Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.23
      1 /*	$NetBSD: if_tap.c,v 1.23 2006/11/16 01:33:40 christos Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.23 2006/11/16 01:33:40 christos Exp $");
     47 
     48 #if defined(_KERNEL_OPT)
     49 #include "bpfilter.h"
     50 #endif
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/conf.h>
     57 #include <sys/device.h>
     58 #include <sys/file.h>
     59 #include <sys/filedesc.h>
     60 #include <sys/ksyms.h>
     61 #include <sys/poll.h>
     62 #include <sys/select.h>
     63 #include <sys/sockio.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/kauth.h>
     66 
     67 #include <net/if.h>
     68 #include <net/if_dl.h>
     69 #include <net/if_ether.h>
     70 #include <net/if_media.h>
     71 #include <net/if_tap.h>
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 /*
     77  * sysctl node management
     78  *
     79  * It's not really possible to use a SYSCTL_SETUP block with
     80  * current LKM implementation, so it is easier to just define
     81  * our own function.
     82  *
     83  * The handler function is a "helper" in Andrew Brown's sysctl
     84  * framework terminology.  It is used as a gateway for sysctl
     85  * requests over the nodes.
     86  *
     87  * tap_log allows the module to log creations of nodes and
     88  * destroy them all at once using sysctl_teardown.
     89  */
     90 static int tap_node;
     91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93 
     94 /*
     95  * Since we're an Ethernet device, we need the 3 following
     96  * components: a leading struct device, a struct ethercom,
     97  * and also a struct ifmedia since we don't attach a PHY to
     98  * ourselves. We could emulate one, but there's no real
     99  * point.
    100  */
    101 
    102 struct tap_softc {
    103 	struct device	sc_dev;
    104 	struct ifmedia	sc_im;
    105 	struct ethercom	sc_ec;
    106 	int		sc_flags;
    107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111 	struct selinfo	sc_rsel;
    112 	pid_t		sc_pgid; /* For async. IO */
    113 	struct lock	sc_rdlock;
    114 	struct simplelock	sc_kqlock;
    115 };
    116 
    117 /* autoconf(9) glue */
    118 
    119 void	tapattach(int);
    120 
    121 static int	tap_match(struct device *, struct cfdata *, void *);
    122 static void	tap_attach(struct device *, struct device *, void *);
    123 static int	tap_detach(struct device*, int);
    124 
    125 /* Ethernet address helper functions */
    126 
    127 static int	tap_ether_aton(u_char *, char *);
    128 
    129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    130     tap_match, tap_attach, tap_detach, NULL);
    131 extern struct cfdriver tap_cd;
    132 
    133 /* Real device access routines */
    134 static int	tap_dev_close(struct tap_softc *);
    135 static int	tap_dev_read(int, struct uio *, int);
    136 static int	tap_dev_write(int, struct uio *, int);
    137 static int	tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
    138 static int	tap_dev_poll(int, int, struct lwp *);
    139 static int	tap_dev_kqfilter(int, struct knote *);
    140 
    141 /* Fileops access routines */
    142 static int	tap_fops_close(struct file *, struct lwp *);
    143 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    146     kauth_cred_t, int);
    147 static int	tap_fops_ioctl(struct file *, u_long, void *,
    148     struct lwp *);
    149 static int	tap_fops_poll(struct file *, int, struct lwp *);
    150 static int	tap_fops_kqfilter(struct file *, struct knote *);
    151 
    152 static const struct fileops tap_fileops = {
    153 	tap_fops_read,
    154 	tap_fops_write,
    155 	tap_fops_ioctl,
    156 	fnullop_fcntl,
    157 	tap_fops_poll,
    158 	fbadop_stat,
    159 	tap_fops_close,
    160 	tap_fops_kqfilter,
    161 };
    162 
    163 /* Helper for cloning open() */
    164 static int	tap_dev_cloner(struct lwp *);
    165 
    166 /* Character device routines */
    167 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    168 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    169 static int	tap_cdev_read(dev_t, struct uio *, int);
    170 static int	tap_cdev_write(dev_t, struct uio *, int);
    171 static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
    172 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174 
    175 const struct cdevsw tap_cdevsw = {
    176 	tap_cdev_open, tap_cdev_close,
    177 	tap_cdev_read, tap_cdev_write,
    178 	tap_cdev_ioctl, nostop, notty,
    179 	tap_cdev_poll, nommap,
    180 	tap_cdev_kqfilter,
    181 	D_OTHER,
    182 };
    183 
    184 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    185 
    186 /* kqueue-related routines */
    187 static void	tap_kqdetach(struct knote *);
    188 static int	tap_kqread(struct knote *, long);
    189 
    190 /*
    191  * Those are needed by the if_media interface.
    192  */
    193 
    194 static int	tap_mediachange(struct ifnet *);
    195 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    196 
    197 /*
    198  * Those are needed by the ifnet interface, and would typically be
    199  * there for any network interface driver.
    200  * Some other routines are optional: watchdog and drain.
    201  */
    202 
    203 static void	tap_start(struct ifnet *);
    204 static void	tap_stop(struct ifnet *, int);
    205 static int	tap_init(struct ifnet *);
    206 static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    207 
    208 /* This is an internal function to keep tap_ioctl readable */
    209 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    210 
    211 /*
    212  * tap is a clonable interface, although it is highly unrealistic for
    213  * an Ethernet device.
    214  *
    215  * Here are the bits needed for a clonable interface.
    216  */
    217 static int	tap_clone_create(struct if_clone *, int);
    218 static int	tap_clone_destroy(struct ifnet *);
    219 
    220 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    221 					tap_clone_create,
    222 					tap_clone_destroy);
    223 
    224 /* Helper functionis shared by the two cloning code paths */
    225 static struct tap_softc *	tap_clone_creator(int);
    226 int	tap_clone_destroyer(struct device *);
    227 
    228 void
    229 tapattach(int n)
    230 {
    231 	int error;
    232 
    233 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    234 	if (error) {
    235 		aprint_error("%s: unable to register cfattach\n",
    236 		    tap_cd.cd_name);
    237 		(void)config_cfdriver_detach(&tap_cd);
    238 		return;
    239 	}
    240 
    241 	if_clone_attach(&tap_cloners);
    242 }
    243 
    244 /* Pretty much useless for a pseudo-device */
    245 static int
    246 tap_match(struct device *self, struct cfdata *cfdata,
    247     void *arg)
    248 {
    249 	return (1);
    250 }
    251 
    252 void
    253 tap_attach(struct device *parent, struct device *self,
    254     void *aux)
    255 {
    256 	struct tap_softc *sc = (struct tap_softc *)self;
    257 	struct ifnet *ifp;
    258 	const struct sysctlnode *node;
    259 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    260 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    261 	char enaddrstr[3 * ETHER_ADDR_LEN];
    262 	struct timeval tv;
    263 	uint32_t ui;
    264 	int error;
    265 
    266 	aprint_normal("%s: faking Ethernet device\n",
    267 	    self->dv_xname);
    268 
    269 	/*
    270 	 * In order to obtain unique initial Ethernet address on a host,
    271 	 * do some randomisation using the current uptime.  It's not meant
    272 	 * for anything but avoiding hard-coding an address.
    273 	 */
    274 	getmicrouptime(&tv);
    275 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    276 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    277 
    278 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    279 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    280 
    281 	/*
    282 	 * Why 1000baseT? Why not? You can add more.
    283 	 *
    284 	 * Note that there are 3 steps: init, one or several additions to
    285 	 * list of supported media, and in the end, the selection of one
    286 	 * of them.
    287 	 */
    288 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    291 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    292 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    293 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    294 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    295 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    296 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    297 
    298 	/*
    299 	 * One should note that an interface must do multicast in order
    300 	 * to support IPv6.
    301 	 */
    302 	ifp = &sc->sc_ec.ec_if;
    303 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    304 	ifp->if_softc	= sc;
    305 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    306 	ifp->if_ioctl	= tap_ioctl;
    307 	ifp->if_start	= tap_start;
    308 	ifp->if_stop	= tap_stop;
    309 	ifp->if_init	= tap_init;
    310 	IFQ_SET_READY(&ifp->if_snd);
    311 
    312 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    313 
    314 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    315 	 * being common to all network interface drivers. */
    316 	if_attach(ifp);
    317 	ether_ifattach(ifp, enaddr);
    318 
    319 	sc->sc_flags = 0;
    320 
    321 	/*
    322 	 * Add a sysctl node for that interface.
    323 	 *
    324 	 * The pointer transmitted is not a string, but instead a pointer to
    325 	 * the softc structure, which we can use to build the string value on
    326 	 * the fly in the helper function of the node.  See the comments for
    327 	 * tap_sysctl_handler for details.
    328 	 *
    329 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    330 	 * component.  However, we can allocate a number ourselves, as we are
    331 	 * the only consumer of the net.link.<iface> node.  In this case, the
    332 	 * unit number is conveniently used to number the node.  CTL_CREATE
    333 	 * would just work, too.
    334 	 */
    335 	if ((error = sysctl_createv(NULL, 0, NULL,
    336 	    &node, CTLFLAG_READWRITE,
    337 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    338 	    tap_sysctl_handler, 0, sc, 18,
    339 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    340 	    CTL_EOL)) != 0)
    341 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    342 		    sc->sc_dev.dv_xname, error);
    343 
    344 	/*
    345 	 * Initialize the two locks for the device.
    346 	 *
    347 	 * We need a lock here because even though the tap device can be
    348 	 * opened only once, the file descriptor might be passed to another
    349 	 * process, say a fork(2)ed child.
    350 	 *
    351 	 * The Giant saves us from most of the hassle, but since the read
    352 	 * operation can sleep, we don't want two processes to wake up at
    353 	 * the same moment and both try and dequeue a single packet.
    354 	 *
    355 	 * The queue for event listeners (used by kqueue(9), see below) has
    356 	 * to be protected, too, but we don't need the same level of
    357 	 * complexity for that lock, so a simple spinning lock is fine.
    358 	 */
    359 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    360 	simple_lock_init(&sc->sc_kqlock);
    361 }
    362 
    363 /*
    364  * When detaching, we do the inverse of what is done in the attach
    365  * routine, in reversed order.
    366  */
    367 static int
    368 tap_detach(struct device* self, int flags)
    369 {
    370 	struct tap_softc *sc = (struct tap_softc *)self;
    371 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    372 	int error, s;
    373 
    374 	/*
    375 	 * Some processes might be sleeping on "tap", so we have to make
    376 	 * them release their hold on the device.
    377 	 *
    378 	 * The LK_DRAIN operation will wait for every locked process to
    379 	 * release their hold.
    380 	 */
    381 	sc->sc_flags |= TAP_GOING;
    382 	s = splnet();
    383 	tap_stop(ifp, 1);
    384 	if_down(ifp);
    385 	splx(s);
    386 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    387 
    388 	/*
    389 	 * Destroying a single leaf is a very straightforward operation using
    390 	 * sysctl_destroyv.  One should be sure to always end the path with
    391 	 * CTL_EOL.
    392 	 */
    393 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    394 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    395 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    396 		    sc->sc_dev.dv_xname, error);
    397 	ether_ifdetach(ifp);
    398 	if_detach(ifp);
    399 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    400 
    401 	return (0);
    402 }
    403 
    404 /*
    405  * This function is called by the ifmedia layer to notify the driver
    406  * that the user requested a media change.  A real driver would
    407  * reconfigure the hardware.
    408  */
    409 static int
    410 tap_mediachange(struct ifnet *ifp)
    411 {
    412 	return (0);
    413 }
    414 
    415 /*
    416  * Here the user asks for the currently used media.
    417  */
    418 static void
    419 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    420 {
    421 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    422 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    423 }
    424 
    425 /*
    426  * This is the function where we SEND packets.
    427  *
    428  * There is no 'receive' equivalent.  A typical driver will get
    429  * interrupts from the hardware, and from there will inject new packets
    430  * into the network stack.
    431  *
    432  * Once handled, a packet must be freed.  A real driver might not be able
    433  * to fit all the pending packets into the hardware, and is allowed to
    434  * return before having sent all the packets.  It should then use the
    435  * if_flags flag IFF_OACTIVE to notify the upper layer.
    436  *
    437  * There are also other flags one should check, such as IFF_PAUSE.
    438  *
    439  * It is our duty to make packets available to BPF listeners.
    440  *
    441  * You should be aware that this function is called by the Ethernet layer
    442  * at splnet().
    443  *
    444  * When the device is opened, we have to pass the packet(s) to the
    445  * userland.  For that we stay in OACTIVE mode while the userland gets
    446  * the packets, and we send a signal to the processes waiting to read.
    447  *
    448  * wakeup(sc) is the counterpart to the tsleep call in
    449  * tap_dev_read, while selnotify() is used for kevent(2) and
    450  * poll(2) (which includes select(2)) listeners.
    451  */
    452 static void
    453 tap_start(struct ifnet *ifp)
    454 {
    455 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    456 	struct mbuf *m0;
    457 
    458 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    459 		/* Simply drop packets */
    460 		for(;;) {
    461 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    462 			if (m0 == NULL)
    463 				return;
    464 
    465 			ifp->if_opackets++;
    466 #if NBPFILTER > 0
    467 			if (ifp->if_bpf)
    468 				bpf_mtap(ifp->if_bpf, m0);
    469 #endif
    470 
    471 			m_freem(m0);
    472 		}
    473 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    474 		ifp->if_flags |= IFF_OACTIVE;
    475 		wakeup(sc);
    476 		selnotify(&sc->sc_rsel, 1);
    477 		if (sc->sc_flags & TAP_ASYNCIO)
    478 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    479 			    POLLIN|POLLRDNORM, NULL);
    480 	}
    481 }
    482 
    483 /*
    484  * A typical driver will only contain the following handlers for
    485  * ioctl calls, except SIOCSIFPHYADDR.
    486  * The latter is a hack I used to set the Ethernet address of the
    487  * faked device.
    488  *
    489  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    490  * called under splnet().
    491  */
    492 static int
    493 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    494 {
    495 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    496 	struct ifreq *ifr = (struct ifreq *)data;
    497 	int s, error;
    498 
    499 	s = splnet();
    500 
    501 	switch (cmd) {
    502 	case SIOCSIFMEDIA:
    503 	case SIOCGIFMEDIA:
    504 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    505 		break;
    506 	case SIOCSIFPHYADDR:
    507 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    508 		break;
    509 	default:
    510 		error = ether_ioctl(ifp, cmd, data);
    511 		if (error == ENETRESET)
    512 			error = 0;
    513 		break;
    514 	}
    515 
    516 	splx(s);
    517 
    518 	return (error);
    519 }
    520 
    521 /*
    522  * Helper function to set Ethernet address.  This shouldn't be done there,
    523  * and should actually be available to all Ethernet drivers, real or not.
    524  */
    525 static int
    526 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    527 {
    528 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    529 
    530 	if (sa->sa_family != AF_LINK)
    531 		return (EINVAL);
    532 
    533 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    534 
    535 	return (0);
    536 }
    537 
    538 /*
    539  * _init() would typically be called when an interface goes up,
    540  * meaning it should configure itself into the state in which it
    541  * can send packets.
    542  */
    543 static int
    544 tap_init(struct ifnet *ifp)
    545 {
    546 	ifp->if_flags |= IFF_RUNNING;
    547 
    548 	tap_start(ifp);
    549 
    550 	return (0);
    551 }
    552 
    553 /*
    554  * _stop() is called when an interface goes down.  It is our
    555  * responsability to validate that state by clearing the
    556  * IFF_RUNNING flag.
    557  *
    558  * We have to wake up all the sleeping processes to have the pending
    559  * read requests cancelled.
    560  */
    561 static void
    562 tap_stop(struct ifnet *ifp, int disable)
    563 {
    564 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    565 
    566 	ifp->if_flags &= ~IFF_RUNNING;
    567 	wakeup(sc);
    568 	selnotify(&sc->sc_rsel, 1);
    569 	if (sc->sc_flags & TAP_ASYNCIO)
    570 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    571 }
    572 
    573 /*
    574  * The 'create' command of ifconfig can be used to create
    575  * any numbered instance of a given device.  Thus we have to
    576  * make sure we have enough room in cd_devs to create the
    577  * user-specified instance.  config_attach_pseudo will do this
    578  * for us.
    579  */
    580 static int
    581 tap_clone_create(struct if_clone *ifc, int unit)
    582 {
    583 	if (tap_clone_creator(unit) == NULL) {
    584 		aprint_error("%s%d: unable to attach an instance\n",
    585                     tap_cd.cd_name, unit);
    586 		return (ENXIO);
    587 	}
    588 
    589 	return (0);
    590 }
    591 
    592 /*
    593  * tap(4) can be cloned by two ways:
    594  *   using 'ifconfig tap0 create', which will use the network
    595  *     interface cloning API, and call tap_clone_create above.
    596  *   opening the cloning device node, whose minor number is TAP_CLONER.
    597  *     See below for an explanation on how this part work.
    598  *
    599  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    600  * autoconf(9) choose a unit number for us.  This is what happens when
    601  * the cloner is openend, while the ifcloner interface creates a device
    602  * with a specific unit number.
    603  */
    604 static struct tap_softc *
    605 tap_clone_creator(int unit)
    606 {
    607 	struct cfdata *cf;
    608 
    609 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    610 	cf->cf_name = tap_cd.cd_name;
    611 	cf->cf_atname = tap_ca.ca_name;
    612 	cf->cf_unit = unit;
    613 	cf->cf_fstate = FSTATE_STAR;
    614 
    615 	return (struct tap_softc *)config_attach_pseudo(cf);
    616 }
    617 
    618 /*
    619  * The clean design of if_clone and autoconf(9) makes that part
    620  * really straightforward.  The second argument of config_detach
    621  * means neither QUIET nor FORCED.
    622  */
    623 static int
    624 tap_clone_destroy(struct ifnet *ifp)
    625 {
    626 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    627 }
    628 
    629 int
    630 tap_clone_destroyer(struct device *dev)
    631 {
    632 	struct cfdata *cf = device_cfdata(dev);
    633 	int error;
    634 
    635 	if ((error = config_detach(dev, 0)) != 0)
    636 		aprint_error("%s: unable to detach instance\n",
    637 		    dev->dv_xname);
    638 	free(cf, M_DEVBUF);
    639 
    640 	return (error);
    641 }
    642 
    643 /*
    644  * tap(4) is a bit of an hybrid device.  It can be used in two different
    645  * ways:
    646  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    647  *  2. open /dev/tap, get a new interface created and read/write off it.
    648  *     That interface is destroyed when the process that had it created exits.
    649  *
    650  * The first way is managed by the cdevsw structure, and you access interfaces
    651  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    652  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    653  *
    654  * The second way is the so-called "cloning" device.  It's a special minor
    655  * number (chosen as the maximal number, to allow as much tap devices as
    656  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    657  * call ends in tap_cdev_open.  The actual place where it is handled is
    658  * tap_dev_cloner.
    659  *
    660  * An tap device cannot be opened more than once at a time, so the cdevsw
    661  * part of open() does nothing but noting that the interface is being used and
    662  * hence ready to actually handle packets.
    663  */
    664 
    665 static int
    666 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    667 {
    668 	struct tap_softc *sc;
    669 
    670 	if (minor(dev) == TAP_CLONER)
    671 		return tap_dev_cloner(l);
    672 
    673 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    674 	if (sc == NULL)
    675 		return (ENXIO);
    676 
    677 	/* The device can only be opened once */
    678 	if (sc->sc_flags & TAP_INUSE)
    679 		return (EBUSY);
    680 	sc->sc_flags |= TAP_INUSE;
    681 	return (0);
    682 }
    683 
    684 /*
    685  * There are several kinds of cloning devices, and the most simple is the one
    686  * tap(4) uses.  What it does is change the file descriptor with a new one,
    687  * with its own fileops structure (which maps to the various read, write,
    688  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    689  * then actually creates the new tap devices.
    690  *
    691  * Once those two steps are successful, we can re-wire the existing file
    692  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    693  * structure as needed (notably f_data gets filled with the fifth parameter
    694  * passed, the unit of the tap device which will allows us identifying the
    695  * device later), and returns EMOVEFD.
    696  *
    697  * That magic value is interpreted by sys_open() which then replaces the
    698  * current file descriptor by the new one (through a magic member of struct
    699  * lwp, l_dupfd).
    700  *
    701  * The tap device is flagged as being busy since it otherwise could be
    702  * externally accessed through the corresponding device node with the cdevsw
    703  * interface.
    704  */
    705 
    706 static int
    707 tap_dev_cloner(struct lwp *l)
    708 {
    709 	struct tap_softc *sc;
    710 	struct file *fp;
    711 	int error, fd;
    712 
    713 	if ((error = falloc(l, &fp, &fd)) != 0)
    714 		return (error);
    715 
    716 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    717 		FILE_UNUSE(fp, l);
    718 		ffree(fp);
    719 		return (ENXIO);
    720 	}
    721 
    722 	sc->sc_flags |= TAP_INUSE;
    723 
    724 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    725 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    726 }
    727 
    728 /*
    729  * While all other operations (read, write, ioctl, poll and kqfilter) are
    730  * really the same whether we are in cdevsw or fileops mode, the close()
    731  * function is slightly different in the two cases.
    732  *
    733  * As for the other, the core of it is shared in tap_dev_close.  What
    734  * it does is sufficient for the cdevsw interface, but the cloning interface
    735  * needs another thing:  the interface is destroyed when the processes that
    736  * created it closes it.
    737  */
    738 static int
    739 tap_cdev_close(dev_t dev, int flags, int fmt,
    740     struct lwp *l)
    741 {
    742 	struct tap_softc *sc =
    743 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    744 
    745 	if (sc == NULL)
    746 		return (ENXIO);
    747 
    748 	return tap_dev_close(sc);
    749 }
    750 
    751 /*
    752  * It might happen that the administrator used ifconfig to externally destroy
    753  * the interface.  In that case, tap_fops_close will be called while
    754  * tap_detach is already happening.  If we called it again from here, we
    755  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    756  */
    757 static int
    758 tap_fops_close(struct file *fp, struct lwp *l)
    759 {
    760 	int unit = (intptr_t)fp->f_data;
    761 	struct tap_softc *sc;
    762 	int error;
    763 
    764 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    765 	if (sc == NULL)
    766 		return (ENXIO);
    767 
    768 	/* tap_dev_close currently always succeeds, but it might not
    769 	 * always be the case. */
    770 	if ((error = tap_dev_close(sc)) != 0)
    771 		return (error);
    772 
    773 	/* Destroy the device now that it is no longer useful,
    774 	 * unless it's already being destroyed. */
    775 	if ((sc->sc_flags & TAP_GOING) != 0)
    776 		return (0);
    777 
    778 	return tap_clone_destroyer((struct device *)sc);
    779 }
    780 
    781 static int
    782 tap_dev_close(struct tap_softc *sc)
    783 {
    784 	struct ifnet *ifp;
    785 	int s;
    786 
    787 	s = splnet();
    788 	/* Let tap_start handle packets again */
    789 	ifp = &sc->sc_ec.ec_if;
    790 	ifp->if_flags &= ~IFF_OACTIVE;
    791 
    792 	/* Purge output queue */
    793 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    794 		struct mbuf *m;
    795 
    796 		for (;;) {
    797 			IFQ_DEQUEUE(&ifp->if_snd, m);
    798 			if (m == NULL)
    799 				break;
    800 
    801 			ifp->if_opackets++;
    802 #if NBPFILTER > 0
    803 			if (ifp->if_bpf)
    804 				bpf_mtap(ifp->if_bpf, m);
    805 #endif
    806 		}
    807 	}
    808 	splx(s);
    809 
    810 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    811 
    812 	return (0);
    813 }
    814 
    815 static int
    816 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    817 {
    818 	return tap_dev_read(minor(dev), uio, flags);
    819 }
    820 
    821 static int
    822 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    823     kauth_cred_t cred, int flags)
    824 {
    825 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    826 }
    827 
    828 static int
    829 tap_dev_read(int unit, struct uio *uio, int flags)
    830 {
    831 	struct tap_softc *sc =
    832 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    833 	struct ifnet *ifp;
    834 	struct mbuf *m, *n;
    835 	int error = 0, s;
    836 
    837 	if (sc == NULL)
    838 		return (ENXIO);
    839 
    840 	ifp = &sc->sc_ec.ec_if;
    841 	if ((ifp->if_flags & IFF_UP) == 0)
    842 		return (EHOSTDOWN);
    843 
    844 	/*
    845 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    846 	 */
    847 	if ((sc->sc_flags & TAP_NBIO) &&
    848 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    849 		return (EWOULDBLOCK);
    850 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    851 	if (error != 0)
    852 		return (error);
    853 
    854 	s = splnet();
    855 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    856 		ifp->if_flags &= ~IFF_OACTIVE;
    857 		splx(s);
    858 		/*
    859 		 * We must release the lock before sleeping, and re-acquire it
    860 		 * after.
    861 		 */
    862 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    863 		if (sc->sc_flags & TAP_NBIO)
    864 			error = EWOULDBLOCK;
    865 		else
    866 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    867 
    868 		if (error != 0)
    869 			return (error);
    870 		/* The device might have been downed */
    871 		if ((ifp->if_flags & IFF_UP) == 0)
    872 			return (EHOSTDOWN);
    873 		if ((sc->sc_flags & TAP_NBIO) &&
    874 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    875 			return (EWOULDBLOCK);
    876 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    877 		if (error != 0)
    878 			return (error);
    879 		s = splnet();
    880 	}
    881 
    882 	IFQ_DEQUEUE(&ifp->if_snd, m);
    883 	ifp->if_flags &= ~IFF_OACTIVE;
    884 	splx(s);
    885 	if (m == NULL) {
    886 		error = 0;
    887 		goto out;
    888 	}
    889 
    890 	ifp->if_opackets++;
    891 #if NBPFILTER > 0
    892 	if (ifp->if_bpf)
    893 		bpf_mtap(ifp->if_bpf, m);
    894 #endif
    895 
    896 	/*
    897 	 * One read is one packet.
    898 	 */
    899 	do {
    900 		error = uiomove(mtod(m, caddr_t),
    901 		    min(m->m_len, uio->uio_resid), uio);
    902 		MFREE(m, n);
    903 		m = n;
    904 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    905 
    906 	if (m != NULL)
    907 		m_freem(m);
    908 
    909 out:
    910 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    911 	return (error);
    912 }
    913 
    914 static int
    915 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    916 {
    917 	return tap_dev_write(minor(dev), uio, flags);
    918 }
    919 
    920 static int
    921 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    922     kauth_cred_t cred, int flags)
    923 {
    924 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    925 }
    926 
    927 static int
    928 tap_dev_write(int unit, struct uio *uio, int flags)
    929 {
    930 	struct tap_softc *sc =
    931 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    932 	struct ifnet *ifp;
    933 	struct mbuf *m, **mp;
    934 	int error = 0;
    935 	int s;
    936 
    937 	if (sc == NULL)
    938 		return (ENXIO);
    939 
    940 	ifp = &sc->sc_ec.ec_if;
    941 
    942 	/* One write, one packet, that's the rule */
    943 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    944 	if (m == NULL) {
    945 		ifp->if_ierrors++;
    946 		return (ENOBUFS);
    947 	}
    948 	m->m_pkthdr.len = uio->uio_resid;
    949 
    950 	mp = &m;
    951 	while (error == 0 && uio->uio_resid > 0) {
    952 		if (*mp != m) {
    953 			MGET(*mp, M_DONTWAIT, MT_DATA);
    954 			if (*mp == NULL) {
    955 				error = ENOBUFS;
    956 				break;
    957 			}
    958 		}
    959 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    960 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    961 		mp = &(*mp)->m_next;
    962 	}
    963 	if (error) {
    964 		ifp->if_ierrors++;
    965 		m_freem(m);
    966 		return (error);
    967 	}
    968 
    969 	ifp->if_ipackets++;
    970 	m->m_pkthdr.rcvif = ifp;
    971 
    972 #if NBPFILTER > 0
    973 	if (ifp->if_bpf)
    974 		bpf_mtap(ifp->if_bpf, m);
    975 #endif
    976 	s =splnet();
    977 	(*ifp->if_input)(ifp, m);
    978 	splx(s);
    979 
    980 	return (0);
    981 }
    982 
    983 static int
    984 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    985     struct lwp *l)
    986 {
    987 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    988 }
    989 
    990 static int
    991 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    992 {
    993 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
    994 }
    995 
    996 static int
    997 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
    998 {
    999 	struct tap_softc *sc =
   1000 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1001 	int error = 0;
   1002 
   1003 	if (sc == NULL)
   1004 		return (ENXIO);
   1005 
   1006 	switch (cmd) {
   1007 	case FIONREAD:
   1008 		{
   1009 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1010 			struct mbuf *m;
   1011 			int s;
   1012 
   1013 			s = splnet();
   1014 			IFQ_POLL(&ifp->if_snd, m);
   1015 
   1016 			if (m == NULL)
   1017 				*(int *)data = 0;
   1018 			else
   1019 				*(int *)data = m->m_pkthdr.len;
   1020 			splx(s);
   1021 		} break;
   1022 	case TIOCSPGRP:
   1023 	case FIOSETOWN:
   1024 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1025 		break;
   1026 	case TIOCGPGRP:
   1027 	case FIOGETOWN:
   1028 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1029 		break;
   1030 	case FIOASYNC:
   1031 		if (*(int *)data)
   1032 			sc->sc_flags |= TAP_ASYNCIO;
   1033 		else
   1034 			sc->sc_flags &= ~TAP_ASYNCIO;
   1035 		break;
   1036 	case FIONBIO:
   1037 		if (*(int *)data)
   1038 			sc->sc_flags |= TAP_NBIO;
   1039 		else
   1040 			sc->sc_flags &= ~TAP_NBIO;
   1041 		break;
   1042 	case TAPGIFNAME:
   1043 		{
   1044 			struct ifreq *ifr = (struct ifreq *)data;
   1045 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1046 
   1047 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1048 		} break;
   1049 	default:
   1050 		error = ENOTTY;
   1051 		break;
   1052 	}
   1053 
   1054 	return (0);
   1055 }
   1056 
   1057 static int
   1058 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1059 {
   1060 	return tap_dev_poll(minor(dev), events, l);
   1061 }
   1062 
   1063 static int
   1064 tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1065 {
   1066 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1067 }
   1068 
   1069 static int
   1070 tap_dev_poll(int unit, int events, struct lwp *l)
   1071 {
   1072 	struct tap_softc *sc =
   1073 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1074 	int revents = 0;
   1075 
   1076 	if (sc == NULL)
   1077 		return (ENXIO);
   1078 
   1079 	if (events & (POLLIN|POLLRDNORM)) {
   1080 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1081 		struct mbuf *m;
   1082 		int s;
   1083 
   1084 		s = splnet();
   1085 		IFQ_POLL(&ifp->if_snd, m);
   1086 		splx(s);
   1087 
   1088 		if (m != NULL)
   1089 			revents |= events & (POLLIN|POLLRDNORM);
   1090 		else {
   1091 			simple_lock(&sc->sc_kqlock);
   1092 			selrecord(l, &sc->sc_rsel);
   1093 			simple_unlock(&sc->sc_kqlock);
   1094 		}
   1095 	}
   1096 	revents |= events & (POLLOUT|POLLWRNORM);
   1097 
   1098 	return (revents);
   1099 }
   1100 
   1101 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1102 	tap_kqread };
   1103 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1104 	filt_seltrue };
   1105 
   1106 static int
   1107 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1108 {
   1109 	return tap_dev_kqfilter(minor(dev), kn);
   1110 }
   1111 
   1112 static int
   1113 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1114 {
   1115 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1116 }
   1117 
   1118 static int
   1119 tap_dev_kqfilter(int unit, struct knote *kn)
   1120 {
   1121 	struct tap_softc *sc =
   1122 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1123 
   1124 	if (sc == NULL)
   1125 		return (ENXIO);
   1126 
   1127 	switch(kn->kn_filter) {
   1128 	case EVFILT_READ:
   1129 		kn->kn_fop = &tap_read_filterops;
   1130 		break;
   1131 	case EVFILT_WRITE:
   1132 		kn->kn_fop = &tap_seltrue_filterops;
   1133 		break;
   1134 	default:
   1135 		return (1);
   1136 	}
   1137 
   1138 	kn->kn_hook = sc;
   1139 	simple_lock(&sc->sc_kqlock);
   1140 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1141 	simple_unlock(&sc->sc_kqlock);
   1142 	return (0);
   1143 }
   1144 
   1145 static void
   1146 tap_kqdetach(struct knote *kn)
   1147 {
   1148 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1149 
   1150 	simple_lock(&sc->sc_kqlock);
   1151 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1152 	simple_unlock(&sc->sc_kqlock);
   1153 }
   1154 
   1155 static int
   1156 tap_kqread(struct knote *kn, long hint)
   1157 {
   1158 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1159 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1160 	struct mbuf *m;
   1161 	int s;
   1162 
   1163 	s = splnet();
   1164 	IFQ_POLL(&ifp->if_snd, m);
   1165 
   1166 	if (m == NULL)
   1167 		kn->kn_data = 0;
   1168 	else
   1169 		kn->kn_data = m->m_pkthdr.len;
   1170 	splx(s);
   1171 	return (kn->kn_data != 0 ? 1 : 0);
   1172 }
   1173 
   1174 /*
   1175  * sysctl management routines
   1176  * You can set the address of an interface through:
   1177  * net.link.tap.tap<number>
   1178  *
   1179  * Note the consistent use of tap_log in order to use
   1180  * sysctl_teardown at unload time.
   1181  *
   1182  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1183  * blocks register a function in a special section of the kernel
   1184  * (called a link set) which is used at init_sysctl() time to cycle
   1185  * through all those functions to create the kernel's sysctl tree.
   1186  *
   1187  * It is not (currently) possible to use link sets in a LKM, so the
   1188  * easiest is to simply call our own setup routine at load time.
   1189  *
   1190  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1191  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1192  * whole kernel sysctl tree is built, it is not possible to add any
   1193  * permanent node.
   1194  *
   1195  * It should be noted that we're not saving the sysctlnode pointer
   1196  * we are returned when creating the "tap" node.  That structure
   1197  * cannot be trusted once out of the calling function, as it might
   1198  * get reused.  So we just save the MIB number, and always give the
   1199  * full path starting from the root for later calls to sysctl_createv
   1200  * and sysctl_destroyv.
   1201  */
   1202 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1203 {
   1204 	const struct sysctlnode *node;
   1205 	int error = 0;
   1206 
   1207 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1208 	    CTLFLAG_PERMANENT,
   1209 	    CTLTYPE_NODE, "net", NULL,
   1210 	    NULL, 0, NULL, 0,
   1211 	    CTL_NET, CTL_EOL)) != 0)
   1212 		return;
   1213 
   1214 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1215 	    CTLFLAG_PERMANENT,
   1216 	    CTLTYPE_NODE, "link", NULL,
   1217 	    NULL, 0, NULL, 0,
   1218 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1219 		return;
   1220 
   1221 	/*
   1222 	 * The first four parameters of sysctl_createv are for management.
   1223 	 *
   1224 	 * The four that follows, here starting with a '0' for the flags,
   1225 	 * describe the node.
   1226 	 *
   1227 	 * The next series of four set its value, through various possible
   1228 	 * means.
   1229 	 *
   1230 	 * Last but not least, the path to the node is described.  That path
   1231 	 * is relative to the given root (third argument).  Here we're
   1232 	 * starting from the root.
   1233 	 */
   1234 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1235 	    CTLFLAG_PERMANENT,
   1236 	    CTLTYPE_NODE, "tap", NULL,
   1237 	    NULL, 0, NULL, 0,
   1238 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1239 		return;
   1240 	tap_node = node->sysctl_num;
   1241 }
   1242 
   1243 /*
   1244  * The helper functions make Andrew Brown's interface really
   1245  * shine.  It makes possible to create value on the fly whether
   1246  * the sysctl value is read or written.
   1247  *
   1248  * As shown as an example in the man page, the first step is to
   1249  * create a copy of the node to have sysctl_lookup work on it.
   1250  *
   1251  * Here, we have more work to do than just a copy, since we have
   1252  * to create the string.  The first step is to collect the actual
   1253  * value of the node, which is a convenient pointer to the softc
   1254  * of the interface.  From there we create the string and use it
   1255  * as the value, but only for the *copy* of the node.
   1256  *
   1257  * Then we let sysctl_lookup do the magic, which consists in
   1258  * setting oldp and newp as required by the operation.  When the
   1259  * value is read, that means that the string will be copied to
   1260  * the user, and when it is written, the new value will be copied
   1261  * over in the addr array.
   1262  *
   1263  * If newp is NULL, the user was reading the value, so we don't
   1264  * have anything else to do.  If a new value was written, we
   1265  * have to check it.
   1266  *
   1267  * If it is incorrect, we can return an error and leave 'node' as
   1268  * it is:  since it is a copy of the actual node, the change will
   1269  * be forgotten.
   1270  *
   1271  * Upon a correct input, we commit the change to the ifnet
   1272  * structure of our interface.
   1273  */
   1274 static int
   1275 tap_sysctl_handler(SYSCTLFN_ARGS)
   1276 {
   1277 	struct sysctlnode node;
   1278 	struct tap_softc *sc;
   1279 	struct ifnet *ifp;
   1280 	int error;
   1281 	size_t len;
   1282 	char addr[3 * ETHER_ADDR_LEN];
   1283 
   1284 	node = *rnode;
   1285 	sc = node.sysctl_data;
   1286 	ifp = &sc->sc_ec.ec_if;
   1287 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
   1288 	node.sysctl_data = addr;
   1289 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1290 	if (error || newp == NULL)
   1291 		return (error);
   1292 
   1293 	len = strlen(addr);
   1294 	if (len < 11 || len > 17)
   1295 		return (EINVAL);
   1296 
   1297 	/* Commit change */
   1298 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1299 		return (EINVAL);
   1300 	return (error);
   1301 }
   1302 
   1303 /*
   1304  * ether_aton implementation, not using a static buffer.
   1305  */
   1306 static int
   1307 tap_ether_aton(u_char *dest, char *str)
   1308 {
   1309 	int i;
   1310 	char *cp = str;
   1311 	u_char val[6];
   1312 
   1313 #define	set_value			\
   1314 	if (*cp > '9' && *cp < 'a')	\
   1315 		*cp -= 'A' - 10;	\
   1316 	else if (*cp > '9')		\
   1317 		*cp -= 'a' - 10;	\
   1318 	else				\
   1319 		*cp -= '0'
   1320 
   1321 	for (i = 0; i < 6; i++, cp++) {
   1322 		if (!isxdigit(*cp))
   1323 			return (1);
   1324 		set_value;
   1325 		val[i] = *cp++;
   1326 		if (isxdigit(*cp)) {
   1327 			set_value;
   1328 			val[i] *= 16;
   1329 			val[i] += *cp++;
   1330 		}
   1331 		if (*cp == ':' || i == 5)
   1332 			continue;
   1333 		else
   1334 			return (1);
   1335 	}
   1336 	memcpy(dest, val, 6);
   1337 	return (0);
   1338 }
   1339