if_tap.c revision 1.23 1 /* $NetBSD: if_tap.c,v 1.23 2006/11/16 01:33:40 christos Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to the NetBSD Foundation
8 * by Quentin Garnier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
41 * device to the system, but can also be accessed by userland through a
42 * character device interface, which allows reading and injecting frames.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.23 2006/11/16 01:33:40 christos Exp $");
47
48 #if defined(_KERNEL_OPT)
49 #include "bpfilter.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/ksyms.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/kauth.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current LKM implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93
94 /*
95 * Since we're an Ethernet device, we need the 3 following
96 * components: a leading struct device, a struct ethercom,
97 * and also a struct ifmedia since we don't attach a PHY to
98 * ourselves. We could emulate one, but there's no real
99 * point.
100 */
101
102 struct tap_softc {
103 struct device sc_dev;
104 struct ifmedia sc_im;
105 struct ethercom sc_ec;
106 int sc_flags;
107 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 struct selinfo sc_rsel;
112 pid_t sc_pgid; /* For async. IO */
113 struct lock sc_rdlock;
114 struct simplelock sc_kqlock;
115 };
116
117 /* autoconf(9) glue */
118
119 void tapattach(int);
120
121 static int tap_match(struct device *, struct cfdata *, void *);
122 static void tap_attach(struct device *, struct device *, void *);
123 static int tap_detach(struct device*, int);
124
125 /* Ethernet address helper functions */
126
127 static int tap_ether_aton(u_char *, char *);
128
129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
130 tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132
133 /* Real device access routines */
134 static int tap_dev_close(struct tap_softc *);
135 static int tap_dev_read(int, struct uio *, int);
136 static int tap_dev_write(int, struct uio *, int);
137 static int tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
138 static int tap_dev_poll(int, int, struct lwp *);
139 static int tap_dev_kqfilter(int, struct knote *);
140
141 /* Fileops access routines */
142 static int tap_fops_close(struct file *, struct lwp *);
143 static int tap_fops_read(struct file *, off_t *, struct uio *,
144 kauth_cred_t, int);
145 static int tap_fops_write(struct file *, off_t *, struct uio *,
146 kauth_cred_t, int);
147 static int tap_fops_ioctl(struct file *, u_long, void *,
148 struct lwp *);
149 static int tap_fops_poll(struct file *, int, struct lwp *);
150 static int tap_fops_kqfilter(struct file *, struct knote *);
151
152 static const struct fileops tap_fileops = {
153 tap_fops_read,
154 tap_fops_write,
155 tap_fops_ioctl,
156 fnullop_fcntl,
157 tap_fops_poll,
158 fbadop_stat,
159 tap_fops_close,
160 tap_fops_kqfilter,
161 };
162
163 /* Helper for cloning open() */
164 static int tap_dev_cloner(struct lwp *);
165
166 /* Character device routines */
167 static int tap_cdev_open(dev_t, int, int, struct lwp *);
168 static int tap_cdev_close(dev_t, int, int, struct lwp *);
169 static int tap_cdev_read(dev_t, struct uio *, int);
170 static int tap_cdev_write(dev_t, struct uio *, int);
171 static int tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
172 static int tap_cdev_poll(dev_t, int, struct lwp *);
173 static int tap_cdev_kqfilter(dev_t, struct knote *);
174
175 const struct cdevsw tap_cdevsw = {
176 tap_cdev_open, tap_cdev_close,
177 tap_cdev_read, tap_cdev_write,
178 tap_cdev_ioctl, nostop, notty,
179 tap_cdev_poll, nommap,
180 tap_cdev_kqfilter,
181 D_OTHER,
182 };
183
184 #define TAP_CLONER 0xfffff /* Maximal minor value */
185
186 /* kqueue-related routines */
187 static void tap_kqdetach(struct knote *);
188 static int tap_kqread(struct knote *, long);
189
190 /*
191 * Those are needed by the if_media interface.
192 */
193
194 static int tap_mediachange(struct ifnet *);
195 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
196
197 /*
198 * Those are needed by the ifnet interface, and would typically be
199 * there for any network interface driver.
200 * Some other routines are optional: watchdog and drain.
201 */
202
203 static void tap_start(struct ifnet *);
204 static void tap_stop(struct ifnet *, int);
205 static int tap_init(struct ifnet *);
206 static int tap_ioctl(struct ifnet *, u_long, caddr_t);
207
208 /* This is an internal function to keep tap_ioctl readable */
209 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
210
211 /*
212 * tap is a clonable interface, although it is highly unrealistic for
213 * an Ethernet device.
214 *
215 * Here are the bits needed for a clonable interface.
216 */
217 static int tap_clone_create(struct if_clone *, int);
218 static int tap_clone_destroy(struct ifnet *);
219
220 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
221 tap_clone_create,
222 tap_clone_destroy);
223
224 /* Helper functionis shared by the two cloning code paths */
225 static struct tap_softc * tap_clone_creator(int);
226 int tap_clone_destroyer(struct device *);
227
228 void
229 tapattach(int n)
230 {
231 int error;
232
233 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
234 if (error) {
235 aprint_error("%s: unable to register cfattach\n",
236 tap_cd.cd_name);
237 (void)config_cfdriver_detach(&tap_cd);
238 return;
239 }
240
241 if_clone_attach(&tap_cloners);
242 }
243
244 /* Pretty much useless for a pseudo-device */
245 static int
246 tap_match(struct device *self, struct cfdata *cfdata,
247 void *arg)
248 {
249 return (1);
250 }
251
252 void
253 tap_attach(struct device *parent, struct device *self,
254 void *aux)
255 {
256 struct tap_softc *sc = (struct tap_softc *)self;
257 struct ifnet *ifp;
258 const struct sysctlnode *node;
259 u_int8_t enaddr[ETHER_ADDR_LEN] =
260 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
261 char enaddrstr[3 * ETHER_ADDR_LEN];
262 struct timeval tv;
263 uint32_t ui;
264 int error;
265
266 aprint_normal("%s: faking Ethernet device\n",
267 self->dv_xname);
268
269 /*
270 * In order to obtain unique initial Ethernet address on a host,
271 * do some randomisation using the current uptime. It's not meant
272 * for anything but avoiding hard-coding an address.
273 */
274 getmicrouptime(&tv);
275 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
276 memcpy(enaddr+3, (u_int8_t *)&ui, 3);
277
278 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
279 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
280
281 /*
282 * Why 1000baseT? Why not? You can add more.
283 *
284 * Note that there are 3 steps: init, one or several additions to
285 * list of supported media, and in the end, the selection of one
286 * of them.
287 */
288 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
289 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
290 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
291 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
292 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
293 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
294 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
295 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
296 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
297
298 /*
299 * One should note that an interface must do multicast in order
300 * to support IPv6.
301 */
302 ifp = &sc->sc_ec.ec_if;
303 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
304 ifp->if_softc = sc;
305 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
306 ifp->if_ioctl = tap_ioctl;
307 ifp->if_start = tap_start;
308 ifp->if_stop = tap_stop;
309 ifp->if_init = tap_init;
310 IFQ_SET_READY(&ifp->if_snd);
311
312 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
313
314 /* Those steps are mandatory for an Ethernet driver, the fisrt call
315 * being common to all network interface drivers. */
316 if_attach(ifp);
317 ether_ifattach(ifp, enaddr);
318
319 sc->sc_flags = 0;
320
321 /*
322 * Add a sysctl node for that interface.
323 *
324 * The pointer transmitted is not a string, but instead a pointer to
325 * the softc structure, which we can use to build the string value on
326 * the fly in the helper function of the node. See the comments for
327 * tap_sysctl_handler for details.
328 *
329 * Usually sysctl_createv is called with CTL_CREATE as the before-last
330 * component. However, we can allocate a number ourselves, as we are
331 * the only consumer of the net.link.<iface> node. In this case, the
332 * unit number is conveniently used to number the node. CTL_CREATE
333 * would just work, too.
334 */
335 if ((error = sysctl_createv(NULL, 0, NULL,
336 &node, CTLFLAG_READWRITE,
337 CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
338 tap_sysctl_handler, 0, sc, 18,
339 CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
340 CTL_EOL)) != 0)
341 aprint_error("%s: sysctl_createv returned %d, ignoring\n",
342 sc->sc_dev.dv_xname, error);
343
344 /*
345 * Initialize the two locks for the device.
346 *
347 * We need a lock here because even though the tap device can be
348 * opened only once, the file descriptor might be passed to another
349 * process, say a fork(2)ed child.
350 *
351 * The Giant saves us from most of the hassle, but since the read
352 * operation can sleep, we don't want two processes to wake up at
353 * the same moment and both try and dequeue a single packet.
354 *
355 * The queue for event listeners (used by kqueue(9), see below) has
356 * to be protected, too, but we don't need the same level of
357 * complexity for that lock, so a simple spinning lock is fine.
358 */
359 lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
360 simple_lock_init(&sc->sc_kqlock);
361 }
362
363 /*
364 * When detaching, we do the inverse of what is done in the attach
365 * routine, in reversed order.
366 */
367 static int
368 tap_detach(struct device* self, int flags)
369 {
370 struct tap_softc *sc = (struct tap_softc *)self;
371 struct ifnet *ifp = &sc->sc_ec.ec_if;
372 int error, s;
373
374 /*
375 * Some processes might be sleeping on "tap", so we have to make
376 * them release their hold on the device.
377 *
378 * The LK_DRAIN operation will wait for every locked process to
379 * release their hold.
380 */
381 sc->sc_flags |= TAP_GOING;
382 s = splnet();
383 tap_stop(ifp, 1);
384 if_down(ifp);
385 splx(s);
386 lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
387
388 /*
389 * Destroying a single leaf is a very straightforward operation using
390 * sysctl_destroyv. One should be sure to always end the path with
391 * CTL_EOL.
392 */
393 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
394 device_unit(&sc->sc_dev), CTL_EOL)) != 0)
395 aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
396 sc->sc_dev.dv_xname, error);
397 ether_ifdetach(ifp);
398 if_detach(ifp);
399 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
400
401 return (0);
402 }
403
404 /*
405 * This function is called by the ifmedia layer to notify the driver
406 * that the user requested a media change. A real driver would
407 * reconfigure the hardware.
408 */
409 static int
410 tap_mediachange(struct ifnet *ifp)
411 {
412 return (0);
413 }
414
415 /*
416 * Here the user asks for the currently used media.
417 */
418 static void
419 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
420 {
421 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
422 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
423 }
424
425 /*
426 * This is the function where we SEND packets.
427 *
428 * There is no 'receive' equivalent. A typical driver will get
429 * interrupts from the hardware, and from there will inject new packets
430 * into the network stack.
431 *
432 * Once handled, a packet must be freed. A real driver might not be able
433 * to fit all the pending packets into the hardware, and is allowed to
434 * return before having sent all the packets. It should then use the
435 * if_flags flag IFF_OACTIVE to notify the upper layer.
436 *
437 * There are also other flags one should check, such as IFF_PAUSE.
438 *
439 * It is our duty to make packets available to BPF listeners.
440 *
441 * You should be aware that this function is called by the Ethernet layer
442 * at splnet().
443 *
444 * When the device is opened, we have to pass the packet(s) to the
445 * userland. For that we stay in OACTIVE mode while the userland gets
446 * the packets, and we send a signal to the processes waiting to read.
447 *
448 * wakeup(sc) is the counterpart to the tsleep call in
449 * tap_dev_read, while selnotify() is used for kevent(2) and
450 * poll(2) (which includes select(2)) listeners.
451 */
452 static void
453 tap_start(struct ifnet *ifp)
454 {
455 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
456 struct mbuf *m0;
457
458 if ((sc->sc_flags & TAP_INUSE) == 0) {
459 /* Simply drop packets */
460 for(;;) {
461 IFQ_DEQUEUE(&ifp->if_snd, m0);
462 if (m0 == NULL)
463 return;
464
465 ifp->if_opackets++;
466 #if NBPFILTER > 0
467 if (ifp->if_bpf)
468 bpf_mtap(ifp->if_bpf, m0);
469 #endif
470
471 m_freem(m0);
472 }
473 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
474 ifp->if_flags |= IFF_OACTIVE;
475 wakeup(sc);
476 selnotify(&sc->sc_rsel, 1);
477 if (sc->sc_flags & TAP_ASYNCIO)
478 fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
479 POLLIN|POLLRDNORM, NULL);
480 }
481 }
482
483 /*
484 * A typical driver will only contain the following handlers for
485 * ioctl calls, except SIOCSIFPHYADDR.
486 * The latter is a hack I used to set the Ethernet address of the
487 * faked device.
488 *
489 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
490 * called under splnet().
491 */
492 static int
493 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
494 {
495 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
496 struct ifreq *ifr = (struct ifreq *)data;
497 int s, error;
498
499 s = splnet();
500
501 switch (cmd) {
502 case SIOCSIFMEDIA:
503 case SIOCGIFMEDIA:
504 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
505 break;
506 case SIOCSIFPHYADDR:
507 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
508 break;
509 default:
510 error = ether_ioctl(ifp, cmd, data);
511 if (error == ENETRESET)
512 error = 0;
513 break;
514 }
515
516 splx(s);
517
518 return (error);
519 }
520
521 /*
522 * Helper function to set Ethernet address. This shouldn't be done there,
523 * and should actually be available to all Ethernet drivers, real or not.
524 */
525 static int
526 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
527 {
528 struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
529
530 if (sa->sa_family != AF_LINK)
531 return (EINVAL);
532
533 memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
534
535 return (0);
536 }
537
538 /*
539 * _init() would typically be called when an interface goes up,
540 * meaning it should configure itself into the state in which it
541 * can send packets.
542 */
543 static int
544 tap_init(struct ifnet *ifp)
545 {
546 ifp->if_flags |= IFF_RUNNING;
547
548 tap_start(ifp);
549
550 return (0);
551 }
552
553 /*
554 * _stop() is called when an interface goes down. It is our
555 * responsability to validate that state by clearing the
556 * IFF_RUNNING flag.
557 *
558 * We have to wake up all the sleeping processes to have the pending
559 * read requests cancelled.
560 */
561 static void
562 tap_stop(struct ifnet *ifp, int disable)
563 {
564 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
565
566 ifp->if_flags &= ~IFF_RUNNING;
567 wakeup(sc);
568 selnotify(&sc->sc_rsel, 1);
569 if (sc->sc_flags & TAP_ASYNCIO)
570 fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
571 }
572
573 /*
574 * The 'create' command of ifconfig can be used to create
575 * any numbered instance of a given device. Thus we have to
576 * make sure we have enough room in cd_devs to create the
577 * user-specified instance. config_attach_pseudo will do this
578 * for us.
579 */
580 static int
581 tap_clone_create(struct if_clone *ifc, int unit)
582 {
583 if (tap_clone_creator(unit) == NULL) {
584 aprint_error("%s%d: unable to attach an instance\n",
585 tap_cd.cd_name, unit);
586 return (ENXIO);
587 }
588
589 return (0);
590 }
591
592 /*
593 * tap(4) can be cloned by two ways:
594 * using 'ifconfig tap0 create', which will use the network
595 * interface cloning API, and call tap_clone_create above.
596 * opening the cloning device node, whose minor number is TAP_CLONER.
597 * See below for an explanation on how this part work.
598 *
599 * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
600 * autoconf(9) choose a unit number for us. This is what happens when
601 * the cloner is openend, while the ifcloner interface creates a device
602 * with a specific unit number.
603 */
604 static struct tap_softc *
605 tap_clone_creator(int unit)
606 {
607 struct cfdata *cf;
608
609 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
610 cf->cf_name = tap_cd.cd_name;
611 cf->cf_atname = tap_ca.ca_name;
612 cf->cf_unit = unit;
613 cf->cf_fstate = FSTATE_STAR;
614
615 return (struct tap_softc *)config_attach_pseudo(cf);
616 }
617
618 /*
619 * The clean design of if_clone and autoconf(9) makes that part
620 * really straightforward. The second argument of config_detach
621 * means neither QUIET nor FORCED.
622 */
623 static int
624 tap_clone_destroy(struct ifnet *ifp)
625 {
626 return tap_clone_destroyer((struct device *)ifp->if_softc);
627 }
628
629 int
630 tap_clone_destroyer(struct device *dev)
631 {
632 struct cfdata *cf = device_cfdata(dev);
633 int error;
634
635 if ((error = config_detach(dev, 0)) != 0)
636 aprint_error("%s: unable to detach instance\n",
637 dev->dv_xname);
638 free(cf, M_DEVBUF);
639
640 return (error);
641 }
642
643 /*
644 * tap(4) is a bit of an hybrid device. It can be used in two different
645 * ways:
646 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
647 * 2. open /dev/tap, get a new interface created and read/write off it.
648 * That interface is destroyed when the process that had it created exits.
649 *
650 * The first way is managed by the cdevsw structure, and you access interfaces
651 * through a (major, minor) mapping: tap4 is obtained by the minor number
652 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
653 *
654 * The second way is the so-called "cloning" device. It's a special minor
655 * number (chosen as the maximal number, to allow as much tap devices as
656 * possible). The user first opens the cloner (e.g., /dev/tap), and that
657 * call ends in tap_cdev_open. The actual place where it is handled is
658 * tap_dev_cloner.
659 *
660 * An tap device cannot be opened more than once at a time, so the cdevsw
661 * part of open() does nothing but noting that the interface is being used and
662 * hence ready to actually handle packets.
663 */
664
665 static int
666 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
667 {
668 struct tap_softc *sc;
669
670 if (minor(dev) == TAP_CLONER)
671 return tap_dev_cloner(l);
672
673 sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
674 if (sc == NULL)
675 return (ENXIO);
676
677 /* The device can only be opened once */
678 if (sc->sc_flags & TAP_INUSE)
679 return (EBUSY);
680 sc->sc_flags |= TAP_INUSE;
681 return (0);
682 }
683
684 /*
685 * There are several kinds of cloning devices, and the most simple is the one
686 * tap(4) uses. What it does is change the file descriptor with a new one,
687 * with its own fileops structure (which maps to the various read, write,
688 * ioctl functions). It starts allocating a new file descriptor with falloc,
689 * then actually creates the new tap devices.
690 *
691 * Once those two steps are successful, we can re-wire the existing file
692 * descriptor to its new self. This is done with fdclone(): it fills the fp
693 * structure as needed (notably f_data gets filled with the fifth parameter
694 * passed, the unit of the tap device which will allows us identifying the
695 * device later), and returns EMOVEFD.
696 *
697 * That magic value is interpreted by sys_open() which then replaces the
698 * current file descriptor by the new one (through a magic member of struct
699 * lwp, l_dupfd).
700 *
701 * The tap device is flagged as being busy since it otherwise could be
702 * externally accessed through the corresponding device node with the cdevsw
703 * interface.
704 */
705
706 static int
707 tap_dev_cloner(struct lwp *l)
708 {
709 struct tap_softc *sc;
710 struct file *fp;
711 int error, fd;
712
713 if ((error = falloc(l, &fp, &fd)) != 0)
714 return (error);
715
716 if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
717 FILE_UNUSE(fp, l);
718 ffree(fp);
719 return (ENXIO);
720 }
721
722 sc->sc_flags |= TAP_INUSE;
723
724 return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
725 (void *)(intptr_t)device_unit(&sc->sc_dev));
726 }
727
728 /*
729 * While all other operations (read, write, ioctl, poll and kqfilter) are
730 * really the same whether we are in cdevsw or fileops mode, the close()
731 * function is slightly different in the two cases.
732 *
733 * As for the other, the core of it is shared in tap_dev_close. What
734 * it does is sufficient for the cdevsw interface, but the cloning interface
735 * needs another thing: the interface is destroyed when the processes that
736 * created it closes it.
737 */
738 static int
739 tap_cdev_close(dev_t dev, int flags, int fmt,
740 struct lwp *l)
741 {
742 struct tap_softc *sc =
743 (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
744
745 if (sc == NULL)
746 return (ENXIO);
747
748 return tap_dev_close(sc);
749 }
750
751 /*
752 * It might happen that the administrator used ifconfig to externally destroy
753 * the interface. In that case, tap_fops_close will be called while
754 * tap_detach is already happening. If we called it again from here, we
755 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
756 */
757 static int
758 tap_fops_close(struct file *fp, struct lwp *l)
759 {
760 int unit = (intptr_t)fp->f_data;
761 struct tap_softc *sc;
762 int error;
763
764 sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
765 if (sc == NULL)
766 return (ENXIO);
767
768 /* tap_dev_close currently always succeeds, but it might not
769 * always be the case. */
770 if ((error = tap_dev_close(sc)) != 0)
771 return (error);
772
773 /* Destroy the device now that it is no longer useful,
774 * unless it's already being destroyed. */
775 if ((sc->sc_flags & TAP_GOING) != 0)
776 return (0);
777
778 return tap_clone_destroyer((struct device *)sc);
779 }
780
781 static int
782 tap_dev_close(struct tap_softc *sc)
783 {
784 struct ifnet *ifp;
785 int s;
786
787 s = splnet();
788 /* Let tap_start handle packets again */
789 ifp = &sc->sc_ec.ec_if;
790 ifp->if_flags &= ~IFF_OACTIVE;
791
792 /* Purge output queue */
793 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
794 struct mbuf *m;
795
796 for (;;) {
797 IFQ_DEQUEUE(&ifp->if_snd, m);
798 if (m == NULL)
799 break;
800
801 ifp->if_opackets++;
802 #if NBPFILTER > 0
803 if (ifp->if_bpf)
804 bpf_mtap(ifp->if_bpf, m);
805 #endif
806 }
807 }
808 splx(s);
809
810 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
811
812 return (0);
813 }
814
815 static int
816 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
817 {
818 return tap_dev_read(minor(dev), uio, flags);
819 }
820
821 static int
822 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
823 kauth_cred_t cred, int flags)
824 {
825 return tap_dev_read((intptr_t)fp->f_data, uio, flags);
826 }
827
828 static int
829 tap_dev_read(int unit, struct uio *uio, int flags)
830 {
831 struct tap_softc *sc =
832 (struct tap_softc *)device_lookup(&tap_cd, unit);
833 struct ifnet *ifp;
834 struct mbuf *m, *n;
835 int error = 0, s;
836
837 if (sc == NULL)
838 return (ENXIO);
839
840 ifp = &sc->sc_ec.ec_if;
841 if ((ifp->if_flags & IFF_UP) == 0)
842 return (EHOSTDOWN);
843
844 /*
845 * In the TAP_NBIO case, we have to make sure we won't be sleeping
846 */
847 if ((sc->sc_flags & TAP_NBIO) &&
848 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
849 return (EWOULDBLOCK);
850 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
851 if (error != 0)
852 return (error);
853
854 s = splnet();
855 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
856 ifp->if_flags &= ~IFF_OACTIVE;
857 splx(s);
858 /*
859 * We must release the lock before sleeping, and re-acquire it
860 * after.
861 */
862 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
863 if (sc->sc_flags & TAP_NBIO)
864 error = EWOULDBLOCK;
865 else
866 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
867
868 if (error != 0)
869 return (error);
870 /* The device might have been downed */
871 if ((ifp->if_flags & IFF_UP) == 0)
872 return (EHOSTDOWN);
873 if ((sc->sc_flags & TAP_NBIO) &&
874 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
875 return (EWOULDBLOCK);
876 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
877 if (error != 0)
878 return (error);
879 s = splnet();
880 }
881
882 IFQ_DEQUEUE(&ifp->if_snd, m);
883 ifp->if_flags &= ~IFF_OACTIVE;
884 splx(s);
885 if (m == NULL) {
886 error = 0;
887 goto out;
888 }
889
890 ifp->if_opackets++;
891 #if NBPFILTER > 0
892 if (ifp->if_bpf)
893 bpf_mtap(ifp->if_bpf, m);
894 #endif
895
896 /*
897 * One read is one packet.
898 */
899 do {
900 error = uiomove(mtod(m, caddr_t),
901 min(m->m_len, uio->uio_resid), uio);
902 MFREE(m, n);
903 m = n;
904 } while (m != NULL && uio->uio_resid > 0 && error == 0);
905
906 if (m != NULL)
907 m_freem(m);
908
909 out:
910 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
911 return (error);
912 }
913
914 static int
915 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
916 {
917 return tap_dev_write(minor(dev), uio, flags);
918 }
919
920 static int
921 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
922 kauth_cred_t cred, int flags)
923 {
924 return tap_dev_write((intptr_t)fp->f_data, uio, flags);
925 }
926
927 static int
928 tap_dev_write(int unit, struct uio *uio, int flags)
929 {
930 struct tap_softc *sc =
931 (struct tap_softc *)device_lookup(&tap_cd, unit);
932 struct ifnet *ifp;
933 struct mbuf *m, **mp;
934 int error = 0;
935 int s;
936
937 if (sc == NULL)
938 return (ENXIO);
939
940 ifp = &sc->sc_ec.ec_if;
941
942 /* One write, one packet, that's the rule */
943 MGETHDR(m, M_DONTWAIT, MT_DATA);
944 if (m == NULL) {
945 ifp->if_ierrors++;
946 return (ENOBUFS);
947 }
948 m->m_pkthdr.len = uio->uio_resid;
949
950 mp = &m;
951 while (error == 0 && uio->uio_resid > 0) {
952 if (*mp != m) {
953 MGET(*mp, M_DONTWAIT, MT_DATA);
954 if (*mp == NULL) {
955 error = ENOBUFS;
956 break;
957 }
958 }
959 (*mp)->m_len = min(MHLEN, uio->uio_resid);
960 error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
961 mp = &(*mp)->m_next;
962 }
963 if (error) {
964 ifp->if_ierrors++;
965 m_freem(m);
966 return (error);
967 }
968
969 ifp->if_ipackets++;
970 m->m_pkthdr.rcvif = ifp;
971
972 #if NBPFILTER > 0
973 if (ifp->if_bpf)
974 bpf_mtap(ifp->if_bpf, m);
975 #endif
976 s =splnet();
977 (*ifp->if_input)(ifp, m);
978 splx(s);
979
980 return (0);
981 }
982
983 static int
984 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
985 struct lwp *l)
986 {
987 return tap_dev_ioctl(minor(dev), cmd, data, l);
988 }
989
990 static int
991 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
992 {
993 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
994 }
995
996 static int
997 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
998 {
999 struct tap_softc *sc =
1000 (struct tap_softc *)device_lookup(&tap_cd, unit);
1001 int error = 0;
1002
1003 if (sc == NULL)
1004 return (ENXIO);
1005
1006 switch (cmd) {
1007 case FIONREAD:
1008 {
1009 struct ifnet *ifp = &sc->sc_ec.ec_if;
1010 struct mbuf *m;
1011 int s;
1012
1013 s = splnet();
1014 IFQ_POLL(&ifp->if_snd, m);
1015
1016 if (m == NULL)
1017 *(int *)data = 0;
1018 else
1019 *(int *)data = m->m_pkthdr.len;
1020 splx(s);
1021 } break;
1022 case TIOCSPGRP:
1023 case FIOSETOWN:
1024 error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1025 break;
1026 case TIOCGPGRP:
1027 case FIOGETOWN:
1028 error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1029 break;
1030 case FIOASYNC:
1031 if (*(int *)data)
1032 sc->sc_flags |= TAP_ASYNCIO;
1033 else
1034 sc->sc_flags &= ~TAP_ASYNCIO;
1035 break;
1036 case FIONBIO:
1037 if (*(int *)data)
1038 sc->sc_flags |= TAP_NBIO;
1039 else
1040 sc->sc_flags &= ~TAP_NBIO;
1041 break;
1042 case TAPGIFNAME:
1043 {
1044 struct ifreq *ifr = (struct ifreq *)data;
1045 struct ifnet *ifp = &sc->sc_ec.ec_if;
1046
1047 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1048 } break;
1049 default:
1050 error = ENOTTY;
1051 break;
1052 }
1053
1054 return (0);
1055 }
1056
1057 static int
1058 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1059 {
1060 return tap_dev_poll(minor(dev), events, l);
1061 }
1062
1063 static int
1064 tap_fops_poll(struct file *fp, int events, struct lwp *l)
1065 {
1066 return tap_dev_poll((intptr_t)fp->f_data, events, l);
1067 }
1068
1069 static int
1070 tap_dev_poll(int unit, int events, struct lwp *l)
1071 {
1072 struct tap_softc *sc =
1073 (struct tap_softc *)device_lookup(&tap_cd, unit);
1074 int revents = 0;
1075
1076 if (sc == NULL)
1077 return (ENXIO);
1078
1079 if (events & (POLLIN|POLLRDNORM)) {
1080 struct ifnet *ifp = &sc->sc_ec.ec_if;
1081 struct mbuf *m;
1082 int s;
1083
1084 s = splnet();
1085 IFQ_POLL(&ifp->if_snd, m);
1086 splx(s);
1087
1088 if (m != NULL)
1089 revents |= events & (POLLIN|POLLRDNORM);
1090 else {
1091 simple_lock(&sc->sc_kqlock);
1092 selrecord(l, &sc->sc_rsel);
1093 simple_unlock(&sc->sc_kqlock);
1094 }
1095 }
1096 revents |= events & (POLLOUT|POLLWRNORM);
1097
1098 return (revents);
1099 }
1100
1101 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1102 tap_kqread };
1103 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1104 filt_seltrue };
1105
1106 static int
1107 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1108 {
1109 return tap_dev_kqfilter(minor(dev), kn);
1110 }
1111
1112 static int
1113 tap_fops_kqfilter(struct file *fp, struct knote *kn)
1114 {
1115 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1116 }
1117
1118 static int
1119 tap_dev_kqfilter(int unit, struct knote *kn)
1120 {
1121 struct tap_softc *sc =
1122 (struct tap_softc *)device_lookup(&tap_cd, unit);
1123
1124 if (sc == NULL)
1125 return (ENXIO);
1126
1127 switch(kn->kn_filter) {
1128 case EVFILT_READ:
1129 kn->kn_fop = &tap_read_filterops;
1130 break;
1131 case EVFILT_WRITE:
1132 kn->kn_fop = &tap_seltrue_filterops;
1133 break;
1134 default:
1135 return (1);
1136 }
1137
1138 kn->kn_hook = sc;
1139 simple_lock(&sc->sc_kqlock);
1140 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1141 simple_unlock(&sc->sc_kqlock);
1142 return (0);
1143 }
1144
1145 static void
1146 tap_kqdetach(struct knote *kn)
1147 {
1148 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1149
1150 simple_lock(&sc->sc_kqlock);
1151 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1152 simple_unlock(&sc->sc_kqlock);
1153 }
1154
1155 static int
1156 tap_kqread(struct knote *kn, long hint)
1157 {
1158 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1159 struct ifnet *ifp = &sc->sc_ec.ec_if;
1160 struct mbuf *m;
1161 int s;
1162
1163 s = splnet();
1164 IFQ_POLL(&ifp->if_snd, m);
1165
1166 if (m == NULL)
1167 kn->kn_data = 0;
1168 else
1169 kn->kn_data = m->m_pkthdr.len;
1170 splx(s);
1171 return (kn->kn_data != 0 ? 1 : 0);
1172 }
1173
1174 /*
1175 * sysctl management routines
1176 * You can set the address of an interface through:
1177 * net.link.tap.tap<number>
1178 *
1179 * Note the consistent use of tap_log in order to use
1180 * sysctl_teardown at unload time.
1181 *
1182 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1183 * blocks register a function in a special section of the kernel
1184 * (called a link set) which is used at init_sysctl() time to cycle
1185 * through all those functions to create the kernel's sysctl tree.
1186 *
1187 * It is not (currently) possible to use link sets in a LKM, so the
1188 * easiest is to simply call our own setup routine at load time.
1189 *
1190 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1191 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1192 * whole kernel sysctl tree is built, it is not possible to add any
1193 * permanent node.
1194 *
1195 * It should be noted that we're not saving the sysctlnode pointer
1196 * we are returned when creating the "tap" node. That structure
1197 * cannot be trusted once out of the calling function, as it might
1198 * get reused. So we just save the MIB number, and always give the
1199 * full path starting from the root for later calls to sysctl_createv
1200 * and sysctl_destroyv.
1201 */
1202 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1203 {
1204 const struct sysctlnode *node;
1205 int error = 0;
1206
1207 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1208 CTLFLAG_PERMANENT,
1209 CTLTYPE_NODE, "net", NULL,
1210 NULL, 0, NULL, 0,
1211 CTL_NET, CTL_EOL)) != 0)
1212 return;
1213
1214 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1215 CTLFLAG_PERMANENT,
1216 CTLTYPE_NODE, "link", NULL,
1217 NULL, 0, NULL, 0,
1218 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1219 return;
1220
1221 /*
1222 * The first four parameters of sysctl_createv are for management.
1223 *
1224 * The four that follows, here starting with a '0' for the flags,
1225 * describe the node.
1226 *
1227 * The next series of four set its value, through various possible
1228 * means.
1229 *
1230 * Last but not least, the path to the node is described. That path
1231 * is relative to the given root (third argument). Here we're
1232 * starting from the root.
1233 */
1234 if ((error = sysctl_createv(clog, 0, NULL, &node,
1235 CTLFLAG_PERMANENT,
1236 CTLTYPE_NODE, "tap", NULL,
1237 NULL, 0, NULL, 0,
1238 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1239 return;
1240 tap_node = node->sysctl_num;
1241 }
1242
1243 /*
1244 * The helper functions make Andrew Brown's interface really
1245 * shine. It makes possible to create value on the fly whether
1246 * the sysctl value is read or written.
1247 *
1248 * As shown as an example in the man page, the first step is to
1249 * create a copy of the node to have sysctl_lookup work on it.
1250 *
1251 * Here, we have more work to do than just a copy, since we have
1252 * to create the string. The first step is to collect the actual
1253 * value of the node, which is a convenient pointer to the softc
1254 * of the interface. From there we create the string and use it
1255 * as the value, but only for the *copy* of the node.
1256 *
1257 * Then we let sysctl_lookup do the magic, which consists in
1258 * setting oldp and newp as required by the operation. When the
1259 * value is read, that means that the string will be copied to
1260 * the user, and when it is written, the new value will be copied
1261 * over in the addr array.
1262 *
1263 * If newp is NULL, the user was reading the value, so we don't
1264 * have anything else to do. If a new value was written, we
1265 * have to check it.
1266 *
1267 * If it is incorrect, we can return an error and leave 'node' as
1268 * it is: since it is a copy of the actual node, the change will
1269 * be forgotten.
1270 *
1271 * Upon a correct input, we commit the change to the ifnet
1272 * structure of our interface.
1273 */
1274 static int
1275 tap_sysctl_handler(SYSCTLFN_ARGS)
1276 {
1277 struct sysctlnode node;
1278 struct tap_softc *sc;
1279 struct ifnet *ifp;
1280 int error;
1281 size_t len;
1282 char addr[3 * ETHER_ADDR_LEN];
1283
1284 node = *rnode;
1285 sc = node.sysctl_data;
1286 ifp = &sc->sc_ec.ec_if;
1287 (void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
1288 node.sysctl_data = addr;
1289 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1290 if (error || newp == NULL)
1291 return (error);
1292
1293 len = strlen(addr);
1294 if (len < 11 || len > 17)
1295 return (EINVAL);
1296
1297 /* Commit change */
1298 if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
1299 return (EINVAL);
1300 return (error);
1301 }
1302
1303 /*
1304 * ether_aton implementation, not using a static buffer.
1305 */
1306 static int
1307 tap_ether_aton(u_char *dest, char *str)
1308 {
1309 int i;
1310 char *cp = str;
1311 u_char val[6];
1312
1313 #define set_value \
1314 if (*cp > '9' && *cp < 'a') \
1315 *cp -= 'A' - 10; \
1316 else if (*cp > '9') \
1317 *cp -= 'a' - 10; \
1318 else \
1319 *cp -= '0'
1320
1321 for (i = 0; i < 6; i++, cp++) {
1322 if (!isxdigit(*cp))
1323 return (1);
1324 set_value;
1325 val[i] = *cp++;
1326 if (isxdigit(*cp)) {
1327 set_value;
1328 val[i] *= 16;
1329 val[i] += *cp++;
1330 }
1331 if (*cp == ':' || i == 5)
1332 continue;
1333 else
1334 return (1);
1335 }
1336 memcpy(dest, val, 6);
1337 return (0);
1338 }
1339