if_tap.c revision 1.2 1 /* $NetBSD: if_tap.c,v 1.2 2005/01/19 10:18:40 cube Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to the NetBSD Foundation
8 * by Quentin Garnier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
41 * device to the system, but can also be accessed by userland through a
42 * character device interface, which allows reading and injecting frames.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.2 2005/01/19 10:18:40 cube Exp $");
47
48 #if defined(_KERNEL_OPT)
49 #include "bpfilter.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/ksyms.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 /*
76 * sysctl node management
77 *
78 * It's not really possible to use a SYSCTL_SETUP block with
79 * current LKM implementation, so it is easier to just define
80 * our own function.
81 *
82 * The handler function is a "helper" in Andrew Brown's sysctl
83 * framework terminology. It is used as a gateway for sysctl
84 * requests over the nodes.
85 *
86 * tap_log allows the module to log creations of nodes and
87 * destroy them all at once using sysctl_teardown.
88 */
89 static int tap_node;
90 static int tap_sysctl_handler(SYSCTLFN_PROTO);
91 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
92
93 /*
94 * Since we're an Ethernet device, we need the 3 following
95 * components: a leading struct device, a struct ethercom,
96 * and also a struct ifmedia since we don't attach a PHY to
97 * ourselves. We could emulate one, but there's no real
98 * point.
99 */
100
101 struct tap_softc {
102 struct device sc_dev;
103 struct ifmedia sc_im;
104 struct ethercom sc_ec;
105 int sc_flags;
106 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
107 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
108 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
109 #define TAP_GOING 0x00000008 /* interface is being destroyed */
110 struct selinfo sc_rsel;
111 pid_t sc_pgid; /* For async. IO */
112 struct lock sc_rdlock;
113 struct simplelock sc_kqlock;
114 };
115
116 /* autoconf(9) glue */
117
118 void tapattach(int);
119
120 static int tap_match(struct device *, struct cfdata *, void *);
121 static void tap_attach(struct device *, struct device *, void *);
122 static int tap_detach(struct device*, int);
123
124 /* Ethernet address helper functions */
125
126 static char *tap_ether_sprintf(char *, const u_char *);
127 static int tap_ether_aton(u_char *, char *);
128
129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
130 tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132
133 /* Real device access routines */
134 static int tap_dev_close(struct tap_softc *);
135 static int tap_dev_read(int, struct uio *, int);
136 static int tap_dev_write(int, struct uio *, int);
137 static int tap_dev_ioctl(int, u_long, caddr_t, struct proc *);
138 static int tap_dev_poll(int, int, struct proc *);
139 static int tap_dev_kqfilter(int, struct knote *);
140
141 /* Fileops access routines */
142 static int tap_fops_close(struct file *, struct proc *);
143 static int tap_fops_read(struct file *, off_t *, struct uio *,
144 struct ucred *, int);
145 static int tap_fops_write(struct file *, off_t *, struct uio *,
146 struct ucred *, int);
147 static int tap_fops_ioctl(struct file *, u_long, void *,
148 struct proc *);
149 static int tap_fops_poll(struct file *, int, struct proc *);
150 static int tap_fops_kqfilter(struct file *, struct knote *);
151
152 static const struct fileops tap_fileops = {
153 tap_fops_read,
154 tap_fops_write,
155 tap_fops_ioctl,
156 fnullop_fcntl,
157 tap_fops_poll,
158 fbadop_stat,
159 tap_fops_close,
160 tap_fops_kqfilter,
161 };
162
163 /* Helper for cloning open() */
164 static int tap_dev_cloner(struct proc *);
165
166 /* Character device routines */
167 static int tap_cdev_open(dev_t, int, int, struct proc *);
168 static int tap_cdev_close(dev_t, int, int, struct proc *);
169 static int tap_cdev_read(dev_t, struct uio *, int);
170 static int tap_cdev_write(dev_t, struct uio *, int);
171 static int tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct proc *);
172 static int tap_cdev_poll(dev_t, int, struct proc *);
173 static int tap_cdev_kqfilter(dev_t, struct knote *);
174
175 const struct cdevsw tap_cdevsw = {
176 tap_cdev_open, tap_cdev_close,
177 tap_cdev_read, tap_cdev_write,
178 tap_cdev_ioctl, nostop, notty,
179 tap_cdev_poll, nommap,
180 tap_cdev_kqfilter,
181 };
182
183 #define TAP_CLONER 0xfffff /* Maximal minor value */
184
185 /* kqueue-related routines */
186 static void tap_kqdetach(struct knote *);
187 static int tap_kqread(struct knote *, long);
188
189 /*
190 * Those are needed by the if_media interface.
191 */
192
193 static int tap_mediachange(struct ifnet *);
194 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
195
196 /*
197 * Those are needed by the ifnet interface, and would typically be
198 * there for any network interface driver.
199 * Some other routines are optional: watchdog and drain.
200 */
201
202 static void tap_start(struct ifnet *);
203 static void tap_stop(struct ifnet *, int);
204 static int tap_init(struct ifnet *);
205 static int tap_ioctl(struct ifnet *, u_long, caddr_t);
206
207 /* This is an internal function to keep tap_ioctl readable */
208 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
209
210 /*
211 * tap is a clonable interface, although it is highly unrealistic for
212 * an Ethernet device.
213 *
214 * Here are the bits needed for a clonable interface.
215 */
216 static int tap_clone_create(struct if_clone *, int);
217 static int tap_clone_destroy(struct ifnet *);
218
219 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
220 tap_clone_create,
221 tap_clone_destroy);
222
223 /* Helper functionis shared by the two cloning code paths */
224 static struct tap_softc * tap_clone_creator(int);
225 static int tap_clone_destroyer(struct device *);
226
227 void
228 tapattach(int n)
229 {
230 int error;
231
232 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
233 if (error) {
234 aprint_error("%s: unable to register cfattach\n",
235 tap_cd.cd_name);
236 (void)config_cfdriver_detach(&tap_cd);
237 return;
238 }
239
240 if_clone_attach(&tap_cloners);
241 }
242
243 /* Pretty much useless for a pseudo-device */
244 static int
245 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
246 {
247 return (1);
248 }
249
250 void
251 tap_attach(struct device *parent, struct device *self, void *aux)
252 {
253 struct tap_softc *sc = (struct tap_softc *)self;
254 struct ifnet *ifp;
255 u_int8_t enaddr[ETHER_ADDR_LEN] =
256 { 0xf0, 0x0b, 0xa4, 0xff, 0xff, 0xff };
257 char enaddrstr[18];
258 uint32_t ui;
259 int error;
260 struct sysctlnode *node;
261
262 aprint_normal("%s: faking Ethernet device\n",
263 self->dv_xname);
264
265 /*
266 * In order to obtain unique initial Ethernet address on a host,
267 * do some randomisation using mono_time. It's not meant for anything
268 * but avoiding hard-coding an address.
269 */
270 ui = (mono_time.tv_sec ^ mono_time.tv_usec) & 0xffffff;
271 memcpy(enaddr+3, (u_int8_t *)&ui, 3);
272
273 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
274 tap_ether_sprintf(enaddrstr, enaddr));
275
276 /*
277 * Why 1000baseT? Why not? You can add more.
278 *
279 * Note that there are 3 steps: init, one or several additions to
280 * list of supported media, and in the end, the selection of one
281 * of them.
282 */
283 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
284 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
285 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
289 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
290 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
291 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
292
293 /*
294 * One should note that an interface must do multicast in order
295 * to support IPv6.
296 */
297 ifp = &sc->sc_ec.ec_if;
298 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
299 ifp->if_softc = sc;
300 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
301 ifp->if_ioctl = tap_ioctl;
302 ifp->if_start = tap_start;
303 ifp->if_stop = tap_stop;
304 ifp->if_init = tap_init;
305 IFQ_SET_READY(&ifp->if_snd);
306
307 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
308
309 /* Those steps are mandatory for an Ethernet driver, the fisrt call
310 * being common to all network interface drivers. */
311 if_attach(ifp);
312 ether_ifattach(ifp, enaddr);
313
314 sc->sc_flags = 0;
315
316 /*
317 * Add a sysctl node for that interface.
318 *
319 * The pointer transmitted is not a string, but instead a pointer to
320 * the softc structure, which we can use to build the string value on
321 * the fly in the helper function of the node. See the comments for
322 * tap_sysctl_handler for details.
323 */
324 if ((error = sysctl_createv(NULL, 0, NULL,
325 &node, CTLFLAG_READWRITE,
326 CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
327 tap_sysctl_handler, 0, sc, 18,
328 CTL_NET, PF_LINK, tap_node, sc->sc_dev.dv_unit, CTL_EOL)) != 0)
329 aprint_error("%s: sysctl_createv returned %d, ignoring\n",
330 sc->sc_dev.dv_xname, error);
331
332 /*
333 * Initialize the two locks for the device.
334 *
335 * We need a lock here because even though the tap device can be
336 * opened only once, the file descriptor might be passed to another
337 * process, say a fork(2)ed child.
338 *
339 * The Giant saves us from most of the hassle, but since the read
340 * operation can sleep, we don't want two processes to wake up at
341 * the same moment and both try and dequeue a single packet.
342 *
343 * The queue for event listeners (used by kqueue(9), see below) has
344 * to be protected, too, but we don't need the same level of
345 * complexity for that lock, so a simple spinning lock is fine.
346 */
347 lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
348 simple_lock_init(&sc->sc_kqlock);
349 }
350
351 /*
352 * When detaching, we do the inverse of what is done in the attach
353 * routine, in reversed order.
354 */
355 static int
356 tap_detach(struct device* self, int flags)
357 {
358 struct tap_softc *sc = (struct tap_softc *)self;
359 struct ifnet *ifp = &sc->sc_ec.ec_if;
360 int error, s;
361
362 /*
363 * Some processes might be sleeping on "tap", so we have to make
364 * them release their hold on the device.
365 *
366 * The LK_DRAIN operation will wait for every locked process to
367 * release their hold.
368 */
369 sc->sc_flags |= TAP_GOING;
370 s = splnet();
371 tap_stop(ifp, 1);
372 if_down(ifp);
373 splx(s);
374 lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
375
376 /*
377 * Destroying a single leaf is a very straightforward operation using
378 * sysctl_destroyv. One should be sure to always end the path with
379 * CTL_EOL.
380 */
381 if ((error = sysctl_destroyv(NULL, CTL_NET, PF_LINK, tap_node,
382 sc->sc_dev.dv_unit, CTL_EOL)) != 0)
383 aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
384 sc->sc_dev.dv_xname, error);
385 ether_ifdetach(ifp);
386 if_detach(ifp);
387 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
388
389 return (0);
390 }
391
392 /*
393 * This function is called by the ifmedia layer to notify the driver
394 * that the user requested a media change. A real driver would
395 * reconfigure the hardware.
396 */
397 static int
398 tap_mediachange(struct ifnet *ifp)
399 {
400 return (0);
401 }
402
403 /*
404 * Here the user asks for the currently used media.
405 */
406 static void
407 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
408 {
409 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
410 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
411 }
412
413 /*
414 * This is the function where we SEND packets.
415 *
416 * There is no 'receive' equivalent. A typical driver will get
417 * interrupts from the hardware, and from there will inject new packets
418 * into the network stack.
419 *
420 * Once handled, a packet must be freed. A real driver might not be able
421 * to fit all the pending packets into the hardware, and is allowed to
422 * return before having sent all the packets. It should then use the
423 * if_flags flag IFF_OACTIVE to notify the upper layer.
424 *
425 * There are also other flags one should check, such as IFF_PAUSE.
426 *
427 * It is our duty to make packets available to BPF listeners.
428 *
429 * You should be aware that this function is called by the Ethernet layer
430 * at splnet().
431 *
432 * When the device is opened, we have to pass the packet(s) to the
433 * userland. For that we stay in OACTIVE mode while the userland gets
434 * the packets, and we send a signal to the processes waiting to read.
435 *
436 * wakeup(sc) is the counterpart to the tsleep call in
437 * tap_dev_read, while selnotify() is used for kevent(2) and
438 * poll(2) (which includes select(2)) listeners.
439 */
440 static void
441 tap_start(struct ifnet *ifp)
442 {
443 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
444 struct mbuf *m0;
445
446 if ((sc->sc_flags & TAP_INUSE) == 0) {
447 /* Simply drop packets */
448 for(;;) {
449 IFQ_DEQUEUE(&ifp->if_snd, m0);
450 if (m0 == NULL)
451 return;
452
453 ifp->if_opackets++;
454 #if NBPFILTER > 0
455 if (ifp->if_bpf)
456 bpf_mtap(ifp->if_bpf, m0);
457 #endif
458
459 m_freem(m0);
460 }
461 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
462 ifp->if_flags |= IFF_OACTIVE;
463 wakeup(sc);
464 selnotify(&sc->sc_rsel, 1);
465 if (sc->sc_flags & TAP_ASYNCIO)
466 fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
467 POLLIN|POLLRDNORM, NULL);
468 }
469 }
470
471 /*
472 * A typical driver will only contain the following handlers for
473 * ioctl calls, except SIOCSIFPHYADDR.
474 * The latter is a hack I used to set the Ethernet address of the
475 * faked device.
476 *
477 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
478 * called under splnet().
479 */
480 static int
481 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
482 {
483 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
484 struct ifreq *ifr = (struct ifreq *)data;
485 int s, error;
486
487 s = splnet();
488
489 switch (cmd) {
490 case SIOCSIFMEDIA:
491 case SIOCGIFMEDIA:
492 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
493 break;
494 case SIOCSIFPHYADDR:
495 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
496 break;
497 default:
498 error = ether_ioctl(ifp, cmd, data);
499 if (error == ENETRESET)
500 error = 0;
501 break;
502 }
503
504 splx(s);
505
506 return (error);
507 }
508
509 /*
510 * Helper function to set Ethernet address. This shouldn't be done there,
511 * and should actually be available to all Ethernet drivers, real or not.
512 */
513 static int
514 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
515 {
516 struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
517
518 if (sa->sa_family != AF_LINK)
519 return (EINVAL);
520
521 memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
522
523 return (0);
524 }
525
526 /*
527 * _init() would typically be called when an interface goes up,
528 * meaning it should configure itself into the state in which it
529 * can send packets.
530 */
531 static int
532 tap_init(struct ifnet *ifp)
533 {
534 ifp->if_flags |= IFF_RUNNING;
535
536 tap_start(ifp);
537
538 return (0);
539 }
540
541 /*
542 * _stop() is called when an interface goes down. It is our
543 * responsability to validate that state by clearing the
544 * IFF_RUNNING flag.
545 *
546 * We have to wake up all the sleeping processes to have the pending
547 * read requests cancelled.
548 */
549 static void
550 tap_stop(struct ifnet *ifp, int disable)
551 {
552 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
553
554 ifp->if_flags &= ~IFF_RUNNING;
555 wakeup(sc);
556 selnotify(&sc->sc_rsel, 1);
557 if (sc->sc_flags & TAP_ASYNCIO)
558 fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
559 }
560
561 /*
562 * The 'create' command of ifconfig can be used to create
563 * any numbered instance of a given device. Thus we have to
564 * make sure we have enough room in cd_devs to create the
565 * user-specified instance. config_attach_pseudo will do this
566 * for us.
567 */
568 static int
569 tap_clone_create(struct if_clone *ifc, int unit)
570 {
571 if (tap_clone_creator(unit) == NULL) {
572 aprint_error("%s%d: unable to attach an instance\n",
573 tap_cd.cd_name, unit);
574 return (ENXIO);
575 }
576
577 return (0);
578 }
579
580 /*
581 * tap(4) can be cloned by two ways:
582 * using 'ifconfig tap0 create', which will use the network
583 * interface cloning API, and call tap_clone_create above.
584 * opening the cloning device node, whose minor number is TAP_CLONER.
585 * See below for an explanation on how this part work.
586 *
587 * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
588 * autoconf(9) choose a unit number for us. This is what happens when
589 * the cloner is openend, while the ifcloner interface creates a device
590 * with a specific unit number.
591 */
592 static struct tap_softc *
593 tap_clone_creator(int unit)
594 {
595 struct cfdata *cf;
596
597 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
598 cf->cf_name = tap_cd.cd_name;
599 cf->cf_atname = tap_ca.ca_name;
600 cf->cf_unit = unit;
601 cf->cf_fstate = FSTATE_STAR;
602
603 return (struct tap_softc *)config_attach_pseudo(cf);
604 }
605
606 /*
607 * The clean design of if_clone and autoconf(9) makes that part
608 * really straightforward. The second argument of config_detach
609 * means neither QUIET nor FORCED.
610 */
611 static int
612 tap_clone_destroy(struct ifnet *ifp)
613 {
614 return tap_clone_destroyer((struct device *)ifp->if_softc);
615 }
616
617 static int
618 tap_clone_destroyer(struct device *dev)
619 {
620 struct cfdata *cf = dev->dv_cfdata;
621 int error;
622
623 if ((error = config_detach(dev, 0)) != 0)
624 aprint_error("%s: unable to detach instance\n",
625 dev->dv_xname);
626 free(cf, M_DEVBUF);
627
628 return (error);
629 }
630
631 /*
632 * tap(4) is a bit of an hybrid device. It can be used in two different
633 * ways:
634 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
635 * 2. open /dev/tap, get a new interface created and read/write off it.
636 * That interface is destroyed when the process that had it created exits.
637 *
638 * The first way is managed by the cdevsw structure, and you access interfaces
639 * through a (major, minor) mapping: tap4 is obtained by the minor number
640 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
641 *
642 * The second way is the so-called "cloning" device. It's a special minor
643 * number (chosen as the maximal number, to allow as much tap devices as
644 * possible). The user first opens the cloner (e.g., /dev/tap), and that
645 * call ends in tap_cdev_open. The actual place where it is handled is
646 * tap_dev_cloner.
647 *
648 * An tap device cannot be opened more than once at a time, so the cdevsw
649 * part of open() does nothing but noting that the interface is being used and
650 * hence ready to actually handle packets.
651 */
652
653 static int
654 tap_cdev_open(dev_t dev, int flags, int fmt, struct proc *p)
655 {
656 struct tap_softc *sc;
657
658 if (minor(dev) == TAP_CLONER)
659 return tap_dev_cloner(p);
660
661 sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
662 if (sc == NULL)
663 return (ENXIO);
664
665 /* The device can only be opened once */
666 if (sc->sc_flags & TAP_INUSE)
667 return (EBUSY);
668 sc->sc_flags |= TAP_INUSE;
669 return (0);
670 }
671
672 /*
673 * There are several kinds of cloning devices, and the most simple is the one
674 * tap(4) uses. What it does is change the file descriptor with a new one,
675 * with its own fileops structure (which maps to the various read, write,
676 * ioctl functions). It starts allocating a new file descriptor with falloc,
677 * then actually creates the new tap devices.
678 *
679 * Once those two steps are successful, we can re-wire the existing file
680 * descriptor to its new self. This is done with fdclone(): it fills the fp
681 * structure as needed (notably f_data gets filled with the fifth parameter
682 * passed, the unit of the tap device which will allows us identifying the
683 * device later), and returns EMOVEFD.
684 *
685 * That magic value is interpreted by sys_open() which then replaces the
686 * current file descriptor by the new one (through a magic member of struct
687 * proc, p_dupfd).
688 *
689 * The tap device is flagged as being busy since it otherwise could be
690 * externally accessed through the corresponding device node with the cdevsw
691 * interface.
692 */
693
694 static int
695 tap_dev_cloner(struct proc *p)
696 {
697 struct tap_softc *sc;
698 struct file *fp;
699 int error, fd;
700
701 if ((error = falloc(p, &fp, &fd)) != 0)
702 return (error);
703
704 if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
705 FILE_UNUSE(fp, p);
706 ffree(fp);
707 return (ENXIO);
708 }
709
710 sc->sc_flags |= TAP_INUSE;
711
712 return fdclone(p, fp, fd, &tap_fileops, (void *)(intptr_t)sc->sc_dev.dv_unit);
713 }
714
715 /*
716 * While all other operations (read, write, ioctl, poll and kqfilter) are
717 * really the same whether we are in cdevsw or fileops mode, the close()
718 * function is slightly different in the two cases.
719 *
720 * As for the other, the core of it is shared in tap_dev_close. What
721 * it does is sufficient for the cdevsw interface, but the cloning interface
722 * needs another thing: the interface is destroyed when the processes that
723 * created it closes it.
724 */
725 static int
726 tap_cdev_close(dev_t dev, int flags, int fmt, struct proc *p)
727 {
728 struct tap_softc *sc =
729 (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
730
731 if (sc == NULL)
732 return (ENXIO);
733
734 return tap_dev_close(sc);
735 }
736
737 /*
738 * It might happen that the administrator used ifconfig to externally destroy
739 * the interface. In that case, tap_fops_close will be called while
740 * tap_detach is already happening. If we called it again from here, we
741 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
742 */
743 static int
744 tap_fops_close(struct file *fp, struct proc *p)
745 {
746 int unit = (intptr_t)fp->f_data;
747 struct tap_softc *sc;
748 int error;
749
750 sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
751 if (sc == NULL)
752 return (ENXIO);
753
754 /* tap_dev_close currently always succeeds, but it might not
755 * always be the case. */
756 if ((error = tap_dev_close(sc)) != 0)
757 return (error);
758
759 /* Destroy the device now that it is no longer useful,
760 * unless it's already being destroyed. */
761 if ((sc->sc_flags & TAP_GOING) != 0)
762 return (0);
763
764 return tap_clone_destroyer((struct device *)sc);
765 }
766
767 static int
768 tap_dev_close(struct tap_softc *sc)
769 {
770 struct ifnet *ifp;
771 int s;
772
773 s = splnet();
774 /* Let tap_start handle packets again */
775 ifp = &sc->sc_ec.ec_if;
776 ifp->if_flags &= ~IFF_OACTIVE;
777
778 /* Purge output queue */
779 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
780 struct mbuf *m;
781
782 for (;;) {
783 IFQ_DEQUEUE(&ifp->if_snd, m);
784 if (m == NULL)
785 break;
786
787 ifp->if_opackets++;
788 #if NBPFILTER > 0
789 if (ifp->if_bpf)
790 bpf_mtap(ifp->if_bpf, m);
791 #endif
792 }
793 }
794 splx(s);
795
796 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
797
798 return (0);
799 }
800
801 static int
802 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
803 {
804 return tap_dev_read(minor(dev), uio, flags);
805 }
806
807 static int
808 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
809 struct ucred *cred, int flags)
810 {
811 return tap_dev_read((intptr_t)fp->f_data, uio, flags);
812 }
813
814 static int
815 tap_dev_read(int unit, struct uio *uio, int flags)
816 {
817 struct tap_softc *sc =
818 (struct tap_softc *)device_lookup(&tap_cd, unit);
819 struct ifnet *ifp;
820 struct mbuf *m, *n;
821 int error = 0, s;
822
823 if (sc == NULL)
824 return (ENXIO);
825
826 ifp = &sc->sc_ec.ec_if;
827 if ((ifp->if_flags & IFF_UP) == 0)
828 return (EHOSTDOWN);
829
830 /*
831 * In the TAP_NBIO case, we have to make sure we won't be sleeping
832 */
833 if ((sc->sc_flags & TAP_NBIO) &&
834 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
835 return (EWOULDBLOCK);
836 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
837 if (error != 0)
838 return (error);
839
840 s = splnet();
841 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
842 ifp->if_flags &= ~IFF_OACTIVE;
843 splx(s);
844 /*
845 * We must release the lock before sleeping, and re-acquire it
846 * after.
847 */
848 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
849 if (sc->sc_flags & TAP_NBIO)
850 error = EWOULDBLOCK;
851 else
852 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
853
854 if (error != 0)
855 return (error);
856 /* The device might have been downed */
857 if ((ifp->if_flags & IFF_UP) == 0)
858 return (EHOSTDOWN);
859 if ((sc->sc_flags & TAP_NBIO) &&
860 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
861 return (EWOULDBLOCK);
862 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
863 if (error != 0)
864 return (error);
865 s = splnet();
866 }
867
868 IFQ_DEQUEUE(&ifp->if_snd, m);
869 ifp->if_flags &= ~IFF_OACTIVE;
870 splx(s);
871 if (m == NULL) {
872 error = 0;
873 goto out;
874 }
875
876 ifp->if_opackets++;
877 #if NBPFILTER > 0
878 if (ifp->if_bpf)
879 bpf_mtap(ifp->if_bpf, m);
880 #endif
881
882 /*
883 * One read is one packet.
884 */
885 do {
886 error = uiomove(mtod(m, caddr_t),
887 min(m->m_len, uio->uio_resid), uio);
888 MFREE(m, n);
889 m = n;
890 } while (m != NULL && uio->uio_resid > 0 && error == 0);
891
892 if (m != NULL)
893 m_freem(m);
894
895 out:
896 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
897 return (error);
898 }
899
900 static int
901 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
902 {
903 return tap_dev_write(minor(dev), uio, flags);
904 }
905
906 static int
907 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
908 struct ucred *cred, int flags)
909 {
910 return tap_dev_write((intptr_t)fp->f_data, uio, flags);
911 }
912
913 static int
914 tap_dev_write(int unit, struct uio *uio, int flags)
915 {
916 struct tap_softc *sc =
917 (struct tap_softc *)device_lookup(&tap_cd, unit);
918 struct ifnet *ifp;
919 struct mbuf *m, **mp;
920 int error = 0;
921
922 if (sc == NULL)
923 return (ENXIO);
924
925 ifp = &sc->sc_ec.ec_if;
926
927 /* One write, one packet, that's the rule */
928 MGETHDR(m, M_DONTWAIT, MT_DATA);
929 if (m == NULL) {
930 ifp->if_ierrors++;
931 return (ENOBUFS);
932 }
933 m->m_pkthdr.len = uio->uio_resid;
934
935 mp = &m;
936 while (error == 0 && uio->uio_resid > 0) {
937 if (*mp != m) {
938 MGET(*mp, M_DONTWAIT, MT_DATA);
939 if (*mp == NULL) {
940 error = ENOBUFS;
941 break;
942 }
943 }
944 (*mp)->m_len = min(MHLEN, uio->uio_resid);
945 error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
946 mp = &(*mp)->m_next;
947 }
948 if (error) {
949 ifp->if_ierrors++;
950 m_freem(m);
951 return (error);
952 }
953
954 ifp->if_ipackets++;
955 m->m_pkthdr.rcvif = ifp;
956
957 #if NBPFILTER > 0
958 if (ifp->if_bpf)
959 bpf_mtap(ifp->if_bpf, m);
960 #endif
961 (*ifp->if_input)(ifp, m);
962
963 return (0);
964 }
965
966 static int
967 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
968 struct proc *p)
969 {
970 return tap_dev_ioctl(minor(dev), cmd, data, p);
971 }
972
973 static int
974 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct proc *p)
975 {
976 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, p);
977 }
978
979 static int
980 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct proc *p)
981 {
982 struct tap_softc *sc =
983 (struct tap_softc *)device_lookup(&tap_cd, unit);
984 int error = 0;
985
986 if (sc == NULL)
987 return (ENXIO);
988
989 switch (cmd) {
990 case FIONREAD:
991 {
992 struct ifnet *ifp = &sc->sc_ec.ec_if;
993 struct mbuf *m;
994 int s;
995
996 s = splnet();
997 IFQ_POLL(&ifp->if_snd, m);
998
999 if (m == NULL)
1000 *(int *)data = 0;
1001 else
1002 *(int *)data = m->m_pkthdr.len;
1003 splx(s);
1004 } break;
1005 case TIOCSPGRP:
1006 case FIOSETOWN:
1007 error = fsetown(p, &sc->sc_pgid, cmd, data);
1008 break;
1009 case TIOCGPGRP:
1010 case FIOGETOWN:
1011 error = fgetown(p, sc->sc_pgid, cmd, data);
1012 break;
1013 case FIOASYNC:
1014 if (*(int *)data)
1015 sc->sc_flags |= TAP_ASYNCIO;
1016 else
1017 sc->sc_flags &= ~TAP_ASYNCIO;
1018 break;
1019 case FIONBIO:
1020 if (*(int *)data)
1021 sc->sc_flags |= TAP_NBIO;
1022 else
1023 sc->sc_flags &= ~TAP_NBIO;
1024 break;
1025 case TAPGIFNAME:
1026 {
1027 struct ifreq *ifr = (struct ifreq *)data;
1028 struct ifnet *ifp = &sc->sc_ec.ec_if;
1029
1030 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1031 } break;
1032 default:
1033 error = ENOTTY;
1034 break;
1035 }
1036
1037 return (0);
1038 }
1039
1040 static int
1041 tap_cdev_poll(dev_t dev, int events, struct proc *p)
1042 {
1043 return tap_dev_poll(minor(dev), events, p);
1044 }
1045
1046 static int
1047 tap_fops_poll(struct file *fp, int events, struct proc *p)
1048 {
1049 return tap_dev_poll((intptr_t)fp->f_data, events, p);
1050 }
1051
1052 static int
1053 tap_dev_poll(int unit, int events, struct proc *p)
1054 {
1055 struct tap_softc *sc =
1056 (struct tap_softc *)device_lookup(&tap_cd, unit);
1057 int revents = 0;
1058
1059 if (sc == NULL)
1060 return (ENXIO);
1061
1062 if (events & (POLLIN|POLLRDNORM)) {
1063 struct ifnet *ifp = &sc->sc_ec.ec_if;
1064 struct mbuf *m;
1065 int s;
1066
1067 s = splnet();
1068 IFQ_POLL(&ifp->if_snd, m);
1069 splx(s);
1070
1071 if (m != NULL)
1072 revents |= events & (POLLIN|POLLRDNORM);
1073 else {
1074 (void)simple_lock(&sc->sc_kqlock);
1075 selrecord(p, &sc->sc_rsel);
1076 simple_unlock(&sc->sc_kqlock);
1077 }
1078 }
1079 revents |= events & (POLLOUT|POLLWRNORM);
1080
1081 return (revents);
1082 }
1083
1084 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1085 tap_kqread };
1086 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1087 filt_seltrue };
1088
1089 static int
1090 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1091 {
1092 return tap_dev_kqfilter(minor(dev), kn);
1093 }
1094
1095 static int
1096 tap_fops_kqfilter(struct file *fp, struct knote *kn)
1097 {
1098 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1099 }
1100
1101 static int
1102 tap_dev_kqfilter(int unit, struct knote *kn)
1103 {
1104 struct tap_softc *sc =
1105 (struct tap_softc *)device_lookup(&tap_cd, unit);
1106
1107 if (sc == NULL)
1108 return (ENXIO);
1109
1110 switch(kn->kn_filter) {
1111 case EVFILT_READ:
1112 kn->kn_fop = &tap_read_filterops;
1113 break;
1114 case EVFILT_WRITE:
1115 kn->kn_fop = &tap_seltrue_filterops;
1116 break;
1117 default:
1118 return (1);
1119 }
1120
1121 kn->kn_hook = sc;
1122 (void)simple_lock(&sc->sc_kqlock);
1123 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1124 simple_unlock(&sc->sc_kqlock);
1125 return (0);
1126 }
1127
1128 static void
1129 tap_kqdetach(struct knote *kn)
1130 {
1131 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1132
1133 (void)simple_lock(&sc->sc_kqlock);
1134 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1135 simple_unlock(&sc->sc_kqlock);
1136 }
1137
1138 static int
1139 tap_kqread(struct knote *kn, long hint)
1140 {
1141 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1142 struct ifnet *ifp = &sc->sc_ec.ec_if;
1143 struct mbuf *m;
1144 int s;
1145
1146 s = splnet();
1147 IFQ_POLL(&ifp->if_snd, m);
1148
1149 if (m == NULL)
1150 kn->kn_data = 0;
1151 else
1152 kn->kn_data = m->m_pkthdr.len;
1153 splx(s);
1154 return (kn->kn_data != 0 ? 1 : 0);
1155 }
1156
1157 /*
1158 * sysctl management routines
1159 * You can set the address of an interface through:
1160 * net.link.tap.tap<number>
1161 *
1162 * Note the consistent use of tap_log in order to use
1163 * sysctl_teardown at unload time.
1164 *
1165 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1166 * blocks register a function in a special section of the kernel
1167 * (called a link set) which is used at init_sysctl() time to cycle
1168 * through all those functions to create the kernel's sysctl tree.
1169 *
1170 * It is not (currently) possible to use link sets in a LKM, so the
1171 * easiest is to simply call our own setup routine at load time.
1172 *
1173 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1174 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1175 * whole kernel sysctl tree is built, it is not possible to add any
1176 * permanent node.
1177 *
1178 * It should be noted that we're not saving the sysctlnode pointer
1179 * we are returned when creating the "tap" node. That structure
1180 * cannot be trusted once out of the calling function, as it might
1181 * get reused. So we just save the MIB number, and always give the
1182 * full path starting from the root for later calls to sysctl_createv
1183 * and sysctl_destroyv.
1184 */
1185 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1186 {
1187 struct sysctlnode *node;
1188 int error = 0;
1189
1190 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1191 CTLFLAG_PERMANENT,
1192 CTLTYPE_NODE, "net", NULL,
1193 NULL, 0, NULL, 0,
1194 CTL_NET, CTL_EOL)) != 0)
1195 return;
1196
1197 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1198 CTLFLAG_PERMANENT,
1199 CTLTYPE_NODE, "link", NULL,
1200 NULL, 0, NULL, 0,
1201 CTL_NET, PF_LINK, CTL_EOL)) != 0)
1202 return;
1203
1204 /*
1205 * The first four parameters of sysctl_createv are for management.
1206 *
1207 * The four that follows, here starting with a '0' for the flags,
1208 * describe the node.
1209 *
1210 * The next series of four set its value, through various possible
1211 * means.
1212 *
1213 * Last but not least, the path to the node is described. That path
1214 * is relative to the given root (third argument). Here we're
1215 * starting from the root.
1216 */
1217 if ((error = sysctl_createv(clog, 0, NULL, &node,
1218 CTLFLAG_PERMANENT,
1219 CTLTYPE_NODE, "tap", NULL,
1220 NULL, 0, NULL, 0,
1221 CTL_NET, PF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1222 return;
1223 tap_node = node->sysctl_num;
1224 }
1225
1226 /*
1227 * The helper functions make Andrew Brown's interface really
1228 * shine. It makes possible to create value on the fly whether
1229 * the sysctl value is read or written.
1230 *
1231 * As shown as an example in the man page, the first step is to
1232 * create a copy of the node to have sysctl_lookup work on it.
1233 *
1234 * Here, we have more work to do than just a copy, since we have
1235 * to create the string. The first step is to collect the actual
1236 * value of the node, which is a convenient pointer to the softc
1237 * of the interface. From there we create the string and use it
1238 * as the value, but only for the *copy* of the node.
1239 *
1240 * Then we let sysctl_lookup do the magic, which consists in
1241 * setting oldp and newp as required by the operation. When the
1242 * value is read, that means that the string will be copied to
1243 * the user, and when it is written, the new value will be copied
1244 * over in the addr array.
1245 *
1246 * If newp is NULL, the user was reading the value, so we don't
1247 * have anything else to do. If a new value was written, we
1248 * have to check it.
1249 *
1250 * If it is incorrect, we can return an error and leave 'node' as
1251 * it is: since it is a copy of the actual node, the change will
1252 * be forgotten.
1253 *
1254 * Upon a correct input, we commit the change to the ifnet
1255 * structure of our interface.
1256 */
1257 static int
1258 tap_sysctl_handler(SYSCTLFN_ARGS)
1259 {
1260 struct sysctlnode node;
1261 struct tap_softc *sc;
1262 struct ifnet *ifp;
1263 int error;
1264 size_t len;
1265 char addr[18];
1266
1267 node = *rnode;
1268 sc = node.sysctl_data;
1269 ifp = &sc->sc_ec.ec_if;
1270 (void)tap_ether_sprintf(addr, LLADDR(ifp->if_sadl));
1271 node.sysctl_data = addr;
1272 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1273 if (error || newp == NULL)
1274 return (error);
1275
1276 len = strlen(addr);
1277 if (len < 11 || len > 17)
1278 return (EINVAL);
1279
1280 /* Commit change */
1281 if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
1282 return (EINVAL);
1283 return (error);
1284 }
1285
1286 /*
1287 * ether_aton implementation, not using a static buffer.
1288 */
1289 static int
1290 tap_ether_aton(u_char *dest, char *str)
1291 {
1292 int i;
1293 char *cp = str;
1294 u_char val[6];
1295
1296 #define set_value \
1297 if (*cp > '9' && *cp < 'a') \
1298 *cp -= 'A' - 10; \
1299 else if (*cp > '9') \
1300 *cp -= 'a' - 10; \
1301 else \
1302 *cp -= '0'
1303
1304 for (i = 0; i < 6; i++, cp++) {
1305 if (!isxdigit(*cp))
1306 return (1);
1307 set_value;
1308 val[i] = *cp++;
1309 if (isxdigit(*cp)) {
1310 set_value;
1311 val[i] *= 16;
1312 val[i] += *cp++;
1313 }
1314 if (*cp == ':' || i == 5)
1315 continue;
1316 else
1317 return (1);
1318 }
1319 memcpy(dest, val, 6);
1320 return (0);
1321 }
1322
1323 /*
1324 * ether_sprintf made thread-safer.
1325 *
1326 * Copied over from sys/net/if_ethersubr.c, with a change to avoid the use
1327 * of a static buffer.
1328 */
1329
1330 /*
1331 * Copyright (c) 1982, 1989, 1993
1332 * The Regents of the University of California. All rights reserved.
1333 *
1334 * Redistribution and use in source and binary forms, with or without
1335 * modification, are permitted provided that the following conditions
1336 * are met:
1337 * 1. Redistributions of source code must retain the above copyright
1338 * notice, this list of conditions and the following disclaimer.
1339 * 2. Redistributions in binary form must reproduce the above copyright
1340 * notice, this list of conditions and the following disclaimer in the
1341 * documentation and/or other materials provided with the distribution.
1342 * 3. Neither the name of the University nor the names of its contributors
1343 * may be used to endorse or promote products derived from this software
1344 * without specific prior written permission.
1345 *
1346 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
1347 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1348 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1349 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
1350 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
1351 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
1352 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
1353 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1354 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1355 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
1356 * SUCH DAMAGE.
1357 *
1358 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
1359 */
1360
1361 static char digits[] = "0123456789abcdef";
1362 static char *
1363 tap_ether_sprintf(char *dest, const u_char *ap)
1364 {
1365 char *cp = dest;
1366 int i;
1367
1368 for (i = 0; i < 6; i++) {
1369 *cp++ = digits[*ap >> 4];
1370 *cp++ = digits[*ap++ & 0xf];
1371 *cp++ = ':';
1372 }
1373 *--cp = 0;
1374 return (dest);
1375 }
1376