Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.17
      1 /*	$NetBSD: if_tap.c,v 1.17 2006/05/14 21:19:33 elad Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.17 2006/05/14 21:19:33 elad Exp $");
     47 
     48 #if defined(_KERNEL_OPT)
     49 #include "bpfilter.h"
     50 #endif
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/conf.h>
     57 #include <sys/device.h>
     58 #include <sys/file.h>
     59 #include <sys/filedesc.h>
     60 #include <sys/ksyms.h>
     61 #include <sys/poll.h>
     62 #include <sys/select.h>
     63 #include <sys/sockio.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/kauth.h>
     66 
     67 #include <net/if.h>
     68 #include <net/if_dl.h>
     69 #include <net/if_ether.h>
     70 #include <net/if_media.h>
     71 #include <net/if_tap.h>
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 /*
     77  * sysctl node management
     78  *
     79  * It's not really possible to use a SYSCTL_SETUP block with
     80  * current LKM implementation, so it is easier to just define
     81  * our own function.
     82  *
     83  * The handler function is a "helper" in Andrew Brown's sysctl
     84  * framework terminology.  It is used as a gateway for sysctl
     85  * requests over the nodes.
     86  *
     87  * tap_log allows the module to log creations of nodes and
     88  * destroy them all at once using sysctl_teardown.
     89  */
     90 static int tap_node;
     91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93 
     94 /*
     95  * Since we're an Ethernet device, we need the 3 following
     96  * components: a leading struct device, a struct ethercom,
     97  * and also a struct ifmedia since we don't attach a PHY to
     98  * ourselves. We could emulate one, but there's no real
     99  * point.
    100  */
    101 
    102 struct tap_softc {
    103 	struct device	sc_dev;
    104 	struct ifmedia	sc_im;
    105 	struct ethercom	sc_ec;
    106 	int		sc_flags;
    107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111 	struct selinfo	sc_rsel;
    112 	pid_t		sc_pgid; /* For async. IO */
    113 	struct lock	sc_rdlock;
    114 	struct simplelock	sc_kqlock;
    115 };
    116 
    117 /* autoconf(9) glue */
    118 
    119 void	tapattach(int);
    120 
    121 static int	tap_match(struct device *, struct cfdata *, void *);
    122 static void	tap_attach(struct device *, struct device *, void *);
    123 static int	tap_detach(struct device*, int);
    124 
    125 /* Ethernet address helper functions */
    126 
    127 static int	tap_ether_aton(u_char *, char *);
    128 
    129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    130     tap_match, tap_attach, tap_detach, NULL);
    131 extern struct cfdriver tap_cd;
    132 
    133 /* Real device access routines */
    134 static int	tap_dev_close(struct tap_softc *);
    135 static int	tap_dev_read(int, struct uio *, int);
    136 static int	tap_dev_write(int, struct uio *, int);
    137 static int	tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
    138 static int	tap_dev_poll(int, int, struct lwp *);
    139 static int	tap_dev_kqfilter(int, struct knote *);
    140 
    141 /* Fileops access routines */
    142 static int	tap_fops_close(struct file *, struct lwp *);
    143 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    146     kauth_cred_t, int);
    147 static int	tap_fops_ioctl(struct file *, u_long, void *,
    148     struct lwp *);
    149 static int	tap_fops_poll(struct file *, int, struct lwp *);
    150 static int	tap_fops_kqfilter(struct file *, struct knote *);
    151 
    152 static const struct fileops tap_fileops = {
    153 	tap_fops_read,
    154 	tap_fops_write,
    155 	tap_fops_ioctl,
    156 	fnullop_fcntl,
    157 	tap_fops_poll,
    158 	fbadop_stat,
    159 	tap_fops_close,
    160 	tap_fops_kqfilter,
    161 };
    162 
    163 /* Helper for cloning open() */
    164 static int	tap_dev_cloner(struct lwp *);
    165 
    166 /* Character device routines */
    167 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    168 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    169 static int	tap_cdev_read(dev_t, struct uio *, int);
    170 static int	tap_cdev_write(dev_t, struct uio *, int);
    171 static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
    172 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174 
    175 const struct cdevsw tap_cdevsw = {
    176 	tap_cdev_open, tap_cdev_close,
    177 	tap_cdev_read, tap_cdev_write,
    178 	tap_cdev_ioctl, nostop, notty,
    179 	tap_cdev_poll, nommap,
    180 	tap_cdev_kqfilter,
    181 };
    182 
    183 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    184 
    185 /* kqueue-related routines */
    186 static void	tap_kqdetach(struct knote *);
    187 static int	tap_kqread(struct knote *, long);
    188 
    189 /*
    190  * Those are needed by the if_media interface.
    191  */
    192 
    193 static int	tap_mediachange(struct ifnet *);
    194 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    195 
    196 /*
    197  * Those are needed by the ifnet interface, and would typically be
    198  * there for any network interface driver.
    199  * Some other routines are optional: watchdog and drain.
    200  */
    201 
    202 static void	tap_start(struct ifnet *);
    203 static void	tap_stop(struct ifnet *, int);
    204 static int	tap_init(struct ifnet *);
    205 static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    206 
    207 /* This is an internal function to keep tap_ioctl readable */
    208 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    209 
    210 /*
    211  * tap is a clonable interface, although it is highly unrealistic for
    212  * an Ethernet device.
    213  *
    214  * Here are the bits needed for a clonable interface.
    215  */
    216 static int	tap_clone_create(struct if_clone *, int);
    217 static int	tap_clone_destroy(struct ifnet *);
    218 
    219 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    220 					tap_clone_create,
    221 					tap_clone_destroy);
    222 
    223 /* Helper functionis shared by the two cloning code paths */
    224 static struct tap_softc *	tap_clone_creator(int);
    225 int	tap_clone_destroyer(struct device *);
    226 
    227 void
    228 tapattach(int n)
    229 {
    230 	int error;
    231 
    232 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    233 	if (error) {
    234 		aprint_error("%s: unable to register cfattach\n",
    235 		    tap_cd.cd_name);
    236 		(void)config_cfdriver_detach(&tap_cd);
    237 		return;
    238 	}
    239 
    240 	if_clone_attach(&tap_cloners);
    241 }
    242 
    243 /* Pretty much useless for a pseudo-device */
    244 static int
    245 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
    246 {
    247 	return (1);
    248 }
    249 
    250 void
    251 tap_attach(struct device *parent, struct device *self, void *aux)
    252 {
    253 	struct tap_softc *sc = (struct tap_softc *)self;
    254 	struct ifnet *ifp;
    255 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    256 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    257 	char enaddrstr[3 * ETHER_ADDR_LEN];
    258 	uint32_t ui;
    259 	int error;
    260 	const struct sysctlnode *node;
    261 
    262 	aprint_normal("%s: faking Ethernet device\n",
    263 	    self->dv_xname);
    264 
    265 	/*
    266 	 * In order to obtain unique initial Ethernet address on a host,
    267 	 * do some randomisation using mono_time.  It's not meant for anything
    268 	 * but avoiding hard-coding an address.
    269 	 */
    270 	ui = (mono_time.tv_sec ^ mono_time.tv_usec) & 0xffffff;
    271 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    272 
    273 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    274 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    275 
    276 	/*
    277 	 * Why 1000baseT? Why not? You can add more.
    278 	 *
    279 	 * Note that there are 3 steps: init, one or several additions to
    280 	 * list of supported media, and in the end, the selection of one
    281 	 * of them.
    282 	 */
    283 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    284 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    288 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    291 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    292 
    293 	/*
    294 	 * One should note that an interface must do multicast in order
    295 	 * to support IPv6.
    296 	 */
    297 	ifp = &sc->sc_ec.ec_if;
    298 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    299 	ifp->if_softc	= sc;
    300 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    301 	ifp->if_ioctl	= tap_ioctl;
    302 	ifp->if_start	= tap_start;
    303 	ifp->if_stop	= tap_stop;
    304 	ifp->if_init	= tap_init;
    305 	IFQ_SET_READY(&ifp->if_snd);
    306 
    307 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    308 
    309 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    310 	 * being common to all network interface drivers. */
    311 	if_attach(ifp);
    312 	ether_ifattach(ifp, enaddr);
    313 
    314 	sc->sc_flags = 0;
    315 
    316 	/*
    317 	 * Add a sysctl node for that interface.
    318 	 *
    319 	 * The pointer transmitted is not a string, but instead a pointer to
    320 	 * the softc structure, which we can use to build the string value on
    321 	 * the fly in the helper function of the node.  See the comments for
    322 	 * tap_sysctl_handler for details.
    323 	 */
    324 	if ((error = sysctl_createv(NULL, 0, NULL,
    325 	    &node, CTLFLAG_READWRITE,
    326 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    327 	    tap_sysctl_handler, 0, sc, 18,
    328 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    329 	    CTL_EOL)) != 0)
    330 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    331 		    sc->sc_dev.dv_xname, error);
    332 
    333 	/*
    334 	 * Initialize the two locks for the device.
    335 	 *
    336 	 * We need a lock here because even though the tap device can be
    337 	 * opened only once, the file descriptor might be passed to another
    338 	 * process, say a fork(2)ed child.
    339 	 *
    340 	 * The Giant saves us from most of the hassle, but since the read
    341 	 * operation can sleep, we don't want two processes to wake up at
    342 	 * the same moment and both try and dequeue a single packet.
    343 	 *
    344 	 * The queue for event listeners (used by kqueue(9), see below) has
    345 	 * to be protected, too, but we don't need the same level of
    346 	 * complexity for that lock, so a simple spinning lock is fine.
    347 	 */
    348 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    349 	simple_lock_init(&sc->sc_kqlock);
    350 }
    351 
    352 /*
    353  * When detaching, we do the inverse of what is done in the attach
    354  * routine, in reversed order.
    355  */
    356 static int
    357 tap_detach(struct device* self, int flags)
    358 {
    359 	struct tap_softc *sc = (struct tap_softc *)self;
    360 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    361 	int error, s;
    362 
    363 	/*
    364 	 * Some processes might be sleeping on "tap", so we have to make
    365 	 * them release their hold on the device.
    366 	 *
    367 	 * The LK_DRAIN operation will wait for every locked process to
    368 	 * release their hold.
    369 	 */
    370 	sc->sc_flags |= TAP_GOING;
    371 	s = splnet();
    372 	tap_stop(ifp, 1);
    373 	if_down(ifp);
    374 	splx(s);
    375 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    376 
    377 	/*
    378 	 * Destroying a single leaf is a very straightforward operation using
    379 	 * sysctl_destroyv.  One should be sure to always end the path with
    380 	 * CTL_EOL.
    381 	 */
    382 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    383 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    384 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    385 		    sc->sc_dev.dv_xname, error);
    386 	ether_ifdetach(ifp);
    387 	if_detach(ifp);
    388 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    389 
    390 	return (0);
    391 }
    392 
    393 /*
    394  * This function is called by the ifmedia layer to notify the driver
    395  * that the user requested a media change.  A real driver would
    396  * reconfigure the hardware.
    397  */
    398 static int
    399 tap_mediachange(struct ifnet *ifp)
    400 {
    401 	return (0);
    402 }
    403 
    404 /*
    405  * Here the user asks for the currently used media.
    406  */
    407 static void
    408 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    409 {
    410 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    411 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    412 }
    413 
    414 /*
    415  * This is the function where we SEND packets.
    416  *
    417  * There is no 'receive' equivalent.  A typical driver will get
    418  * interrupts from the hardware, and from there will inject new packets
    419  * into the network stack.
    420  *
    421  * Once handled, a packet must be freed.  A real driver might not be able
    422  * to fit all the pending packets into the hardware, and is allowed to
    423  * return before having sent all the packets.  It should then use the
    424  * if_flags flag IFF_OACTIVE to notify the upper layer.
    425  *
    426  * There are also other flags one should check, such as IFF_PAUSE.
    427  *
    428  * It is our duty to make packets available to BPF listeners.
    429  *
    430  * You should be aware that this function is called by the Ethernet layer
    431  * at splnet().
    432  *
    433  * When the device is opened, we have to pass the packet(s) to the
    434  * userland.  For that we stay in OACTIVE mode while the userland gets
    435  * the packets, and we send a signal to the processes waiting to read.
    436  *
    437  * wakeup(sc) is the counterpart to the tsleep call in
    438  * tap_dev_read, while selnotify() is used for kevent(2) and
    439  * poll(2) (which includes select(2)) listeners.
    440  */
    441 static void
    442 tap_start(struct ifnet *ifp)
    443 {
    444 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    445 	struct mbuf *m0;
    446 
    447 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    448 		/* Simply drop packets */
    449 		for(;;) {
    450 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    451 			if (m0 == NULL)
    452 				return;
    453 
    454 			ifp->if_opackets++;
    455 #if NBPFILTER > 0
    456 			if (ifp->if_bpf)
    457 				bpf_mtap(ifp->if_bpf, m0);
    458 #endif
    459 
    460 			m_freem(m0);
    461 		}
    462 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    463 		ifp->if_flags |= IFF_OACTIVE;
    464 		wakeup(sc);
    465 		selnotify(&sc->sc_rsel, 1);
    466 		if (sc->sc_flags & TAP_ASYNCIO)
    467 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    468 			    POLLIN|POLLRDNORM, NULL);
    469 	}
    470 }
    471 
    472 /*
    473  * A typical driver will only contain the following handlers for
    474  * ioctl calls, except SIOCSIFPHYADDR.
    475  * The latter is a hack I used to set the Ethernet address of the
    476  * faked device.
    477  *
    478  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    479  * called under splnet().
    480  */
    481 static int
    482 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    483 {
    484 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    485 	struct ifreq *ifr = (struct ifreq *)data;
    486 	int s, error;
    487 
    488 	s = splnet();
    489 
    490 	switch (cmd) {
    491 	case SIOCSIFMEDIA:
    492 	case SIOCGIFMEDIA:
    493 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    494 		break;
    495 	case SIOCSIFPHYADDR:
    496 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    497 		break;
    498 	default:
    499 		error = ether_ioctl(ifp, cmd, data);
    500 		if (error == ENETRESET)
    501 			error = 0;
    502 		break;
    503 	}
    504 
    505 	splx(s);
    506 
    507 	return (error);
    508 }
    509 
    510 /*
    511  * Helper function to set Ethernet address.  This shouldn't be done there,
    512  * and should actually be available to all Ethernet drivers, real or not.
    513  */
    514 static int
    515 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    516 {
    517 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    518 
    519 	if (sa->sa_family != AF_LINK)
    520 		return (EINVAL);
    521 
    522 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    523 
    524 	return (0);
    525 }
    526 
    527 /*
    528  * _init() would typically be called when an interface goes up,
    529  * meaning it should configure itself into the state in which it
    530  * can send packets.
    531  */
    532 static int
    533 tap_init(struct ifnet *ifp)
    534 {
    535 	ifp->if_flags |= IFF_RUNNING;
    536 
    537 	tap_start(ifp);
    538 
    539 	return (0);
    540 }
    541 
    542 /*
    543  * _stop() is called when an interface goes down.  It is our
    544  * responsability to validate that state by clearing the
    545  * IFF_RUNNING flag.
    546  *
    547  * We have to wake up all the sleeping processes to have the pending
    548  * read requests cancelled.
    549  */
    550 static void
    551 tap_stop(struct ifnet *ifp, int disable)
    552 {
    553 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    554 
    555 	ifp->if_flags &= ~IFF_RUNNING;
    556 	wakeup(sc);
    557 	selnotify(&sc->sc_rsel, 1);
    558 	if (sc->sc_flags & TAP_ASYNCIO)
    559 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    560 }
    561 
    562 /*
    563  * The 'create' command of ifconfig can be used to create
    564  * any numbered instance of a given device.  Thus we have to
    565  * make sure we have enough room in cd_devs to create the
    566  * user-specified instance.  config_attach_pseudo will do this
    567  * for us.
    568  */
    569 static int
    570 tap_clone_create(struct if_clone *ifc, int unit)
    571 {
    572 	if (tap_clone_creator(unit) == NULL) {
    573 		aprint_error("%s%d: unable to attach an instance\n",
    574                     tap_cd.cd_name, unit);
    575 		return (ENXIO);
    576 	}
    577 
    578 	return (0);
    579 }
    580 
    581 /*
    582  * tap(4) can be cloned by two ways:
    583  *   using 'ifconfig tap0 create', which will use the network
    584  *     interface cloning API, and call tap_clone_create above.
    585  *   opening the cloning device node, whose minor number is TAP_CLONER.
    586  *     See below for an explanation on how this part work.
    587  *
    588  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    589  * autoconf(9) choose a unit number for us.  This is what happens when
    590  * the cloner is openend, while the ifcloner interface creates a device
    591  * with a specific unit number.
    592  */
    593 static struct tap_softc *
    594 tap_clone_creator(int unit)
    595 {
    596 	struct cfdata *cf;
    597 
    598 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    599 	cf->cf_name = tap_cd.cd_name;
    600 	cf->cf_atname = tap_ca.ca_name;
    601 	cf->cf_unit = unit;
    602 	cf->cf_fstate = FSTATE_STAR;
    603 
    604 	return (struct tap_softc *)config_attach_pseudo(cf);
    605 }
    606 
    607 /*
    608  * The clean design of if_clone and autoconf(9) makes that part
    609  * really straightforward.  The second argument of config_detach
    610  * means neither QUIET nor FORCED.
    611  */
    612 static int
    613 tap_clone_destroy(struct ifnet *ifp)
    614 {
    615 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    616 }
    617 
    618 int
    619 tap_clone_destroyer(struct device *dev)
    620 {
    621 	struct cfdata *cf = device_cfdata(dev);
    622 	int error;
    623 
    624 	if ((error = config_detach(dev, 0)) != 0)
    625 		aprint_error("%s: unable to detach instance\n",
    626 		    dev->dv_xname);
    627 	free(cf, M_DEVBUF);
    628 
    629 	return (error);
    630 }
    631 
    632 /*
    633  * tap(4) is a bit of an hybrid device.  It can be used in two different
    634  * ways:
    635  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    636  *  2. open /dev/tap, get a new interface created and read/write off it.
    637  *     That interface is destroyed when the process that had it created exits.
    638  *
    639  * The first way is managed by the cdevsw structure, and you access interfaces
    640  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    641  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    642  *
    643  * The second way is the so-called "cloning" device.  It's a special minor
    644  * number (chosen as the maximal number, to allow as much tap devices as
    645  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    646  * call ends in tap_cdev_open.  The actual place where it is handled is
    647  * tap_dev_cloner.
    648  *
    649  * An tap device cannot be opened more than once at a time, so the cdevsw
    650  * part of open() does nothing but noting that the interface is being used and
    651  * hence ready to actually handle packets.
    652  */
    653 
    654 static int
    655 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    656 {
    657 	struct tap_softc *sc;
    658 
    659 	if (minor(dev) == TAP_CLONER)
    660 		return tap_dev_cloner(l);
    661 
    662 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    663 	if (sc == NULL)
    664 		return (ENXIO);
    665 
    666 	/* The device can only be opened once */
    667 	if (sc->sc_flags & TAP_INUSE)
    668 		return (EBUSY);
    669 	sc->sc_flags |= TAP_INUSE;
    670 	return (0);
    671 }
    672 
    673 /*
    674  * There are several kinds of cloning devices, and the most simple is the one
    675  * tap(4) uses.  What it does is change the file descriptor with a new one,
    676  * with its own fileops structure (which maps to the various read, write,
    677  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    678  * then actually creates the new tap devices.
    679  *
    680  * Once those two steps are successful, we can re-wire the existing file
    681  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    682  * structure as needed (notably f_data gets filled with the fifth parameter
    683  * passed, the unit of the tap device which will allows us identifying the
    684  * device later), and returns EMOVEFD.
    685  *
    686  * That magic value is interpreted by sys_open() which then replaces the
    687  * current file descriptor by the new one (through a magic member of struct
    688  * lwp, l_dupfd).
    689  *
    690  * The tap device is flagged as being busy since it otherwise could be
    691  * externally accessed through the corresponding device node with the cdevsw
    692  * interface.
    693  */
    694 
    695 static int
    696 tap_dev_cloner(struct lwp *l)
    697 {
    698 	struct tap_softc *sc;
    699 	struct file *fp;
    700 	int error, fd;
    701 
    702 	if ((error = falloc(l->l_proc, &fp, &fd)) != 0)
    703 		return (error);
    704 
    705 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    706 		FILE_UNUSE(fp, l);
    707 		ffree(fp);
    708 		return (ENXIO);
    709 	}
    710 
    711 	sc->sc_flags |= TAP_INUSE;
    712 
    713 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    714 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    715 }
    716 
    717 /*
    718  * While all other operations (read, write, ioctl, poll and kqfilter) are
    719  * really the same whether we are in cdevsw or fileops mode, the close()
    720  * function is slightly different in the two cases.
    721  *
    722  * As for the other, the core of it is shared in tap_dev_close.  What
    723  * it does is sufficient for the cdevsw interface, but the cloning interface
    724  * needs another thing:  the interface is destroyed when the processes that
    725  * created it closes it.
    726  */
    727 static int
    728 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
    729 {
    730 	struct tap_softc *sc =
    731 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    732 
    733 	if (sc == NULL)
    734 		return (ENXIO);
    735 
    736 	return tap_dev_close(sc);
    737 }
    738 
    739 /*
    740  * It might happen that the administrator used ifconfig to externally destroy
    741  * the interface.  In that case, tap_fops_close will be called while
    742  * tap_detach is already happening.  If we called it again from here, we
    743  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    744  */
    745 static int
    746 tap_fops_close(struct file *fp, struct lwp *l)
    747 {
    748 	int unit = (intptr_t)fp->f_data;
    749 	struct tap_softc *sc;
    750 	int error;
    751 
    752 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    753 	if (sc == NULL)
    754 		return (ENXIO);
    755 
    756 	/* tap_dev_close currently always succeeds, but it might not
    757 	 * always be the case. */
    758 	if ((error = tap_dev_close(sc)) != 0)
    759 		return (error);
    760 
    761 	/* Destroy the device now that it is no longer useful,
    762 	 * unless it's already being destroyed. */
    763 	if ((sc->sc_flags & TAP_GOING) != 0)
    764 		return (0);
    765 
    766 	return tap_clone_destroyer((struct device *)sc);
    767 }
    768 
    769 static int
    770 tap_dev_close(struct tap_softc *sc)
    771 {
    772 	struct ifnet *ifp;
    773 	int s;
    774 
    775 	s = splnet();
    776 	/* Let tap_start handle packets again */
    777 	ifp = &sc->sc_ec.ec_if;
    778 	ifp->if_flags &= ~IFF_OACTIVE;
    779 
    780 	/* Purge output queue */
    781 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    782 		struct mbuf *m;
    783 
    784 		for (;;) {
    785 			IFQ_DEQUEUE(&ifp->if_snd, m);
    786 			if (m == NULL)
    787 				break;
    788 
    789 			ifp->if_opackets++;
    790 #if NBPFILTER > 0
    791 			if (ifp->if_bpf)
    792 				bpf_mtap(ifp->if_bpf, m);
    793 #endif
    794 		}
    795 	}
    796 	splx(s);
    797 
    798 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    799 
    800 	return (0);
    801 }
    802 
    803 static int
    804 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    805 {
    806 	return tap_dev_read(minor(dev), uio, flags);
    807 }
    808 
    809 static int
    810 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    811     kauth_cred_t cred, int flags)
    812 {
    813 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    814 }
    815 
    816 static int
    817 tap_dev_read(int unit, struct uio *uio, int flags)
    818 {
    819 	struct tap_softc *sc =
    820 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    821 	struct ifnet *ifp;
    822 	struct mbuf *m, *n;
    823 	int error = 0, s;
    824 
    825 	if (sc == NULL)
    826 		return (ENXIO);
    827 
    828 	ifp = &sc->sc_ec.ec_if;
    829 	if ((ifp->if_flags & IFF_UP) == 0)
    830 		return (EHOSTDOWN);
    831 
    832 	/*
    833 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    834 	 */
    835 	if ((sc->sc_flags & TAP_NBIO) &&
    836 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    837 		return (EWOULDBLOCK);
    838 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    839 	if (error != 0)
    840 		return (error);
    841 
    842 	s = splnet();
    843 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    844 		ifp->if_flags &= ~IFF_OACTIVE;
    845 		splx(s);
    846 		/*
    847 		 * We must release the lock before sleeping, and re-acquire it
    848 		 * after.
    849 		 */
    850 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    851 		if (sc->sc_flags & TAP_NBIO)
    852 			error = EWOULDBLOCK;
    853 		else
    854 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    855 
    856 		if (error != 0)
    857 			return (error);
    858 		/* The device might have been downed */
    859 		if ((ifp->if_flags & IFF_UP) == 0)
    860 			return (EHOSTDOWN);
    861 		if ((sc->sc_flags & TAP_NBIO) &&
    862 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    863 			return (EWOULDBLOCK);
    864 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    865 		if (error != 0)
    866 			return (error);
    867 		s = splnet();
    868 	}
    869 
    870 	IFQ_DEQUEUE(&ifp->if_snd, m);
    871 	ifp->if_flags &= ~IFF_OACTIVE;
    872 	splx(s);
    873 	if (m == NULL) {
    874 		error = 0;
    875 		goto out;
    876 	}
    877 
    878 	ifp->if_opackets++;
    879 #if NBPFILTER > 0
    880 	if (ifp->if_bpf)
    881 		bpf_mtap(ifp->if_bpf, m);
    882 #endif
    883 
    884 	/*
    885 	 * One read is one packet.
    886 	 */
    887 	do {
    888 		error = uiomove(mtod(m, caddr_t),
    889 		    min(m->m_len, uio->uio_resid), uio);
    890 		MFREE(m, n);
    891 		m = n;
    892 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    893 
    894 	if (m != NULL)
    895 		m_freem(m);
    896 
    897 out:
    898 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    899 	return (error);
    900 }
    901 
    902 static int
    903 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    904 {
    905 	return tap_dev_write(minor(dev), uio, flags);
    906 }
    907 
    908 static int
    909 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    910     kauth_cred_t cred, int flags)
    911 {
    912 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    913 }
    914 
    915 static int
    916 tap_dev_write(int unit, struct uio *uio, int flags)
    917 {
    918 	struct tap_softc *sc =
    919 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    920 	struct ifnet *ifp;
    921 	struct mbuf *m, **mp;
    922 	int error = 0;
    923 	int s;
    924 
    925 	if (sc == NULL)
    926 		return (ENXIO);
    927 
    928 	ifp = &sc->sc_ec.ec_if;
    929 
    930 	/* One write, one packet, that's the rule */
    931 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    932 	if (m == NULL) {
    933 		ifp->if_ierrors++;
    934 		return (ENOBUFS);
    935 	}
    936 	m->m_pkthdr.len = uio->uio_resid;
    937 
    938 	mp = &m;
    939 	while (error == 0 && uio->uio_resid > 0) {
    940 		if (*mp != m) {
    941 			MGET(*mp, M_DONTWAIT, MT_DATA);
    942 			if (*mp == NULL) {
    943 				error = ENOBUFS;
    944 				break;
    945 			}
    946 		}
    947 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    948 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    949 		mp = &(*mp)->m_next;
    950 	}
    951 	if (error) {
    952 		ifp->if_ierrors++;
    953 		m_freem(m);
    954 		return (error);
    955 	}
    956 
    957 	ifp->if_ipackets++;
    958 	m->m_pkthdr.rcvif = ifp;
    959 
    960 #if NBPFILTER > 0
    961 	if (ifp->if_bpf)
    962 		bpf_mtap(ifp->if_bpf, m);
    963 #endif
    964 	s =splnet();
    965 	(*ifp->if_input)(ifp, m);
    966 	splx(s);
    967 
    968 	return (0);
    969 }
    970 
    971 static int
    972 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    973     struct lwp *l)
    974 {
    975 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    976 }
    977 
    978 static int
    979 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    980 {
    981 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
    982 }
    983 
    984 static int
    985 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
    986 {
    987 	struct tap_softc *sc =
    988 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    989 	int error = 0;
    990 
    991 	if (sc == NULL)
    992 		return (ENXIO);
    993 
    994 	switch (cmd) {
    995 	case FIONREAD:
    996 		{
    997 			struct ifnet *ifp = &sc->sc_ec.ec_if;
    998 			struct mbuf *m;
    999 			int s;
   1000 
   1001 			s = splnet();
   1002 			IFQ_POLL(&ifp->if_snd, m);
   1003 
   1004 			if (m == NULL)
   1005 				*(int *)data = 0;
   1006 			else
   1007 				*(int *)data = m->m_pkthdr.len;
   1008 			splx(s);
   1009 		} break;
   1010 	case TIOCSPGRP:
   1011 	case FIOSETOWN:
   1012 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1013 		break;
   1014 	case TIOCGPGRP:
   1015 	case FIOGETOWN:
   1016 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1017 		break;
   1018 	case FIOASYNC:
   1019 		if (*(int *)data)
   1020 			sc->sc_flags |= TAP_ASYNCIO;
   1021 		else
   1022 			sc->sc_flags &= ~TAP_ASYNCIO;
   1023 		break;
   1024 	case FIONBIO:
   1025 		if (*(int *)data)
   1026 			sc->sc_flags |= TAP_NBIO;
   1027 		else
   1028 			sc->sc_flags &= ~TAP_NBIO;
   1029 		break;
   1030 	case TAPGIFNAME:
   1031 		{
   1032 			struct ifreq *ifr = (struct ifreq *)data;
   1033 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1034 
   1035 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1036 		} break;
   1037 	default:
   1038 		error = ENOTTY;
   1039 		break;
   1040 	}
   1041 
   1042 	return (0);
   1043 }
   1044 
   1045 static int
   1046 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1047 {
   1048 	return tap_dev_poll(minor(dev), events, l);
   1049 }
   1050 
   1051 static int
   1052 tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1053 {
   1054 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1055 }
   1056 
   1057 static int
   1058 tap_dev_poll(int unit, int events, struct lwp *l)
   1059 {
   1060 	struct tap_softc *sc =
   1061 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1062 	int revents = 0;
   1063 
   1064 	if (sc == NULL)
   1065 		return (ENXIO);
   1066 
   1067 	if (events & (POLLIN|POLLRDNORM)) {
   1068 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1069 		struct mbuf *m;
   1070 		int s;
   1071 
   1072 		s = splnet();
   1073 		IFQ_POLL(&ifp->if_snd, m);
   1074 		splx(s);
   1075 
   1076 		if (m != NULL)
   1077 			revents |= events & (POLLIN|POLLRDNORM);
   1078 		else {
   1079 			simple_lock(&sc->sc_kqlock);
   1080 			selrecord(l, &sc->sc_rsel);
   1081 			simple_unlock(&sc->sc_kqlock);
   1082 		}
   1083 	}
   1084 	revents |= events & (POLLOUT|POLLWRNORM);
   1085 
   1086 	return (revents);
   1087 }
   1088 
   1089 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1090 	tap_kqread };
   1091 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1092 	filt_seltrue };
   1093 
   1094 static int
   1095 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1096 {
   1097 	return tap_dev_kqfilter(minor(dev), kn);
   1098 }
   1099 
   1100 static int
   1101 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1102 {
   1103 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1104 }
   1105 
   1106 static int
   1107 tap_dev_kqfilter(int unit, struct knote *kn)
   1108 {
   1109 	struct tap_softc *sc =
   1110 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1111 
   1112 	if (sc == NULL)
   1113 		return (ENXIO);
   1114 
   1115 	switch(kn->kn_filter) {
   1116 	case EVFILT_READ:
   1117 		kn->kn_fop = &tap_read_filterops;
   1118 		break;
   1119 	case EVFILT_WRITE:
   1120 		kn->kn_fop = &tap_seltrue_filterops;
   1121 		break;
   1122 	default:
   1123 		return (1);
   1124 	}
   1125 
   1126 	kn->kn_hook = sc;
   1127 	simple_lock(&sc->sc_kqlock);
   1128 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1129 	simple_unlock(&sc->sc_kqlock);
   1130 	return (0);
   1131 }
   1132 
   1133 static void
   1134 tap_kqdetach(struct knote *kn)
   1135 {
   1136 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1137 
   1138 	simple_lock(&sc->sc_kqlock);
   1139 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1140 	simple_unlock(&sc->sc_kqlock);
   1141 }
   1142 
   1143 static int
   1144 tap_kqread(struct knote *kn, long hint)
   1145 {
   1146 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1147 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1148 	struct mbuf *m;
   1149 	int s;
   1150 
   1151 	s = splnet();
   1152 	IFQ_POLL(&ifp->if_snd, m);
   1153 
   1154 	if (m == NULL)
   1155 		kn->kn_data = 0;
   1156 	else
   1157 		kn->kn_data = m->m_pkthdr.len;
   1158 	splx(s);
   1159 	return (kn->kn_data != 0 ? 1 : 0);
   1160 }
   1161 
   1162 /*
   1163  * sysctl management routines
   1164  * You can set the address of an interface through:
   1165  * net.link.tap.tap<number>
   1166  *
   1167  * Note the consistent use of tap_log in order to use
   1168  * sysctl_teardown at unload time.
   1169  *
   1170  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1171  * blocks register a function in a special section of the kernel
   1172  * (called a link set) which is used at init_sysctl() time to cycle
   1173  * through all those functions to create the kernel's sysctl tree.
   1174  *
   1175  * It is not (currently) possible to use link sets in a LKM, so the
   1176  * easiest is to simply call our own setup routine at load time.
   1177  *
   1178  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1179  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1180  * whole kernel sysctl tree is built, it is not possible to add any
   1181  * permanent node.
   1182  *
   1183  * It should be noted that we're not saving the sysctlnode pointer
   1184  * we are returned when creating the "tap" node.  That structure
   1185  * cannot be trusted once out of the calling function, as it might
   1186  * get reused.  So we just save the MIB number, and always give the
   1187  * full path starting from the root for later calls to sysctl_createv
   1188  * and sysctl_destroyv.
   1189  */
   1190 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1191 {
   1192 	const struct sysctlnode *node;
   1193 	int error = 0;
   1194 
   1195 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1196 	    CTLFLAG_PERMANENT,
   1197 	    CTLTYPE_NODE, "net", NULL,
   1198 	    NULL, 0, NULL, 0,
   1199 	    CTL_NET, CTL_EOL)) != 0)
   1200 		return;
   1201 
   1202 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1203 	    CTLFLAG_PERMANENT,
   1204 	    CTLTYPE_NODE, "link", NULL,
   1205 	    NULL, 0, NULL, 0,
   1206 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1207 		return;
   1208 
   1209 	/*
   1210 	 * The first four parameters of sysctl_createv are for management.
   1211 	 *
   1212 	 * The four that follows, here starting with a '0' for the flags,
   1213 	 * describe the node.
   1214 	 *
   1215 	 * The next series of four set its value, through various possible
   1216 	 * means.
   1217 	 *
   1218 	 * Last but not least, the path to the node is described.  That path
   1219 	 * is relative to the given root (third argument).  Here we're
   1220 	 * starting from the root.
   1221 	 */
   1222 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1223 	    CTLFLAG_PERMANENT,
   1224 	    CTLTYPE_NODE, "tap", NULL,
   1225 	    NULL, 0, NULL, 0,
   1226 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1227 		return;
   1228 	tap_node = node->sysctl_num;
   1229 }
   1230 
   1231 /*
   1232  * The helper functions make Andrew Brown's interface really
   1233  * shine.  It makes possible to create value on the fly whether
   1234  * the sysctl value is read or written.
   1235  *
   1236  * As shown as an example in the man page, the first step is to
   1237  * create a copy of the node to have sysctl_lookup work on it.
   1238  *
   1239  * Here, we have more work to do than just a copy, since we have
   1240  * to create the string.  The first step is to collect the actual
   1241  * value of the node, which is a convenient pointer to the softc
   1242  * of the interface.  From there we create the string and use it
   1243  * as the value, but only for the *copy* of the node.
   1244  *
   1245  * Then we let sysctl_lookup do the magic, which consists in
   1246  * setting oldp and newp as required by the operation.  When the
   1247  * value is read, that means that the string will be copied to
   1248  * the user, and when it is written, the new value will be copied
   1249  * over in the addr array.
   1250  *
   1251  * If newp is NULL, the user was reading the value, so we don't
   1252  * have anything else to do.  If a new value was written, we
   1253  * have to check it.
   1254  *
   1255  * If it is incorrect, we can return an error and leave 'node' as
   1256  * it is:  since it is a copy of the actual node, the change will
   1257  * be forgotten.
   1258  *
   1259  * Upon a correct input, we commit the change to the ifnet
   1260  * structure of our interface.
   1261  */
   1262 static int
   1263 tap_sysctl_handler(SYSCTLFN_ARGS)
   1264 {
   1265 	struct sysctlnode node;
   1266 	struct tap_softc *sc;
   1267 	struct ifnet *ifp;
   1268 	int error;
   1269 	size_t len;
   1270 	char addr[3 * ETHER_ADDR_LEN];
   1271 
   1272 	node = *rnode;
   1273 	sc = node.sysctl_data;
   1274 	ifp = &sc->sc_ec.ec_if;
   1275 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
   1276 	node.sysctl_data = addr;
   1277 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1278 	if (error || newp == NULL)
   1279 		return (error);
   1280 
   1281 	len = strlen(addr);
   1282 	if (len < 11 || len > 17)
   1283 		return (EINVAL);
   1284 
   1285 	/* Commit change */
   1286 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1287 		return (EINVAL);
   1288 	return (error);
   1289 }
   1290 
   1291 /*
   1292  * ether_aton implementation, not using a static buffer.
   1293  */
   1294 static int
   1295 tap_ether_aton(u_char *dest, char *str)
   1296 {
   1297 	int i;
   1298 	char *cp = str;
   1299 	u_char val[6];
   1300 
   1301 #define	set_value			\
   1302 	if (*cp > '9' && *cp < 'a')	\
   1303 		*cp -= 'A' - 10;	\
   1304 	else if (*cp > '9')		\
   1305 		*cp -= 'a' - 10;	\
   1306 	else				\
   1307 		*cp -= '0'
   1308 
   1309 	for (i = 0; i < 6; i++, cp++) {
   1310 		if (!isxdigit(*cp))
   1311 			return (1);
   1312 		set_value;
   1313 		val[i] = *cp++;
   1314 		if (isxdigit(*cp)) {
   1315 			set_value;
   1316 			val[i] *= 16;
   1317 			val[i] += *cp++;
   1318 		}
   1319 		if (*cp == ':' || i == 5)
   1320 			continue;
   1321 		else
   1322 			return (1);
   1323 	}
   1324 	memcpy(dest, val, 6);
   1325 	return (0);
   1326 }
   1327