Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.18
      1 /*	$NetBSD: if_tap.c,v 1.18 2006/06/07 22:33:43 kardel Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.18 2006/06/07 22:33:43 kardel Exp $");
     47 
     48 #if defined(_KERNEL_OPT)
     49 #include "bpfilter.h"
     50 #endif
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/conf.h>
     57 #include <sys/device.h>
     58 #include <sys/file.h>
     59 #include <sys/filedesc.h>
     60 #include <sys/ksyms.h>
     61 #include <sys/poll.h>
     62 #include <sys/select.h>
     63 #include <sys/sockio.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/kauth.h>
     66 
     67 #include <net/if.h>
     68 #include <net/if_dl.h>
     69 #include <net/if_ether.h>
     70 #include <net/if_media.h>
     71 #include <net/if_tap.h>
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 /*
     77  * sysctl node management
     78  *
     79  * It's not really possible to use a SYSCTL_SETUP block with
     80  * current LKM implementation, so it is easier to just define
     81  * our own function.
     82  *
     83  * The handler function is a "helper" in Andrew Brown's sysctl
     84  * framework terminology.  It is used as a gateway for sysctl
     85  * requests over the nodes.
     86  *
     87  * tap_log allows the module to log creations of nodes and
     88  * destroy them all at once using sysctl_teardown.
     89  */
     90 static int tap_node;
     91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93 
     94 /*
     95  * Since we're an Ethernet device, we need the 3 following
     96  * components: a leading struct device, a struct ethercom,
     97  * and also a struct ifmedia since we don't attach a PHY to
     98  * ourselves. We could emulate one, but there's no real
     99  * point.
    100  */
    101 
    102 struct tap_softc {
    103 	struct device	sc_dev;
    104 	struct ifmedia	sc_im;
    105 	struct ethercom	sc_ec;
    106 	int		sc_flags;
    107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111 	struct selinfo	sc_rsel;
    112 	pid_t		sc_pgid; /* For async. IO */
    113 	struct lock	sc_rdlock;
    114 	struct simplelock	sc_kqlock;
    115 };
    116 
    117 /* autoconf(9) glue */
    118 
    119 void	tapattach(int);
    120 
    121 static int	tap_match(struct device *, struct cfdata *, void *);
    122 static void	tap_attach(struct device *, struct device *, void *);
    123 static int	tap_detach(struct device*, int);
    124 
    125 /* Ethernet address helper functions */
    126 
    127 static int	tap_ether_aton(u_char *, char *);
    128 
    129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    130     tap_match, tap_attach, tap_detach, NULL);
    131 extern struct cfdriver tap_cd;
    132 
    133 /* Real device access routines */
    134 static int	tap_dev_close(struct tap_softc *);
    135 static int	tap_dev_read(int, struct uio *, int);
    136 static int	tap_dev_write(int, struct uio *, int);
    137 static int	tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
    138 static int	tap_dev_poll(int, int, struct lwp *);
    139 static int	tap_dev_kqfilter(int, struct knote *);
    140 
    141 /* Fileops access routines */
    142 static int	tap_fops_close(struct file *, struct lwp *);
    143 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    146     kauth_cred_t, int);
    147 static int	tap_fops_ioctl(struct file *, u_long, void *,
    148     struct lwp *);
    149 static int	tap_fops_poll(struct file *, int, struct lwp *);
    150 static int	tap_fops_kqfilter(struct file *, struct knote *);
    151 
    152 static const struct fileops tap_fileops = {
    153 	tap_fops_read,
    154 	tap_fops_write,
    155 	tap_fops_ioctl,
    156 	fnullop_fcntl,
    157 	tap_fops_poll,
    158 	fbadop_stat,
    159 	tap_fops_close,
    160 	tap_fops_kqfilter,
    161 };
    162 
    163 /* Helper for cloning open() */
    164 static int	tap_dev_cloner(struct lwp *);
    165 
    166 /* Character device routines */
    167 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    168 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    169 static int	tap_cdev_read(dev_t, struct uio *, int);
    170 static int	tap_cdev_write(dev_t, struct uio *, int);
    171 static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
    172 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174 
    175 const struct cdevsw tap_cdevsw = {
    176 	tap_cdev_open, tap_cdev_close,
    177 	tap_cdev_read, tap_cdev_write,
    178 	tap_cdev_ioctl, nostop, notty,
    179 	tap_cdev_poll, nommap,
    180 	tap_cdev_kqfilter,
    181 };
    182 
    183 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    184 
    185 /* kqueue-related routines */
    186 static void	tap_kqdetach(struct knote *);
    187 static int	tap_kqread(struct knote *, long);
    188 
    189 /*
    190  * Those are needed by the if_media interface.
    191  */
    192 
    193 static int	tap_mediachange(struct ifnet *);
    194 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    195 
    196 /*
    197  * Those are needed by the ifnet interface, and would typically be
    198  * there for any network interface driver.
    199  * Some other routines are optional: watchdog and drain.
    200  */
    201 
    202 static void	tap_start(struct ifnet *);
    203 static void	tap_stop(struct ifnet *, int);
    204 static int	tap_init(struct ifnet *);
    205 static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    206 
    207 /* This is an internal function to keep tap_ioctl readable */
    208 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    209 
    210 /*
    211  * tap is a clonable interface, although it is highly unrealistic for
    212  * an Ethernet device.
    213  *
    214  * Here are the bits needed for a clonable interface.
    215  */
    216 static int	tap_clone_create(struct if_clone *, int);
    217 static int	tap_clone_destroy(struct ifnet *);
    218 
    219 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    220 					tap_clone_create,
    221 					tap_clone_destroy);
    222 
    223 /* Helper functionis shared by the two cloning code paths */
    224 static struct tap_softc *	tap_clone_creator(int);
    225 int	tap_clone_destroyer(struct device *);
    226 
    227 void
    228 tapattach(int n)
    229 {
    230 	int error;
    231 
    232 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    233 	if (error) {
    234 		aprint_error("%s: unable to register cfattach\n",
    235 		    tap_cd.cd_name);
    236 		(void)config_cfdriver_detach(&tap_cd);
    237 		return;
    238 	}
    239 
    240 	if_clone_attach(&tap_cloners);
    241 }
    242 
    243 /* Pretty much useless for a pseudo-device */
    244 static int
    245 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
    246 {
    247 	return (1);
    248 }
    249 
    250 void
    251 tap_attach(struct device *parent, struct device *self, void *aux)
    252 {
    253 	struct tap_softc *sc = (struct tap_softc *)self;
    254 	struct ifnet *ifp;
    255 	const struct sysctlnode *node;
    256 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    257 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    258 	char enaddrstr[3 * ETHER_ADDR_LEN];
    259 	struct timeval tv;
    260 	uint32_t ui;
    261 	int error;
    262 
    263 	aprint_normal("%s: faking Ethernet device\n",
    264 	    self->dv_xname);
    265 
    266 	/*
    267 	 * In order to obtain unique initial Ethernet address on a host,
    268 	 * do some randomisation using the current uptime.  It's not meant
    269 	 * for anything but avoiding hard-coding an address.
    270 	 */
    271 	getmicrouptime(&tv);
    272 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    273 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    274 
    275 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    276 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    277 
    278 	/*
    279 	 * Why 1000baseT? Why not? You can add more.
    280 	 *
    281 	 * Note that there are 3 steps: init, one or several additions to
    282 	 * list of supported media, and in the end, the selection of one
    283 	 * of them.
    284 	 */
    285 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    288 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    291 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    292 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    293 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    294 
    295 	/*
    296 	 * One should note that an interface must do multicast in order
    297 	 * to support IPv6.
    298 	 */
    299 	ifp = &sc->sc_ec.ec_if;
    300 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    301 	ifp->if_softc	= sc;
    302 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    303 	ifp->if_ioctl	= tap_ioctl;
    304 	ifp->if_start	= tap_start;
    305 	ifp->if_stop	= tap_stop;
    306 	ifp->if_init	= tap_init;
    307 	IFQ_SET_READY(&ifp->if_snd);
    308 
    309 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    310 
    311 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    312 	 * being common to all network interface drivers. */
    313 	if_attach(ifp);
    314 	ether_ifattach(ifp, enaddr);
    315 
    316 	sc->sc_flags = 0;
    317 
    318 	/*
    319 	 * Add a sysctl node for that interface.
    320 	 *
    321 	 * The pointer transmitted is not a string, but instead a pointer to
    322 	 * the softc structure, which we can use to build the string value on
    323 	 * the fly in the helper function of the node.  See the comments for
    324 	 * tap_sysctl_handler for details.
    325 	 */
    326 	if ((error = sysctl_createv(NULL, 0, NULL,
    327 	    &node, CTLFLAG_READWRITE,
    328 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    329 	    tap_sysctl_handler, 0, sc, 18,
    330 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    331 	    CTL_EOL)) != 0)
    332 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    333 		    sc->sc_dev.dv_xname, error);
    334 
    335 	/*
    336 	 * Initialize the two locks for the device.
    337 	 *
    338 	 * We need a lock here because even though the tap device can be
    339 	 * opened only once, the file descriptor might be passed to another
    340 	 * process, say a fork(2)ed child.
    341 	 *
    342 	 * The Giant saves us from most of the hassle, but since the read
    343 	 * operation can sleep, we don't want two processes to wake up at
    344 	 * the same moment and both try and dequeue a single packet.
    345 	 *
    346 	 * The queue for event listeners (used by kqueue(9), see below) has
    347 	 * to be protected, too, but we don't need the same level of
    348 	 * complexity for that lock, so a simple spinning lock is fine.
    349 	 */
    350 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    351 	simple_lock_init(&sc->sc_kqlock);
    352 }
    353 
    354 /*
    355  * When detaching, we do the inverse of what is done in the attach
    356  * routine, in reversed order.
    357  */
    358 static int
    359 tap_detach(struct device* self, int flags)
    360 {
    361 	struct tap_softc *sc = (struct tap_softc *)self;
    362 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    363 	int error, s;
    364 
    365 	/*
    366 	 * Some processes might be sleeping on "tap", so we have to make
    367 	 * them release their hold on the device.
    368 	 *
    369 	 * The LK_DRAIN operation will wait for every locked process to
    370 	 * release their hold.
    371 	 */
    372 	sc->sc_flags |= TAP_GOING;
    373 	s = splnet();
    374 	tap_stop(ifp, 1);
    375 	if_down(ifp);
    376 	splx(s);
    377 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    378 
    379 	/*
    380 	 * Destroying a single leaf is a very straightforward operation using
    381 	 * sysctl_destroyv.  One should be sure to always end the path with
    382 	 * CTL_EOL.
    383 	 */
    384 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    385 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    386 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    387 		    sc->sc_dev.dv_xname, error);
    388 	ether_ifdetach(ifp);
    389 	if_detach(ifp);
    390 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    391 
    392 	return (0);
    393 }
    394 
    395 /*
    396  * This function is called by the ifmedia layer to notify the driver
    397  * that the user requested a media change.  A real driver would
    398  * reconfigure the hardware.
    399  */
    400 static int
    401 tap_mediachange(struct ifnet *ifp)
    402 {
    403 	return (0);
    404 }
    405 
    406 /*
    407  * Here the user asks for the currently used media.
    408  */
    409 static void
    410 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    411 {
    412 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    413 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    414 }
    415 
    416 /*
    417  * This is the function where we SEND packets.
    418  *
    419  * There is no 'receive' equivalent.  A typical driver will get
    420  * interrupts from the hardware, and from there will inject new packets
    421  * into the network stack.
    422  *
    423  * Once handled, a packet must be freed.  A real driver might not be able
    424  * to fit all the pending packets into the hardware, and is allowed to
    425  * return before having sent all the packets.  It should then use the
    426  * if_flags flag IFF_OACTIVE to notify the upper layer.
    427  *
    428  * There are also other flags one should check, such as IFF_PAUSE.
    429  *
    430  * It is our duty to make packets available to BPF listeners.
    431  *
    432  * You should be aware that this function is called by the Ethernet layer
    433  * at splnet().
    434  *
    435  * When the device is opened, we have to pass the packet(s) to the
    436  * userland.  For that we stay in OACTIVE mode while the userland gets
    437  * the packets, and we send a signal to the processes waiting to read.
    438  *
    439  * wakeup(sc) is the counterpart to the tsleep call in
    440  * tap_dev_read, while selnotify() is used for kevent(2) and
    441  * poll(2) (which includes select(2)) listeners.
    442  */
    443 static void
    444 tap_start(struct ifnet *ifp)
    445 {
    446 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    447 	struct mbuf *m0;
    448 
    449 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    450 		/* Simply drop packets */
    451 		for(;;) {
    452 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    453 			if (m0 == NULL)
    454 				return;
    455 
    456 			ifp->if_opackets++;
    457 #if NBPFILTER > 0
    458 			if (ifp->if_bpf)
    459 				bpf_mtap(ifp->if_bpf, m0);
    460 #endif
    461 
    462 			m_freem(m0);
    463 		}
    464 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    465 		ifp->if_flags |= IFF_OACTIVE;
    466 		wakeup(sc);
    467 		selnotify(&sc->sc_rsel, 1);
    468 		if (sc->sc_flags & TAP_ASYNCIO)
    469 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    470 			    POLLIN|POLLRDNORM, NULL);
    471 	}
    472 }
    473 
    474 /*
    475  * A typical driver will only contain the following handlers for
    476  * ioctl calls, except SIOCSIFPHYADDR.
    477  * The latter is a hack I used to set the Ethernet address of the
    478  * faked device.
    479  *
    480  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    481  * called under splnet().
    482  */
    483 static int
    484 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    485 {
    486 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    487 	struct ifreq *ifr = (struct ifreq *)data;
    488 	int s, error;
    489 
    490 	s = splnet();
    491 
    492 	switch (cmd) {
    493 	case SIOCSIFMEDIA:
    494 	case SIOCGIFMEDIA:
    495 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    496 		break;
    497 	case SIOCSIFPHYADDR:
    498 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    499 		break;
    500 	default:
    501 		error = ether_ioctl(ifp, cmd, data);
    502 		if (error == ENETRESET)
    503 			error = 0;
    504 		break;
    505 	}
    506 
    507 	splx(s);
    508 
    509 	return (error);
    510 }
    511 
    512 /*
    513  * Helper function to set Ethernet address.  This shouldn't be done there,
    514  * and should actually be available to all Ethernet drivers, real or not.
    515  */
    516 static int
    517 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    518 {
    519 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    520 
    521 	if (sa->sa_family != AF_LINK)
    522 		return (EINVAL);
    523 
    524 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    525 
    526 	return (0);
    527 }
    528 
    529 /*
    530  * _init() would typically be called when an interface goes up,
    531  * meaning it should configure itself into the state in which it
    532  * can send packets.
    533  */
    534 static int
    535 tap_init(struct ifnet *ifp)
    536 {
    537 	ifp->if_flags |= IFF_RUNNING;
    538 
    539 	tap_start(ifp);
    540 
    541 	return (0);
    542 }
    543 
    544 /*
    545  * _stop() is called when an interface goes down.  It is our
    546  * responsability to validate that state by clearing the
    547  * IFF_RUNNING flag.
    548  *
    549  * We have to wake up all the sleeping processes to have the pending
    550  * read requests cancelled.
    551  */
    552 static void
    553 tap_stop(struct ifnet *ifp, int disable)
    554 {
    555 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    556 
    557 	ifp->if_flags &= ~IFF_RUNNING;
    558 	wakeup(sc);
    559 	selnotify(&sc->sc_rsel, 1);
    560 	if (sc->sc_flags & TAP_ASYNCIO)
    561 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    562 }
    563 
    564 /*
    565  * The 'create' command of ifconfig can be used to create
    566  * any numbered instance of a given device.  Thus we have to
    567  * make sure we have enough room in cd_devs to create the
    568  * user-specified instance.  config_attach_pseudo will do this
    569  * for us.
    570  */
    571 static int
    572 tap_clone_create(struct if_clone *ifc, int unit)
    573 {
    574 	if (tap_clone_creator(unit) == NULL) {
    575 		aprint_error("%s%d: unable to attach an instance\n",
    576                     tap_cd.cd_name, unit);
    577 		return (ENXIO);
    578 	}
    579 
    580 	return (0);
    581 }
    582 
    583 /*
    584  * tap(4) can be cloned by two ways:
    585  *   using 'ifconfig tap0 create', which will use the network
    586  *     interface cloning API, and call tap_clone_create above.
    587  *   opening the cloning device node, whose minor number is TAP_CLONER.
    588  *     See below for an explanation on how this part work.
    589  *
    590  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    591  * autoconf(9) choose a unit number for us.  This is what happens when
    592  * the cloner is openend, while the ifcloner interface creates a device
    593  * with a specific unit number.
    594  */
    595 static struct tap_softc *
    596 tap_clone_creator(int unit)
    597 {
    598 	struct cfdata *cf;
    599 
    600 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    601 	cf->cf_name = tap_cd.cd_name;
    602 	cf->cf_atname = tap_ca.ca_name;
    603 	cf->cf_unit = unit;
    604 	cf->cf_fstate = FSTATE_STAR;
    605 
    606 	return (struct tap_softc *)config_attach_pseudo(cf);
    607 }
    608 
    609 /*
    610  * The clean design of if_clone and autoconf(9) makes that part
    611  * really straightforward.  The second argument of config_detach
    612  * means neither QUIET nor FORCED.
    613  */
    614 static int
    615 tap_clone_destroy(struct ifnet *ifp)
    616 {
    617 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    618 }
    619 
    620 int
    621 tap_clone_destroyer(struct device *dev)
    622 {
    623 	struct cfdata *cf = device_cfdata(dev);
    624 	int error;
    625 
    626 	if ((error = config_detach(dev, 0)) != 0)
    627 		aprint_error("%s: unable to detach instance\n",
    628 		    dev->dv_xname);
    629 	free(cf, M_DEVBUF);
    630 
    631 	return (error);
    632 }
    633 
    634 /*
    635  * tap(4) is a bit of an hybrid device.  It can be used in two different
    636  * ways:
    637  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    638  *  2. open /dev/tap, get a new interface created and read/write off it.
    639  *     That interface is destroyed when the process that had it created exits.
    640  *
    641  * The first way is managed by the cdevsw structure, and you access interfaces
    642  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    643  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    644  *
    645  * The second way is the so-called "cloning" device.  It's a special minor
    646  * number (chosen as the maximal number, to allow as much tap devices as
    647  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    648  * call ends in tap_cdev_open.  The actual place where it is handled is
    649  * tap_dev_cloner.
    650  *
    651  * An tap device cannot be opened more than once at a time, so the cdevsw
    652  * part of open() does nothing but noting that the interface is being used and
    653  * hence ready to actually handle packets.
    654  */
    655 
    656 static int
    657 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    658 {
    659 	struct tap_softc *sc;
    660 
    661 	if (minor(dev) == TAP_CLONER)
    662 		return tap_dev_cloner(l);
    663 
    664 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    665 	if (sc == NULL)
    666 		return (ENXIO);
    667 
    668 	/* The device can only be opened once */
    669 	if (sc->sc_flags & TAP_INUSE)
    670 		return (EBUSY);
    671 	sc->sc_flags |= TAP_INUSE;
    672 	return (0);
    673 }
    674 
    675 /*
    676  * There are several kinds of cloning devices, and the most simple is the one
    677  * tap(4) uses.  What it does is change the file descriptor with a new one,
    678  * with its own fileops structure (which maps to the various read, write,
    679  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    680  * then actually creates the new tap devices.
    681  *
    682  * Once those two steps are successful, we can re-wire the existing file
    683  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    684  * structure as needed (notably f_data gets filled with the fifth parameter
    685  * passed, the unit of the tap device which will allows us identifying the
    686  * device later), and returns EMOVEFD.
    687  *
    688  * That magic value is interpreted by sys_open() which then replaces the
    689  * current file descriptor by the new one (through a magic member of struct
    690  * lwp, l_dupfd).
    691  *
    692  * The tap device is flagged as being busy since it otherwise could be
    693  * externally accessed through the corresponding device node with the cdevsw
    694  * interface.
    695  */
    696 
    697 static int
    698 tap_dev_cloner(struct lwp *l)
    699 {
    700 	struct tap_softc *sc;
    701 	struct file *fp;
    702 	int error, fd;
    703 
    704 	if ((error = falloc(l->l_proc, &fp, &fd)) != 0)
    705 		return (error);
    706 
    707 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    708 		FILE_UNUSE(fp, l);
    709 		ffree(fp);
    710 		return (ENXIO);
    711 	}
    712 
    713 	sc->sc_flags |= TAP_INUSE;
    714 
    715 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    716 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    717 }
    718 
    719 /*
    720  * While all other operations (read, write, ioctl, poll and kqfilter) are
    721  * really the same whether we are in cdevsw or fileops mode, the close()
    722  * function is slightly different in the two cases.
    723  *
    724  * As for the other, the core of it is shared in tap_dev_close.  What
    725  * it does is sufficient for the cdevsw interface, but the cloning interface
    726  * needs another thing:  the interface is destroyed when the processes that
    727  * created it closes it.
    728  */
    729 static int
    730 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
    731 {
    732 	struct tap_softc *sc =
    733 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    734 
    735 	if (sc == NULL)
    736 		return (ENXIO);
    737 
    738 	return tap_dev_close(sc);
    739 }
    740 
    741 /*
    742  * It might happen that the administrator used ifconfig to externally destroy
    743  * the interface.  In that case, tap_fops_close will be called while
    744  * tap_detach is already happening.  If we called it again from here, we
    745  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    746  */
    747 static int
    748 tap_fops_close(struct file *fp, struct lwp *l)
    749 {
    750 	int unit = (intptr_t)fp->f_data;
    751 	struct tap_softc *sc;
    752 	int error;
    753 
    754 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    755 	if (sc == NULL)
    756 		return (ENXIO);
    757 
    758 	/* tap_dev_close currently always succeeds, but it might not
    759 	 * always be the case. */
    760 	if ((error = tap_dev_close(sc)) != 0)
    761 		return (error);
    762 
    763 	/* Destroy the device now that it is no longer useful,
    764 	 * unless it's already being destroyed. */
    765 	if ((sc->sc_flags & TAP_GOING) != 0)
    766 		return (0);
    767 
    768 	return tap_clone_destroyer((struct device *)sc);
    769 }
    770 
    771 static int
    772 tap_dev_close(struct tap_softc *sc)
    773 {
    774 	struct ifnet *ifp;
    775 	int s;
    776 
    777 	s = splnet();
    778 	/* Let tap_start handle packets again */
    779 	ifp = &sc->sc_ec.ec_if;
    780 	ifp->if_flags &= ~IFF_OACTIVE;
    781 
    782 	/* Purge output queue */
    783 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    784 		struct mbuf *m;
    785 
    786 		for (;;) {
    787 			IFQ_DEQUEUE(&ifp->if_snd, m);
    788 			if (m == NULL)
    789 				break;
    790 
    791 			ifp->if_opackets++;
    792 #if NBPFILTER > 0
    793 			if (ifp->if_bpf)
    794 				bpf_mtap(ifp->if_bpf, m);
    795 #endif
    796 		}
    797 	}
    798 	splx(s);
    799 
    800 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    801 
    802 	return (0);
    803 }
    804 
    805 static int
    806 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    807 {
    808 	return tap_dev_read(minor(dev), uio, flags);
    809 }
    810 
    811 static int
    812 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    813     kauth_cred_t cred, int flags)
    814 {
    815 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    816 }
    817 
    818 static int
    819 tap_dev_read(int unit, struct uio *uio, int flags)
    820 {
    821 	struct tap_softc *sc =
    822 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    823 	struct ifnet *ifp;
    824 	struct mbuf *m, *n;
    825 	int error = 0, s;
    826 
    827 	if (sc == NULL)
    828 		return (ENXIO);
    829 
    830 	ifp = &sc->sc_ec.ec_if;
    831 	if ((ifp->if_flags & IFF_UP) == 0)
    832 		return (EHOSTDOWN);
    833 
    834 	/*
    835 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    836 	 */
    837 	if ((sc->sc_flags & TAP_NBIO) &&
    838 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    839 		return (EWOULDBLOCK);
    840 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    841 	if (error != 0)
    842 		return (error);
    843 
    844 	s = splnet();
    845 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    846 		ifp->if_flags &= ~IFF_OACTIVE;
    847 		splx(s);
    848 		/*
    849 		 * We must release the lock before sleeping, and re-acquire it
    850 		 * after.
    851 		 */
    852 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    853 		if (sc->sc_flags & TAP_NBIO)
    854 			error = EWOULDBLOCK;
    855 		else
    856 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    857 
    858 		if (error != 0)
    859 			return (error);
    860 		/* The device might have been downed */
    861 		if ((ifp->if_flags & IFF_UP) == 0)
    862 			return (EHOSTDOWN);
    863 		if ((sc->sc_flags & TAP_NBIO) &&
    864 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    865 			return (EWOULDBLOCK);
    866 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    867 		if (error != 0)
    868 			return (error);
    869 		s = splnet();
    870 	}
    871 
    872 	IFQ_DEQUEUE(&ifp->if_snd, m);
    873 	ifp->if_flags &= ~IFF_OACTIVE;
    874 	splx(s);
    875 	if (m == NULL) {
    876 		error = 0;
    877 		goto out;
    878 	}
    879 
    880 	ifp->if_opackets++;
    881 #if NBPFILTER > 0
    882 	if (ifp->if_bpf)
    883 		bpf_mtap(ifp->if_bpf, m);
    884 #endif
    885 
    886 	/*
    887 	 * One read is one packet.
    888 	 */
    889 	do {
    890 		error = uiomove(mtod(m, caddr_t),
    891 		    min(m->m_len, uio->uio_resid), uio);
    892 		MFREE(m, n);
    893 		m = n;
    894 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    895 
    896 	if (m != NULL)
    897 		m_freem(m);
    898 
    899 out:
    900 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    901 	return (error);
    902 }
    903 
    904 static int
    905 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    906 {
    907 	return tap_dev_write(minor(dev), uio, flags);
    908 }
    909 
    910 static int
    911 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    912     kauth_cred_t cred, int flags)
    913 {
    914 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    915 }
    916 
    917 static int
    918 tap_dev_write(int unit, struct uio *uio, int flags)
    919 {
    920 	struct tap_softc *sc =
    921 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    922 	struct ifnet *ifp;
    923 	struct mbuf *m, **mp;
    924 	int error = 0;
    925 	int s;
    926 
    927 	if (sc == NULL)
    928 		return (ENXIO);
    929 
    930 	ifp = &sc->sc_ec.ec_if;
    931 
    932 	/* One write, one packet, that's the rule */
    933 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    934 	if (m == NULL) {
    935 		ifp->if_ierrors++;
    936 		return (ENOBUFS);
    937 	}
    938 	m->m_pkthdr.len = uio->uio_resid;
    939 
    940 	mp = &m;
    941 	while (error == 0 && uio->uio_resid > 0) {
    942 		if (*mp != m) {
    943 			MGET(*mp, M_DONTWAIT, MT_DATA);
    944 			if (*mp == NULL) {
    945 				error = ENOBUFS;
    946 				break;
    947 			}
    948 		}
    949 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    950 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    951 		mp = &(*mp)->m_next;
    952 	}
    953 	if (error) {
    954 		ifp->if_ierrors++;
    955 		m_freem(m);
    956 		return (error);
    957 	}
    958 
    959 	ifp->if_ipackets++;
    960 	m->m_pkthdr.rcvif = ifp;
    961 
    962 #if NBPFILTER > 0
    963 	if (ifp->if_bpf)
    964 		bpf_mtap(ifp->if_bpf, m);
    965 #endif
    966 	s =splnet();
    967 	(*ifp->if_input)(ifp, m);
    968 	splx(s);
    969 
    970 	return (0);
    971 }
    972 
    973 static int
    974 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    975     struct lwp *l)
    976 {
    977 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    978 }
    979 
    980 static int
    981 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    982 {
    983 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
    984 }
    985 
    986 static int
    987 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
    988 {
    989 	struct tap_softc *sc =
    990 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    991 	int error = 0;
    992 
    993 	if (sc == NULL)
    994 		return (ENXIO);
    995 
    996 	switch (cmd) {
    997 	case FIONREAD:
    998 		{
    999 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1000 			struct mbuf *m;
   1001 			int s;
   1002 
   1003 			s = splnet();
   1004 			IFQ_POLL(&ifp->if_snd, m);
   1005 
   1006 			if (m == NULL)
   1007 				*(int *)data = 0;
   1008 			else
   1009 				*(int *)data = m->m_pkthdr.len;
   1010 			splx(s);
   1011 		} break;
   1012 	case TIOCSPGRP:
   1013 	case FIOSETOWN:
   1014 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1015 		break;
   1016 	case TIOCGPGRP:
   1017 	case FIOGETOWN:
   1018 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1019 		break;
   1020 	case FIOASYNC:
   1021 		if (*(int *)data)
   1022 			sc->sc_flags |= TAP_ASYNCIO;
   1023 		else
   1024 			sc->sc_flags &= ~TAP_ASYNCIO;
   1025 		break;
   1026 	case FIONBIO:
   1027 		if (*(int *)data)
   1028 			sc->sc_flags |= TAP_NBIO;
   1029 		else
   1030 			sc->sc_flags &= ~TAP_NBIO;
   1031 		break;
   1032 	case TAPGIFNAME:
   1033 		{
   1034 			struct ifreq *ifr = (struct ifreq *)data;
   1035 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1036 
   1037 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1038 		} break;
   1039 	default:
   1040 		error = ENOTTY;
   1041 		break;
   1042 	}
   1043 
   1044 	return (0);
   1045 }
   1046 
   1047 static int
   1048 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1049 {
   1050 	return tap_dev_poll(minor(dev), events, l);
   1051 }
   1052 
   1053 static int
   1054 tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1055 {
   1056 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1057 }
   1058 
   1059 static int
   1060 tap_dev_poll(int unit, int events, struct lwp *l)
   1061 {
   1062 	struct tap_softc *sc =
   1063 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1064 	int revents = 0;
   1065 
   1066 	if (sc == NULL)
   1067 		return (ENXIO);
   1068 
   1069 	if (events & (POLLIN|POLLRDNORM)) {
   1070 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1071 		struct mbuf *m;
   1072 		int s;
   1073 
   1074 		s = splnet();
   1075 		IFQ_POLL(&ifp->if_snd, m);
   1076 		splx(s);
   1077 
   1078 		if (m != NULL)
   1079 			revents |= events & (POLLIN|POLLRDNORM);
   1080 		else {
   1081 			simple_lock(&sc->sc_kqlock);
   1082 			selrecord(l, &sc->sc_rsel);
   1083 			simple_unlock(&sc->sc_kqlock);
   1084 		}
   1085 	}
   1086 	revents |= events & (POLLOUT|POLLWRNORM);
   1087 
   1088 	return (revents);
   1089 }
   1090 
   1091 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1092 	tap_kqread };
   1093 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1094 	filt_seltrue };
   1095 
   1096 static int
   1097 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1098 {
   1099 	return tap_dev_kqfilter(minor(dev), kn);
   1100 }
   1101 
   1102 static int
   1103 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1104 {
   1105 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1106 }
   1107 
   1108 static int
   1109 tap_dev_kqfilter(int unit, struct knote *kn)
   1110 {
   1111 	struct tap_softc *sc =
   1112 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1113 
   1114 	if (sc == NULL)
   1115 		return (ENXIO);
   1116 
   1117 	switch(kn->kn_filter) {
   1118 	case EVFILT_READ:
   1119 		kn->kn_fop = &tap_read_filterops;
   1120 		break;
   1121 	case EVFILT_WRITE:
   1122 		kn->kn_fop = &tap_seltrue_filterops;
   1123 		break;
   1124 	default:
   1125 		return (1);
   1126 	}
   1127 
   1128 	kn->kn_hook = sc;
   1129 	simple_lock(&sc->sc_kqlock);
   1130 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1131 	simple_unlock(&sc->sc_kqlock);
   1132 	return (0);
   1133 }
   1134 
   1135 static void
   1136 tap_kqdetach(struct knote *kn)
   1137 {
   1138 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1139 
   1140 	simple_lock(&sc->sc_kqlock);
   1141 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1142 	simple_unlock(&sc->sc_kqlock);
   1143 }
   1144 
   1145 static int
   1146 tap_kqread(struct knote *kn, long hint)
   1147 {
   1148 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1149 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1150 	struct mbuf *m;
   1151 	int s;
   1152 
   1153 	s = splnet();
   1154 	IFQ_POLL(&ifp->if_snd, m);
   1155 
   1156 	if (m == NULL)
   1157 		kn->kn_data = 0;
   1158 	else
   1159 		kn->kn_data = m->m_pkthdr.len;
   1160 	splx(s);
   1161 	return (kn->kn_data != 0 ? 1 : 0);
   1162 }
   1163 
   1164 /*
   1165  * sysctl management routines
   1166  * You can set the address of an interface through:
   1167  * net.link.tap.tap<number>
   1168  *
   1169  * Note the consistent use of tap_log in order to use
   1170  * sysctl_teardown at unload time.
   1171  *
   1172  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1173  * blocks register a function in a special section of the kernel
   1174  * (called a link set) which is used at init_sysctl() time to cycle
   1175  * through all those functions to create the kernel's sysctl tree.
   1176  *
   1177  * It is not (currently) possible to use link sets in a LKM, so the
   1178  * easiest is to simply call our own setup routine at load time.
   1179  *
   1180  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1181  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1182  * whole kernel sysctl tree is built, it is not possible to add any
   1183  * permanent node.
   1184  *
   1185  * It should be noted that we're not saving the sysctlnode pointer
   1186  * we are returned when creating the "tap" node.  That structure
   1187  * cannot be trusted once out of the calling function, as it might
   1188  * get reused.  So we just save the MIB number, and always give the
   1189  * full path starting from the root for later calls to sysctl_createv
   1190  * and sysctl_destroyv.
   1191  */
   1192 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1193 {
   1194 	const struct sysctlnode *node;
   1195 	int error = 0;
   1196 
   1197 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1198 	    CTLFLAG_PERMANENT,
   1199 	    CTLTYPE_NODE, "net", NULL,
   1200 	    NULL, 0, NULL, 0,
   1201 	    CTL_NET, CTL_EOL)) != 0)
   1202 		return;
   1203 
   1204 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1205 	    CTLFLAG_PERMANENT,
   1206 	    CTLTYPE_NODE, "link", NULL,
   1207 	    NULL, 0, NULL, 0,
   1208 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1209 		return;
   1210 
   1211 	/*
   1212 	 * The first four parameters of sysctl_createv are for management.
   1213 	 *
   1214 	 * The four that follows, here starting with a '0' for the flags,
   1215 	 * describe the node.
   1216 	 *
   1217 	 * The next series of four set its value, through various possible
   1218 	 * means.
   1219 	 *
   1220 	 * Last but not least, the path to the node is described.  That path
   1221 	 * is relative to the given root (third argument).  Here we're
   1222 	 * starting from the root.
   1223 	 */
   1224 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1225 	    CTLFLAG_PERMANENT,
   1226 	    CTLTYPE_NODE, "tap", NULL,
   1227 	    NULL, 0, NULL, 0,
   1228 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1229 		return;
   1230 	tap_node = node->sysctl_num;
   1231 }
   1232 
   1233 /*
   1234  * The helper functions make Andrew Brown's interface really
   1235  * shine.  It makes possible to create value on the fly whether
   1236  * the sysctl value is read or written.
   1237  *
   1238  * As shown as an example in the man page, the first step is to
   1239  * create a copy of the node to have sysctl_lookup work on it.
   1240  *
   1241  * Here, we have more work to do than just a copy, since we have
   1242  * to create the string.  The first step is to collect the actual
   1243  * value of the node, which is a convenient pointer to the softc
   1244  * of the interface.  From there we create the string and use it
   1245  * as the value, but only for the *copy* of the node.
   1246  *
   1247  * Then we let sysctl_lookup do the magic, which consists in
   1248  * setting oldp and newp as required by the operation.  When the
   1249  * value is read, that means that the string will be copied to
   1250  * the user, and when it is written, the new value will be copied
   1251  * over in the addr array.
   1252  *
   1253  * If newp is NULL, the user was reading the value, so we don't
   1254  * have anything else to do.  If a new value was written, we
   1255  * have to check it.
   1256  *
   1257  * If it is incorrect, we can return an error and leave 'node' as
   1258  * it is:  since it is a copy of the actual node, the change will
   1259  * be forgotten.
   1260  *
   1261  * Upon a correct input, we commit the change to the ifnet
   1262  * structure of our interface.
   1263  */
   1264 static int
   1265 tap_sysctl_handler(SYSCTLFN_ARGS)
   1266 {
   1267 	struct sysctlnode node;
   1268 	struct tap_softc *sc;
   1269 	struct ifnet *ifp;
   1270 	int error;
   1271 	size_t len;
   1272 	char addr[3 * ETHER_ADDR_LEN];
   1273 
   1274 	node = *rnode;
   1275 	sc = node.sysctl_data;
   1276 	ifp = &sc->sc_ec.ec_if;
   1277 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
   1278 	node.sysctl_data = addr;
   1279 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1280 	if (error || newp == NULL)
   1281 		return (error);
   1282 
   1283 	len = strlen(addr);
   1284 	if (len < 11 || len > 17)
   1285 		return (EINVAL);
   1286 
   1287 	/* Commit change */
   1288 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1289 		return (EINVAL);
   1290 	return (error);
   1291 }
   1292 
   1293 /*
   1294  * ether_aton implementation, not using a static buffer.
   1295  */
   1296 static int
   1297 tap_ether_aton(u_char *dest, char *str)
   1298 {
   1299 	int i;
   1300 	char *cp = str;
   1301 	u_char val[6];
   1302 
   1303 #define	set_value			\
   1304 	if (*cp > '9' && *cp < 'a')	\
   1305 		*cp -= 'A' - 10;	\
   1306 	else if (*cp > '9')		\
   1307 		*cp -= 'a' - 10;	\
   1308 	else				\
   1309 		*cp -= '0'
   1310 
   1311 	for (i = 0; i < 6; i++, cp++) {
   1312 		if (!isxdigit(*cp))
   1313 			return (1);
   1314 		set_value;
   1315 		val[i] = *cp++;
   1316 		if (isxdigit(*cp)) {
   1317 			set_value;
   1318 			val[i] *= 16;
   1319 			val[i] += *cp++;
   1320 		}
   1321 		if (*cp == ':' || i == 5)
   1322 			continue;
   1323 		else
   1324 			return (1);
   1325 	}
   1326 	memcpy(dest, val, 6);
   1327 	return (0);
   1328 }
   1329