Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.14
      1 /*	$NetBSD: if_tap.c,v 1.14 2006/03/16 15:57:59 christos Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.14 2006/03/16 15:57:59 christos Exp $");
     47 
     48 #if defined(_KERNEL_OPT)
     49 #include "bpfilter.h"
     50 #endif
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/conf.h>
     57 #include <sys/device.h>
     58 #include <sys/file.h>
     59 #include <sys/filedesc.h>
     60 #include <sys/ksyms.h>
     61 #include <sys/poll.h>
     62 #include <sys/select.h>
     63 #include <sys/sockio.h>
     64 #include <sys/sysctl.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #if NBPFILTER > 0
     72 #include <net/bpf.h>
     73 #endif
     74 
     75 /*
     76  * sysctl node management
     77  *
     78  * It's not really possible to use a SYSCTL_SETUP block with
     79  * current LKM implementation, so it is easier to just define
     80  * our own function.
     81  *
     82  * The handler function is a "helper" in Andrew Brown's sysctl
     83  * framework terminology.  It is used as a gateway for sysctl
     84  * requests over the nodes.
     85  *
     86  * tap_log allows the module to log creations of nodes and
     87  * destroy them all at once using sysctl_teardown.
     88  */
     89 static int tap_node;
     90 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     91 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     92 
     93 /*
     94  * Since we're an Ethernet device, we need the 3 following
     95  * components: a leading struct device, a struct ethercom,
     96  * and also a struct ifmedia since we don't attach a PHY to
     97  * ourselves. We could emulate one, but there's no real
     98  * point.
     99  */
    100 
    101 struct tap_softc {
    102 	struct device	sc_dev;
    103 	struct ifmedia	sc_im;
    104 	struct ethercom	sc_ec;
    105 	int		sc_flags;
    106 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    107 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    108 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    109 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    110 	struct selinfo	sc_rsel;
    111 	pid_t		sc_pgid; /* For async. IO */
    112 	struct lock	sc_rdlock;
    113 	struct simplelock	sc_kqlock;
    114 };
    115 
    116 /* autoconf(9) glue */
    117 
    118 void	tapattach(int);
    119 
    120 static int	tap_match(struct device *, struct cfdata *, void *);
    121 static void	tap_attach(struct device *, struct device *, void *);
    122 static int	tap_detach(struct device*, int);
    123 
    124 /* Ethernet address helper functions */
    125 
    126 static int	tap_ether_aton(u_char *, char *);
    127 
    128 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    129     tap_match, tap_attach, tap_detach, NULL);
    130 extern struct cfdriver tap_cd;
    131 
    132 /* Real device access routines */
    133 static int	tap_dev_close(struct tap_softc *);
    134 static int	tap_dev_read(int, struct uio *, int);
    135 static int	tap_dev_write(int, struct uio *, int);
    136 static int	tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
    137 static int	tap_dev_poll(int, int, struct lwp *);
    138 static int	tap_dev_kqfilter(int, struct knote *);
    139 
    140 /* Fileops access routines */
    141 static int	tap_fops_close(struct file *, struct lwp *);
    142 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    143     struct ucred *, int);
    144 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    145     struct ucred *, int);
    146 static int	tap_fops_ioctl(struct file *, u_long, void *,
    147     struct lwp *);
    148 static int	tap_fops_poll(struct file *, int, struct lwp *);
    149 static int	tap_fops_kqfilter(struct file *, struct knote *);
    150 
    151 static const struct fileops tap_fileops = {
    152 	tap_fops_read,
    153 	tap_fops_write,
    154 	tap_fops_ioctl,
    155 	fnullop_fcntl,
    156 	tap_fops_poll,
    157 	fbadop_stat,
    158 	tap_fops_close,
    159 	tap_fops_kqfilter,
    160 };
    161 
    162 /* Helper for cloning open() */
    163 static int	tap_dev_cloner(struct lwp *);
    164 
    165 /* Character device routines */
    166 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    167 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    168 static int	tap_cdev_read(dev_t, struct uio *, int);
    169 static int	tap_cdev_write(dev_t, struct uio *, int);
    170 static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
    171 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    172 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    173 
    174 const struct cdevsw tap_cdevsw = {
    175 	tap_cdev_open, tap_cdev_close,
    176 	tap_cdev_read, tap_cdev_write,
    177 	tap_cdev_ioctl, nostop, notty,
    178 	tap_cdev_poll, nommap,
    179 	tap_cdev_kqfilter,
    180 };
    181 
    182 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    183 
    184 /* kqueue-related routines */
    185 static void	tap_kqdetach(struct knote *);
    186 static int	tap_kqread(struct knote *, long);
    187 
    188 /*
    189  * Those are needed by the if_media interface.
    190  */
    191 
    192 static int	tap_mediachange(struct ifnet *);
    193 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    194 
    195 /*
    196  * Those are needed by the ifnet interface, and would typically be
    197  * there for any network interface driver.
    198  * Some other routines are optional: watchdog and drain.
    199  */
    200 
    201 static void	tap_start(struct ifnet *);
    202 static void	tap_stop(struct ifnet *, int);
    203 static int	tap_init(struct ifnet *);
    204 static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    205 
    206 /* This is an internal function to keep tap_ioctl readable */
    207 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    208 
    209 /*
    210  * tap is a clonable interface, although it is highly unrealistic for
    211  * an Ethernet device.
    212  *
    213  * Here are the bits needed for a clonable interface.
    214  */
    215 static int	tap_clone_create(struct if_clone *, int);
    216 static int	tap_clone_destroy(struct ifnet *);
    217 
    218 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    219 					tap_clone_create,
    220 					tap_clone_destroy);
    221 
    222 /* Helper functionis shared by the two cloning code paths */
    223 static struct tap_softc *	tap_clone_creator(int);
    224 int	tap_clone_destroyer(struct device *);
    225 
    226 void
    227 tapattach(int n)
    228 {
    229 	int error;
    230 
    231 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    232 	if (error) {
    233 		aprint_error("%s: unable to register cfattach\n",
    234 		    tap_cd.cd_name);
    235 		(void)config_cfdriver_detach(&tap_cd);
    236 		return;
    237 	}
    238 
    239 	if_clone_attach(&tap_cloners);
    240 }
    241 
    242 /* Pretty much useless for a pseudo-device */
    243 static int
    244 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
    245 {
    246 	return (1);
    247 }
    248 
    249 void
    250 tap_attach(struct device *parent, struct device *self, void *aux)
    251 {
    252 	struct tap_softc *sc = (struct tap_softc *)self;
    253 	struct ifnet *ifp;
    254 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    255 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    256 	char enaddrstr[3 * ETHER_ADDR_LEN];
    257 	uint32_t ui;
    258 	int error;
    259 	const struct sysctlnode *node;
    260 
    261 	aprint_normal("%s: faking Ethernet device\n",
    262 	    self->dv_xname);
    263 
    264 	/*
    265 	 * In order to obtain unique initial Ethernet address on a host,
    266 	 * do some randomisation using mono_time.  It's not meant for anything
    267 	 * but avoiding hard-coding an address.
    268 	 */
    269 	ui = (mono_time.tv_sec ^ mono_time.tv_usec) & 0xffffff;
    270 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    271 
    272 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    273 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    274 
    275 	/*
    276 	 * Why 1000baseT? Why not? You can add more.
    277 	 *
    278 	 * Note that there are 3 steps: init, one or several additions to
    279 	 * list of supported media, and in the end, the selection of one
    280 	 * of them.
    281 	 */
    282 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    283 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    284 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    288 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    290 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    291 
    292 	/*
    293 	 * One should note that an interface must do multicast in order
    294 	 * to support IPv6.
    295 	 */
    296 	ifp = &sc->sc_ec.ec_if;
    297 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    298 	ifp->if_softc	= sc;
    299 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    300 	ifp->if_ioctl	= tap_ioctl;
    301 	ifp->if_start	= tap_start;
    302 	ifp->if_stop	= tap_stop;
    303 	ifp->if_init	= tap_init;
    304 	IFQ_SET_READY(&ifp->if_snd);
    305 
    306 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    307 
    308 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    309 	 * being common to all network interface drivers. */
    310 	if_attach(ifp);
    311 	ether_ifattach(ifp, enaddr);
    312 
    313 	sc->sc_flags = 0;
    314 
    315 	/*
    316 	 * Add a sysctl node for that interface.
    317 	 *
    318 	 * The pointer transmitted is not a string, but instead a pointer to
    319 	 * the softc structure, which we can use to build the string value on
    320 	 * the fly in the helper function of the node.  See the comments for
    321 	 * tap_sysctl_handler for details.
    322 	 */
    323 	if ((error = sysctl_createv(NULL, 0, NULL,
    324 	    &node, CTLFLAG_READWRITE,
    325 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    326 	    tap_sysctl_handler, 0, sc, 18,
    327 	    CTL_NET, AF_LINK, tap_node, sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    328 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    329 		    sc->sc_dev.dv_xname, error);
    330 
    331 	/*
    332 	 * Initialize the two locks for the device.
    333 	 *
    334 	 * We need a lock here because even though the tap device can be
    335 	 * opened only once, the file descriptor might be passed to another
    336 	 * process, say a fork(2)ed child.
    337 	 *
    338 	 * The Giant saves us from most of the hassle, but since the read
    339 	 * operation can sleep, we don't want two processes to wake up at
    340 	 * the same moment and both try and dequeue a single packet.
    341 	 *
    342 	 * The queue for event listeners (used by kqueue(9), see below) has
    343 	 * to be protected, too, but we don't need the same level of
    344 	 * complexity for that lock, so a simple spinning lock is fine.
    345 	 */
    346 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    347 	simple_lock_init(&sc->sc_kqlock);
    348 }
    349 
    350 /*
    351  * When detaching, we do the inverse of what is done in the attach
    352  * routine, in reversed order.
    353  */
    354 static int
    355 tap_detach(struct device* self, int flags)
    356 {
    357 	struct tap_softc *sc = (struct tap_softc *)self;
    358 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    359 	int error, s;
    360 
    361 	/*
    362 	 * Some processes might be sleeping on "tap", so we have to make
    363 	 * them release their hold on the device.
    364 	 *
    365 	 * The LK_DRAIN operation will wait for every locked process to
    366 	 * release their hold.
    367 	 */
    368 	sc->sc_flags |= TAP_GOING;
    369 	s = splnet();
    370 	tap_stop(ifp, 1);
    371 	if_down(ifp);
    372 	splx(s);
    373 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    374 
    375 	/*
    376 	 * Destroying a single leaf is a very straightforward operation using
    377 	 * sysctl_destroyv.  One should be sure to always end the path with
    378 	 * CTL_EOL.
    379 	 */
    380 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    381 	    sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    382 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    383 		    sc->sc_dev.dv_xname, error);
    384 	ether_ifdetach(ifp);
    385 	if_detach(ifp);
    386 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    387 
    388 	return (0);
    389 }
    390 
    391 /*
    392  * This function is called by the ifmedia layer to notify the driver
    393  * that the user requested a media change.  A real driver would
    394  * reconfigure the hardware.
    395  */
    396 static int
    397 tap_mediachange(struct ifnet *ifp)
    398 {
    399 	return (0);
    400 }
    401 
    402 /*
    403  * Here the user asks for the currently used media.
    404  */
    405 static void
    406 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    407 {
    408 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    409 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    410 }
    411 
    412 /*
    413  * This is the function where we SEND packets.
    414  *
    415  * There is no 'receive' equivalent.  A typical driver will get
    416  * interrupts from the hardware, and from there will inject new packets
    417  * into the network stack.
    418  *
    419  * Once handled, a packet must be freed.  A real driver might not be able
    420  * to fit all the pending packets into the hardware, and is allowed to
    421  * return before having sent all the packets.  It should then use the
    422  * if_flags flag IFF_OACTIVE to notify the upper layer.
    423  *
    424  * There are also other flags one should check, such as IFF_PAUSE.
    425  *
    426  * It is our duty to make packets available to BPF listeners.
    427  *
    428  * You should be aware that this function is called by the Ethernet layer
    429  * at splnet().
    430  *
    431  * When the device is opened, we have to pass the packet(s) to the
    432  * userland.  For that we stay in OACTIVE mode while the userland gets
    433  * the packets, and we send a signal to the processes waiting to read.
    434  *
    435  * wakeup(sc) is the counterpart to the tsleep call in
    436  * tap_dev_read, while selnotify() is used for kevent(2) and
    437  * poll(2) (which includes select(2)) listeners.
    438  */
    439 static void
    440 tap_start(struct ifnet *ifp)
    441 {
    442 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    443 	struct mbuf *m0;
    444 
    445 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    446 		/* Simply drop packets */
    447 		for(;;) {
    448 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    449 			if (m0 == NULL)
    450 				return;
    451 
    452 			ifp->if_opackets++;
    453 #if NBPFILTER > 0
    454 			if (ifp->if_bpf)
    455 				bpf_mtap(ifp->if_bpf, m0);
    456 #endif
    457 
    458 			m_freem(m0);
    459 		}
    460 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    461 		ifp->if_flags |= IFF_OACTIVE;
    462 		wakeup(sc);
    463 		selnotify(&sc->sc_rsel, 1);
    464 		if (sc->sc_flags & TAP_ASYNCIO)
    465 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    466 			    POLLIN|POLLRDNORM, NULL);
    467 	}
    468 }
    469 
    470 /*
    471  * A typical driver will only contain the following handlers for
    472  * ioctl calls, except SIOCSIFPHYADDR.
    473  * The latter is a hack I used to set the Ethernet address of the
    474  * faked device.
    475  *
    476  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    477  * called under splnet().
    478  */
    479 static int
    480 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    481 {
    482 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    483 	struct ifreq *ifr = (struct ifreq *)data;
    484 	int s, error;
    485 
    486 	s = splnet();
    487 
    488 	switch (cmd) {
    489 	case SIOCSIFMEDIA:
    490 	case SIOCGIFMEDIA:
    491 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    492 		break;
    493 	case SIOCSIFPHYADDR:
    494 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    495 		break;
    496 	default:
    497 		error = ether_ioctl(ifp, cmd, data);
    498 		if (error == ENETRESET)
    499 			error = 0;
    500 		break;
    501 	}
    502 
    503 	splx(s);
    504 
    505 	return (error);
    506 }
    507 
    508 /*
    509  * Helper function to set Ethernet address.  This shouldn't be done there,
    510  * and should actually be available to all Ethernet drivers, real or not.
    511  */
    512 static int
    513 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    514 {
    515 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    516 
    517 	if (sa->sa_family != AF_LINK)
    518 		return (EINVAL);
    519 
    520 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    521 
    522 	return (0);
    523 }
    524 
    525 /*
    526  * _init() would typically be called when an interface goes up,
    527  * meaning it should configure itself into the state in which it
    528  * can send packets.
    529  */
    530 static int
    531 tap_init(struct ifnet *ifp)
    532 {
    533 	ifp->if_flags |= IFF_RUNNING;
    534 
    535 	tap_start(ifp);
    536 
    537 	return (0);
    538 }
    539 
    540 /*
    541  * _stop() is called when an interface goes down.  It is our
    542  * responsability to validate that state by clearing the
    543  * IFF_RUNNING flag.
    544  *
    545  * We have to wake up all the sleeping processes to have the pending
    546  * read requests cancelled.
    547  */
    548 static void
    549 tap_stop(struct ifnet *ifp, int disable)
    550 {
    551 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    552 
    553 	ifp->if_flags &= ~IFF_RUNNING;
    554 	wakeup(sc);
    555 	selnotify(&sc->sc_rsel, 1);
    556 	if (sc->sc_flags & TAP_ASYNCIO)
    557 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    558 }
    559 
    560 /*
    561  * The 'create' command of ifconfig can be used to create
    562  * any numbered instance of a given device.  Thus we have to
    563  * make sure we have enough room in cd_devs to create the
    564  * user-specified instance.  config_attach_pseudo will do this
    565  * for us.
    566  */
    567 static int
    568 tap_clone_create(struct if_clone *ifc, int unit)
    569 {
    570 	if (tap_clone_creator(unit) == NULL) {
    571 		aprint_error("%s%d: unable to attach an instance\n",
    572                     tap_cd.cd_name, unit);
    573 		return (ENXIO);
    574 	}
    575 
    576 	return (0);
    577 }
    578 
    579 /*
    580  * tap(4) can be cloned by two ways:
    581  *   using 'ifconfig tap0 create', which will use the network
    582  *     interface cloning API, and call tap_clone_create above.
    583  *   opening the cloning device node, whose minor number is TAP_CLONER.
    584  *     See below for an explanation on how this part work.
    585  *
    586  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    587  * autoconf(9) choose a unit number for us.  This is what happens when
    588  * the cloner is openend, while the ifcloner interface creates a device
    589  * with a specific unit number.
    590  */
    591 static struct tap_softc *
    592 tap_clone_creator(int unit)
    593 {
    594 	struct cfdata *cf;
    595 
    596 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    597 	cf->cf_name = tap_cd.cd_name;
    598 	cf->cf_atname = tap_ca.ca_name;
    599 	cf->cf_unit = unit;
    600 	cf->cf_fstate = FSTATE_STAR;
    601 
    602 	return (struct tap_softc *)config_attach_pseudo(cf);
    603 }
    604 
    605 /*
    606  * The clean design of if_clone and autoconf(9) makes that part
    607  * really straightforward.  The second argument of config_detach
    608  * means neither QUIET nor FORCED.
    609  */
    610 static int
    611 tap_clone_destroy(struct ifnet *ifp)
    612 {
    613 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    614 }
    615 
    616 int
    617 tap_clone_destroyer(struct device *dev)
    618 {
    619 	struct cfdata *cf = dev->dv_cfdata;
    620 	int error;
    621 
    622 	if ((error = config_detach(dev, 0)) != 0)
    623 		aprint_error("%s: unable to detach instance\n",
    624 		    dev->dv_xname);
    625 	free(cf, M_DEVBUF);
    626 
    627 	return (error);
    628 }
    629 
    630 /*
    631  * tap(4) is a bit of an hybrid device.  It can be used in two different
    632  * ways:
    633  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    634  *  2. open /dev/tap, get a new interface created and read/write off it.
    635  *     That interface is destroyed when the process that had it created exits.
    636  *
    637  * The first way is managed by the cdevsw structure, and you access interfaces
    638  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    639  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    640  *
    641  * The second way is the so-called "cloning" device.  It's a special minor
    642  * number (chosen as the maximal number, to allow as much tap devices as
    643  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    644  * call ends in tap_cdev_open.  The actual place where it is handled is
    645  * tap_dev_cloner.
    646  *
    647  * An tap device cannot be opened more than once at a time, so the cdevsw
    648  * part of open() does nothing but noting that the interface is being used and
    649  * hence ready to actually handle packets.
    650  */
    651 
    652 static int
    653 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    654 {
    655 	struct tap_softc *sc;
    656 
    657 	if (minor(dev) == TAP_CLONER)
    658 		return tap_dev_cloner(l);
    659 
    660 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    661 	if (sc == NULL)
    662 		return (ENXIO);
    663 
    664 	/* The device can only be opened once */
    665 	if (sc->sc_flags & TAP_INUSE)
    666 		return (EBUSY);
    667 	sc->sc_flags |= TAP_INUSE;
    668 	return (0);
    669 }
    670 
    671 /*
    672  * There are several kinds of cloning devices, and the most simple is the one
    673  * tap(4) uses.  What it does is change the file descriptor with a new one,
    674  * with its own fileops structure (which maps to the various read, write,
    675  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    676  * then actually creates the new tap devices.
    677  *
    678  * Once those two steps are successful, we can re-wire the existing file
    679  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    680  * structure as needed (notably f_data gets filled with the fifth parameter
    681  * passed, the unit of the tap device which will allows us identifying the
    682  * device later), and returns EMOVEFD.
    683  *
    684  * That magic value is interpreted by sys_open() which then replaces the
    685  * current file descriptor by the new one (through a magic member of struct
    686  * lwp, l_dupfd).
    687  *
    688  * The tap device is flagged as being busy since it otherwise could be
    689  * externally accessed through the corresponding device node with the cdevsw
    690  * interface.
    691  */
    692 
    693 static int
    694 tap_dev_cloner(struct lwp *l)
    695 {
    696 	struct tap_softc *sc;
    697 	struct file *fp;
    698 	int error, fd;
    699 
    700 	if ((error = falloc(l->l_proc, &fp, &fd)) != 0)
    701 		return (error);
    702 
    703 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    704 		FILE_UNUSE(fp, l);
    705 		ffree(fp);
    706 		return (ENXIO);
    707 	}
    708 
    709 	sc->sc_flags |= TAP_INUSE;
    710 
    711 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    712 	    (void *)(intptr_t)sc->sc_dev.dv_unit);
    713 }
    714 
    715 /*
    716  * While all other operations (read, write, ioctl, poll and kqfilter) are
    717  * really the same whether we are in cdevsw or fileops mode, the close()
    718  * function is slightly different in the two cases.
    719  *
    720  * As for the other, the core of it is shared in tap_dev_close.  What
    721  * it does is sufficient for the cdevsw interface, but the cloning interface
    722  * needs another thing:  the interface is destroyed when the processes that
    723  * created it closes it.
    724  */
    725 static int
    726 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
    727 {
    728 	struct tap_softc *sc =
    729 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    730 
    731 	if (sc == NULL)
    732 		return (ENXIO);
    733 
    734 	return tap_dev_close(sc);
    735 }
    736 
    737 /*
    738  * It might happen that the administrator used ifconfig to externally destroy
    739  * the interface.  In that case, tap_fops_close will be called while
    740  * tap_detach is already happening.  If we called it again from here, we
    741  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    742  */
    743 static int
    744 tap_fops_close(struct file *fp, struct lwp *l)
    745 {
    746 	int unit = (intptr_t)fp->f_data;
    747 	struct tap_softc *sc;
    748 	int error;
    749 
    750 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    751 	if (sc == NULL)
    752 		return (ENXIO);
    753 
    754 	/* tap_dev_close currently always succeeds, but it might not
    755 	 * always be the case. */
    756 	if ((error = tap_dev_close(sc)) != 0)
    757 		return (error);
    758 
    759 	/* Destroy the device now that it is no longer useful,
    760 	 * unless it's already being destroyed. */
    761 	if ((sc->sc_flags & TAP_GOING) != 0)
    762 		return (0);
    763 
    764 	return tap_clone_destroyer((struct device *)sc);
    765 }
    766 
    767 static int
    768 tap_dev_close(struct tap_softc *sc)
    769 {
    770 	struct ifnet *ifp;
    771 	int s;
    772 
    773 	s = splnet();
    774 	/* Let tap_start handle packets again */
    775 	ifp = &sc->sc_ec.ec_if;
    776 	ifp->if_flags &= ~IFF_OACTIVE;
    777 
    778 	/* Purge output queue */
    779 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    780 		struct mbuf *m;
    781 
    782 		for (;;) {
    783 			IFQ_DEQUEUE(&ifp->if_snd, m);
    784 			if (m == NULL)
    785 				break;
    786 
    787 			ifp->if_opackets++;
    788 #if NBPFILTER > 0
    789 			if (ifp->if_bpf)
    790 				bpf_mtap(ifp->if_bpf, m);
    791 #endif
    792 		}
    793 	}
    794 	splx(s);
    795 
    796 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    797 
    798 	return (0);
    799 }
    800 
    801 static int
    802 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    803 {
    804 	return tap_dev_read(minor(dev), uio, flags);
    805 }
    806 
    807 static int
    808 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    809     struct ucred *cred, int flags)
    810 {
    811 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    812 }
    813 
    814 static int
    815 tap_dev_read(int unit, struct uio *uio, int flags)
    816 {
    817 	struct tap_softc *sc =
    818 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    819 	struct ifnet *ifp;
    820 	struct mbuf *m, *n;
    821 	int error = 0, s;
    822 
    823 	if (sc == NULL)
    824 		return (ENXIO);
    825 
    826 	ifp = &sc->sc_ec.ec_if;
    827 	if ((ifp->if_flags & IFF_UP) == 0)
    828 		return (EHOSTDOWN);
    829 
    830 	/*
    831 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    832 	 */
    833 	if ((sc->sc_flags & TAP_NBIO) &&
    834 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    835 		return (EWOULDBLOCK);
    836 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    837 	if (error != 0)
    838 		return (error);
    839 
    840 	s = splnet();
    841 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    842 		ifp->if_flags &= ~IFF_OACTIVE;
    843 		splx(s);
    844 		/*
    845 		 * We must release the lock before sleeping, and re-acquire it
    846 		 * after.
    847 		 */
    848 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    849 		if (sc->sc_flags & TAP_NBIO)
    850 			error = EWOULDBLOCK;
    851 		else
    852 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    853 
    854 		if (error != 0)
    855 			return (error);
    856 		/* The device might have been downed */
    857 		if ((ifp->if_flags & IFF_UP) == 0)
    858 			return (EHOSTDOWN);
    859 		if ((sc->sc_flags & TAP_NBIO) &&
    860 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    861 			return (EWOULDBLOCK);
    862 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    863 		if (error != 0)
    864 			return (error);
    865 		s = splnet();
    866 	}
    867 
    868 	IFQ_DEQUEUE(&ifp->if_snd, m);
    869 	ifp->if_flags &= ~IFF_OACTIVE;
    870 	splx(s);
    871 	if (m == NULL) {
    872 		error = 0;
    873 		goto out;
    874 	}
    875 
    876 	ifp->if_opackets++;
    877 #if NBPFILTER > 0
    878 	if (ifp->if_bpf)
    879 		bpf_mtap(ifp->if_bpf, m);
    880 #endif
    881 
    882 	/*
    883 	 * One read is one packet.
    884 	 */
    885 	do {
    886 		error = uiomove(mtod(m, caddr_t),
    887 		    min(m->m_len, uio->uio_resid), uio);
    888 		MFREE(m, n);
    889 		m = n;
    890 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    891 
    892 	if (m != NULL)
    893 		m_freem(m);
    894 
    895 out:
    896 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    897 	return (error);
    898 }
    899 
    900 static int
    901 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    902 {
    903 	return tap_dev_write(minor(dev), uio, flags);
    904 }
    905 
    906 static int
    907 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    908     struct ucred *cred, int flags)
    909 {
    910 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    911 }
    912 
    913 static int
    914 tap_dev_write(int unit, struct uio *uio, int flags)
    915 {
    916 	struct tap_softc *sc =
    917 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    918 	struct ifnet *ifp;
    919 	struct mbuf *m, **mp;
    920 	int error = 0;
    921 	int s;
    922 
    923 	if (sc == NULL)
    924 		return (ENXIO);
    925 
    926 	ifp = &sc->sc_ec.ec_if;
    927 
    928 	/* One write, one packet, that's the rule */
    929 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    930 	if (m == NULL) {
    931 		ifp->if_ierrors++;
    932 		return (ENOBUFS);
    933 	}
    934 	m->m_pkthdr.len = uio->uio_resid;
    935 
    936 	mp = &m;
    937 	while (error == 0 && uio->uio_resid > 0) {
    938 		if (*mp != m) {
    939 			MGET(*mp, M_DONTWAIT, MT_DATA);
    940 			if (*mp == NULL) {
    941 				error = ENOBUFS;
    942 				break;
    943 			}
    944 		}
    945 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    946 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    947 		mp = &(*mp)->m_next;
    948 	}
    949 	if (error) {
    950 		ifp->if_ierrors++;
    951 		m_freem(m);
    952 		return (error);
    953 	}
    954 
    955 	ifp->if_ipackets++;
    956 	m->m_pkthdr.rcvif = ifp;
    957 
    958 #if NBPFILTER > 0
    959 	if (ifp->if_bpf)
    960 		bpf_mtap(ifp->if_bpf, m);
    961 #endif
    962 	s =splnet();
    963 	(*ifp->if_input)(ifp, m);
    964 	splx(s);
    965 
    966 	return (0);
    967 }
    968 
    969 static int
    970 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    971     struct lwp *l)
    972 {
    973 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    974 }
    975 
    976 static int
    977 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    978 {
    979 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
    980 }
    981 
    982 static int
    983 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
    984 {
    985 	struct tap_softc *sc =
    986 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    987 	int error = 0;
    988 
    989 	if (sc == NULL)
    990 		return (ENXIO);
    991 
    992 	switch (cmd) {
    993 	case FIONREAD:
    994 		{
    995 			struct ifnet *ifp = &sc->sc_ec.ec_if;
    996 			struct mbuf *m;
    997 			int s;
    998 
    999 			s = splnet();
   1000 			IFQ_POLL(&ifp->if_snd, m);
   1001 
   1002 			if (m == NULL)
   1003 				*(int *)data = 0;
   1004 			else
   1005 				*(int *)data = m->m_pkthdr.len;
   1006 			splx(s);
   1007 		} break;
   1008 	case TIOCSPGRP:
   1009 	case FIOSETOWN:
   1010 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1011 		break;
   1012 	case TIOCGPGRP:
   1013 	case FIOGETOWN:
   1014 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1015 		break;
   1016 	case FIOASYNC:
   1017 		if (*(int *)data)
   1018 			sc->sc_flags |= TAP_ASYNCIO;
   1019 		else
   1020 			sc->sc_flags &= ~TAP_ASYNCIO;
   1021 		break;
   1022 	case FIONBIO:
   1023 		if (*(int *)data)
   1024 			sc->sc_flags |= TAP_NBIO;
   1025 		else
   1026 			sc->sc_flags &= ~TAP_NBIO;
   1027 		break;
   1028 	case TAPGIFNAME:
   1029 		{
   1030 			struct ifreq *ifr = (struct ifreq *)data;
   1031 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1032 
   1033 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1034 		} break;
   1035 	default:
   1036 		error = ENOTTY;
   1037 		break;
   1038 	}
   1039 
   1040 	return (0);
   1041 }
   1042 
   1043 static int
   1044 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1045 {
   1046 	return tap_dev_poll(minor(dev), events, l);
   1047 }
   1048 
   1049 static int
   1050 tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1051 {
   1052 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1053 }
   1054 
   1055 static int
   1056 tap_dev_poll(int unit, int events, struct lwp *l)
   1057 {
   1058 	struct tap_softc *sc =
   1059 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1060 	int revents = 0;
   1061 
   1062 	if (sc == NULL)
   1063 		return (ENXIO);
   1064 
   1065 	if (events & (POLLIN|POLLRDNORM)) {
   1066 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1067 		struct mbuf *m;
   1068 		int s;
   1069 
   1070 		s = splnet();
   1071 		IFQ_POLL(&ifp->if_snd, m);
   1072 		splx(s);
   1073 
   1074 		if (m != NULL)
   1075 			revents |= events & (POLLIN|POLLRDNORM);
   1076 		else {
   1077 			simple_lock(&sc->sc_kqlock);
   1078 			selrecord(l, &sc->sc_rsel);
   1079 			simple_unlock(&sc->sc_kqlock);
   1080 		}
   1081 	}
   1082 	revents |= events & (POLLOUT|POLLWRNORM);
   1083 
   1084 	return (revents);
   1085 }
   1086 
   1087 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1088 	tap_kqread };
   1089 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1090 	filt_seltrue };
   1091 
   1092 static int
   1093 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1094 {
   1095 	return tap_dev_kqfilter(minor(dev), kn);
   1096 }
   1097 
   1098 static int
   1099 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1100 {
   1101 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1102 }
   1103 
   1104 static int
   1105 tap_dev_kqfilter(int unit, struct knote *kn)
   1106 {
   1107 	struct tap_softc *sc =
   1108 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1109 
   1110 	if (sc == NULL)
   1111 		return (ENXIO);
   1112 
   1113 	switch(kn->kn_filter) {
   1114 	case EVFILT_READ:
   1115 		kn->kn_fop = &tap_read_filterops;
   1116 		break;
   1117 	case EVFILT_WRITE:
   1118 		kn->kn_fop = &tap_seltrue_filterops;
   1119 		break;
   1120 	default:
   1121 		return (1);
   1122 	}
   1123 
   1124 	kn->kn_hook = sc;
   1125 	simple_lock(&sc->sc_kqlock);
   1126 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1127 	simple_unlock(&sc->sc_kqlock);
   1128 	return (0);
   1129 }
   1130 
   1131 static void
   1132 tap_kqdetach(struct knote *kn)
   1133 {
   1134 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1135 
   1136 	simple_lock(&sc->sc_kqlock);
   1137 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1138 	simple_unlock(&sc->sc_kqlock);
   1139 }
   1140 
   1141 static int
   1142 tap_kqread(struct knote *kn, long hint)
   1143 {
   1144 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1145 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1146 	struct mbuf *m;
   1147 	int s;
   1148 
   1149 	s = splnet();
   1150 	IFQ_POLL(&ifp->if_snd, m);
   1151 
   1152 	if (m == NULL)
   1153 		kn->kn_data = 0;
   1154 	else
   1155 		kn->kn_data = m->m_pkthdr.len;
   1156 	splx(s);
   1157 	return (kn->kn_data != 0 ? 1 : 0);
   1158 }
   1159 
   1160 /*
   1161  * sysctl management routines
   1162  * You can set the address of an interface through:
   1163  * net.link.tap.tap<number>
   1164  *
   1165  * Note the consistent use of tap_log in order to use
   1166  * sysctl_teardown at unload time.
   1167  *
   1168  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1169  * blocks register a function in a special section of the kernel
   1170  * (called a link set) which is used at init_sysctl() time to cycle
   1171  * through all those functions to create the kernel's sysctl tree.
   1172  *
   1173  * It is not (currently) possible to use link sets in a LKM, so the
   1174  * easiest is to simply call our own setup routine at load time.
   1175  *
   1176  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1177  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1178  * whole kernel sysctl tree is built, it is not possible to add any
   1179  * permanent node.
   1180  *
   1181  * It should be noted that we're not saving the sysctlnode pointer
   1182  * we are returned when creating the "tap" node.  That structure
   1183  * cannot be trusted once out of the calling function, as it might
   1184  * get reused.  So we just save the MIB number, and always give the
   1185  * full path starting from the root for later calls to sysctl_createv
   1186  * and sysctl_destroyv.
   1187  */
   1188 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1189 {
   1190 	const struct sysctlnode *node;
   1191 	int error = 0;
   1192 
   1193 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1194 	    CTLFLAG_PERMANENT,
   1195 	    CTLTYPE_NODE, "net", NULL,
   1196 	    NULL, 0, NULL, 0,
   1197 	    CTL_NET, CTL_EOL)) != 0)
   1198 		return;
   1199 
   1200 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1201 	    CTLFLAG_PERMANENT,
   1202 	    CTLTYPE_NODE, "link", NULL,
   1203 	    NULL, 0, NULL, 0,
   1204 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1205 		return;
   1206 
   1207 	/*
   1208 	 * The first four parameters of sysctl_createv are for management.
   1209 	 *
   1210 	 * The four that follows, here starting with a '0' for the flags,
   1211 	 * describe the node.
   1212 	 *
   1213 	 * The next series of four set its value, through various possible
   1214 	 * means.
   1215 	 *
   1216 	 * Last but not least, the path to the node is described.  That path
   1217 	 * is relative to the given root (third argument).  Here we're
   1218 	 * starting from the root.
   1219 	 */
   1220 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1221 	    CTLFLAG_PERMANENT,
   1222 	    CTLTYPE_NODE, "tap", NULL,
   1223 	    NULL, 0, NULL, 0,
   1224 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1225 		return;
   1226 	tap_node = node->sysctl_num;
   1227 }
   1228 
   1229 /*
   1230  * The helper functions make Andrew Brown's interface really
   1231  * shine.  It makes possible to create value on the fly whether
   1232  * the sysctl value is read or written.
   1233  *
   1234  * As shown as an example in the man page, the first step is to
   1235  * create a copy of the node to have sysctl_lookup work on it.
   1236  *
   1237  * Here, we have more work to do than just a copy, since we have
   1238  * to create the string.  The first step is to collect the actual
   1239  * value of the node, which is a convenient pointer to the softc
   1240  * of the interface.  From there we create the string and use it
   1241  * as the value, but only for the *copy* of the node.
   1242  *
   1243  * Then we let sysctl_lookup do the magic, which consists in
   1244  * setting oldp and newp as required by the operation.  When the
   1245  * value is read, that means that the string will be copied to
   1246  * the user, and when it is written, the new value will be copied
   1247  * over in the addr array.
   1248  *
   1249  * If newp is NULL, the user was reading the value, so we don't
   1250  * have anything else to do.  If a new value was written, we
   1251  * have to check it.
   1252  *
   1253  * If it is incorrect, we can return an error and leave 'node' as
   1254  * it is:  since it is a copy of the actual node, the change will
   1255  * be forgotten.
   1256  *
   1257  * Upon a correct input, we commit the change to the ifnet
   1258  * structure of our interface.
   1259  */
   1260 static int
   1261 tap_sysctl_handler(SYSCTLFN_ARGS)
   1262 {
   1263 	struct sysctlnode node;
   1264 	struct tap_softc *sc;
   1265 	struct ifnet *ifp;
   1266 	int error;
   1267 	size_t len;
   1268 	char addr[3 * ETHER_ADDR_LEN];
   1269 
   1270 	node = *rnode;
   1271 	sc = node.sysctl_data;
   1272 	ifp = &sc->sc_ec.ec_if;
   1273 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
   1274 	node.sysctl_data = addr;
   1275 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1276 	if (error || newp == NULL)
   1277 		return (error);
   1278 
   1279 	len = strlen(addr);
   1280 	if (len < 11 || len > 17)
   1281 		return (EINVAL);
   1282 
   1283 	/* Commit change */
   1284 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1285 		return (EINVAL);
   1286 	return (error);
   1287 }
   1288 
   1289 /*
   1290  * ether_aton implementation, not using a static buffer.
   1291  */
   1292 static int
   1293 tap_ether_aton(u_char *dest, char *str)
   1294 {
   1295 	int i;
   1296 	char *cp = str;
   1297 	u_char val[6];
   1298 
   1299 #define	set_value			\
   1300 	if (*cp > '9' && *cp < 'a')	\
   1301 		*cp -= 'A' - 10;	\
   1302 	else if (*cp > '9')		\
   1303 		*cp -= 'a' - 10;	\
   1304 	else				\
   1305 		*cp -= '0'
   1306 
   1307 	for (i = 0; i < 6; i++, cp++) {
   1308 		if (!isxdigit(*cp))
   1309 			return (1);
   1310 		set_value;
   1311 		val[i] = *cp++;
   1312 		if (isxdigit(*cp)) {
   1313 			set_value;
   1314 			val[i] *= 16;
   1315 			val[i] += *cp++;
   1316 		}
   1317 		if (*cp == ':' || i == 5)
   1318 			continue;
   1319 		else
   1320 			return (1);
   1321 	}
   1322 	memcpy(dest, val, 6);
   1323 	return (0);
   1324 }
   1325