if_tap.c revision 1.123 1 /* $NetBSD: if_tap.c,v 1.123 2021/09/26 01:16:10 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.123 2021/09/26 01:16:10 thorpej Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/atomic.h>
45 #include <sys/conf.h>
46 #include <sys/cprng.h>
47 #include <sys/device.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/intr.h>
51 #include <sys/kauth.h>
52 #include <sys/kernel.h>
53 #include <sys/kmem.h>
54 #include <sys/module.h>
55 #include <sys/mutex.h>
56 #include <sys/condvar.h>
57 #include <sys/poll.h>
58 #include <sys/proc.h>
59 #include <sys/select.h>
60 #include <sys/sockio.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_tap.h>
69 #include <net/bpf.h>
70
71 #include "ioconf.h"
72
73 /*
74 * sysctl node management
75 *
76 * It's not really possible to use a SYSCTL_SETUP block with
77 * current module implementation, so it is easier to just define
78 * our own function.
79 *
80 * The handler function is a "helper" in Andrew Brown's sysctl
81 * framework terminology. It is used as a gateway for sysctl
82 * requests over the nodes.
83 *
84 * tap_log allows the module to log creations of nodes and
85 * destroy them all at once using sysctl_teardown.
86 */
87 static int tap_node;
88 static int tap_sysctl_handler(SYSCTLFN_PROTO);
89 static void sysctl_tap_setup(struct sysctllog **);
90
91 struct tap_softc {
92 device_t sc_dev;
93 struct ethercom sc_ec;
94 int sc_flags;
95 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
96 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
97 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
98 #define TAP_GOING 0x00000008 /* interface is being destroyed */
99 struct selinfo sc_rsel;
100 pid_t sc_pgid; /* For async. IO */
101 kmutex_t sc_lock;
102 kcondvar_t sc_cv;
103 void *sc_sih;
104 struct timespec sc_atime;
105 struct timespec sc_mtime;
106 struct timespec sc_btime;
107 };
108
109 /* autoconf(9) glue */
110
111 static int tap_match(device_t, cfdata_t, void *);
112 static void tap_attach(device_t, device_t, void *);
113 static int tap_detach(device_t, int);
114
115 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
116 tap_match, tap_attach, tap_detach, NULL);
117 extern struct cfdriver tap_cd;
118
119 /* Real device access routines */
120 static int tap_dev_close(struct tap_softc *);
121 static int tap_dev_read(int, struct uio *, int);
122 static int tap_dev_write(int, struct uio *, int);
123 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
124 static int tap_dev_poll(int, int, struct lwp *);
125 static int tap_dev_kqfilter(int, struct knote *);
126
127 /* Fileops access routines */
128 static int tap_fops_close(file_t *);
129 static int tap_fops_read(file_t *, off_t *, struct uio *,
130 kauth_cred_t, int);
131 static int tap_fops_write(file_t *, off_t *, struct uio *,
132 kauth_cred_t, int);
133 static int tap_fops_ioctl(file_t *, u_long, void *);
134 static int tap_fops_poll(file_t *, int);
135 static int tap_fops_stat(file_t *, struct stat *);
136 static int tap_fops_kqfilter(file_t *, struct knote *);
137
138 static const struct fileops tap_fileops = {
139 .fo_name = "tap",
140 .fo_read = tap_fops_read,
141 .fo_write = tap_fops_write,
142 .fo_ioctl = tap_fops_ioctl,
143 .fo_fcntl = fnullop_fcntl,
144 .fo_poll = tap_fops_poll,
145 .fo_stat = tap_fops_stat,
146 .fo_close = tap_fops_close,
147 .fo_kqfilter = tap_fops_kqfilter,
148 .fo_restart = fnullop_restart,
149 };
150
151 /* Helper for cloning open() */
152 static int tap_dev_cloner(struct lwp *);
153
154 /* Character device routines */
155 static int tap_cdev_open(dev_t, int, int, struct lwp *);
156 static int tap_cdev_close(dev_t, int, int, struct lwp *);
157 static int tap_cdev_read(dev_t, struct uio *, int);
158 static int tap_cdev_write(dev_t, struct uio *, int);
159 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
160 static int tap_cdev_poll(dev_t, int, struct lwp *);
161 static int tap_cdev_kqfilter(dev_t, struct knote *);
162
163 const struct cdevsw tap_cdevsw = {
164 .d_open = tap_cdev_open,
165 .d_close = tap_cdev_close,
166 .d_read = tap_cdev_read,
167 .d_write = tap_cdev_write,
168 .d_ioctl = tap_cdev_ioctl,
169 .d_stop = nostop,
170 .d_tty = notty,
171 .d_poll = tap_cdev_poll,
172 .d_mmap = nommap,
173 .d_kqfilter = tap_cdev_kqfilter,
174 .d_discard = nodiscard,
175 .d_flag = D_OTHER | D_MPSAFE
176 };
177
178 #define TAP_CLONER 0xfffff /* Maximal minor value */
179
180 /* kqueue-related routines */
181 static void tap_kqdetach(struct knote *);
182 static int tap_kqread(struct knote *, long);
183
184 /*
185 * Those are needed by the ifnet interface, and would typically be
186 * there for any network interface driver.
187 * Some other routines are optional: watchdog and drain.
188 */
189 static void tap_start(struct ifnet *);
190 static void tap_stop(struct ifnet *, int);
191 static int tap_init(struct ifnet *);
192 static int tap_ioctl(struct ifnet *, u_long, void *);
193
194 /* Internal functions */
195 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
196 static void tap_softintr(void *);
197
198 /*
199 * tap is a clonable interface, although it is highly unrealistic for
200 * an Ethernet device.
201 *
202 * Here are the bits needed for a clonable interface.
203 */
204 static int tap_clone_create(struct if_clone *, int);
205 static int tap_clone_destroy(struct ifnet *);
206
207 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
208 tap_clone_create,
209 tap_clone_destroy);
210
211 /* Helper functions shared by the two cloning code paths */
212 static struct tap_softc * tap_clone_creator(int);
213 int tap_clone_destroyer(device_t);
214
215 static struct sysctllog *tap_sysctl_clog;
216
217 #ifdef _MODULE
218 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
219 #endif
220
221 static u_int tap_count;
222
223 void
224 tapattach(int n)
225 {
226
227 /*
228 * Nothing to do here, initialization is handled by the
229 * module initialization code in tapinit() below).
230 */
231 }
232
233 static void
234 tapinit(void)
235 {
236 int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
237
238 if (error) {
239 aprint_error("%s: unable to register cfattach\n",
240 tap_cd.cd_name);
241 (void)config_cfdriver_detach(&tap_cd);
242 return;
243 }
244
245 if_clone_attach(&tap_cloners);
246 sysctl_tap_setup(&tap_sysctl_clog);
247 #ifdef _MODULE
248 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
249 #endif
250 }
251
252 static int
253 tapdetach(void)
254 {
255 int error = 0;
256
257 if_clone_detach(&tap_cloners);
258 #ifdef _MODULE
259 error = devsw_detach(NULL, &tap_cdevsw);
260 if (error != 0)
261 goto out2;
262 #endif
263
264 if (tap_count != 0) {
265 error = EBUSY;
266 goto out1;
267 }
268
269 error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
270 if (error != 0)
271 goto out1;
272
273 sysctl_teardown(&tap_sysctl_clog);
274
275 return 0;
276
277 out1:
278 #ifdef _MODULE
279 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
280 out2:
281 #endif
282 if_clone_attach(&tap_cloners);
283
284 return error;
285 }
286
287 /* Pretty much useless for a pseudo-device */
288 static int
289 tap_match(device_t parent, cfdata_t cfdata, void *arg)
290 {
291
292 return 1;
293 }
294
295 void
296 tap_attach(device_t parent, device_t self, void *aux)
297 {
298 struct tap_softc *sc = device_private(self);
299 struct ifnet *ifp;
300 const struct sysctlnode *node;
301 int error;
302 uint8_t enaddr[ETHER_ADDR_LEN] =
303 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
304 char enaddrstr[3 * ETHER_ADDR_LEN];
305
306 sc->sc_dev = self;
307 sc->sc_sih = NULL;
308 getnanotime(&sc->sc_btime);
309 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
310 sc->sc_flags = 0;
311 selinit(&sc->sc_rsel);
312
313 cv_init(&sc->sc_cv, "tapread");
314 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
315
316 if (!pmf_device_register(self, NULL, NULL))
317 aprint_error_dev(self, "couldn't establish power handler\n");
318
319 /*
320 * In order to obtain unique initial Ethernet address on a host,
321 * do some randomisation. It's not meant for anything but avoiding
322 * hard-coding an address.
323 */
324 cprng_fast(&enaddr[3], 3);
325
326 aprint_verbose_dev(self, "Ethernet address %s\n",
327 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
328
329 /*
330 * One should note that an interface must do multicast in order
331 * to support IPv6.
332 */
333 ifp = &sc->sc_ec.ec_if;
334 strcpy(ifp->if_xname, device_xname(self));
335 ifp->if_softc = sc;
336 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
337 #ifdef NET_MPSAFE
338 ifp->if_extflags = IFEF_MPSAFE;
339 #endif
340 ifp->if_ioctl = tap_ioctl;
341 ifp->if_start = tap_start;
342 ifp->if_stop = tap_stop;
343 ifp->if_init = tap_init;
344 IFQ_SET_READY(&ifp->if_snd);
345
346 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
347
348 /* Those steps are mandatory for an Ethernet driver. */
349 if_initialize(ifp);
350 ifp->if_percpuq = if_percpuq_create(ifp);
351 ether_ifattach(ifp, enaddr);
352 /* Opening the device will bring the link state up. */
353 ifp->if_link_state = LINK_STATE_DOWN;
354 if_register(ifp);
355
356 /*
357 * Add a sysctl node for that interface.
358 *
359 * The pointer transmitted is not a string, but instead a pointer to
360 * the softc structure, which we can use to build the string value on
361 * the fly in the helper function of the node. See the comments for
362 * tap_sysctl_handler for details.
363 *
364 * Usually sysctl_createv is called with CTL_CREATE as the before-last
365 * component. However, we can allocate a number ourselves, as we are
366 * the only consumer of the net.link.<iface> node. In this case, the
367 * unit number is conveniently used to number the node. CTL_CREATE
368 * would just work, too.
369 */
370 if ((error = sysctl_createv(NULL, 0, NULL,
371 &node, CTLFLAG_READWRITE,
372 CTLTYPE_STRING, device_xname(self), NULL,
373 tap_sysctl_handler, 0, (void *)sc, 18,
374 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
375 CTL_EOL)) != 0)
376 aprint_error_dev(self,
377 "sysctl_createv returned %d, ignoring\n", error);
378 }
379
380 /*
381 * When detaching, we do the inverse of what is done in the attach
382 * routine, in reversed order.
383 */
384 static int
385 tap_detach(device_t self, int flags)
386 {
387 struct tap_softc *sc = device_private(self);
388 struct ifnet *ifp = &sc->sc_ec.ec_if;
389 int error;
390
391 sc->sc_flags |= TAP_GOING;
392 tap_stop(ifp, 1);
393 if_down(ifp);
394
395 if (sc->sc_sih != NULL) {
396 softint_disestablish(sc->sc_sih);
397 sc->sc_sih = NULL;
398 }
399
400 /*
401 * Destroying a single leaf is a very straightforward operation using
402 * sysctl_destroyv. One should be sure to always end the path with
403 * CTL_EOL.
404 */
405 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
406 device_unit(sc->sc_dev), CTL_EOL)) != 0)
407 aprint_error_dev(self,
408 "sysctl_destroyv returned %d, ignoring\n", error);
409 ether_ifdetach(ifp);
410 if_detach(ifp);
411 seldestroy(&sc->sc_rsel);
412 mutex_destroy(&sc->sc_lock);
413 cv_destroy(&sc->sc_cv);
414
415 pmf_device_deregister(self);
416
417 return 0;
418 }
419
420 /*
421 * This is the function where we SEND packets.
422 *
423 * There is no 'receive' equivalent. A typical driver will get
424 * interrupts from the hardware, and from there will inject new packets
425 * into the network stack.
426 *
427 * Once handled, a packet must be freed. A real driver might not be able
428 * to fit all the pending packets into the hardware, and is allowed to
429 * return before having sent all the packets. It should then use the
430 * if_flags flag IFF_OACTIVE to notify the upper layer.
431 *
432 * There are also other flags one should check, such as IFF_PAUSE.
433 *
434 * It is our duty to make packets available to BPF listeners.
435 *
436 * You should be aware that this function is called by the Ethernet layer
437 * at splnet().
438 *
439 * When the device is opened, we have to pass the packet(s) to the
440 * userland. For that we stay in OACTIVE mode while the userland gets
441 * the packets, and we send a signal to the processes waiting to read.
442 *
443 * wakeup(sc) is the counterpart to the tsleep call in
444 * tap_dev_read, while selnotify() is used for kevent(2) and
445 * poll(2) (which includes select(2)) listeners.
446 */
447 static void
448 tap_start(struct ifnet *ifp)
449 {
450 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
451 struct mbuf *m0;
452
453 mutex_enter(&sc->sc_lock);
454 if ((sc->sc_flags & TAP_INUSE) == 0) {
455 /* Simply drop packets */
456 for (;;) {
457 IFQ_DEQUEUE(&ifp->if_snd, m0);
458 if (m0 == NULL)
459 goto done;
460
461 if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len);
462 bpf_mtap(ifp, m0, BPF_D_OUT);
463
464 m_freem(m0);
465 }
466 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
467 ifp->if_flags |= IFF_OACTIVE;
468 cv_broadcast(&sc->sc_cv);
469 selnotify(&sc->sc_rsel, 0, 1);
470 if (sc->sc_flags & TAP_ASYNCIO) {
471 kpreempt_disable();
472 softint_schedule(sc->sc_sih);
473 kpreempt_enable();
474 }
475 }
476 done:
477 mutex_exit(&sc->sc_lock);
478 }
479
480 static void
481 tap_softintr(void *cookie)
482 {
483 struct tap_softc *sc;
484 struct ifnet *ifp;
485 int a, b;
486
487 sc = cookie;
488
489 if (sc->sc_flags & TAP_ASYNCIO) {
490 ifp = &sc->sc_ec.ec_if;
491 if (ifp->if_flags & IFF_RUNNING) {
492 a = POLL_IN;
493 b = POLLIN | POLLRDNORM;
494 } else {
495 a = POLL_HUP;
496 b = 0;
497 }
498 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
499 }
500 }
501
502 /*
503 * A typical driver will only contain the following handlers for
504 * ioctl calls, except SIOCSIFPHYADDR.
505 * The latter is a hack I used to set the Ethernet address of the
506 * faked device.
507 *
508 * Note that ether_ioctl() has to be called under splnet().
509 */
510 static int
511 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
512 {
513 int s, error;
514
515 s = splnet();
516
517 switch (cmd) {
518 case SIOCSIFPHYADDR:
519 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
520 break;
521 default:
522 error = ether_ioctl(ifp, cmd, data);
523 if (error == ENETRESET)
524 error = 0;
525 break;
526 }
527
528 splx(s);
529
530 return error;
531 }
532
533 /*
534 * Helper function to set Ethernet address. This has been replaced by
535 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
536 */
537 static int
538 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
539 {
540 const struct sockaddr *sa = &ifra->ifra_addr;
541
542 if (sa->sa_family != AF_LINK)
543 return EINVAL;
544
545 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
546
547 return 0;
548 }
549
550 /*
551 * _init() would typically be called when an interface goes up,
552 * meaning it should configure itself into the state in which it
553 * can send packets.
554 */
555 static int
556 tap_init(struct ifnet *ifp)
557 {
558 ifp->if_flags |= IFF_RUNNING;
559
560 tap_start(ifp);
561
562 return 0;
563 }
564
565 /*
566 * _stop() is called when an interface goes down. It is our
567 * responsability to validate that state by clearing the
568 * IFF_RUNNING flag.
569 *
570 * We have to wake up all the sleeping processes to have the pending
571 * read requests cancelled.
572 */
573 static void
574 tap_stop(struct ifnet *ifp, int disable)
575 {
576 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
577
578 mutex_enter(&sc->sc_lock);
579 ifp->if_flags &= ~IFF_RUNNING;
580 cv_broadcast(&sc->sc_cv);
581 selnotify(&sc->sc_rsel, 0, 1);
582 if (sc->sc_flags & TAP_ASYNCIO) {
583 kpreempt_disable();
584 softint_schedule(sc->sc_sih);
585 kpreempt_enable();
586 }
587 mutex_exit(&sc->sc_lock);
588 }
589
590 /*
591 * The 'create' command of ifconfig can be used to create
592 * any numbered instance of a given device. Thus we have to
593 * make sure we have enough room in cd_devs to create the
594 * user-specified instance. config_attach_pseudo will do this
595 * for us.
596 */
597 static int
598 tap_clone_create(struct if_clone *ifc, int unit)
599 {
600
601 if (tap_clone_creator(unit) == NULL) {
602 aprint_error("%s%d: unable to attach an instance\n",
603 tap_cd.cd_name, unit);
604 return ENXIO;
605 }
606 atomic_inc_uint(&tap_count);
607 return 0;
608 }
609
610 /*
611 * tap(4) can be cloned by two ways:
612 * using 'ifconfig tap0 create', which will use the network
613 * interface cloning API, and call tap_clone_create above.
614 * opening the cloning device node, whose minor number is TAP_CLONER.
615 * See below for an explanation on how this part work.
616 */
617 static struct tap_softc *
618 tap_clone_creator(int unit)
619 {
620 cfdata_t cf;
621
622 cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
623 cf->cf_name = tap_cd.cd_name;
624 cf->cf_atname = tap_ca.ca_name;
625 if (unit == -1) {
626 /* let autoconf find the first free one */
627 cf->cf_unit = 0;
628 cf->cf_fstate = FSTATE_STAR;
629 } else {
630 cf->cf_unit = unit;
631 cf->cf_fstate = FSTATE_NOTFOUND;
632 }
633
634 return device_private(config_attach_pseudo(cf));
635 }
636
637 /*
638 * The clean design of if_clone and autoconf(9) makes that part
639 * really straightforward. The second argument of config_detach
640 * means neither QUIET nor FORCED.
641 */
642 static int
643 tap_clone_destroy(struct ifnet *ifp)
644 {
645 struct tap_softc *sc = ifp->if_softc;
646 int error = tap_clone_destroyer(sc->sc_dev);
647
648 if (error == 0)
649 atomic_dec_uint(&tap_count);
650 return error;
651 }
652
653 int
654 tap_clone_destroyer(device_t dev)
655 {
656 cfdata_t cf = device_cfdata(dev);
657 int error;
658
659 if ((error = config_detach(dev, 0)) != 0)
660 aprint_error_dev(dev, "unable to detach instance\n");
661 kmem_free(cf, sizeof(*cf));
662
663 return error;
664 }
665
666 /*
667 * tap(4) is a bit of an hybrid device. It can be used in two different
668 * ways:
669 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
670 * 2. open /dev/tap, get a new interface created and read/write off it.
671 * That interface is destroyed when the process that had it created exits.
672 *
673 * The first way is managed by the cdevsw structure, and you access interfaces
674 * through a (major, minor) mapping: tap4 is obtained by the minor number
675 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
676 *
677 * The second way is the so-called "cloning" device. It's a special minor
678 * number (chosen as the maximal number, to allow as much tap devices as
679 * possible). The user first opens the cloner (e.g., /dev/tap), and that
680 * call ends in tap_cdev_open. The actual place where it is handled is
681 * tap_dev_cloner.
682 *
683 * An tap device cannot be opened more than once at a time, so the cdevsw
684 * part of open() does nothing but noting that the interface is being used and
685 * hence ready to actually handle packets.
686 */
687
688 static int
689 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
690 {
691 struct tap_softc *sc;
692
693 if (minor(dev) == TAP_CLONER)
694 return tap_dev_cloner(l);
695
696 sc = device_lookup_private(&tap_cd, minor(dev));
697 if (sc == NULL)
698 return ENXIO;
699
700 /* The device can only be opened once */
701 if (sc->sc_flags & TAP_INUSE)
702 return EBUSY;
703 sc->sc_flags |= TAP_INUSE;
704 if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);
705
706 return 0;
707 }
708
709 /*
710 * There are several kinds of cloning devices, and the most simple is the one
711 * tap(4) uses. What it does is change the file descriptor with a new one,
712 * with its own fileops structure (which maps to the various read, write,
713 * ioctl functions). It starts allocating a new file descriptor with falloc,
714 * then actually creates the new tap devices.
715 *
716 * Once those two steps are successful, we can re-wire the existing file
717 * descriptor to its new self. This is done with fdclone(): it fills the fp
718 * structure as needed (notably f_devunit gets filled with the fifth parameter
719 * passed, the unit of the tap device which will allows us identifying the
720 * device later), and returns EMOVEFD.
721 *
722 * That magic value is interpreted by sys_open() which then replaces the
723 * current file descriptor by the new one (through a magic member of struct
724 * lwp, l_dupfd).
725 *
726 * The tap device is flagged as being busy since it otherwise could be
727 * externally accessed through the corresponding device node with the cdevsw
728 * interface.
729 */
730
731 static int
732 tap_dev_cloner(struct lwp *l)
733 {
734 struct tap_softc *sc;
735 file_t *fp;
736 int error, fd;
737
738 if ((error = fd_allocfile(&fp, &fd)) != 0)
739 return error;
740
741 if ((sc = tap_clone_creator(-1)) == NULL) {
742 fd_abort(curproc, fp, fd);
743 return ENXIO;
744 }
745
746 sc->sc_flags |= TAP_INUSE;
747
748 return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
749 (void *)(intptr_t)device_unit(sc->sc_dev));
750 }
751
752 /*
753 * While all other operations (read, write, ioctl, poll and kqfilter) are
754 * really the same whether we are in cdevsw or fileops mode, the close()
755 * function is slightly different in the two cases.
756 *
757 * As for the other, the core of it is shared in tap_dev_close. What
758 * it does is sufficient for the cdevsw interface, but the cloning interface
759 * needs another thing: the interface is destroyed when the processes that
760 * created it closes it.
761 */
762 static int
763 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
764 {
765 struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
766
767 if (sc == NULL)
768 return ENXIO;
769
770 return tap_dev_close(sc);
771 }
772
773 /*
774 * It might happen that the administrator used ifconfig to externally destroy
775 * the interface. In that case, tap_fops_close will be called while
776 * tap_detach is already happening. If we called it again from here, we
777 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
778 */
779 static int
780 tap_fops_close(file_t *fp)
781 {
782 struct tap_softc *sc;
783 int unit = fp->f_devunit;
784 int error;
785
786 sc = device_lookup_private(&tap_cd, unit);
787 if (sc == NULL)
788 return ENXIO;
789
790 /* tap_dev_close currently always succeeds, but it might not
791 * always be the case. */
792 KERNEL_LOCK(1, NULL);
793 if ((error = tap_dev_close(sc)) != 0) {
794 KERNEL_UNLOCK_ONE(NULL);
795 return error;
796 }
797
798 /* Destroy the device now that it is no longer useful,
799 * unless it's already being destroyed. */
800 if ((sc->sc_flags & TAP_GOING) != 0) {
801 KERNEL_UNLOCK_ONE(NULL);
802 return 0;
803 }
804
805 error = tap_clone_destroyer(sc->sc_dev);
806 KERNEL_UNLOCK_ONE(NULL);
807 return error;
808 }
809
810 static int
811 tap_dev_close(struct tap_softc *sc)
812 {
813 struct ifnet *ifp;
814 int s;
815
816 s = splnet();
817 /* Let tap_start handle packets again */
818 ifp = &sc->sc_ec.ec_if;
819 ifp->if_flags &= ~IFF_OACTIVE;
820
821 /* Purge output queue */
822 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
823 struct mbuf *m;
824
825 for (;;) {
826 IFQ_DEQUEUE(&ifp->if_snd, m);
827 if (m == NULL)
828 break;
829
830 if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len);
831 bpf_mtap(ifp, m, BPF_D_OUT);
832 m_freem(m);
833 }
834 }
835 splx(s);
836
837 if (sc->sc_sih != NULL) {
838 softint_disestablish(sc->sc_sih);
839 sc->sc_sih = NULL;
840 }
841 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
842 if_link_state_change(ifp, LINK_STATE_DOWN);
843
844 return 0;
845 }
846
847 static int
848 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
849 {
850
851 return tap_dev_read(minor(dev), uio, flags);
852 }
853
854 static int
855 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
856 kauth_cred_t cred, int flags)
857 {
858 int error;
859
860 KERNEL_LOCK(1, NULL);
861 error = tap_dev_read(fp->f_devunit, uio, flags);
862 KERNEL_UNLOCK_ONE(NULL);
863 return error;
864 }
865
866 static int
867 tap_dev_read(int unit, struct uio *uio, int flags)
868 {
869 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
870 struct ifnet *ifp;
871 struct mbuf *m, *n;
872 int error = 0;
873
874 if (sc == NULL)
875 return ENXIO;
876
877 getnanotime(&sc->sc_atime);
878
879 ifp = &sc->sc_ec.ec_if;
880 if ((ifp->if_flags & IFF_UP) == 0)
881 return EHOSTDOWN;
882
883 /* In the TAP_NBIO case, we have to make sure we won't be sleeping */
884 if ((sc->sc_flags & TAP_NBIO) != 0) {
885 if (!mutex_tryenter(&sc->sc_lock))
886 return EWOULDBLOCK;
887 } else
888 mutex_enter(&sc->sc_lock);
889
890 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
891 ifp->if_flags &= ~IFF_OACTIVE;
892 if (sc->sc_flags & TAP_NBIO)
893 error = EWOULDBLOCK;
894 else
895 error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
896
897 if (error != 0) {
898 mutex_exit(&sc->sc_lock);
899 return error;
900 }
901 /* The device might have been downed */
902 if ((ifp->if_flags & IFF_UP) == 0) {
903 mutex_exit(&sc->sc_lock);
904 return EHOSTDOWN;
905 }
906 }
907
908 IFQ_DEQUEUE(&ifp->if_snd, m);
909 mutex_exit(&sc->sc_lock);
910
911 ifp->if_flags &= ~IFF_OACTIVE;
912 if (m == NULL) {
913 error = 0;
914 goto out;
915 }
916
917 if_statadd2(ifp, if_opackets, 1,
918 if_obytes, m->m_len); /* XXX only first in chain */
919 bpf_mtap(ifp, m, BPF_D_OUT);
920 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
921 goto out;
922 if (m == NULL)
923 goto out;
924
925 /*
926 * One read is one packet.
927 */
928 do {
929 error = uiomove(mtod(m, void *),
930 uimin(m->m_len, uio->uio_resid), uio);
931 m = n = m_free(m);
932 } while (m != NULL && uio->uio_resid > 0 && error == 0);
933
934 if (m != NULL)
935 m_freem(m);
936
937 out:
938 return error;
939 }
940
941 static int
942 tap_fops_stat(file_t *fp, struct stat *st)
943 {
944 int error = 0;
945 struct tap_softc *sc;
946 int unit = fp->f_devunit;
947
948 (void)memset(st, 0, sizeof(*st));
949
950 KERNEL_LOCK(1, NULL);
951 sc = device_lookup_private(&tap_cd, unit);
952 if (sc == NULL) {
953 error = ENXIO;
954 goto out;
955 }
956
957 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
958 st->st_atimespec = sc->sc_atime;
959 st->st_mtimespec = sc->sc_mtime;
960 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
961 st->st_uid = kauth_cred_geteuid(fp->f_cred);
962 st->st_gid = kauth_cred_getegid(fp->f_cred);
963 out:
964 KERNEL_UNLOCK_ONE(NULL);
965 return error;
966 }
967
968 static int
969 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
970 {
971
972 return tap_dev_write(minor(dev), uio, flags);
973 }
974
975 static int
976 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
977 kauth_cred_t cred, int flags)
978 {
979 int error;
980
981 KERNEL_LOCK(1, NULL);
982 error = tap_dev_write(fp->f_devunit, uio, flags);
983 KERNEL_UNLOCK_ONE(NULL);
984 return error;
985 }
986
987 static int
988 tap_dev_write(int unit, struct uio *uio, int flags)
989 {
990 struct tap_softc *sc =
991 device_lookup_private(&tap_cd, unit);
992 struct ifnet *ifp;
993 struct mbuf *m, **mp;
994 size_t len = 0;
995 int error = 0;
996
997 if (sc == NULL)
998 return ENXIO;
999
1000 getnanotime(&sc->sc_mtime);
1001 ifp = &sc->sc_ec.ec_if;
1002
1003 /* One write, one packet, that's the rule */
1004 MGETHDR(m, M_DONTWAIT, MT_DATA);
1005 if (m == NULL) {
1006 if_statinc(ifp, if_ierrors);
1007 return ENOBUFS;
1008 }
1009 m->m_pkthdr.len = uio->uio_resid;
1010
1011 mp = &m;
1012 while (error == 0 && uio->uio_resid > 0) {
1013 if (*mp != m) {
1014 MGET(*mp, M_DONTWAIT, MT_DATA);
1015 if (*mp == NULL) {
1016 error = ENOBUFS;
1017 break;
1018 }
1019 }
1020 (*mp)->m_len = uimin(MHLEN, uio->uio_resid);
1021 len += (*mp)->m_len;
1022 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1023 mp = &(*mp)->m_next;
1024 }
1025 if (error) {
1026 if_statinc(ifp, if_ierrors);
1027 m_freem(m);
1028 return error;
1029 }
1030
1031 m_set_rcvif(m, ifp);
1032
1033 if_statadd2(ifp, if_ipackets, 1, if_ibytes, len);
1034 bpf_mtap(ifp, m, BPF_D_IN);
1035 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0)
1036 return error;
1037 if (m == NULL)
1038 return 0;
1039
1040 if_percpuq_enqueue(ifp->if_percpuq, m);
1041
1042 return 0;
1043 }
1044
1045 static int
1046 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
1047 {
1048
1049 return tap_dev_ioctl(minor(dev), cmd, data, l);
1050 }
1051
1052 static int
1053 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1054 {
1055
1056 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1057 }
1058
1059 static int
1060 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1061 {
1062 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1063
1064 if (sc == NULL)
1065 return ENXIO;
1066
1067 switch (cmd) {
1068 case FIONREAD:
1069 {
1070 struct ifnet *ifp = &sc->sc_ec.ec_if;
1071 struct mbuf *m;
1072 int s;
1073
1074 s = splnet();
1075 IFQ_POLL(&ifp->if_snd, m);
1076
1077 if (m == NULL)
1078 *(int *)data = 0;
1079 else
1080 *(int *)data = m->m_pkthdr.len;
1081 splx(s);
1082 return 0;
1083 }
1084 case TIOCSPGRP:
1085 case FIOSETOWN:
1086 return fsetown(&sc->sc_pgid, cmd, data);
1087 case TIOCGPGRP:
1088 case FIOGETOWN:
1089 return fgetown(sc->sc_pgid, cmd, data);
1090 case FIOASYNC:
1091 if (*(int *)data) {
1092 if (sc->sc_sih == NULL) {
1093 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1094 tap_softintr, sc);
1095 if (sc->sc_sih == NULL)
1096 return EBUSY; /* XXX */
1097 }
1098 sc->sc_flags |= TAP_ASYNCIO;
1099 } else {
1100 sc->sc_flags &= ~TAP_ASYNCIO;
1101 if (sc->sc_sih != NULL) {
1102 softint_disestablish(sc->sc_sih);
1103 sc->sc_sih = NULL;
1104 }
1105 }
1106 return 0;
1107 case FIONBIO:
1108 if (*(int *)data)
1109 sc->sc_flags |= TAP_NBIO;
1110 else
1111 sc->sc_flags &= ~TAP_NBIO;
1112 return 0;
1113 case TAPGIFNAME:
1114 {
1115 struct ifreq *ifr = (struct ifreq *)data;
1116 struct ifnet *ifp = &sc->sc_ec.ec_if;
1117
1118 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1119 return 0;
1120 }
1121 default:
1122 return ENOTTY;
1123 }
1124 }
1125
1126 static int
1127 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1128 {
1129
1130 return tap_dev_poll(minor(dev), events, l);
1131 }
1132
1133 static int
1134 tap_fops_poll(file_t *fp, int events)
1135 {
1136
1137 return tap_dev_poll(fp->f_devunit, events, curlwp);
1138 }
1139
1140 static int
1141 tap_dev_poll(int unit, int events, struct lwp *l)
1142 {
1143 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1144 int revents = 0;
1145
1146 if (sc == NULL)
1147 return POLLERR;
1148
1149 if (events & (POLLIN | POLLRDNORM)) {
1150 struct ifnet *ifp = &sc->sc_ec.ec_if;
1151 struct mbuf *m;
1152 int s;
1153
1154 s = splnet();
1155 IFQ_POLL(&ifp->if_snd, m);
1156
1157 if (m != NULL)
1158 revents |= events & (POLLIN | POLLRDNORM);
1159 else {
1160 mutex_spin_enter(&sc->sc_lock);
1161 selrecord(l, &sc->sc_rsel);
1162 mutex_spin_exit(&sc->sc_lock);
1163 }
1164 splx(s);
1165 }
1166 revents |= events & (POLLOUT | POLLWRNORM);
1167
1168 return revents;
1169 }
1170
1171 static struct filterops tap_read_filterops = {
1172 .f_flags = FILTEROP_ISFD,
1173 .f_attach = NULL,
1174 .f_detach = tap_kqdetach,
1175 .f_event = tap_kqread,
1176 };
1177
1178 static struct filterops tap_seltrue_filterops = {
1179 .f_flags = FILTEROP_ISFD,
1180 .f_attach = NULL,
1181 .f_detach = tap_kqdetach,
1182 .f_event = filt_seltrue,
1183 };
1184
1185 static int
1186 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1187 {
1188
1189 return tap_dev_kqfilter(minor(dev), kn);
1190 }
1191
1192 static int
1193 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1194 {
1195
1196 return tap_dev_kqfilter(fp->f_devunit, kn);
1197 }
1198
1199 static int
1200 tap_dev_kqfilter(int unit, struct knote *kn)
1201 {
1202 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1203
1204 if (sc == NULL)
1205 return ENXIO;
1206
1207 KERNEL_LOCK(1, NULL);
1208 switch(kn->kn_filter) {
1209 case EVFILT_READ:
1210 kn->kn_fop = &tap_read_filterops;
1211 break;
1212 case EVFILT_WRITE:
1213 kn->kn_fop = &tap_seltrue_filterops;
1214 break;
1215 default:
1216 KERNEL_UNLOCK_ONE(NULL);
1217 return EINVAL;
1218 }
1219
1220 kn->kn_hook = sc;
1221 mutex_spin_enter(&sc->sc_lock);
1222 selrecord_knote(&sc->sc_rsel, kn);
1223 mutex_spin_exit(&sc->sc_lock);
1224 KERNEL_UNLOCK_ONE(NULL);
1225 return 0;
1226 }
1227
1228 static void
1229 tap_kqdetach(struct knote *kn)
1230 {
1231 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1232
1233 KERNEL_LOCK(1, NULL);
1234 mutex_spin_enter(&sc->sc_lock);
1235 selremove_knote(&sc->sc_rsel, kn);
1236 mutex_spin_exit(&sc->sc_lock);
1237 KERNEL_UNLOCK_ONE(NULL);
1238 }
1239
1240 static int
1241 tap_kqread(struct knote *kn, long hint)
1242 {
1243 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1244 struct ifnet *ifp = &sc->sc_ec.ec_if;
1245 struct mbuf *m;
1246 int s, rv;
1247
1248 KERNEL_LOCK(1, NULL);
1249 s = splnet();
1250 IFQ_POLL(&ifp->if_snd, m);
1251
1252 if (m == NULL)
1253 kn->kn_data = 0;
1254 else
1255 kn->kn_data = m->m_pkthdr.len;
1256 splx(s);
1257 rv = (kn->kn_data != 0 ? 1 : 0);
1258 KERNEL_UNLOCK_ONE(NULL);
1259 return rv;
1260 }
1261
1262 /*
1263 * sysctl management routines
1264 * You can set the address of an interface through:
1265 * net.link.tap.tap<number>
1266 *
1267 * Note the consistent use of tap_log in order to use
1268 * sysctl_teardown at unload time.
1269 *
1270 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1271 * blocks register a function in a special section of the kernel
1272 * (called a link set) which is used at init_sysctl() time to cycle
1273 * through all those functions to create the kernel's sysctl tree.
1274 *
1275 * It is not possible to use link sets in a module, so the
1276 * easiest is to simply call our own setup routine at load time.
1277 *
1278 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1279 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1280 * whole kernel sysctl tree is built, it is not possible to add any
1281 * permanent node.
1282 *
1283 * It should be noted that we're not saving the sysctlnode pointer
1284 * we are returned when creating the "tap" node. That structure
1285 * cannot be trusted once out of the calling function, as it might
1286 * get reused. So we just save the MIB number, and always give the
1287 * full path starting from the root for later calls to sysctl_createv
1288 * and sysctl_destroyv.
1289 */
1290 static void
1291 sysctl_tap_setup(struct sysctllog **clog)
1292 {
1293 const struct sysctlnode *node;
1294 int error = 0;
1295
1296 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1297 CTLFLAG_PERMANENT,
1298 CTLTYPE_NODE, "link", NULL,
1299 NULL, 0, NULL, 0,
1300 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1301 return;
1302
1303 /*
1304 * The first four parameters of sysctl_createv are for management.
1305 *
1306 * The four that follows, here starting with a '0' for the flags,
1307 * describe the node.
1308 *
1309 * The next series of four set its value, through various possible
1310 * means.
1311 *
1312 * Last but not least, the path to the node is described. That path
1313 * is relative to the given root (third argument). Here we're
1314 * starting from the root.
1315 */
1316 if ((error = sysctl_createv(clog, 0, NULL, &node,
1317 CTLFLAG_PERMANENT,
1318 CTLTYPE_NODE, "tap", NULL,
1319 NULL, 0, NULL, 0,
1320 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1321 return;
1322 tap_node = node->sysctl_num;
1323 }
1324
1325 /*
1326 * The helper functions make Andrew Brown's interface really
1327 * shine. It makes possible to create value on the fly whether
1328 * the sysctl value is read or written.
1329 *
1330 * As shown as an example in the man page, the first step is to
1331 * create a copy of the node to have sysctl_lookup work on it.
1332 *
1333 * Here, we have more work to do than just a copy, since we have
1334 * to create the string. The first step is to collect the actual
1335 * value of the node, which is a convenient pointer to the softc
1336 * of the interface. From there we create the string and use it
1337 * as the value, but only for the *copy* of the node.
1338 *
1339 * Then we let sysctl_lookup do the magic, which consists in
1340 * setting oldp and newp as required by the operation. When the
1341 * value is read, that means that the string will be copied to
1342 * the user, and when it is written, the new value will be copied
1343 * over in the addr array.
1344 *
1345 * If newp is NULL, the user was reading the value, so we don't
1346 * have anything else to do. If a new value was written, we
1347 * have to check it.
1348 *
1349 * If it is incorrect, we can return an error and leave 'node' as
1350 * it is: since it is a copy of the actual node, the change will
1351 * be forgotten.
1352 *
1353 * Upon a correct input, we commit the change to the ifnet
1354 * structure of our interface.
1355 */
1356 static int
1357 tap_sysctl_handler(SYSCTLFN_ARGS)
1358 {
1359 struct sysctlnode node;
1360 struct tap_softc *sc;
1361 struct ifnet *ifp;
1362 int error;
1363 size_t len;
1364 char addr[3 * ETHER_ADDR_LEN];
1365 uint8_t enaddr[ETHER_ADDR_LEN];
1366
1367 node = *rnode;
1368 sc = node.sysctl_data;
1369 ifp = &sc->sc_ec.ec_if;
1370 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1371 node.sysctl_data = addr;
1372 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1373 if (error || newp == NULL)
1374 return error;
1375
1376 len = strlen(addr);
1377 if (len < 11 || len > 17)
1378 return EINVAL;
1379
1380 /* Commit change */
1381 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1382 return EINVAL;
1383 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1384 return error;
1385 }
1386
1387 /*
1388 * Module infrastructure
1389 */
1390 #include "if_module.h"
1391
1392 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
1393