Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.24
      1 /*	$NetBSD: if_tap.c,v 1.24 2006/11/24 01:04:30 rpaulo Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.24 2006/11/24 01:04:30 rpaulo Exp $");
     47 
     48 #if defined(_KERNEL_OPT)
     49 #include "bpfilter.h"
     50 #endif
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/conf.h>
     57 #include <sys/device.h>
     58 #include <sys/file.h>
     59 #include <sys/filedesc.h>
     60 #include <sys/ksyms.h>
     61 #include <sys/poll.h>
     62 #include <sys/select.h>
     63 #include <sys/sockio.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/kauth.h>
     66 
     67 #include <net/if.h>
     68 #include <net/if_dl.h>
     69 #include <net/if_ether.h>
     70 #include <net/if_media.h>
     71 #include <net/if_tap.h>
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 /*
     77  * sysctl node management
     78  *
     79  * It's not really possible to use a SYSCTL_SETUP block with
     80  * current LKM implementation, so it is easier to just define
     81  * our own function.
     82  *
     83  * The handler function is a "helper" in Andrew Brown's sysctl
     84  * framework terminology.  It is used as a gateway for sysctl
     85  * requests over the nodes.
     86  *
     87  * tap_log allows the module to log creations of nodes and
     88  * destroy them all at once using sysctl_teardown.
     89  */
     90 static int tap_node;
     91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93 
     94 /*
     95  * Since we're an Ethernet device, we need the 3 following
     96  * components: a leading struct device, a struct ethercom,
     97  * and also a struct ifmedia since we don't attach a PHY to
     98  * ourselves. We could emulate one, but there's no real
     99  * point.
    100  */
    101 
    102 struct tap_softc {
    103 	struct device	sc_dev;
    104 	struct ifmedia	sc_im;
    105 	struct ethercom	sc_ec;
    106 	int		sc_flags;
    107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111 	struct selinfo	sc_rsel;
    112 	pid_t		sc_pgid; /* For async. IO */
    113 	struct lock	sc_rdlock;
    114 	struct simplelock	sc_kqlock;
    115 };
    116 
    117 /* autoconf(9) glue */
    118 
    119 void	tapattach(int);
    120 
    121 static int	tap_match(struct device *, struct cfdata *, void *);
    122 static void	tap_attach(struct device *, struct device *, void *);
    123 static int	tap_detach(struct device*, int);
    124 
    125 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    126     tap_match, tap_attach, tap_detach, NULL);
    127 extern struct cfdriver tap_cd;
    128 
    129 /* Real device access routines */
    130 static int	tap_dev_close(struct tap_softc *);
    131 static int	tap_dev_read(int, struct uio *, int);
    132 static int	tap_dev_write(int, struct uio *, int);
    133 static int	tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
    134 static int	tap_dev_poll(int, int, struct lwp *);
    135 static int	tap_dev_kqfilter(int, struct knote *);
    136 
    137 /* Fileops access routines */
    138 static int	tap_fops_close(struct file *, struct lwp *);
    139 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    140     kauth_cred_t, int);
    141 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    142     kauth_cred_t, int);
    143 static int	tap_fops_ioctl(struct file *, u_long, void *,
    144     struct lwp *);
    145 static int	tap_fops_poll(struct file *, int, struct lwp *);
    146 static int	tap_fops_kqfilter(struct file *, struct knote *);
    147 
    148 static const struct fileops tap_fileops = {
    149 	tap_fops_read,
    150 	tap_fops_write,
    151 	tap_fops_ioctl,
    152 	fnullop_fcntl,
    153 	tap_fops_poll,
    154 	fbadop_stat,
    155 	tap_fops_close,
    156 	tap_fops_kqfilter,
    157 };
    158 
    159 /* Helper for cloning open() */
    160 static int	tap_dev_cloner(struct lwp *);
    161 
    162 /* Character device routines */
    163 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    164 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    165 static int	tap_cdev_read(dev_t, struct uio *, int);
    166 static int	tap_cdev_write(dev_t, struct uio *, int);
    167 static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
    168 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    169 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    170 
    171 const struct cdevsw tap_cdevsw = {
    172 	tap_cdev_open, tap_cdev_close,
    173 	tap_cdev_read, tap_cdev_write,
    174 	tap_cdev_ioctl, nostop, notty,
    175 	tap_cdev_poll, nommap,
    176 	tap_cdev_kqfilter,
    177 	D_OTHER,
    178 };
    179 
    180 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    181 
    182 /* kqueue-related routines */
    183 static void	tap_kqdetach(struct knote *);
    184 static int	tap_kqread(struct knote *, long);
    185 
    186 /*
    187  * Those are needed by the if_media interface.
    188  */
    189 
    190 static int	tap_mediachange(struct ifnet *);
    191 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    192 
    193 /*
    194  * Those are needed by the ifnet interface, and would typically be
    195  * there for any network interface driver.
    196  * Some other routines are optional: watchdog and drain.
    197  */
    198 
    199 static void	tap_start(struct ifnet *);
    200 static void	tap_stop(struct ifnet *, int);
    201 static int	tap_init(struct ifnet *);
    202 static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    203 
    204 /* This is an internal function to keep tap_ioctl readable */
    205 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    206 
    207 /*
    208  * tap is a clonable interface, although it is highly unrealistic for
    209  * an Ethernet device.
    210  *
    211  * Here are the bits needed for a clonable interface.
    212  */
    213 static int	tap_clone_create(struct if_clone *, int);
    214 static int	tap_clone_destroy(struct ifnet *);
    215 
    216 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    217 					tap_clone_create,
    218 					tap_clone_destroy);
    219 
    220 /* Helper functionis shared by the two cloning code paths */
    221 static struct tap_softc *	tap_clone_creator(int);
    222 int	tap_clone_destroyer(struct device *);
    223 
    224 void
    225 tapattach(int n)
    226 {
    227 	int error;
    228 
    229 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    230 	if (error) {
    231 		aprint_error("%s: unable to register cfattach\n",
    232 		    tap_cd.cd_name);
    233 		(void)config_cfdriver_detach(&tap_cd);
    234 		return;
    235 	}
    236 
    237 	if_clone_attach(&tap_cloners);
    238 }
    239 
    240 /* Pretty much useless for a pseudo-device */
    241 static int
    242 tap_match(struct device *self, struct cfdata *cfdata,
    243     void *arg)
    244 {
    245 	return (1);
    246 }
    247 
    248 void
    249 tap_attach(struct device *parent, struct device *self,
    250     void *aux)
    251 {
    252 	struct tap_softc *sc = (struct tap_softc *)self;
    253 	struct ifnet *ifp;
    254 	const struct sysctlnode *node;
    255 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    256 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    257 	char enaddrstr[3 * ETHER_ADDR_LEN];
    258 	struct timeval tv;
    259 	uint32_t ui;
    260 	int error;
    261 
    262 	aprint_normal("%s: faking Ethernet device\n",
    263 	    self->dv_xname);
    264 
    265 	/*
    266 	 * In order to obtain unique initial Ethernet address on a host,
    267 	 * do some randomisation using the current uptime.  It's not meant
    268 	 * for anything but avoiding hard-coding an address.
    269 	 */
    270 	getmicrouptime(&tv);
    271 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    272 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    273 
    274 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    275 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    276 
    277 	/*
    278 	 * Why 1000baseT? Why not? You can add more.
    279 	 *
    280 	 * Note that there are 3 steps: init, one or several additions to
    281 	 * list of supported media, and in the end, the selection of one
    282 	 * of them.
    283 	 */
    284 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    288 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    291 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    292 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    293 
    294 	/*
    295 	 * One should note that an interface must do multicast in order
    296 	 * to support IPv6.
    297 	 */
    298 	ifp = &sc->sc_ec.ec_if;
    299 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    300 	ifp->if_softc	= sc;
    301 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    302 	ifp->if_ioctl	= tap_ioctl;
    303 	ifp->if_start	= tap_start;
    304 	ifp->if_stop	= tap_stop;
    305 	ifp->if_init	= tap_init;
    306 	IFQ_SET_READY(&ifp->if_snd);
    307 
    308 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    309 
    310 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    311 	 * being common to all network interface drivers. */
    312 	if_attach(ifp);
    313 	ether_ifattach(ifp, enaddr);
    314 
    315 	sc->sc_flags = 0;
    316 
    317 	/*
    318 	 * Add a sysctl node for that interface.
    319 	 *
    320 	 * The pointer transmitted is not a string, but instead a pointer to
    321 	 * the softc structure, which we can use to build the string value on
    322 	 * the fly in the helper function of the node.  See the comments for
    323 	 * tap_sysctl_handler for details.
    324 	 *
    325 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    326 	 * component.  However, we can allocate a number ourselves, as we are
    327 	 * the only consumer of the net.link.<iface> node.  In this case, the
    328 	 * unit number is conveniently used to number the node.  CTL_CREATE
    329 	 * would just work, too.
    330 	 */
    331 	if ((error = sysctl_createv(NULL, 0, NULL,
    332 	    &node, CTLFLAG_READWRITE,
    333 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    334 	    tap_sysctl_handler, 0, sc, 18,
    335 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    336 	    CTL_EOL)) != 0)
    337 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    338 		    sc->sc_dev.dv_xname, error);
    339 
    340 	/*
    341 	 * Initialize the two locks for the device.
    342 	 *
    343 	 * We need a lock here because even though the tap device can be
    344 	 * opened only once, the file descriptor might be passed to another
    345 	 * process, say a fork(2)ed child.
    346 	 *
    347 	 * The Giant saves us from most of the hassle, but since the read
    348 	 * operation can sleep, we don't want two processes to wake up at
    349 	 * the same moment and both try and dequeue a single packet.
    350 	 *
    351 	 * The queue for event listeners (used by kqueue(9), see below) has
    352 	 * to be protected, too, but we don't need the same level of
    353 	 * complexity for that lock, so a simple spinning lock is fine.
    354 	 */
    355 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    356 	simple_lock_init(&sc->sc_kqlock);
    357 }
    358 
    359 /*
    360  * When detaching, we do the inverse of what is done in the attach
    361  * routine, in reversed order.
    362  */
    363 static int
    364 tap_detach(struct device* self, int flags)
    365 {
    366 	struct tap_softc *sc = (struct tap_softc *)self;
    367 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    368 	int error, s;
    369 
    370 	/*
    371 	 * Some processes might be sleeping on "tap", so we have to make
    372 	 * them release their hold on the device.
    373 	 *
    374 	 * The LK_DRAIN operation will wait for every locked process to
    375 	 * release their hold.
    376 	 */
    377 	sc->sc_flags |= TAP_GOING;
    378 	s = splnet();
    379 	tap_stop(ifp, 1);
    380 	if_down(ifp);
    381 	splx(s);
    382 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    383 
    384 	/*
    385 	 * Destroying a single leaf is a very straightforward operation using
    386 	 * sysctl_destroyv.  One should be sure to always end the path with
    387 	 * CTL_EOL.
    388 	 */
    389 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    390 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    391 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    392 		    sc->sc_dev.dv_xname, error);
    393 	ether_ifdetach(ifp);
    394 	if_detach(ifp);
    395 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    396 
    397 	return (0);
    398 }
    399 
    400 /*
    401  * This function is called by the ifmedia layer to notify the driver
    402  * that the user requested a media change.  A real driver would
    403  * reconfigure the hardware.
    404  */
    405 static int
    406 tap_mediachange(struct ifnet *ifp)
    407 {
    408 	return (0);
    409 }
    410 
    411 /*
    412  * Here the user asks for the currently used media.
    413  */
    414 static void
    415 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    416 {
    417 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    418 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    419 }
    420 
    421 /*
    422  * This is the function where we SEND packets.
    423  *
    424  * There is no 'receive' equivalent.  A typical driver will get
    425  * interrupts from the hardware, and from there will inject new packets
    426  * into the network stack.
    427  *
    428  * Once handled, a packet must be freed.  A real driver might not be able
    429  * to fit all the pending packets into the hardware, and is allowed to
    430  * return before having sent all the packets.  It should then use the
    431  * if_flags flag IFF_OACTIVE to notify the upper layer.
    432  *
    433  * There are also other flags one should check, such as IFF_PAUSE.
    434  *
    435  * It is our duty to make packets available to BPF listeners.
    436  *
    437  * You should be aware that this function is called by the Ethernet layer
    438  * at splnet().
    439  *
    440  * When the device is opened, we have to pass the packet(s) to the
    441  * userland.  For that we stay in OACTIVE mode while the userland gets
    442  * the packets, and we send a signal to the processes waiting to read.
    443  *
    444  * wakeup(sc) is the counterpart to the tsleep call in
    445  * tap_dev_read, while selnotify() is used for kevent(2) and
    446  * poll(2) (which includes select(2)) listeners.
    447  */
    448 static void
    449 tap_start(struct ifnet *ifp)
    450 {
    451 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    452 	struct mbuf *m0;
    453 
    454 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    455 		/* Simply drop packets */
    456 		for(;;) {
    457 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    458 			if (m0 == NULL)
    459 				return;
    460 
    461 			ifp->if_opackets++;
    462 #if NBPFILTER > 0
    463 			if (ifp->if_bpf)
    464 				bpf_mtap(ifp->if_bpf, m0);
    465 #endif
    466 
    467 			m_freem(m0);
    468 		}
    469 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    470 		ifp->if_flags |= IFF_OACTIVE;
    471 		wakeup(sc);
    472 		selnotify(&sc->sc_rsel, 1);
    473 		if (sc->sc_flags & TAP_ASYNCIO)
    474 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    475 			    POLLIN|POLLRDNORM, NULL);
    476 	}
    477 }
    478 
    479 /*
    480  * A typical driver will only contain the following handlers for
    481  * ioctl calls, except SIOCSIFPHYADDR.
    482  * The latter is a hack I used to set the Ethernet address of the
    483  * faked device.
    484  *
    485  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    486  * called under splnet().
    487  */
    488 static int
    489 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    490 {
    491 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    492 	struct ifreq *ifr = (struct ifreq *)data;
    493 	int s, error;
    494 
    495 	s = splnet();
    496 
    497 	switch (cmd) {
    498 	case SIOCSIFMEDIA:
    499 	case SIOCGIFMEDIA:
    500 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    501 		break;
    502 	case SIOCSIFPHYADDR:
    503 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    504 		break;
    505 	default:
    506 		error = ether_ioctl(ifp, cmd, data);
    507 		if (error == ENETRESET)
    508 			error = 0;
    509 		break;
    510 	}
    511 
    512 	splx(s);
    513 
    514 	return (error);
    515 }
    516 
    517 /*
    518  * Helper function to set Ethernet address.  This shouldn't be done there,
    519  * and should actually be available to all Ethernet drivers, real or not.
    520  */
    521 static int
    522 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    523 {
    524 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    525 
    526 	if (sa->sa_family != AF_LINK)
    527 		return (EINVAL);
    528 
    529 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    530 
    531 	return (0);
    532 }
    533 
    534 /*
    535  * _init() would typically be called when an interface goes up,
    536  * meaning it should configure itself into the state in which it
    537  * can send packets.
    538  */
    539 static int
    540 tap_init(struct ifnet *ifp)
    541 {
    542 	ifp->if_flags |= IFF_RUNNING;
    543 
    544 	tap_start(ifp);
    545 
    546 	return (0);
    547 }
    548 
    549 /*
    550  * _stop() is called when an interface goes down.  It is our
    551  * responsability to validate that state by clearing the
    552  * IFF_RUNNING flag.
    553  *
    554  * We have to wake up all the sleeping processes to have the pending
    555  * read requests cancelled.
    556  */
    557 static void
    558 tap_stop(struct ifnet *ifp, int disable)
    559 {
    560 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    561 
    562 	ifp->if_flags &= ~IFF_RUNNING;
    563 	wakeup(sc);
    564 	selnotify(&sc->sc_rsel, 1);
    565 	if (sc->sc_flags & TAP_ASYNCIO)
    566 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    567 }
    568 
    569 /*
    570  * The 'create' command of ifconfig can be used to create
    571  * any numbered instance of a given device.  Thus we have to
    572  * make sure we have enough room in cd_devs to create the
    573  * user-specified instance.  config_attach_pseudo will do this
    574  * for us.
    575  */
    576 static int
    577 tap_clone_create(struct if_clone *ifc, int unit)
    578 {
    579 	if (tap_clone_creator(unit) == NULL) {
    580 		aprint_error("%s%d: unable to attach an instance\n",
    581                     tap_cd.cd_name, unit);
    582 		return (ENXIO);
    583 	}
    584 
    585 	return (0);
    586 }
    587 
    588 /*
    589  * tap(4) can be cloned by two ways:
    590  *   using 'ifconfig tap0 create', which will use the network
    591  *     interface cloning API, and call tap_clone_create above.
    592  *   opening the cloning device node, whose minor number is TAP_CLONER.
    593  *     See below for an explanation on how this part work.
    594  *
    595  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    596  * autoconf(9) choose a unit number for us.  This is what happens when
    597  * the cloner is openend, while the ifcloner interface creates a device
    598  * with a specific unit number.
    599  */
    600 static struct tap_softc *
    601 tap_clone_creator(int unit)
    602 {
    603 	struct cfdata *cf;
    604 
    605 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    606 	cf->cf_name = tap_cd.cd_name;
    607 	cf->cf_atname = tap_ca.ca_name;
    608 	cf->cf_unit = unit;
    609 	cf->cf_fstate = FSTATE_STAR;
    610 
    611 	return (struct tap_softc *)config_attach_pseudo(cf);
    612 }
    613 
    614 /*
    615  * The clean design of if_clone and autoconf(9) makes that part
    616  * really straightforward.  The second argument of config_detach
    617  * means neither QUIET nor FORCED.
    618  */
    619 static int
    620 tap_clone_destroy(struct ifnet *ifp)
    621 {
    622 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    623 }
    624 
    625 int
    626 tap_clone_destroyer(struct device *dev)
    627 {
    628 	struct cfdata *cf = device_cfdata(dev);
    629 	int error;
    630 
    631 	if ((error = config_detach(dev, 0)) != 0)
    632 		aprint_error("%s: unable to detach instance\n",
    633 		    dev->dv_xname);
    634 	free(cf, M_DEVBUF);
    635 
    636 	return (error);
    637 }
    638 
    639 /*
    640  * tap(4) is a bit of an hybrid device.  It can be used in two different
    641  * ways:
    642  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    643  *  2. open /dev/tap, get a new interface created and read/write off it.
    644  *     That interface is destroyed when the process that had it created exits.
    645  *
    646  * The first way is managed by the cdevsw structure, and you access interfaces
    647  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    648  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    649  *
    650  * The second way is the so-called "cloning" device.  It's a special minor
    651  * number (chosen as the maximal number, to allow as much tap devices as
    652  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    653  * call ends in tap_cdev_open.  The actual place where it is handled is
    654  * tap_dev_cloner.
    655  *
    656  * An tap device cannot be opened more than once at a time, so the cdevsw
    657  * part of open() does nothing but noting that the interface is being used and
    658  * hence ready to actually handle packets.
    659  */
    660 
    661 static int
    662 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    663 {
    664 	struct tap_softc *sc;
    665 
    666 	if (minor(dev) == TAP_CLONER)
    667 		return tap_dev_cloner(l);
    668 
    669 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    670 	if (sc == NULL)
    671 		return (ENXIO);
    672 
    673 	/* The device can only be opened once */
    674 	if (sc->sc_flags & TAP_INUSE)
    675 		return (EBUSY);
    676 	sc->sc_flags |= TAP_INUSE;
    677 	return (0);
    678 }
    679 
    680 /*
    681  * There are several kinds of cloning devices, and the most simple is the one
    682  * tap(4) uses.  What it does is change the file descriptor with a new one,
    683  * with its own fileops structure (which maps to the various read, write,
    684  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    685  * then actually creates the new tap devices.
    686  *
    687  * Once those two steps are successful, we can re-wire the existing file
    688  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    689  * structure as needed (notably f_data gets filled with the fifth parameter
    690  * passed, the unit of the tap device which will allows us identifying the
    691  * device later), and returns EMOVEFD.
    692  *
    693  * That magic value is interpreted by sys_open() which then replaces the
    694  * current file descriptor by the new one (through a magic member of struct
    695  * lwp, l_dupfd).
    696  *
    697  * The tap device is flagged as being busy since it otherwise could be
    698  * externally accessed through the corresponding device node with the cdevsw
    699  * interface.
    700  */
    701 
    702 static int
    703 tap_dev_cloner(struct lwp *l)
    704 {
    705 	struct tap_softc *sc;
    706 	struct file *fp;
    707 	int error, fd;
    708 
    709 	if ((error = falloc(l, &fp, &fd)) != 0)
    710 		return (error);
    711 
    712 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    713 		FILE_UNUSE(fp, l);
    714 		ffree(fp);
    715 		return (ENXIO);
    716 	}
    717 
    718 	sc->sc_flags |= TAP_INUSE;
    719 
    720 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    721 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    722 }
    723 
    724 /*
    725  * While all other operations (read, write, ioctl, poll and kqfilter) are
    726  * really the same whether we are in cdevsw or fileops mode, the close()
    727  * function is slightly different in the two cases.
    728  *
    729  * As for the other, the core of it is shared in tap_dev_close.  What
    730  * it does is sufficient for the cdevsw interface, but the cloning interface
    731  * needs another thing:  the interface is destroyed when the processes that
    732  * created it closes it.
    733  */
    734 static int
    735 tap_cdev_close(dev_t dev, int flags, int fmt,
    736     struct lwp *l)
    737 {
    738 	struct tap_softc *sc =
    739 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    740 
    741 	if (sc == NULL)
    742 		return (ENXIO);
    743 
    744 	return tap_dev_close(sc);
    745 }
    746 
    747 /*
    748  * It might happen that the administrator used ifconfig to externally destroy
    749  * the interface.  In that case, tap_fops_close will be called while
    750  * tap_detach is already happening.  If we called it again from here, we
    751  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    752  */
    753 static int
    754 tap_fops_close(struct file *fp, struct lwp *l)
    755 {
    756 	int unit = (intptr_t)fp->f_data;
    757 	struct tap_softc *sc;
    758 	int error;
    759 
    760 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    761 	if (sc == NULL)
    762 		return (ENXIO);
    763 
    764 	/* tap_dev_close currently always succeeds, but it might not
    765 	 * always be the case. */
    766 	if ((error = tap_dev_close(sc)) != 0)
    767 		return (error);
    768 
    769 	/* Destroy the device now that it is no longer useful,
    770 	 * unless it's already being destroyed. */
    771 	if ((sc->sc_flags & TAP_GOING) != 0)
    772 		return (0);
    773 
    774 	return tap_clone_destroyer((struct device *)sc);
    775 }
    776 
    777 static int
    778 tap_dev_close(struct tap_softc *sc)
    779 {
    780 	struct ifnet *ifp;
    781 	int s;
    782 
    783 	s = splnet();
    784 	/* Let tap_start handle packets again */
    785 	ifp = &sc->sc_ec.ec_if;
    786 	ifp->if_flags &= ~IFF_OACTIVE;
    787 
    788 	/* Purge output queue */
    789 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    790 		struct mbuf *m;
    791 
    792 		for (;;) {
    793 			IFQ_DEQUEUE(&ifp->if_snd, m);
    794 			if (m == NULL)
    795 				break;
    796 
    797 			ifp->if_opackets++;
    798 #if NBPFILTER > 0
    799 			if (ifp->if_bpf)
    800 				bpf_mtap(ifp->if_bpf, m);
    801 #endif
    802 		}
    803 	}
    804 	splx(s);
    805 
    806 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    807 
    808 	return (0);
    809 }
    810 
    811 static int
    812 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    813 {
    814 	return tap_dev_read(minor(dev), uio, flags);
    815 }
    816 
    817 static int
    818 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    819     kauth_cred_t cred, int flags)
    820 {
    821 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    822 }
    823 
    824 static int
    825 tap_dev_read(int unit, struct uio *uio, int flags)
    826 {
    827 	struct tap_softc *sc =
    828 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    829 	struct ifnet *ifp;
    830 	struct mbuf *m, *n;
    831 	int error = 0, s;
    832 
    833 	if (sc == NULL)
    834 		return (ENXIO);
    835 
    836 	ifp = &sc->sc_ec.ec_if;
    837 	if ((ifp->if_flags & IFF_UP) == 0)
    838 		return (EHOSTDOWN);
    839 
    840 	/*
    841 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    842 	 */
    843 	if ((sc->sc_flags & TAP_NBIO) &&
    844 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    845 		return (EWOULDBLOCK);
    846 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    847 	if (error != 0)
    848 		return (error);
    849 
    850 	s = splnet();
    851 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    852 		ifp->if_flags &= ~IFF_OACTIVE;
    853 		splx(s);
    854 		/*
    855 		 * We must release the lock before sleeping, and re-acquire it
    856 		 * after.
    857 		 */
    858 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    859 		if (sc->sc_flags & TAP_NBIO)
    860 			error = EWOULDBLOCK;
    861 		else
    862 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    863 
    864 		if (error != 0)
    865 			return (error);
    866 		/* The device might have been downed */
    867 		if ((ifp->if_flags & IFF_UP) == 0)
    868 			return (EHOSTDOWN);
    869 		if ((sc->sc_flags & TAP_NBIO) &&
    870 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    871 			return (EWOULDBLOCK);
    872 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    873 		if (error != 0)
    874 			return (error);
    875 		s = splnet();
    876 	}
    877 
    878 	IFQ_DEQUEUE(&ifp->if_snd, m);
    879 	ifp->if_flags &= ~IFF_OACTIVE;
    880 	splx(s);
    881 	if (m == NULL) {
    882 		error = 0;
    883 		goto out;
    884 	}
    885 
    886 	ifp->if_opackets++;
    887 #if NBPFILTER > 0
    888 	if (ifp->if_bpf)
    889 		bpf_mtap(ifp->if_bpf, m);
    890 #endif
    891 
    892 	/*
    893 	 * One read is one packet.
    894 	 */
    895 	do {
    896 		error = uiomove(mtod(m, caddr_t),
    897 		    min(m->m_len, uio->uio_resid), uio);
    898 		MFREE(m, n);
    899 		m = n;
    900 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    901 
    902 	if (m != NULL)
    903 		m_freem(m);
    904 
    905 out:
    906 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    907 	return (error);
    908 }
    909 
    910 static int
    911 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    912 {
    913 	return tap_dev_write(minor(dev), uio, flags);
    914 }
    915 
    916 static int
    917 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    918     kauth_cred_t cred, int flags)
    919 {
    920 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    921 }
    922 
    923 static int
    924 tap_dev_write(int unit, struct uio *uio, int flags)
    925 {
    926 	struct tap_softc *sc =
    927 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    928 	struct ifnet *ifp;
    929 	struct mbuf *m, **mp;
    930 	int error = 0;
    931 	int s;
    932 
    933 	if (sc == NULL)
    934 		return (ENXIO);
    935 
    936 	ifp = &sc->sc_ec.ec_if;
    937 
    938 	/* One write, one packet, that's the rule */
    939 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    940 	if (m == NULL) {
    941 		ifp->if_ierrors++;
    942 		return (ENOBUFS);
    943 	}
    944 	m->m_pkthdr.len = uio->uio_resid;
    945 
    946 	mp = &m;
    947 	while (error == 0 && uio->uio_resid > 0) {
    948 		if (*mp != m) {
    949 			MGET(*mp, M_DONTWAIT, MT_DATA);
    950 			if (*mp == NULL) {
    951 				error = ENOBUFS;
    952 				break;
    953 			}
    954 		}
    955 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    956 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    957 		mp = &(*mp)->m_next;
    958 	}
    959 	if (error) {
    960 		ifp->if_ierrors++;
    961 		m_freem(m);
    962 		return (error);
    963 	}
    964 
    965 	ifp->if_ipackets++;
    966 	m->m_pkthdr.rcvif = ifp;
    967 
    968 #if NBPFILTER > 0
    969 	if (ifp->if_bpf)
    970 		bpf_mtap(ifp->if_bpf, m);
    971 #endif
    972 	s =splnet();
    973 	(*ifp->if_input)(ifp, m);
    974 	splx(s);
    975 
    976 	return (0);
    977 }
    978 
    979 static int
    980 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    981     struct lwp *l)
    982 {
    983 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    984 }
    985 
    986 static int
    987 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    988 {
    989 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
    990 }
    991 
    992 static int
    993 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
    994 {
    995 	struct tap_softc *sc =
    996 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    997 	int error = 0;
    998 
    999 	if (sc == NULL)
   1000 		return (ENXIO);
   1001 
   1002 	switch (cmd) {
   1003 	case FIONREAD:
   1004 		{
   1005 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1006 			struct mbuf *m;
   1007 			int s;
   1008 
   1009 			s = splnet();
   1010 			IFQ_POLL(&ifp->if_snd, m);
   1011 
   1012 			if (m == NULL)
   1013 				*(int *)data = 0;
   1014 			else
   1015 				*(int *)data = m->m_pkthdr.len;
   1016 			splx(s);
   1017 		} break;
   1018 	case TIOCSPGRP:
   1019 	case FIOSETOWN:
   1020 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1021 		break;
   1022 	case TIOCGPGRP:
   1023 	case FIOGETOWN:
   1024 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1025 		break;
   1026 	case FIOASYNC:
   1027 		if (*(int *)data)
   1028 			sc->sc_flags |= TAP_ASYNCIO;
   1029 		else
   1030 			sc->sc_flags &= ~TAP_ASYNCIO;
   1031 		break;
   1032 	case FIONBIO:
   1033 		if (*(int *)data)
   1034 			sc->sc_flags |= TAP_NBIO;
   1035 		else
   1036 			sc->sc_flags &= ~TAP_NBIO;
   1037 		break;
   1038 	case TAPGIFNAME:
   1039 		{
   1040 			struct ifreq *ifr = (struct ifreq *)data;
   1041 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1042 
   1043 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1044 		} break;
   1045 	default:
   1046 		error = ENOTTY;
   1047 		break;
   1048 	}
   1049 
   1050 	return (0);
   1051 }
   1052 
   1053 static int
   1054 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1055 {
   1056 	return tap_dev_poll(minor(dev), events, l);
   1057 }
   1058 
   1059 static int
   1060 tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1061 {
   1062 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1063 }
   1064 
   1065 static int
   1066 tap_dev_poll(int unit, int events, struct lwp *l)
   1067 {
   1068 	struct tap_softc *sc =
   1069 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1070 	int revents = 0;
   1071 
   1072 	if (sc == NULL)
   1073 		return (ENXIO);
   1074 
   1075 	if (events & (POLLIN|POLLRDNORM)) {
   1076 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1077 		struct mbuf *m;
   1078 		int s;
   1079 
   1080 		s = splnet();
   1081 		IFQ_POLL(&ifp->if_snd, m);
   1082 		splx(s);
   1083 
   1084 		if (m != NULL)
   1085 			revents |= events & (POLLIN|POLLRDNORM);
   1086 		else {
   1087 			simple_lock(&sc->sc_kqlock);
   1088 			selrecord(l, &sc->sc_rsel);
   1089 			simple_unlock(&sc->sc_kqlock);
   1090 		}
   1091 	}
   1092 	revents |= events & (POLLOUT|POLLWRNORM);
   1093 
   1094 	return (revents);
   1095 }
   1096 
   1097 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1098 	tap_kqread };
   1099 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1100 	filt_seltrue };
   1101 
   1102 static int
   1103 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1104 {
   1105 	return tap_dev_kqfilter(minor(dev), kn);
   1106 }
   1107 
   1108 static int
   1109 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1110 {
   1111 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1112 }
   1113 
   1114 static int
   1115 tap_dev_kqfilter(int unit, struct knote *kn)
   1116 {
   1117 	struct tap_softc *sc =
   1118 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1119 
   1120 	if (sc == NULL)
   1121 		return (ENXIO);
   1122 
   1123 	switch(kn->kn_filter) {
   1124 	case EVFILT_READ:
   1125 		kn->kn_fop = &tap_read_filterops;
   1126 		break;
   1127 	case EVFILT_WRITE:
   1128 		kn->kn_fop = &tap_seltrue_filterops;
   1129 		break;
   1130 	default:
   1131 		return (1);
   1132 	}
   1133 
   1134 	kn->kn_hook = sc;
   1135 	simple_lock(&sc->sc_kqlock);
   1136 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1137 	simple_unlock(&sc->sc_kqlock);
   1138 	return (0);
   1139 }
   1140 
   1141 static void
   1142 tap_kqdetach(struct knote *kn)
   1143 {
   1144 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1145 
   1146 	simple_lock(&sc->sc_kqlock);
   1147 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1148 	simple_unlock(&sc->sc_kqlock);
   1149 }
   1150 
   1151 static int
   1152 tap_kqread(struct knote *kn, long hint)
   1153 {
   1154 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1155 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1156 	struct mbuf *m;
   1157 	int s;
   1158 
   1159 	s = splnet();
   1160 	IFQ_POLL(&ifp->if_snd, m);
   1161 
   1162 	if (m == NULL)
   1163 		kn->kn_data = 0;
   1164 	else
   1165 		kn->kn_data = m->m_pkthdr.len;
   1166 	splx(s);
   1167 	return (kn->kn_data != 0 ? 1 : 0);
   1168 }
   1169 
   1170 /*
   1171  * sysctl management routines
   1172  * You can set the address of an interface through:
   1173  * net.link.tap.tap<number>
   1174  *
   1175  * Note the consistent use of tap_log in order to use
   1176  * sysctl_teardown at unload time.
   1177  *
   1178  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1179  * blocks register a function in a special section of the kernel
   1180  * (called a link set) which is used at init_sysctl() time to cycle
   1181  * through all those functions to create the kernel's sysctl tree.
   1182  *
   1183  * It is not (currently) possible to use link sets in a LKM, so the
   1184  * easiest is to simply call our own setup routine at load time.
   1185  *
   1186  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1187  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1188  * whole kernel sysctl tree is built, it is not possible to add any
   1189  * permanent node.
   1190  *
   1191  * It should be noted that we're not saving the sysctlnode pointer
   1192  * we are returned when creating the "tap" node.  That structure
   1193  * cannot be trusted once out of the calling function, as it might
   1194  * get reused.  So we just save the MIB number, and always give the
   1195  * full path starting from the root for later calls to sysctl_createv
   1196  * and sysctl_destroyv.
   1197  */
   1198 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1199 {
   1200 	const struct sysctlnode *node;
   1201 	int error = 0;
   1202 
   1203 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1204 	    CTLFLAG_PERMANENT,
   1205 	    CTLTYPE_NODE, "net", NULL,
   1206 	    NULL, 0, NULL, 0,
   1207 	    CTL_NET, CTL_EOL)) != 0)
   1208 		return;
   1209 
   1210 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1211 	    CTLFLAG_PERMANENT,
   1212 	    CTLTYPE_NODE, "link", NULL,
   1213 	    NULL, 0, NULL, 0,
   1214 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1215 		return;
   1216 
   1217 	/*
   1218 	 * The first four parameters of sysctl_createv are for management.
   1219 	 *
   1220 	 * The four that follows, here starting with a '0' for the flags,
   1221 	 * describe the node.
   1222 	 *
   1223 	 * The next series of four set its value, through various possible
   1224 	 * means.
   1225 	 *
   1226 	 * Last but not least, the path to the node is described.  That path
   1227 	 * is relative to the given root (third argument).  Here we're
   1228 	 * starting from the root.
   1229 	 */
   1230 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1231 	    CTLFLAG_PERMANENT,
   1232 	    CTLTYPE_NODE, "tap", NULL,
   1233 	    NULL, 0, NULL, 0,
   1234 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1235 		return;
   1236 	tap_node = node->sysctl_num;
   1237 }
   1238 
   1239 /*
   1240  * The helper functions make Andrew Brown's interface really
   1241  * shine.  It makes possible to create value on the fly whether
   1242  * the sysctl value is read or written.
   1243  *
   1244  * As shown as an example in the man page, the first step is to
   1245  * create a copy of the node to have sysctl_lookup work on it.
   1246  *
   1247  * Here, we have more work to do than just a copy, since we have
   1248  * to create the string.  The first step is to collect the actual
   1249  * value of the node, which is a convenient pointer to the softc
   1250  * of the interface.  From there we create the string and use it
   1251  * as the value, but only for the *copy* of the node.
   1252  *
   1253  * Then we let sysctl_lookup do the magic, which consists in
   1254  * setting oldp and newp as required by the operation.  When the
   1255  * value is read, that means that the string will be copied to
   1256  * the user, and when it is written, the new value will be copied
   1257  * over in the addr array.
   1258  *
   1259  * If newp is NULL, the user was reading the value, so we don't
   1260  * have anything else to do.  If a new value was written, we
   1261  * have to check it.
   1262  *
   1263  * If it is incorrect, we can return an error and leave 'node' as
   1264  * it is:  since it is a copy of the actual node, the change will
   1265  * be forgotten.
   1266  *
   1267  * Upon a correct input, we commit the change to the ifnet
   1268  * structure of our interface.
   1269  */
   1270 static int
   1271 tap_sysctl_handler(SYSCTLFN_ARGS)
   1272 {
   1273 	struct sysctlnode node;
   1274 	struct tap_softc *sc;
   1275 	struct ifnet *ifp;
   1276 	int error;
   1277 	size_t len;
   1278 	char addr[3 * ETHER_ADDR_LEN];
   1279 
   1280 	node = *rnode;
   1281 	sc = node.sysctl_data;
   1282 	ifp = &sc->sc_ec.ec_if;
   1283 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
   1284 	node.sysctl_data = addr;
   1285 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1286 	if (error || newp == NULL)
   1287 		return (error);
   1288 
   1289 	len = strlen(addr);
   1290 	if (len < 11 || len > 17)
   1291 		return (EINVAL);
   1292 
   1293 	/* Commit change */
   1294 	if (ether_nonstatic_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1295 		return (EINVAL);
   1296 	return (error);
   1297 }
   1298