEN];
   1365 	uint8_t enaddr[ETHER_ADDR_LEN];
   1366 
   1367 	node = *rnode;
   1368 	sc = node.sysctl_data;
   1369 	ifp = &sc->sc_ec.ec_if;
   1370 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1371 	node.sysctl_data = addr;
   1372 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1373 	if (error || newp == NULL)
   1374 		return error;
   1375 
   1376 	len = strlen(addr);
   1377 	if (len < 11 || len > 17)
   1378 		return EINVAL;
   1379 
   1380 	/* Commit change */
   1381 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1382 		return EINVAL;
   1383 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1384 	return error;
   1385 }
   1386 
   1387 /*
   1388  * Module infrastructure
   1389  */
   1390 #include "if_module.h"
   1391 
   1392 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
   1393