if_tap.c revision 1.14 1 /* $NetBSD: if_tap.c,v 1.14 2006/03/16 15:57:59 christos Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to the NetBSD Foundation
8 * by Quentin Garnier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
41 * device to the system, but can also be accessed by userland through a
42 * character device interface, which allows reading and injecting frames.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.14 2006/03/16 15:57:59 christos Exp $");
47
48 #if defined(_KERNEL_OPT)
49 #include "bpfilter.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/ksyms.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 /*
76 * sysctl node management
77 *
78 * It's not really possible to use a SYSCTL_SETUP block with
79 * current LKM implementation, so it is easier to just define
80 * our own function.
81 *
82 * The handler function is a "helper" in Andrew Brown's sysctl
83 * framework terminology. It is used as a gateway for sysctl
84 * requests over the nodes.
85 *
86 * tap_log allows the module to log creations of nodes and
87 * destroy them all at once using sysctl_teardown.
88 */
89 static int tap_node;
90 static int tap_sysctl_handler(SYSCTLFN_PROTO);
91 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
92
93 /*
94 * Since we're an Ethernet device, we need the 3 following
95 * components: a leading struct device, a struct ethercom,
96 * and also a struct ifmedia since we don't attach a PHY to
97 * ourselves. We could emulate one, but there's no real
98 * point.
99 */
100
101 struct tap_softc {
102 struct device sc_dev;
103 struct ifmedia sc_im;
104 struct ethercom sc_ec;
105 int sc_flags;
106 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
107 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
108 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
109 #define TAP_GOING 0x00000008 /* interface is being destroyed */
110 struct selinfo sc_rsel;
111 pid_t sc_pgid; /* For async. IO */
112 struct lock sc_rdlock;
113 struct simplelock sc_kqlock;
114 };
115
116 /* autoconf(9) glue */
117
118 void tapattach(int);
119
120 static int tap_match(struct device *, struct cfdata *, void *);
121 static void tap_attach(struct device *, struct device *, void *);
122 static int tap_detach(struct device*, int);
123
124 /* Ethernet address helper functions */
125
126 static int tap_ether_aton(u_char *, char *);
127
128 CFATTACH_DECL(tap, sizeof(struct tap_softc),
129 tap_match, tap_attach, tap_detach, NULL);
130 extern struct cfdriver tap_cd;
131
132 /* Real device access routines */
133 static int tap_dev_close(struct tap_softc *);
134 static int tap_dev_read(int, struct uio *, int);
135 static int tap_dev_write(int, struct uio *, int);
136 static int tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
137 static int tap_dev_poll(int, int, struct lwp *);
138 static int tap_dev_kqfilter(int, struct knote *);
139
140 /* Fileops access routines */
141 static int tap_fops_close(struct file *, struct lwp *);
142 static int tap_fops_read(struct file *, off_t *, struct uio *,
143 struct ucred *, int);
144 static int tap_fops_write(struct file *, off_t *, struct uio *,
145 struct ucred *, int);
146 static int tap_fops_ioctl(struct file *, u_long, void *,
147 struct lwp *);
148 static int tap_fops_poll(struct file *, int, struct lwp *);
149 static int tap_fops_kqfilter(struct file *, struct knote *);
150
151 static const struct fileops tap_fileops = {
152 tap_fops_read,
153 tap_fops_write,
154 tap_fops_ioctl,
155 fnullop_fcntl,
156 tap_fops_poll,
157 fbadop_stat,
158 tap_fops_close,
159 tap_fops_kqfilter,
160 };
161
162 /* Helper for cloning open() */
163 static int tap_dev_cloner(struct lwp *);
164
165 /* Character device routines */
166 static int tap_cdev_open(dev_t, int, int, struct lwp *);
167 static int tap_cdev_close(dev_t, int, int, struct lwp *);
168 static int tap_cdev_read(dev_t, struct uio *, int);
169 static int tap_cdev_write(dev_t, struct uio *, int);
170 static int tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
171 static int tap_cdev_poll(dev_t, int, struct lwp *);
172 static int tap_cdev_kqfilter(dev_t, struct knote *);
173
174 const struct cdevsw tap_cdevsw = {
175 tap_cdev_open, tap_cdev_close,
176 tap_cdev_read, tap_cdev_write,
177 tap_cdev_ioctl, nostop, notty,
178 tap_cdev_poll, nommap,
179 tap_cdev_kqfilter,
180 };
181
182 #define TAP_CLONER 0xfffff /* Maximal minor value */
183
184 /* kqueue-related routines */
185 static void tap_kqdetach(struct knote *);
186 static int tap_kqread(struct knote *, long);
187
188 /*
189 * Those are needed by the if_media interface.
190 */
191
192 static int tap_mediachange(struct ifnet *);
193 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
194
195 /*
196 * Those are needed by the ifnet interface, and would typically be
197 * there for any network interface driver.
198 * Some other routines are optional: watchdog and drain.
199 */
200
201 static void tap_start(struct ifnet *);
202 static void tap_stop(struct ifnet *, int);
203 static int tap_init(struct ifnet *);
204 static int tap_ioctl(struct ifnet *, u_long, caddr_t);
205
206 /* This is an internal function to keep tap_ioctl readable */
207 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
208
209 /*
210 * tap is a clonable interface, although it is highly unrealistic for
211 * an Ethernet device.
212 *
213 * Here are the bits needed for a clonable interface.
214 */
215 static int tap_clone_create(struct if_clone *, int);
216 static int tap_clone_destroy(struct ifnet *);
217
218 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
219 tap_clone_create,
220 tap_clone_destroy);
221
222 /* Helper functionis shared by the two cloning code paths */
223 static struct tap_softc * tap_clone_creator(int);
224 int tap_clone_destroyer(struct device *);
225
226 void
227 tapattach(int n)
228 {
229 int error;
230
231 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
232 if (error) {
233 aprint_error("%s: unable to register cfattach\n",
234 tap_cd.cd_name);
235 (void)config_cfdriver_detach(&tap_cd);
236 return;
237 }
238
239 if_clone_attach(&tap_cloners);
240 }
241
242 /* Pretty much useless for a pseudo-device */
243 static int
244 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
245 {
246 return (1);
247 }
248
249 void
250 tap_attach(struct device *parent, struct device *self, void *aux)
251 {
252 struct tap_softc *sc = (struct tap_softc *)self;
253 struct ifnet *ifp;
254 u_int8_t enaddr[ETHER_ADDR_LEN] =
255 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
256 char enaddrstr[3 * ETHER_ADDR_LEN];
257 uint32_t ui;
258 int error;
259 const struct sysctlnode *node;
260
261 aprint_normal("%s: faking Ethernet device\n",
262 self->dv_xname);
263
264 /*
265 * In order to obtain unique initial Ethernet address on a host,
266 * do some randomisation using mono_time. It's not meant for anything
267 * but avoiding hard-coding an address.
268 */
269 ui = (mono_time.tv_sec ^ mono_time.tv_usec) & 0xffffff;
270 memcpy(enaddr+3, (u_int8_t *)&ui, 3);
271
272 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
273 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
274
275 /*
276 * Why 1000baseT? Why not? You can add more.
277 *
278 * Note that there are 3 steps: init, one or several additions to
279 * list of supported media, and in the end, the selection of one
280 * of them.
281 */
282 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
283 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
284 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
285 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
289 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
290 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
291
292 /*
293 * One should note that an interface must do multicast in order
294 * to support IPv6.
295 */
296 ifp = &sc->sc_ec.ec_if;
297 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
298 ifp->if_softc = sc;
299 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
300 ifp->if_ioctl = tap_ioctl;
301 ifp->if_start = tap_start;
302 ifp->if_stop = tap_stop;
303 ifp->if_init = tap_init;
304 IFQ_SET_READY(&ifp->if_snd);
305
306 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
307
308 /* Those steps are mandatory for an Ethernet driver, the fisrt call
309 * being common to all network interface drivers. */
310 if_attach(ifp);
311 ether_ifattach(ifp, enaddr);
312
313 sc->sc_flags = 0;
314
315 /*
316 * Add a sysctl node for that interface.
317 *
318 * The pointer transmitted is not a string, but instead a pointer to
319 * the softc structure, which we can use to build the string value on
320 * the fly in the helper function of the node. See the comments for
321 * tap_sysctl_handler for details.
322 */
323 if ((error = sysctl_createv(NULL, 0, NULL,
324 &node, CTLFLAG_READWRITE,
325 CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
326 tap_sysctl_handler, 0, sc, 18,
327 CTL_NET, AF_LINK, tap_node, sc->sc_dev.dv_unit, CTL_EOL)) != 0)
328 aprint_error("%s: sysctl_createv returned %d, ignoring\n",
329 sc->sc_dev.dv_xname, error);
330
331 /*
332 * Initialize the two locks for the device.
333 *
334 * We need a lock here because even though the tap device can be
335 * opened only once, the file descriptor might be passed to another
336 * process, say a fork(2)ed child.
337 *
338 * The Giant saves us from most of the hassle, but since the read
339 * operation can sleep, we don't want two processes to wake up at
340 * the same moment and both try and dequeue a single packet.
341 *
342 * The queue for event listeners (used by kqueue(9), see below) has
343 * to be protected, too, but we don't need the same level of
344 * complexity for that lock, so a simple spinning lock is fine.
345 */
346 lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
347 simple_lock_init(&sc->sc_kqlock);
348 }
349
350 /*
351 * When detaching, we do the inverse of what is done in the attach
352 * routine, in reversed order.
353 */
354 static int
355 tap_detach(struct device* self, int flags)
356 {
357 struct tap_softc *sc = (struct tap_softc *)self;
358 struct ifnet *ifp = &sc->sc_ec.ec_if;
359 int error, s;
360
361 /*
362 * Some processes might be sleeping on "tap", so we have to make
363 * them release their hold on the device.
364 *
365 * The LK_DRAIN operation will wait for every locked process to
366 * release their hold.
367 */
368 sc->sc_flags |= TAP_GOING;
369 s = splnet();
370 tap_stop(ifp, 1);
371 if_down(ifp);
372 splx(s);
373 lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
374
375 /*
376 * Destroying a single leaf is a very straightforward operation using
377 * sysctl_destroyv. One should be sure to always end the path with
378 * CTL_EOL.
379 */
380 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
381 sc->sc_dev.dv_unit, CTL_EOL)) != 0)
382 aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
383 sc->sc_dev.dv_xname, error);
384 ether_ifdetach(ifp);
385 if_detach(ifp);
386 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
387
388 return (0);
389 }
390
391 /*
392 * This function is called by the ifmedia layer to notify the driver
393 * that the user requested a media change. A real driver would
394 * reconfigure the hardware.
395 */
396 static int
397 tap_mediachange(struct ifnet *ifp)
398 {
399 return (0);
400 }
401
402 /*
403 * Here the user asks for the currently used media.
404 */
405 static void
406 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
407 {
408 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
409 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
410 }
411
412 /*
413 * This is the function where we SEND packets.
414 *
415 * There is no 'receive' equivalent. A typical driver will get
416 * interrupts from the hardware, and from there will inject new packets
417 * into the network stack.
418 *
419 * Once handled, a packet must be freed. A real driver might not be able
420 * to fit all the pending packets into the hardware, and is allowed to
421 * return before having sent all the packets. It should then use the
422 * if_flags flag IFF_OACTIVE to notify the upper layer.
423 *
424 * There are also other flags one should check, such as IFF_PAUSE.
425 *
426 * It is our duty to make packets available to BPF listeners.
427 *
428 * You should be aware that this function is called by the Ethernet layer
429 * at splnet().
430 *
431 * When the device is opened, we have to pass the packet(s) to the
432 * userland. For that we stay in OACTIVE mode while the userland gets
433 * the packets, and we send a signal to the processes waiting to read.
434 *
435 * wakeup(sc) is the counterpart to the tsleep call in
436 * tap_dev_read, while selnotify() is used for kevent(2) and
437 * poll(2) (which includes select(2)) listeners.
438 */
439 static void
440 tap_start(struct ifnet *ifp)
441 {
442 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
443 struct mbuf *m0;
444
445 if ((sc->sc_flags & TAP_INUSE) == 0) {
446 /* Simply drop packets */
447 for(;;) {
448 IFQ_DEQUEUE(&ifp->if_snd, m0);
449 if (m0 == NULL)
450 return;
451
452 ifp->if_opackets++;
453 #if NBPFILTER > 0
454 if (ifp->if_bpf)
455 bpf_mtap(ifp->if_bpf, m0);
456 #endif
457
458 m_freem(m0);
459 }
460 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
461 ifp->if_flags |= IFF_OACTIVE;
462 wakeup(sc);
463 selnotify(&sc->sc_rsel, 1);
464 if (sc->sc_flags & TAP_ASYNCIO)
465 fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
466 POLLIN|POLLRDNORM, NULL);
467 }
468 }
469
470 /*
471 * A typical driver will only contain the following handlers for
472 * ioctl calls, except SIOCSIFPHYADDR.
473 * The latter is a hack I used to set the Ethernet address of the
474 * faked device.
475 *
476 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
477 * called under splnet().
478 */
479 static int
480 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
481 {
482 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
483 struct ifreq *ifr = (struct ifreq *)data;
484 int s, error;
485
486 s = splnet();
487
488 switch (cmd) {
489 case SIOCSIFMEDIA:
490 case SIOCGIFMEDIA:
491 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
492 break;
493 case SIOCSIFPHYADDR:
494 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
495 break;
496 default:
497 error = ether_ioctl(ifp, cmd, data);
498 if (error == ENETRESET)
499 error = 0;
500 break;
501 }
502
503 splx(s);
504
505 return (error);
506 }
507
508 /*
509 * Helper function to set Ethernet address. This shouldn't be done there,
510 * and should actually be available to all Ethernet drivers, real or not.
511 */
512 static int
513 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
514 {
515 struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
516
517 if (sa->sa_family != AF_LINK)
518 return (EINVAL);
519
520 memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
521
522 return (0);
523 }
524
525 /*
526 * _init() would typically be called when an interface goes up,
527 * meaning it should configure itself into the state in which it
528 * can send packets.
529 */
530 static int
531 tap_init(struct ifnet *ifp)
532 {
533 ifp->if_flags |= IFF_RUNNING;
534
535 tap_start(ifp);
536
537 return (0);
538 }
539
540 /*
541 * _stop() is called when an interface goes down. It is our
542 * responsability to validate that state by clearing the
543 * IFF_RUNNING flag.
544 *
545 * We have to wake up all the sleeping processes to have the pending
546 * read requests cancelled.
547 */
548 static void
549 tap_stop(struct ifnet *ifp, int disable)
550 {
551 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
552
553 ifp->if_flags &= ~IFF_RUNNING;
554 wakeup(sc);
555 selnotify(&sc->sc_rsel, 1);
556 if (sc->sc_flags & TAP_ASYNCIO)
557 fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
558 }
559
560 /*
561 * The 'create' command of ifconfig can be used to create
562 * any numbered instance of a given device. Thus we have to
563 * make sure we have enough room in cd_devs to create the
564 * user-specified instance. config_attach_pseudo will do this
565 * for us.
566 */
567 static int
568 tap_clone_create(struct if_clone *ifc, int unit)
569 {
570 if (tap_clone_creator(unit) == NULL) {
571 aprint_error("%s%d: unable to attach an instance\n",
572 tap_cd.cd_name, unit);
573 return (ENXIO);
574 }
575
576 return (0);
577 }
578
579 /*
580 * tap(4) can be cloned by two ways:
581 * using 'ifconfig tap0 create', which will use the network
582 * interface cloning API, and call tap_clone_create above.
583 * opening the cloning device node, whose minor number is TAP_CLONER.
584 * See below for an explanation on how this part work.
585 *
586 * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
587 * autoconf(9) choose a unit number for us. This is what happens when
588 * the cloner is openend, while the ifcloner interface creates a device
589 * with a specific unit number.
590 */
591 static struct tap_softc *
592 tap_clone_creator(int unit)
593 {
594 struct cfdata *cf;
595
596 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
597 cf->cf_name = tap_cd.cd_name;
598 cf->cf_atname = tap_ca.ca_name;
599 cf->cf_unit = unit;
600 cf->cf_fstate = FSTATE_STAR;
601
602 return (struct tap_softc *)config_attach_pseudo(cf);
603 }
604
605 /*
606 * The clean design of if_clone and autoconf(9) makes that part
607 * really straightforward. The second argument of config_detach
608 * means neither QUIET nor FORCED.
609 */
610 static int
611 tap_clone_destroy(struct ifnet *ifp)
612 {
613 return tap_clone_destroyer((struct device *)ifp->if_softc);
614 }
615
616 int
617 tap_clone_destroyer(struct device *dev)
618 {
619 struct cfdata *cf = dev->dv_cfdata;
620 int error;
621
622 if ((error = config_detach(dev, 0)) != 0)
623 aprint_error("%s: unable to detach instance\n",
624 dev->dv_xname);
625 free(cf, M_DEVBUF);
626
627 return (error);
628 }
629
630 /*
631 * tap(4) is a bit of an hybrid device. It can be used in two different
632 * ways:
633 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
634 * 2. open /dev/tap, get a new interface created and read/write off it.
635 * That interface is destroyed when the process that had it created exits.
636 *
637 * The first way is managed by the cdevsw structure, and you access interfaces
638 * through a (major, minor) mapping: tap4 is obtained by the minor number
639 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
640 *
641 * The second way is the so-called "cloning" device. It's a special minor
642 * number (chosen as the maximal number, to allow as much tap devices as
643 * possible). The user first opens the cloner (e.g., /dev/tap), and that
644 * call ends in tap_cdev_open. The actual place where it is handled is
645 * tap_dev_cloner.
646 *
647 * An tap device cannot be opened more than once at a time, so the cdevsw
648 * part of open() does nothing but noting that the interface is being used and
649 * hence ready to actually handle packets.
650 */
651
652 static int
653 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
654 {
655 struct tap_softc *sc;
656
657 if (minor(dev) == TAP_CLONER)
658 return tap_dev_cloner(l);
659
660 sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
661 if (sc == NULL)
662 return (ENXIO);
663
664 /* The device can only be opened once */
665 if (sc->sc_flags & TAP_INUSE)
666 return (EBUSY);
667 sc->sc_flags |= TAP_INUSE;
668 return (0);
669 }
670
671 /*
672 * There are several kinds of cloning devices, and the most simple is the one
673 * tap(4) uses. What it does is change the file descriptor with a new one,
674 * with its own fileops structure (which maps to the various read, write,
675 * ioctl functions). It starts allocating a new file descriptor with falloc,
676 * then actually creates the new tap devices.
677 *
678 * Once those two steps are successful, we can re-wire the existing file
679 * descriptor to its new self. This is done with fdclone(): it fills the fp
680 * structure as needed (notably f_data gets filled with the fifth parameter
681 * passed, the unit of the tap device which will allows us identifying the
682 * device later), and returns EMOVEFD.
683 *
684 * That magic value is interpreted by sys_open() which then replaces the
685 * current file descriptor by the new one (through a magic member of struct
686 * lwp, l_dupfd).
687 *
688 * The tap device is flagged as being busy since it otherwise could be
689 * externally accessed through the corresponding device node with the cdevsw
690 * interface.
691 */
692
693 static int
694 tap_dev_cloner(struct lwp *l)
695 {
696 struct tap_softc *sc;
697 struct file *fp;
698 int error, fd;
699
700 if ((error = falloc(l->l_proc, &fp, &fd)) != 0)
701 return (error);
702
703 if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
704 FILE_UNUSE(fp, l);
705 ffree(fp);
706 return (ENXIO);
707 }
708
709 sc->sc_flags |= TAP_INUSE;
710
711 return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
712 (void *)(intptr_t)sc->sc_dev.dv_unit);
713 }
714
715 /*
716 * While all other operations (read, write, ioctl, poll and kqfilter) are
717 * really the same whether we are in cdevsw or fileops mode, the close()
718 * function is slightly different in the two cases.
719 *
720 * As for the other, the core of it is shared in tap_dev_close. What
721 * it does is sufficient for the cdevsw interface, but the cloning interface
722 * needs another thing: the interface is destroyed when the processes that
723 * created it closes it.
724 */
725 static int
726 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
727 {
728 struct tap_softc *sc =
729 (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
730
731 if (sc == NULL)
732 return (ENXIO);
733
734 return tap_dev_close(sc);
735 }
736
737 /*
738 * It might happen that the administrator used ifconfig to externally destroy
739 * the interface. In that case, tap_fops_close will be called while
740 * tap_detach is already happening. If we called it again from here, we
741 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
742 */
743 static int
744 tap_fops_close(struct file *fp, struct lwp *l)
745 {
746 int unit = (intptr_t)fp->f_data;
747 struct tap_softc *sc;
748 int error;
749
750 sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
751 if (sc == NULL)
752 return (ENXIO);
753
754 /* tap_dev_close currently always succeeds, but it might not
755 * always be the case. */
756 if ((error = tap_dev_close(sc)) != 0)
757 return (error);
758
759 /* Destroy the device now that it is no longer useful,
760 * unless it's already being destroyed. */
761 if ((sc->sc_flags & TAP_GOING) != 0)
762 return (0);
763
764 return tap_clone_destroyer((struct device *)sc);
765 }
766
767 static int
768 tap_dev_close(struct tap_softc *sc)
769 {
770 struct ifnet *ifp;
771 int s;
772
773 s = splnet();
774 /* Let tap_start handle packets again */
775 ifp = &sc->sc_ec.ec_if;
776 ifp->if_flags &= ~IFF_OACTIVE;
777
778 /* Purge output queue */
779 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
780 struct mbuf *m;
781
782 for (;;) {
783 IFQ_DEQUEUE(&ifp->if_snd, m);
784 if (m == NULL)
785 break;
786
787 ifp->if_opackets++;
788 #if NBPFILTER > 0
789 if (ifp->if_bpf)
790 bpf_mtap(ifp->if_bpf, m);
791 #endif
792 }
793 }
794 splx(s);
795
796 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
797
798 return (0);
799 }
800
801 static int
802 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
803 {
804 return tap_dev_read(minor(dev), uio, flags);
805 }
806
807 static int
808 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
809 struct ucred *cred, int flags)
810 {
811 return tap_dev_read((intptr_t)fp->f_data, uio, flags);
812 }
813
814 static int
815 tap_dev_read(int unit, struct uio *uio, int flags)
816 {
817 struct tap_softc *sc =
818 (struct tap_softc *)device_lookup(&tap_cd, unit);
819 struct ifnet *ifp;
820 struct mbuf *m, *n;
821 int error = 0, s;
822
823 if (sc == NULL)
824 return (ENXIO);
825
826 ifp = &sc->sc_ec.ec_if;
827 if ((ifp->if_flags & IFF_UP) == 0)
828 return (EHOSTDOWN);
829
830 /*
831 * In the TAP_NBIO case, we have to make sure we won't be sleeping
832 */
833 if ((sc->sc_flags & TAP_NBIO) &&
834 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
835 return (EWOULDBLOCK);
836 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
837 if (error != 0)
838 return (error);
839
840 s = splnet();
841 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
842 ifp->if_flags &= ~IFF_OACTIVE;
843 splx(s);
844 /*
845 * We must release the lock before sleeping, and re-acquire it
846 * after.
847 */
848 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
849 if (sc->sc_flags & TAP_NBIO)
850 error = EWOULDBLOCK;
851 else
852 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
853
854 if (error != 0)
855 return (error);
856 /* The device might have been downed */
857 if ((ifp->if_flags & IFF_UP) == 0)
858 return (EHOSTDOWN);
859 if ((sc->sc_flags & TAP_NBIO) &&
860 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
861 return (EWOULDBLOCK);
862 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
863 if (error != 0)
864 return (error);
865 s = splnet();
866 }
867
868 IFQ_DEQUEUE(&ifp->if_snd, m);
869 ifp->if_flags &= ~IFF_OACTIVE;
870 splx(s);
871 if (m == NULL) {
872 error = 0;
873 goto out;
874 }
875
876 ifp->if_opackets++;
877 #if NBPFILTER > 0
878 if (ifp->if_bpf)
879 bpf_mtap(ifp->if_bpf, m);
880 #endif
881
882 /*
883 * One read is one packet.
884 */
885 do {
886 error = uiomove(mtod(m, caddr_t),
887 min(m->m_len, uio->uio_resid), uio);
888 MFREE(m, n);
889 m = n;
890 } while (m != NULL && uio->uio_resid > 0 && error == 0);
891
892 if (m != NULL)
893 m_freem(m);
894
895 out:
896 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
897 return (error);
898 }
899
900 static int
901 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
902 {
903 return tap_dev_write(minor(dev), uio, flags);
904 }
905
906 static int
907 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
908 struct ucred *cred, int flags)
909 {
910 return tap_dev_write((intptr_t)fp->f_data, uio, flags);
911 }
912
913 static int
914 tap_dev_write(int unit, struct uio *uio, int flags)
915 {
916 struct tap_softc *sc =
917 (struct tap_softc *)device_lookup(&tap_cd, unit);
918 struct ifnet *ifp;
919 struct mbuf *m, **mp;
920 int error = 0;
921 int s;
922
923 if (sc == NULL)
924 return (ENXIO);
925
926 ifp = &sc->sc_ec.ec_if;
927
928 /* One write, one packet, that's the rule */
929 MGETHDR(m, M_DONTWAIT, MT_DATA);
930 if (m == NULL) {
931 ifp->if_ierrors++;
932 return (ENOBUFS);
933 }
934 m->m_pkthdr.len = uio->uio_resid;
935
936 mp = &m;
937 while (error == 0 && uio->uio_resid > 0) {
938 if (*mp != m) {
939 MGET(*mp, M_DONTWAIT, MT_DATA);
940 if (*mp == NULL) {
941 error = ENOBUFS;
942 break;
943 }
944 }
945 (*mp)->m_len = min(MHLEN, uio->uio_resid);
946 error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
947 mp = &(*mp)->m_next;
948 }
949 if (error) {
950 ifp->if_ierrors++;
951 m_freem(m);
952 return (error);
953 }
954
955 ifp->if_ipackets++;
956 m->m_pkthdr.rcvif = ifp;
957
958 #if NBPFILTER > 0
959 if (ifp->if_bpf)
960 bpf_mtap(ifp->if_bpf, m);
961 #endif
962 s =splnet();
963 (*ifp->if_input)(ifp, m);
964 splx(s);
965
966 return (0);
967 }
968
969 static int
970 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
971 struct lwp *l)
972 {
973 return tap_dev_ioctl(minor(dev), cmd, data, l);
974 }
975
976 static int
977 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
978 {
979 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
980 }
981
982 static int
983 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
984 {
985 struct tap_softc *sc =
986 (struct tap_softc *)device_lookup(&tap_cd, unit);
987 int error = 0;
988
989 if (sc == NULL)
990 return (ENXIO);
991
992 switch (cmd) {
993 case FIONREAD:
994 {
995 struct ifnet *ifp = &sc->sc_ec.ec_if;
996 struct mbuf *m;
997 int s;
998
999 s = splnet();
1000 IFQ_POLL(&ifp->if_snd, m);
1001
1002 if (m == NULL)
1003 *(int *)data = 0;
1004 else
1005 *(int *)data = m->m_pkthdr.len;
1006 splx(s);
1007 } break;
1008 case TIOCSPGRP:
1009 case FIOSETOWN:
1010 error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1011 break;
1012 case TIOCGPGRP:
1013 case FIOGETOWN:
1014 error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1015 break;
1016 case FIOASYNC:
1017 if (*(int *)data)
1018 sc->sc_flags |= TAP_ASYNCIO;
1019 else
1020 sc->sc_flags &= ~TAP_ASYNCIO;
1021 break;
1022 case FIONBIO:
1023 if (*(int *)data)
1024 sc->sc_flags |= TAP_NBIO;
1025 else
1026 sc->sc_flags &= ~TAP_NBIO;
1027 break;
1028 case TAPGIFNAME:
1029 {
1030 struct ifreq *ifr = (struct ifreq *)data;
1031 struct ifnet *ifp = &sc->sc_ec.ec_if;
1032
1033 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1034 } break;
1035 default:
1036 error = ENOTTY;
1037 break;
1038 }
1039
1040 return (0);
1041 }
1042
1043 static int
1044 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1045 {
1046 return tap_dev_poll(minor(dev), events, l);
1047 }
1048
1049 static int
1050 tap_fops_poll(struct file *fp, int events, struct lwp *l)
1051 {
1052 return tap_dev_poll((intptr_t)fp->f_data, events, l);
1053 }
1054
1055 static int
1056 tap_dev_poll(int unit, int events, struct lwp *l)
1057 {
1058 struct tap_softc *sc =
1059 (struct tap_softc *)device_lookup(&tap_cd, unit);
1060 int revents = 0;
1061
1062 if (sc == NULL)
1063 return (ENXIO);
1064
1065 if (events & (POLLIN|POLLRDNORM)) {
1066 struct ifnet *ifp = &sc->sc_ec.ec_if;
1067 struct mbuf *m;
1068 int s;
1069
1070 s = splnet();
1071 IFQ_POLL(&ifp->if_snd, m);
1072 splx(s);
1073
1074 if (m != NULL)
1075 revents |= events & (POLLIN|POLLRDNORM);
1076 else {
1077 simple_lock(&sc->sc_kqlock);
1078 selrecord(l, &sc->sc_rsel);
1079 simple_unlock(&sc->sc_kqlock);
1080 }
1081 }
1082 revents |= events & (POLLOUT|POLLWRNORM);
1083
1084 return (revents);
1085 }
1086
1087 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1088 tap_kqread };
1089 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1090 filt_seltrue };
1091
1092 static int
1093 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1094 {
1095 return tap_dev_kqfilter(minor(dev), kn);
1096 }
1097
1098 static int
1099 tap_fops_kqfilter(struct file *fp, struct knote *kn)
1100 {
1101 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1102 }
1103
1104 static int
1105 tap_dev_kqfilter(int unit, struct knote *kn)
1106 {
1107 struct tap_softc *sc =
1108 (struct tap_softc *)device_lookup(&tap_cd, unit);
1109
1110 if (sc == NULL)
1111 return (ENXIO);
1112
1113 switch(kn->kn_filter) {
1114 case EVFILT_READ:
1115 kn->kn_fop = &tap_read_filterops;
1116 break;
1117 case EVFILT_WRITE:
1118 kn->kn_fop = &tap_seltrue_filterops;
1119 break;
1120 default:
1121 return (1);
1122 }
1123
1124 kn->kn_hook = sc;
1125 simple_lock(&sc->sc_kqlock);
1126 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1127 simple_unlock(&sc->sc_kqlock);
1128 return (0);
1129 }
1130
1131 static void
1132 tap_kqdetach(struct knote *kn)
1133 {
1134 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1135
1136 simple_lock(&sc->sc_kqlock);
1137 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1138 simple_unlock(&sc->sc_kqlock);
1139 }
1140
1141 static int
1142 tap_kqread(struct knote *kn, long hint)
1143 {
1144 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1145 struct ifnet *ifp = &sc->sc_ec.ec_if;
1146 struct mbuf *m;
1147 int s;
1148
1149 s = splnet();
1150 IFQ_POLL(&ifp->if_snd, m);
1151
1152 if (m == NULL)
1153 kn->kn_data = 0;
1154 else
1155 kn->kn_data = m->m_pkthdr.len;
1156 splx(s);
1157 return (kn->kn_data != 0 ? 1 : 0);
1158 }
1159
1160 /*
1161 * sysctl management routines
1162 * You can set the address of an interface through:
1163 * net.link.tap.tap<number>
1164 *
1165 * Note the consistent use of tap_log in order to use
1166 * sysctl_teardown at unload time.
1167 *
1168 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1169 * blocks register a function in a special section of the kernel
1170 * (called a link set) which is used at init_sysctl() time to cycle
1171 * through all those functions to create the kernel's sysctl tree.
1172 *
1173 * It is not (currently) possible to use link sets in a LKM, so the
1174 * easiest is to simply call our own setup routine at load time.
1175 *
1176 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1177 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1178 * whole kernel sysctl tree is built, it is not possible to add any
1179 * permanent node.
1180 *
1181 * It should be noted that we're not saving the sysctlnode pointer
1182 * we are returned when creating the "tap" node. That structure
1183 * cannot be trusted once out of the calling function, as it might
1184 * get reused. So we just save the MIB number, and always give the
1185 * full path starting from the root for later calls to sysctl_createv
1186 * and sysctl_destroyv.
1187 */
1188 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1189 {
1190 const struct sysctlnode *node;
1191 int error = 0;
1192
1193 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1194 CTLFLAG_PERMANENT,
1195 CTLTYPE_NODE, "net", NULL,
1196 NULL, 0, NULL, 0,
1197 CTL_NET, CTL_EOL)) != 0)
1198 return;
1199
1200 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1201 CTLFLAG_PERMANENT,
1202 CTLTYPE_NODE, "link", NULL,
1203 NULL, 0, NULL, 0,
1204 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1205 return;
1206
1207 /*
1208 * The first four parameters of sysctl_createv are for management.
1209 *
1210 * The four that follows, here starting with a '0' for the flags,
1211 * describe the node.
1212 *
1213 * The next series of four set its value, through various possible
1214 * means.
1215 *
1216 * Last but not least, the path to the node is described. That path
1217 * is relative to the given root (third argument). Here we're
1218 * starting from the root.
1219 */
1220 if ((error = sysctl_createv(clog, 0, NULL, &node,
1221 CTLFLAG_PERMANENT,
1222 CTLTYPE_NODE, "tap", NULL,
1223 NULL, 0, NULL, 0,
1224 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1225 return;
1226 tap_node = node->sysctl_num;
1227 }
1228
1229 /*
1230 * The helper functions make Andrew Brown's interface really
1231 * shine. It makes possible to create value on the fly whether
1232 * the sysctl value is read or written.
1233 *
1234 * As shown as an example in the man page, the first step is to
1235 * create a copy of the node to have sysctl_lookup work on it.
1236 *
1237 * Here, we have more work to do than just a copy, since we have
1238 * to create the string. The first step is to collect the actual
1239 * value of the node, which is a convenient pointer to the softc
1240 * of the interface. From there we create the string and use it
1241 * as the value, but only for the *copy* of the node.
1242 *
1243 * Then we let sysctl_lookup do the magic, which consists in
1244 * setting oldp and newp as required by the operation. When the
1245 * value is read, that means that the string will be copied to
1246 * the user, and when it is written, the new value will be copied
1247 * over in the addr array.
1248 *
1249 * If newp is NULL, the user was reading the value, so we don't
1250 * have anything else to do. If a new value was written, we
1251 * have to check it.
1252 *
1253 * If it is incorrect, we can return an error and leave 'node' as
1254 * it is: since it is a copy of the actual node, the change will
1255 * be forgotten.
1256 *
1257 * Upon a correct input, we commit the change to the ifnet
1258 * structure of our interface.
1259 */
1260 static int
1261 tap_sysctl_handler(SYSCTLFN_ARGS)
1262 {
1263 struct sysctlnode node;
1264 struct tap_softc *sc;
1265 struct ifnet *ifp;
1266 int error;
1267 size_t len;
1268 char addr[3 * ETHER_ADDR_LEN];
1269
1270 node = *rnode;
1271 sc = node.sysctl_data;
1272 ifp = &sc->sc_ec.ec_if;
1273 (void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
1274 node.sysctl_data = addr;
1275 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1276 if (error || newp == NULL)
1277 return (error);
1278
1279 len = strlen(addr);
1280 if (len < 11 || len > 17)
1281 return (EINVAL);
1282
1283 /* Commit change */
1284 if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
1285 return (EINVAL);
1286 return (error);
1287 }
1288
1289 /*
1290 * ether_aton implementation, not using a static buffer.
1291 */
1292 static int
1293 tap_ether_aton(u_char *dest, char *str)
1294 {
1295 int i;
1296 char *cp = str;
1297 u_char val[6];
1298
1299 #define set_value \
1300 if (*cp > '9' && *cp < 'a') \
1301 *cp -= 'A' - 10; \
1302 else if (*cp > '9') \
1303 *cp -= 'a' - 10; \
1304 else \
1305 *cp -= '0'
1306
1307 for (i = 0; i < 6; i++, cp++) {
1308 if (!isxdigit(*cp))
1309 return (1);
1310 set_value;
1311 val[i] = *cp++;
1312 if (isxdigit(*cp)) {
1313 set_value;
1314 val[i] *= 16;
1315 val[i] += *cp++;
1316 }
1317 if (*cp == ':' || i == 5)
1318 continue;
1319 else
1320 return (1);
1321 }
1322 memcpy(dest, val, 6);
1323 return (0);
1324 }
1325