if_tap.c revision 1.20 1 /* $NetBSD: if_tap.c,v 1.20 2006/08/30 16:58:38 christos Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to the NetBSD Foundation
8 * by Quentin Garnier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
41 * device to the system, but can also be accessed by userland through a
42 * character device interface, which allows reading and injecting frames.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.20 2006/08/30 16:58:38 christos Exp $");
47
48 #if defined(_KERNEL_OPT)
49 #include "bpfilter.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/ksyms.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/kauth.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current LKM implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93
94 /*
95 * Since we're an Ethernet device, we need the 3 following
96 * components: a leading struct device, a struct ethercom,
97 * and also a struct ifmedia since we don't attach a PHY to
98 * ourselves. We could emulate one, but there's no real
99 * point.
100 */
101
102 struct tap_softc {
103 struct device sc_dev;
104 struct ifmedia sc_im;
105 struct ethercom sc_ec;
106 int sc_flags;
107 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 struct selinfo sc_rsel;
112 pid_t sc_pgid; /* For async. IO */
113 struct lock sc_rdlock;
114 struct simplelock sc_kqlock;
115 };
116
117 /* autoconf(9) glue */
118
119 void tapattach(int);
120
121 static int tap_match(struct device *, struct cfdata *, void *);
122 static void tap_attach(struct device *, struct device *, void *);
123 static int tap_detach(struct device*, int);
124
125 /* Ethernet address helper functions */
126
127 static int tap_ether_aton(u_char *, char *);
128
129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
130 tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132
133 /* Real device access routines */
134 static int tap_dev_close(struct tap_softc *);
135 static int tap_dev_read(int, struct uio *, int);
136 static int tap_dev_write(int, struct uio *, int);
137 static int tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
138 static int tap_dev_poll(int, int, struct lwp *);
139 static int tap_dev_kqfilter(int, struct knote *);
140
141 /* Fileops access routines */
142 static int tap_fops_close(struct file *, struct lwp *);
143 static int tap_fops_read(struct file *, off_t *, struct uio *,
144 kauth_cred_t, int);
145 static int tap_fops_write(struct file *, off_t *, struct uio *,
146 kauth_cred_t, int);
147 static int tap_fops_ioctl(struct file *, u_long, void *,
148 struct lwp *);
149 static int tap_fops_poll(struct file *, int, struct lwp *);
150 static int tap_fops_kqfilter(struct file *, struct knote *);
151
152 static const struct fileops tap_fileops = {
153 tap_fops_read,
154 tap_fops_write,
155 tap_fops_ioctl,
156 fnullop_fcntl,
157 tap_fops_poll,
158 fbadop_stat,
159 tap_fops_close,
160 tap_fops_kqfilter,
161 };
162
163 /* Helper for cloning open() */
164 static int tap_dev_cloner(struct lwp *);
165
166 /* Character device routines */
167 static int tap_cdev_open(dev_t, int, int, struct lwp *);
168 static int tap_cdev_close(dev_t, int, int, struct lwp *);
169 static int tap_cdev_read(dev_t, struct uio *, int);
170 static int tap_cdev_write(dev_t, struct uio *, int);
171 static int tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
172 static int tap_cdev_poll(dev_t, int, struct lwp *);
173 static int tap_cdev_kqfilter(dev_t, struct knote *);
174
175 const struct cdevsw tap_cdevsw = {
176 tap_cdev_open, tap_cdev_close,
177 tap_cdev_read, tap_cdev_write,
178 tap_cdev_ioctl, nostop, notty,
179 tap_cdev_poll, nommap,
180 tap_cdev_kqfilter,
181 D_OTHER,
182 };
183
184 #define TAP_CLONER 0xfffff /* Maximal minor value */
185
186 /* kqueue-related routines */
187 static void tap_kqdetach(struct knote *);
188 static int tap_kqread(struct knote *, long);
189
190 /*
191 * Those are needed by the if_media interface.
192 */
193
194 static int tap_mediachange(struct ifnet *);
195 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
196
197 /*
198 * Those are needed by the ifnet interface, and would typically be
199 * there for any network interface driver.
200 * Some other routines are optional: watchdog and drain.
201 */
202
203 static void tap_start(struct ifnet *);
204 static void tap_stop(struct ifnet *, int);
205 static int tap_init(struct ifnet *);
206 static int tap_ioctl(struct ifnet *, u_long, caddr_t);
207
208 /* This is an internal function to keep tap_ioctl readable */
209 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
210
211 /*
212 * tap is a clonable interface, although it is highly unrealistic for
213 * an Ethernet device.
214 *
215 * Here are the bits needed for a clonable interface.
216 */
217 static int tap_clone_create(struct if_clone *, int);
218 static int tap_clone_destroy(struct ifnet *);
219
220 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
221 tap_clone_create,
222 tap_clone_destroy);
223
224 /* Helper functionis shared by the two cloning code paths */
225 static struct tap_softc * tap_clone_creator(int);
226 int tap_clone_destroyer(struct device *);
227
228 void
229 tapattach(int n)
230 {
231 int error;
232
233 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
234 if (error) {
235 aprint_error("%s: unable to register cfattach\n",
236 tap_cd.cd_name);
237 (void)config_cfdriver_detach(&tap_cd);
238 return;
239 }
240
241 if_clone_attach(&tap_cloners);
242 }
243
244 /* Pretty much useless for a pseudo-device */
245 static int
246 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
247 {
248 return (1);
249 }
250
251 void
252 tap_attach(struct device *parent, struct device *self, void *aux)
253 {
254 struct tap_softc *sc = (struct tap_softc *)self;
255 struct ifnet *ifp;
256 const struct sysctlnode *node;
257 u_int8_t enaddr[ETHER_ADDR_LEN] =
258 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
259 char enaddrstr[3 * ETHER_ADDR_LEN];
260 struct timeval tv;
261 uint32_t ui;
262 int error;
263
264 aprint_normal("%s: faking Ethernet device\n",
265 self->dv_xname);
266
267 /*
268 * In order to obtain unique initial Ethernet address on a host,
269 * do some randomisation using the current uptime. It's not meant
270 * for anything but avoiding hard-coding an address.
271 */
272 getmicrouptime(&tv);
273 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
274 memcpy(enaddr+3, (u_int8_t *)&ui, 3);
275
276 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
277 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
278
279 /*
280 * Why 1000baseT? Why not? You can add more.
281 *
282 * Note that there are 3 steps: init, one or several additions to
283 * list of supported media, and in the end, the selection of one
284 * of them.
285 */
286 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
289 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
290 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
291 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
292 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
293 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
294 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
295
296 /*
297 * One should note that an interface must do multicast in order
298 * to support IPv6.
299 */
300 ifp = &sc->sc_ec.ec_if;
301 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
302 ifp->if_softc = sc;
303 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
304 ifp->if_ioctl = tap_ioctl;
305 ifp->if_start = tap_start;
306 ifp->if_stop = tap_stop;
307 ifp->if_init = tap_init;
308 IFQ_SET_READY(&ifp->if_snd);
309
310 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
311
312 /* Those steps are mandatory for an Ethernet driver, the fisrt call
313 * being common to all network interface drivers. */
314 if_attach(ifp);
315 ether_ifattach(ifp, enaddr);
316
317 sc->sc_flags = 0;
318
319 /*
320 * Add a sysctl node for that interface.
321 *
322 * The pointer transmitted is not a string, but instead a pointer to
323 * the softc structure, which we can use to build the string value on
324 * the fly in the helper function of the node. See the comments for
325 * tap_sysctl_handler for details.
326 */
327 if ((error = sysctl_createv(NULL, 0, NULL,
328 &node, CTLFLAG_READWRITE,
329 CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
330 tap_sysctl_handler, 0, sc, 18,
331 CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
332 CTL_EOL)) != 0)
333 aprint_error("%s: sysctl_createv returned %d, ignoring\n",
334 sc->sc_dev.dv_xname, error);
335
336 /*
337 * Initialize the two locks for the device.
338 *
339 * We need a lock here because even though the tap device can be
340 * opened only once, the file descriptor might be passed to another
341 * process, say a fork(2)ed child.
342 *
343 * The Giant saves us from most of the hassle, but since the read
344 * operation can sleep, we don't want two processes to wake up at
345 * the same moment and both try and dequeue a single packet.
346 *
347 * The queue for event listeners (used by kqueue(9), see below) has
348 * to be protected, too, but we don't need the same level of
349 * complexity for that lock, so a simple spinning lock is fine.
350 */
351 lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
352 simple_lock_init(&sc->sc_kqlock);
353 }
354
355 /*
356 * When detaching, we do the inverse of what is done in the attach
357 * routine, in reversed order.
358 */
359 static int
360 tap_detach(struct device* self, int flags)
361 {
362 struct tap_softc *sc = (struct tap_softc *)self;
363 struct ifnet *ifp = &sc->sc_ec.ec_if;
364 int error, s;
365
366 /*
367 * Some processes might be sleeping on "tap", so we have to make
368 * them release their hold on the device.
369 *
370 * The LK_DRAIN operation will wait for every locked process to
371 * release their hold.
372 */
373 sc->sc_flags |= TAP_GOING;
374 s = splnet();
375 tap_stop(ifp, 1);
376 if_down(ifp);
377 splx(s);
378 lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
379
380 /*
381 * Destroying a single leaf is a very straightforward operation using
382 * sysctl_destroyv. One should be sure to always end the path with
383 * CTL_EOL.
384 */
385 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
386 device_unit(&sc->sc_dev), CTL_EOL)) != 0)
387 aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
388 sc->sc_dev.dv_xname, error);
389 ether_ifdetach(ifp);
390 if_detach(ifp);
391 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
392
393 return (0);
394 }
395
396 /*
397 * This function is called by the ifmedia layer to notify the driver
398 * that the user requested a media change. A real driver would
399 * reconfigure the hardware.
400 */
401 static int
402 tap_mediachange(struct ifnet *ifp)
403 {
404 return (0);
405 }
406
407 /*
408 * Here the user asks for the currently used media.
409 */
410 static void
411 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
412 {
413 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
414 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
415 }
416
417 /*
418 * This is the function where we SEND packets.
419 *
420 * There is no 'receive' equivalent. A typical driver will get
421 * interrupts from the hardware, and from there will inject new packets
422 * into the network stack.
423 *
424 * Once handled, a packet must be freed. A real driver might not be able
425 * to fit all the pending packets into the hardware, and is allowed to
426 * return before having sent all the packets. It should then use the
427 * if_flags flag IFF_OACTIVE to notify the upper layer.
428 *
429 * There are also other flags one should check, such as IFF_PAUSE.
430 *
431 * It is our duty to make packets available to BPF listeners.
432 *
433 * You should be aware that this function is called by the Ethernet layer
434 * at splnet().
435 *
436 * When the device is opened, we have to pass the packet(s) to the
437 * userland. For that we stay in OACTIVE mode while the userland gets
438 * the packets, and we send a signal to the processes waiting to read.
439 *
440 * wakeup(sc) is the counterpart to the tsleep call in
441 * tap_dev_read, while selnotify() is used for kevent(2) and
442 * poll(2) (which includes select(2)) listeners.
443 */
444 static void
445 tap_start(struct ifnet *ifp)
446 {
447 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
448 struct mbuf *m0;
449
450 if ((sc->sc_flags & TAP_INUSE) == 0) {
451 /* Simply drop packets */
452 for(;;) {
453 IFQ_DEQUEUE(&ifp->if_snd, m0);
454 if (m0 == NULL)
455 return;
456
457 ifp->if_opackets++;
458 #if NBPFILTER > 0
459 if (ifp->if_bpf)
460 bpf_mtap(ifp->if_bpf, m0);
461 #endif
462
463 m_freem(m0);
464 }
465 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
466 ifp->if_flags |= IFF_OACTIVE;
467 wakeup(sc);
468 selnotify(&sc->sc_rsel, 1);
469 if (sc->sc_flags & TAP_ASYNCIO)
470 fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
471 POLLIN|POLLRDNORM, NULL);
472 }
473 }
474
475 /*
476 * A typical driver will only contain the following handlers for
477 * ioctl calls, except SIOCSIFPHYADDR.
478 * The latter is a hack I used to set the Ethernet address of the
479 * faked device.
480 *
481 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
482 * called under splnet().
483 */
484 static int
485 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
486 {
487 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
488 struct ifreq *ifr = (struct ifreq *)data;
489 int s, error;
490
491 s = splnet();
492
493 switch (cmd) {
494 case SIOCSIFMEDIA:
495 case SIOCGIFMEDIA:
496 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
497 break;
498 case SIOCSIFPHYADDR:
499 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
500 break;
501 default:
502 error = ether_ioctl(ifp, cmd, data);
503 if (error == ENETRESET)
504 error = 0;
505 break;
506 }
507
508 splx(s);
509
510 return (error);
511 }
512
513 /*
514 * Helper function to set Ethernet address. This shouldn't be done there,
515 * and should actually be available to all Ethernet drivers, real or not.
516 */
517 static int
518 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
519 {
520 struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
521
522 if (sa->sa_family != AF_LINK)
523 return (EINVAL);
524
525 memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
526
527 return (0);
528 }
529
530 /*
531 * _init() would typically be called when an interface goes up,
532 * meaning it should configure itself into the state in which it
533 * can send packets.
534 */
535 static int
536 tap_init(struct ifnet *ifp)
537 {
538 ifp->if_flags |= IFF_RUNNING;
539
540 tap_start(ifp);
541
542 return (0);
543 }
544
545 /*
546 * _stop() is called when an interface goes down. It is our
547 * responsability to validate that state by clearing the
548 * IFF_RUNNING flag.
549 *
550 * We have to wake up all the sleeping processes to have the pending
551 * read requests cancelled.
552 */
553 static void
554 tap_stop(struct ifnet *ifp, int disable)
555 {
556 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
557
558 ifp->if_flags &= ~IFF_RUNNING;
559 wakeup(sc);
560 selnotify(&sc->sc_rsel, 1);
561 if (sc->sc_flags & TAP_ASYNCIO)
562 fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
563 }
564
565 /*
566 * The 'create' command of ifconfig can be used to create
567 * any numbered instance of a given device. Thus we have to
568 * make sure we have enough room in cd_devs to create the
569 * user-specified instance. config_attach_pseudo will do this
570 * for us.
571 */
572 static int
573 tap_clone_create(struct if_clone *ifc, int unit)
574 {
575 if (tap_clone_creator(unit) == NULL) {
576 aprint_error("%s%d: unable to attach an instance\n",
577 tap_cd.cd_name, unit);
578 return (ENXIO);
579 }
580
581 return (0);
582 }
583
584 /*
585 * tap(4) can be cloned by two ways:
586 * using 'ifconfig tap0 create', which will use the network
587 * interface cloning API, and call tap_clone_create above.
588 * opening the cloning device node, whose minor number is TAP_CLONER.
589 * See below for an explanation on how this part work.
590 *
591 * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
592 * autoconf(9) choose a unit number for us. This is what happens when
593 * the cloner is openend, while the ifcloner interface creates a device
594 * with a specific unit number.
595 */
596 static struct tap_softc *
597 tap_clone_creator(int unit)
598 {
599 struct cfdata *cf;
600
601 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
602 cf->cf_name = tap_cd.cd_name;
603 cf->cf_atname = tap_ca.ca_name;
604 cf->cf_unit = unit;
605 cf->cf_fstate = FSTATE_STAR;
606
607 return (struct tap_softc *)config_attach_pseudo(cf);
608 }
609
610 /*
611 * The clean design of if_clone and autoconf(9) makes that part
612 * really straightforward. The second argument of config_detach
613 * means neither QUIET nor FORCED.
614 */
615 static int
616 tap_clone_destroy(struct ifnet *ifp)
617 {
618 return tap_clone_destroyer((struct device *)ifp->if_softc);
619 }
620
621 int
622 tap_clone_destroyer(struct device *dev)
623 {
624 struct cfdata *cf = device_cfdata(dev);
625 int error;
626
627 if ((error = config_detach(dev, 0)) != 0)
628 aprint_error("%s: unable to detach instance\n",
629 dev->dv_xname);
630 free(cf, M_DEVBUF);
631
632 return (error);
633 }
634
635 /*
636 * tap(4) is a bit of an hybrid device. It can be used in two different
637 * ways:
638 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
639 * 2. open /dev/tap, get a new interface created and read/write off it.
640 * That interface is destroyed when the process that had it created exits.
641 *
642 * The first way is managed by the cdevsw structure, and you access interfaces
643 * through a (major, minor) mapping: tap4 is obtained by the minor number
644 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
645 *
646 * The second way is the so-called "cloning" device. It's a special minor
647 * number (chosen as the maximal number, to allow as much tap devices as
648 * possible). The user first opens the cloner (e.g., /dev/tap), and that
649 * call ends in tap_cdev_open. The actual place where it is handled is
650 * tap_dev_cloner.
651 *
652 * An tap device cannot be opened more than once at a time, so the cdevsw
653 * part of open() does nothing but noting that the interface is being used and
654 * hence ready to actually handle packets.
655 */
656
657 static int
658 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
659 {
660 struct tap_softc *sc;
661
662 if (minor(dev) == TAP_CLONER)
663 return tap_dev_cloner(l);
664
665 sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
666 if (sc == NULL)
667 return (ENXIO);
668
669 /* The device can only be opened once */
670 if (sc->sc_flags & TAP_INUSE)
671 return (EBUSY);
672 sc->sc_flags |= TAP_INUSE;
673 return (0);
674 }
675
676 /*
677 * There are several kinds of cloning devices, and the most simple is the one
678 * tap(4) uses. What it does is change the file descriptor with a new one,
679 * with its own fileops structure (which maps to the various read, write,
680 * ioctl functions). It starts allocating a new file descriptor with falloc,
681 * then actually creates the new tap devices.
682 *
683 * Once those two steps are successful, we can re-wire the existing file
684 * descriptor to its new self. This is done with fdclone(): it fills the fp
685 * structure as needed (notably f_data gets filled with the fifth parameter
686 * passed, the unit of the tap device which will allows us identifying the
687 * device later), and returns EMOVEFD.
688 *
689 * That magic value is interpreted by sys_open() which then replaces the
690 * current file descriptor by the new one (through a magic member of struct
691 * lwp, l_dupfd).
692 *
693 * The tap device is flagged as being busy since it otherwise could be
694 * externally accessed through the corresponding device node with the cdevsw
695 * interface.
696 */
697
698 static int
699 tap_dev_cloner(struct lwp *l)
700 {
701 struct tap_softc *sc;
702 struct file *fp;
703 int error, fd;
704
705 if ((error = falloc(l, &fp, &fd)) != 0)
706 return (error);
707
708 if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
709 FILE_UNUSE(fp, l);
710 ffree(fp);
711 return (ENXIO);
712 }
713
714 sc->sc_flags |= TAP_INUSE;
715
716 return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
717 (void *)(intptr_t)device_unit(&sc->sc_dev));
718 }
719
720 /*
721 * While all other operations (read, write, ioctl, poll and kqfilter) are
722 * really the same whether we are in cdevsw or fileops mode, the close()
723 * function is slightly different in the two cases.
724 *
725 * As for the other, the core of it is shared in tap_dev_close. What
726 * it does is sufficient for the cdevsw interface, but the cloning interface
727 * needs another thing: the interface is destroyed when the processes that
728 * created it closes it.
729 */
730 static int
731 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
732 {
733 struct tap_softc *sc =
734 (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
735
736 if (sc == NULL)
737 return (ENXIO);
738
739 return tap_dev_close(sc);
740 }
741
742 /*
743 * It might happen that the administrator used ifconfig to externally destroy
744 * the interface. In that case, tap_fops_close will be called while
745 * tap_detach is already happening. If we called it again from here, we
746 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
747 */
748 static int
749 tap_fops_close(struct file *fp, struct lwp *l)
750 {
751 int unit = (intptr_t)fp->f_data;
752 struct tap_softc *sc;
753 int error;
754
755 sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
756 if (sc == NULL)
757 return (ENXIO);
758
759 /* tap_dev_close currently always succeeds, but it might not
760 * always be the case. */
761 if ((error = tap_dev_close(sc)) != 0)
762 return (error);
763
764 /* Destroy the device now that it is no longer useful,
765 * unless it's already being destroyed. */
766 if ((sc->sc_flags & TAP_GOING) != 0)
767 return (0);
768
769 return tap_clone_destroyer((struct device *)sc);
770 }
771
772 static int
773 tap_dev_close(struct tap_softc *sc)
774 {
775 struct ifnet *ifp;
776 int s;
777
778 s = splnet();
779 /* Let tap_start handle packets again */
780 ifp = &sc->sc_ec.ec_if;
781 ifp->if_flags &= ~IFF_OACTIVE;
782
783 /* Purge output queue */
784 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
785 struct mbuf *m;
786
787 for (;;) {
788 IFQ_DEQUEUE(&ifp->if_snd, m);
789 if (m == NULL)
790 break;
791
792 ifp->if_opackets++;
793 #if NBPFILTER > 0
794 if (ifp->if_bpf)
795 bpf_mtap(ifp->if_bpf, m);
796 #endif
797 }
798 }
799 splx(s);
800
801 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
802
803 return (0);
804 }
805
806 static int
807 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
808 {
809 return tap_dev_read(minor(dev), uio, flags);
810 }
811
812 static int
813 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
814 kauth_cred_t cred, int flags)
815 {
816 return tap_dev_read((intptr_t)fp->f_data, uio, flags);
817 }
818
819 static int
820 tap_dev_read(int unit, struct uio *uio, int flags)
821 {
822 struct tap_softc *sc =
823 (struct tap_softc *)device_lookup(&tap_cd, unit);
824 struct ifnet *ifp;
825 struct mbuf *m, *n;
826 int error = 0, s;
827
828 if (sc == NULL)
829 return (ENXIO);
830
831 ifp = &sc->sc_ec.ec_if;
832 if ((ifp->if_flags & IFF_UP) == 0)
833 return (EHOSTDOWN);
834
835 /*
836 * In the TAP_NBIO case, we have to make sure we won't be sleeping
837 */
838 if ((sc->sc_flags & TAP_NBIO) &&
839 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
840 return (EWOULDBLOCK);
841 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
842 if (error != 0)
843 return (error);
844
845 s = splnet();
846 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
847 ifp->if_flags &= ~IFF_OACTIVE;
848 splx(s);
849 /*
850 * We must release the lock before sleeping, and re-acquire it
851 * after.
852 */
853 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
854 if (sc->sc_flags & TAP_NBIO)
855 error = EWOULDBLOCK;
856 else
857 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
858
859 if (error != 0)
860 return (error);
861 /* The device might have been downed */
862 if ((ifp->if_flags & IFF_UP) == 0)
863 return (EHOSTDOWN);
864 if ((sc->sc_flags & TAP_NBIO) &&
865 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
866 return (EWOULDBLOCK);
867 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
868 if (error != 0)
869 return (error);
870 s = splnet();
871 }
872
873 IFQ_DEQUEUE(&ifp->if_snd, m);
874 ifp->if_flags &= ~IFF_OACTIVE;
875 splx(s);
876 if (m == NULL) {
877 error = 0;
878 goto out;
879 }
880
881 ifp->if_opackets++;
882 #if NBPFILTER > 0
883 if (ifp->if_bpf)
884 bpf_mtap(ifp->if_bpf, m);
885 #endif
886
887 /*
888 * One read is one packet.
889 */
890 do {
891 error = uiomove(mtod(m, caddr_t),
892 min(m->m_len, uio->uio_resid), uio);
893 MFREE(m, n);
894 m = n;
895 } while (m != NULL && uio->uio_resid > 0 && error == 0);
896
897 if (m != NULL)
898 m_freem(m);
899
900 out:
901 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
902 return (error);
903 }
904
905 static int
906 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
907 {
908 return tap_dev_write(minor(dev), uio, flags);
909 }
910
911 static int
912 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
913 kauth_cred_t cred, int flags)
914 {
915 return tap_dev_write((intptr_t)fp->f_data, uio, flags);
916 }
917
918 static int
919 tap_dev_write(int unit, struct uio *uio, int flags)
920 {
921 struct tap_softc *sc =
922 (struct tap_softc *)device_lookup(&tap_cd, unit);
923 struct ifnet *ifp;
924 struct mbuf *m, **mp;
925 int error = 0;
926 int s;
927
928 if (sc == NULL)
929 return (ENXIO);
930
931 ifp = &sc->sc_ec.ec_if;
932
933 /* One write, one packet, that's the rule */
934 MGETHDR(m, M_DONTWAIT, MT_DATA);
935 if (m == NULL) {
936 ifp->if_ierrors++;
937 return (ENOBUFS);
938 }
939 m->m_pkthdr.len = uio->uio_resid;
940
941 mp = &m;
942 while (error == 0 && uio->uio_resid > 0) {
943 if (*mp != m) {
944 MGET(*mp, M_DONTWAIT, MT_DATA);
945 if (*mp == NULL) {
946 error = ENOBUFS;
947 break;
948 }
949 }
950 (*mp)->m_len = min(MHLEN, uio->uio_resid);
951 error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
952 mp = &(*mp)->m_next;
953 }
954 if (error) {
955 ifp->if_ierrors++;
956 m_freem(m);
957 return (error);
958 }
959
960 ifp->if_ipackets++;
961 m->m_pkthdr.rcvif = ifp;
962
963 #if NBPFILTER > 0
964 if (ifp->if_bpf)
965 bpf_mtap(ifp->if_bpf, m);
966 #endif
967 s =splnet();
968 (*ifp->if_input)(ifp, m);
969 splx(s);
970
971 return (0);
972 }
973
974 static int
975 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
976 struct lwp *l)
977 {
978 return tap_dev_ioctl(minor(dev), cmd, data, l);
979 }
980
981 static int
982 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
983 {
984 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
985 }
986
987 static int
988 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
989 {
990 struct tap_softc *sc =
991 (struct tap_softc *)device_lookup(&tap_cd, unit);
992 int error = 0;
993
994 if (sc == NULL)
995 return (ENXIO);
996
997 switch (cmd) {
998 case FIONREAD:
999 {
1000 struct ifnet *ifp = &sc->sc_ec.ec_if;
1001 struct mbuf *m;
1002 int s;
1003
1004 s = splnet();
1005 IFQ_POLL(&ifp->if_snd, m);
1006
1007 if (m == NULL)
1008 *(int *)data = 0;
1009 else
1010 *(int *)data = m->m_pkthdr.len;
1011 splx(s);
1012 } break;
1013 case TIOCSPGRP:
1014 case FIOSETOWN:
1015 error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1016 break;
1017 case TIOCGPGRP:
1018 case FIOGETOWN:
1019 error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1020 break;
1021 case FIOASYNC:
1022 if (*(int *)data)
1023 sc->sc_flags |= TAP_ASYNCIO;
1024 else
1025 sc->sc_flags &= ~TAP_ASYNCIO;
1026 break;
1027 case FIONBIO:
1028 if (*(int *)data)
1029 sc->sc_flags |= TAP_NBIO;
1030 else
1031 sc->sc_flags &= ~TAP_NBIO;
1032 break;
1033 case TAPGIFNAME:
1034 {
1035 struct ifreq *ifr = (struct ifreq *)data;
1036 struct ifnet *ifp = &sc->sc_ec.ec_if;
1037
1038 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1039 } break;
1040 default:
1041 error = ENOTTY;
1042 break;
1043 }
1044
1045 return (0);
1046 }
1047
1048 static int
1049 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1050 {
1051 return tap_dev_poll(minor(dev), events, l);
1052 }
1053
1054 static int
1055 tap_fops_poll(struct file *fp, int events, struct lwp *l)
1056 {
1057 return tap_dev_poll((intptr_t)fp->f_data, events, l);
1058 }
1059
1060 static int
1061 tap_dev_poll(int unit, int events, struct lwp *l)
1062 {
1063 struct tap_softc *sc =
1064 (struct tap_softc *)device_lookup(&tap_cd, unit);
1065 int revents = 0;
1066
1067 if (sc == NULL)
1068 return (ENXIO);
1069
1070 if (events & (POLLIN|POLLRDNORM)) {
1071 struct ifnet *ifp = &sc->sc_ec.ec_if;
1072 struct mbuf *m;
1073 int s;
1074
1075 s = splnet();
1076 IFQ_POLL(&ifp->if_snd, m);
1077 splx(s);
1078
1079 if (m != NULL)
1080 revents |= events & (POLLIN|POLLRDNORM);
1081 else {
1082 simple_lock(&sc->sc_kqlock);
1083 selrecord(l, &sc->sc_rsel);
1084 simple_unlock(&sc->sc_kqlock);
1085 }
1086 }
1087 revents |= events & (POLLOUT|POLLWRNORM);
1088
1089 return (revents);
1090 }
1091
1092 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1093 tap_kqread };
1094 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1095 filt_seltrue };
1096
1097 static int
1098 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1099 {
1100 return tap_dev_kqfilter(minor(dev), kn);
1101 }
1102
1103 static int
1104 tap_fops_kqfilter(struct file *fp, struct knote *kn)
1105 {
1106 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1107 }
1108
1109 static int
1110 tap_dev_kqfilter(int unit, struct knote *kn)
1111 {
1112 struct tap_softc *sc =
1113 (struct tap_softc *)device_lookup(&tap_cd, unit);
1114
1115 if (sc == NULL)
1116 return (ENXIO);
1117
1118 switch(kn->kn_filter) {
1119 case EVFILT_READ:
1120 kn->kn_fop = &tap_read_filterops;
1121 break;
1122 case EVFILT_WRITE:
1123 kn->kn_fop = &tap_seltrue_filterops;
1124 break;
1125 default:
1126 return (1);
1127 }
1128
1129 kn->kn_hook = sc;
1130 simple_lock(&sc->sc_kqlock);
1131 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1132 simple_unlock(&sc->sc_kqlock);
1133 return (0);
1134 }
1135
1136 static void
1137 tap_kqdetach(struct knote *kn)
1138 {
1139 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1140
1141 simple_lock(&sc->sc_kqlock);
1142 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1143 simple_unlock(&sc->sc_kqlock);
1144 }
1145
1146 static int
1147 tap_kqread(struct knote *kn, long hint)
1148 {
1149 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1150 struct ifnet *ifp = &sc->sc_ec.ec_if;
1151 struct mbuf *m;
1152 int s;
1153
1154 s = splnet();
1155 IFQ_POLL(&ifp->if_snd, m);
1156
1157 if (m == NULL)
1158 kn->kn_data = 0;
1159 else
1160 kn->kn_data = m->m_pkthdr.len;
1161 splx(s);
1162 return (kn->kn_data != 0 ? 1 : 0);
1163 }
1164
1165 /*
1166 * sysctl management routines
1167 * You can set the address of an interface through:
1168 * net.link.tap.tap<number>
1169 *
1170 * Note the consistent use of tap_log in order to use
1171 * sysctl_teardown at unload time.
1172 *
1173 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1174 * blocks register a function in a special section of the kernel
1175 * (called a link set) which is used at init_sysctl() time to cycle
1176 * through all those functions to create the kernel's sysctl tree.
1177 *
1178 * It is not (currently) possible to use link sets in a LKM, so the
1179 * easiest is to simply call our own setup routine at load time.
1180 *
1181 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1182 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1183 * whole kernel sysctl tree is built, it is not possible to add any
1184 * permanent node.
1185 *
1186 * It should be noted that we're not saving the sysctlnode pointer
1187 * we are returned when creating the "tap" node. That structure
1188 * cannot be trusted once out of the calling function, as it might
1189 * get reused. So we just save the MIB number, and always give the
1190 * full path starting from the root for later calls to sysctl_createv
1191 * and sysctl_destroyv.
1192 */
1193 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1194 {
1195 const struct sysctlnode *node;
1196 int error = 0;
1197
1198 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1199 CTLFLAG_PERMANENT,
1200 CTLTYPE_NODE, "net", NULL,
1201 NULL, 0, NULL, 0,
1202 CTL_NET, CTL_EOL)) != 0)
1203 return;
1204
1205 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1206 CTLFLAG_PERMANENT,
1207 CTLTYPE_NODE, "link", NULL,
1208 NULL, 0, NULL, 0,
1209 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1210 return;
1211
1212 /*
1213 * The first four parameters of sysctl_createv are for management.
1214 *
1215 * The four that follows, here starting with a '0' for the flags,
1216 * describe the node.
1217 *
1218 * The next series of four set its value, through various possible
1219 * means.
1220 *
1221 * Last but not least, the path to the node is described. That path
1222 * is relative to the given root (third argument). Here we're
1223 * starting from the root.
1224 */
1225 if ((error = sysctl_createv(clog, 0, NULL, &node,
1226 CTLFLAG_PERMANENT,
1227 CTLTYPE_NODE, "tap", NULL,
1228 NULL, 0, NULL, 0,
1229 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1230 return;
1231 tap_node = node->sysctl_num;
1232 }
1233
1234 /*
1235 * The helper functions make Andrew Brown's interface really
1236 * shine. It makes possible to create value on the fly whether
1237 * the sysctl value is read or written.
1238 *
1239 * As shown as an example in the man page, the first step is to
1240 * create a copy of the node to have sysctl_lookup work on it.
1241 *
1242 * Here, we have more work to do than just a copy, since we have
1243 * to create the string. The first step is to collect the actual
1244 * value of the node, which is a convenient pointer to the softc
1245 * of the interface. From there we create the string and use it
1246 * as the value, but only for the *copy* of the node.
1247 *
1248 * Then we let sysctl_lookup do the magic, which consists in
1249 * setting oldp and newp as required by the operation. When the
1250 * value is read, that means that the string will be copied to
1251 * the user, and when it is written, the new value will be copied
1252 * over in the addr array.
1253 *
1254 * If newp is NULL, the user was reading the value, so we don't
1255 * have anything else to do. If a new value was written, we
1256 * have to check it.
1257 *
1258 * If it is incorrect, we can return an error and leave 'node' as
1259 * it is: since it is a copy of the actual node, the change will
1260 * be forgotten.
1261 *
1262 * Upon a correct input, we commit the change to the ifnet
1263 * structure of our interface.
1264 */
1265 static int
1266 tap_sysctl_handler(SYSCTLFN_ARGS)
1267 {
1268 struct sysctlnode node;
1269 struct tap_softc *sc;
1270 struct ifnet *ifp;
1271 int error;
1272 size_t len;
1273 char addr[3 * ETHER_ADDR_LEN];
1274
1275 node = *rnode;
1276 sc = node.sysctl_data;
1277 ifp = &sc->sc_ec.ec_if;
1278 (void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
1279 node.sysctl_data = addr;
1280 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1281 if (error || newp == NULL)
1282 return (error);
1283
1284 len = strlen(addr);
1285 if (len < 11 || len > 17)
1286 return (EINVAL);
1287
1288 /* Commit change */
1289 if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
1290 return (EINVAL);
1291 return (error);
1292 }
1293
1294 /*
1295 * ether_aton implementation, not using a static buffer.
1296 */
1297 static int
1298 tap_ether_aton(u_char *dest, char *str)
1299 {
1300 int i;
1301 char *cp = str;
1302 u_char val[6];
1303
1304 #define set_value \
1305 if (*cp > '9' && *cp < 'a') \
1306 *cp -= 'A' - 10; \
1307 else if (*cp > '9') \
1308 *cp -= 'a' - 10; \
1309 else \
1310 *cp -= '0'
1311
1312 for (i = 0; i < 6; i++, cp++) {
1313 if (!isxdigit(*cp))
1314 return (1);
1315 set_value;
1316 val[i] = *cp++;
1317 if (isxdigit(*cp)) {
1318 set_value;
1319 val[i] *= 16;
1320 val[i] += *cp++;
1321 }
1322 if (*cp == ':' || i == 5)
1323 continue;
1324 else
1325 return (1);
1326 }
1327 memcpy(dest, val, 6);
1328 return (0);
1329 }
1330