if_tap.c revision 1.26 1 /* $NetBSD: if_tap.c,v 1.26 2007/03/04 06:03:17 christos Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to the NetBSD Foundation
8 * by Quentin Garnier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
41 * device to the system, but can also be accessed by userland through a
42 * character device interface, which allows reading and injecting frames.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.26 2007/03/04 06:03:17 christos Exp $");
47
48 #if defined(_KERNEL_OPT)
49 #include "bpfilter.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/ksyms.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/kauth.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current LKM implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93
94 /*
95 * Since we're an Ethernet device, we need the 3 following
96 * components: a leading struct device, a struct ethercom,
97 * and also a struct ifmedia since we don't attach a PHY to
98 * ourselves. We could emulate one, but there's no real
99 * point.
100 */
101
102 struct tap_softc {
103 struct device sc_dev;
104 struct ifmedia sc_im;
105 struct ethercom sc_ec;
106 int sc_flags;
107 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 struct selinfo sc_rsel;
112 pid_t sc_pgid; /* For async. IO */
113 struct lock sc_rdlock;
114 struct simplelock sc_kqlock;
115 };
116
117 /* autoconf(9) glue */
118
119 void tapattach(int);
120
121 static int tap_match(struct device *, struct cfdata *, void *);
122 static void tap_attach(struct device *, struct device *, void *);
123 static int tap_detach(struct device*, int);
124
125 CFATTACH_DECL(tap, sizeof(struct tap_softc),
126 tap_match, tap_attach, tap_detach, NULL);
127 extern struct cfdriver tap_cd;
128
129 /* Real device access routines */
130 static int tap_dev_close(struct tap_softc *);
131 static int tap_dev_read(int, struct uio *, int);
132 static int tap_dev_write(int, struct uio *, int);
133 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
134 static int tap_dev_poll(int, int, struct lwp *);
135 static int tap_dev_kqfilter(int, struct knote *);
136
137 /* Fileops access routines */
138 static int tap_fops_close(struct file *, struct lwp *);
139 static int tap_fops_read(struct file *, off_t *, struct uio *,
140 kauth_cred_t, int);
141 static int tap_fops_write(struct file *, off_t *, struct uio *,
142 kauth_cred_t, int);
143 static int tap_fops_ioctl(struct file *, u_long, void *,
144 struct lwp *);
145 static int tap_fops_poll(struct file *, int, struct lwp *);
146 static int tap_fops_kqfilter(struct file *, struct knote *);
147
148 static const struct fileops tap_fileops = {
149 tap_fops_read,
150 tap_fops_write,
151 tap_fops_ioctl,
152 fnullop_fcntl,
153 tap_fops_poll,
154 fbadop_stat,
155 tap_fops_close,
156 tap_fops_kqfilter,
157 };
158
159 /* Helper for cloning open() */
160 static int tap_dev_cloner(struct lwp *);
161
162 /* Character device routines */
163 static int tap_cdev_open(dev_t, int, int, struct lwp *);
164 static int tap_cdev_close(dev_t, int, int, struct lwp *);
165 static int tap_cdev_read(dev_t, struct uio *, int);
166 static int tap_cdev_write(dev_t, struct uio *, int);
167 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
168 static int tap_cdev_poll(dev_t, int, struct lwp *);
169 static int tap_cdev_kqfilter(dev_t, struct knote *);
170
171 const struct cdevsw tap_cdevsw = {
172 tap_cdev_open, tap_cdev_close,
173 tap_cdev_read, tap_cdev_write,
174 tap_cdev_ioctl, nostop, notty,
175 tap_cdev_poll, nommap,
176 tap_cdev_kqfilter,
177 D_OTHER,
178 };
179
180 #define TAP_CLONER 0xfffff /* Maximal minor value */
181
182 /* kqueue-related routines */
183 static void tap_kqdetach(struct knote *);
184 static int tap_kqread(struct knote *, long);
185
186 /*
187 * Those are needed by the if_media interface.
188 */
189
190 static int tap_mediachange(struct ifnet *);
191 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
192
193 /*
194 * Those are needed by the ifnet interface, and would typically be
195 * there for any network interface driver.
196 * Some other routines are optional: watchdog and drain.
197 */
198
199 static void tap_start(struct ifnet *);
200 static void tap_stop(struct ifnet *, int);
201 static int tap_init(struct ifnet *);
202 static int tap_ioctl(struct ifnet *, u_long, void *);
203
204 /* This is an internal function to keep tap_ioctl readable */
205 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
206
207 /*
208 * tap is a clonable interface, although it is highly unrealistic for
209 * an Ethernet device.
210 *
211 * Here are the bits needed for a clonable interface.
212 */
213 static int tap_clone_create(struct if_clone *, int);
214 static int tap_clone_destroy(struct ifnet *);
215
216 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
217 tap_clone_create,
218 tap_clone_destroy);
219
220 /* Helper functionis shared by the two cloning code paths */
221 static struct tap_softc * tap_clone_creator(int);
222 int tap_clone_destroyer(struct device *);
223
224 void
225 tapattach(int n)
226 {
227 int error;
228
229 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
230 if (error) {
231 aprint_error("%s: unable to register cfattach\n",
232 tap_cd.cd_name);
233 (void)config_cfdriver_detach(&tap_cd);
234 return;
235 }
236
237 if_clone_attach(&tap_cloners);
238 }
239
240 /* Pretty much useless for a pseudo-device */
241 static int
242 tap_match(struct device *self, struct cfdata *cfdata,
243 void *arg)
244 {
245 return (1);
246 }
247
248 void
249 tap_attach(struct device *parent, struct device *self,
250 void *aux)
251 {
252 struct tap_softc *sc = (struct tap_softc *)self;
253 struct ifnet *ifp;
254 const struct sysctlnode *node;
255 u_int8_t enaddr[ETHER_ADDR_LEN] =
256 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
257 char enaddrstr[3 * ETHER_ADDR_LEN];
258 struct timeval tv;
259 uint32_t ui;
260 int error;
261
262 /*
263 * In order to obtain unique initial Ethernet address on a host,
264 * do some randomisation using the current uptime. It's not meant
265 * for anything but avoiding hard-coding an address.
266 */
267 getmicrouptime(&tv);
268 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
269 memcpy(enaddr+3, (u_int8_t *)&ui, 3);
270
271 aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
272 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
273
274 /*
275 * Why 1000baseT? Why not? You can add more.
276 *
277 * Note that there are 3 steps: init, one or several additions to
278 * list of supported media, and in the end, the selection of one
279 * of them.
280 */
281 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
282 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
283 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
284 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
285 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
289 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
290
291 /*
292 * One should note that an interface must do multicast in order
293 * to support IPv6.
294 */
295 ifp = &sc->sc_ec.ec_if;
296 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
297 ifp->if_softc = sc;
298 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
299 ifp->if_ioctl = tap_ioctl;
300 ifp->if_start = tap_start;
301 ifp->if_stop = tap_stop;
302 ifp->if_init = tap_init;
303 IFQ_SET_READY(&ifp->if_snd);
304
305 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
306
307 /* Those steps are mandatory for an Ethernet driver, the fisrt call
308 * being common to all network interface drivers. */
309 if_attach(ifp);
310 ether_ifattach(ifp, enaddr);
311
312 sc->sc_flags = 0;
313
314 /*
315 * Add a sysctl node for that interface.
316 *
317 * The pointer transmitted is not a string, but instead a pointer to
318 * the softc structure, which we can use to build the string value on
319 * the fly in the helper function of the node. See the comments for
320 * tap_sysctl_handler for details.
321 *
322 * Usually sysctl_createv is called with CTL_CREATE as the before-last
323 * component. However, we can allocate a number ourselves, as we are
324 * the only consumer of the net.link.<iface> node. In this case, the
325 * unit number is conveniently used to number the node. CTL_CREATE
326 * would just work, too.
327 */
328 if ((error = sysctl_createv(NULL, 0, NULL,
329 &node, CTLFLAG_READWRITE,
330 CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
331 tap_sysctl_handler, 0, sc, 18,
332 CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
333 CTL_EOL)) != 0)
334 aprint_error("%s: sysctl_createv returned %d, ignoring\n",
335 sc->sc_dev.dv_xname, error);
336
337 /*
338 * Initialize the two locks for the device.
339 *
340 * We need a lock here because even though the tap device can be
341 * opened only once, the file descriptor might be passed to another
342 * process, say a fork(2)ed child.
343 *
344 * The Giant saves us from most of the hassle, but since the read
345 * operation can sleep, we don't want two processes to wake up at
346 * the same moment and both try and dequeue a single packet.
347 *
348 * The queue for event listeners (used by kqueue(9), see below) has
349 * to be protected, too, but we don't need the same level of
350 * complexity for that lock, so a simple spinning lock is fine.
351 */
352 lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
353 simple_lock_init(&sc->sc_kqlock);
354 }
355
356 /*
357 * When detaching, we do the inverse of what is done in the attach
358 * routine, in reversed order.
359 */
360 static int
361 tap_detach(struct device* self, int flags)
362 {
363 struct tap_softc *sc = (struct tap_softc *)self;
364 struct ifnet *ifp = &sc->sc_ec.ec_if;
365 int error, s;
366
367 /*
368 * Some processes might be sleeping on "tap", so we have to make
369 * them release their hold on the device.
370 *
371 * The LK_DRAIN operation will wait for every locked process to
372 * release their hold.
373 */
374 sc->sc_flags |= TAP_GOING;
375 s = splnet();
376 tap_stop(ifp, 1);
377 if_down(ifp);
378 splx(s);
379 lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
380
381 /*
382 * Destroying a single leaf is a very straightforward operation using
383 * sysctl_destroyv. One should be sure to always end the path with
384 * CTL_EOL.
385 */
386 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
387 device_unit(&sc->sc_dev), CTL_EOL)) != 0)
388 aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
389 sc->sc_dev.dv_xname, error);
390 ether_ifdetach(ifp);
391 if_detach(ifp);
392 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
393
394 return (0);
395 }
396
397 /*
398 * This function is called by the ifmedia layer to notify the driver
399 * that the user requested a media change. A real driver would
400 * reconfigure the hardware.
401 */
402 static int
403 tap_mediachange(struct ifnet *ifp)
404 {
405 return (0);
406 }
407
408 /*
409 * Here the user asks for the currently used media.
410 */
411 static void
412 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
413 {
414 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
415 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
416 }
417
418 /*
419 * This is the function where we SEND packets.
420 *
421 * There is no 'receive' equivalent. A typical driver will get
422 * interrupts from the hardware, and from there will inject new packets
423 * into the network stack.
424 *
425 * Once handled, a packet must be freed. A real driver might not be able
426 * to fit all the pending packets into the hardware, and is allowed to
427 * return before having sent all the packets. It should then use the
428 * if_flags flag IFF_OACTIVE to notify the upper layer.
429 *
430 * There are also other flags one should check, such as IFF_PAUSE.
431 *
432 * It is our duty to make packets available to BPF listeners.
433 *
434 * You should be aware that this function is called by the Ethernet layer
435 * at splnet().
436 *
437 * When the device is opened, we have to pass the packet(s) to the
438 * userland. For that we stay in OACTIVE mode while the userland gets
439 * the packets, and we send a signal to the processes waiting to read.
440 *
441 * wakeup(sc) is the counterpart to the tsleep call in
442 * tap_dev_read, while selnotify() is used for kevent(2) and
443 * poll(2) (which includes select(2)) listeners.
444 */
445 static void
446 tap_start(struct ifnet *ifp)
447 {
448 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
449 struct mbuf *m0;
450
451 if ((sc->sc_flags & TAP_INUSE) == 0) {
452 /* Simply drop packets */
453 for(;;) {
454 IFQ_DEQUEUE(&ifp->if_snd, m0);
455 if (m0 == NULL)
456 return;
457
458 ifp->if_opackets++;
459 #if NBPFILTER > 0
460 if (ifp->if_bpf)
461 bpf_mtap(ifp->if_bpf, m0);
462 #endif
463
464 m_freem(m0);
465 }
466 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
467 ifp->if_flags |= IFF_OACTIVE;
468 wakeup(sc);
469 selnotify(&sc->sc_rsel, 1);
470 if (sc->sc_flags & TAP_ASYNCIO)
471 fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
472 POLLIN|POLLRDNORM, NULL);
473 }
474 }
475
476 /*
477 * A typical driver will only contain the following handlers for
478 * ioctl calls, except SIOCSIFPHYADDR.
479 * The latter is a hack I used to set the Ethernet address of the
480 * faked device.
481 *
482 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
483 * called under splnet().
484 */
485 static int
486 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
487 {
488 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
489 struct ifreq *ifr = (struct ifreq *)data;
490 int s, error;
491
492 s = splnet();
493
494 switch (cmd) {
495 case SIOCSIFMEDIA:
496 case SIOCGIFMEDIA:
497 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
498 break;
499 case SIOCSIFPHYADDR:
500 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
501 break;
502 default:
503 error = ether_ioctl(ifp, cmd, data);
504 if (error == ENETRESET)
505 error = 0;
506 break;
507 }
508
509 splx(s);
510
511 return (error);
512 }
513
514 /*
515 * Helper function to set Ethernet address. This shouldn't be done there,
516 * and should actually be available to all Ethernet drivers, real or not.
517 */
518 static int
519 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
520 {
521 struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
522
523 if (sa->sa_family != AF_LINK)
524 return (EINVAL);
525
526 memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
527
528 return (0);
529 }
530
531 /*
532 * _init() would typically be called when an interface goes up,
533 * meaning it should configure itself into the state in which it
534 * can send packets.
535 */
536 static int
537 tap_init(struct ifnet *ifp)
538 {
539 ifp->if_flags |= IFF_RUNNING;
540
541 tap_start(ifp);
542
543 return (0);
544 }
545
546 /*
547 * _stop() is called when an interface goes down. It is our
548 * responsability to validate that state by clearing the
549 * IFF_RUNNING flag.
550 *
551 * We have to wake up all the sleeping processes to have the pending
552 * read requests cancelled.
553 */
554 static void
555 tap_stop(struct ifnet *ifp, int disable)
556 {
557 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
558
559 ifp->if_flags &= ~IFF_RUNNING;
560 wakeup(sc);
561 selnotify(&sc->sc_rsel, 1);
562 if (sc->sc_flags & TAP_ASYNCIO)
563 fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
564 }
565
566 /*
567 * The 'create' command of ifconfig can be used to create
568 * any numbered instance of a given device. Thus we have to
569 * make sure we have enough room in cd_devs to create the
570 * user-specified instance. config_attach_pseudo will do this
571 * for us.
572 */
573 static int
574 tap_clone_create(struct if_clone *ifc, int unit)
575 {
576 if (tap_clone_creator(unit) == NULL) {
577 aprint_error("%s%d: unable to attach an instance\n",
578 tap_cd.cd_name, unit);
579 return (ENXIO);
580 }
581
582 return (0);
583 }
584
585 /*
586 * tap(4) can be cloned by two ways:
587 * using 'ifconfig tap0 create', which will use the network
588 * interface cloning API, and call tap_clone_create above.
589 * opening the cloning device node, whose minor number is TAP_CLONER.
590 * See below for an explanation on how this part work.
591 *
592 * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
593 * autoconf(9) choose a unit number for us. This is what happens when
594 * the cloner is openend, while the ifcloner interface creates a device
595 * with a specific unit number.
596 */
597 static struct tap_softc *
598 tap_clone_creator(int unit)
599 {
600 struct cfdata *cf;
601
602 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
603 cf->cf_name = tap_cd.cd_name;
604 cf->cf_atname = tap_ca.ca_name;
605 cf->cf_unit = unit;
606 cf->cf_fstate = FSTATE_STAR;
607
608 return (struct tap_softc *)config_attach_pseudo(cf);
609 }
610
611 /*
612 * The clean design of if_clone and autoconf(9) makes that part
613 * really straightforward. The second argument of config_detach
614 * means neither QUIET nor FORCED.
615 */
616 static int
617 tap_clone_destroy(struct ifnet *ifp)
618 {
619 return tap_clone_destroyer((struct device *)ifp->if_softc);
620 }
621
622 int
623 tap_clone_destroyer(struct device *dev)
624 {
625 struct cfdata *cf = device_cfdata(dev);
626 int error;
627
628 if ((error = config_detach(dev, 0)) != 0)
629 aprint_error("%s: unable to detach instance\n",
630 dev->dv_xname);
631 free(cf, M_DEVBUF);
632
633 return (error);
634 }
635
636 /*
637 * tap(4) is a bit of an hybrid device. It can be used in two different
638 * ways:
639 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
640 * 2. open /dev/tap, get a new interface created and read/write off it.
641 * That interface is destroyed when the process that had it created exits.
642 *
643 * The first way is managed by the cdevsw structure, and you access interfaces
644 * through a (major, minor) mapping: tap4 is obtained by the minor number
645 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
646 *
647 * The second way is the so-called "cloning" device. It's a special minor
648 * number (chosen as the maximal number, to allow as much tap devices as
649 * possible). The user first opens the cloner (e.g., /dev/tap), and that
650 * call ends in tap_cdev_open. The actual place where it is handled is
651 * tap_dev_cloner.
652 *
653 * An tap device cannot be opened more than once at a time, so the cdevsw
654 * part of open() does nothing but noting that the interface is being used and
655 * hence ready to actually handle packets.
656 */
657
658 static int
659 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
660 {
661 struct tap_softc *sc;
662
663 if (minor(dev) == TAP_CLONER)
664 return tap_dev_cloner(l);
665
666 sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
667 if (sc == NULL)
668 return (ENXIO);
669
670 /* The device can only be opened once */
671 if (sc->sc_flags & TAP_INUSE)
672 return (EBUSY);
673 sc->sc_flags |= TAP_INUSE;
674 return (0);
675 }
676
677 /*
678 * There are several kinds of cloning devices, and the most simple is the one
679 * tap(4) uses. What it does is change the file descriptor with a new one,
680 * with its own fileops structure (which maps to the various read, write,
681 * ioctl functions). It starts allocating a new file descriptor with falloc,
682 * then actually creates the new tap devices.
683 *
684 * Once those two steps are successful, we can re-wire the existing file
685 * descriptor to its new self. This is done with fdclone(): it fills the fp
686 * structure as needed (notably f_data gets filled with the fifth parameter
687 * passed, the unit of the tap device which will allows us identifying the
688 * device later), and returns EMOVEFD.
689 *
690 * That magic value is interpreted by sys_open() which then replaces the
691 * current file descriptor by the new one (through a magic member of struct
692 * lwp, l_dupfd).
693 *
694 * The tap device is flagged as being busy since it otherwise could be
695 * externally accessed through the corresponding device node with the cdevsw
696 * interface.
697 */
698
699 static int
700 tap_dev_cloner(struct lwp *l)
701 {
702 struct tap_softc *sc;
703 struct file *fp;
704 int error, fd;
705
706 if ((error = falloc(l, &fp, &fd)) != 0)
707 return (error);
708
709 if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
710 FILE_UNUSE(fp, l);
711 ffree(fp);
712 return (ENXIO);
713 }
714
715 sc->sc_flags |= TAP_INUSE;
716
717 return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
718 (void *)(intptr_t)device_unit(&sc->sc_dev));
719 }
720
721 /*
722 * While all other operations (read, write, ioctl, poll and kqfilter) are
723 * really the same whether we are in cdevsw or fileops mode, the close()
724 * function is slightly different in the two cases.
725 *
726 * As for the other, the core of it is shared in tap_dev_close. What
727 * it does is sufficient for the cdevsw interface, but the cloning interface
728 * needs another thing: the interface is destroyed when the processes that
729 * created it closes it.
730 */
731 static int
732 tap_cdev_close(dev_t dev, int flags, int fmt,
733 struct lwp *l)
734 {
735 struct tap_softc *sc =
736 (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
737
738 if (sc == NULL)
739 return (ENXIO);
740
741 return tap_dev_close(sc);
742 }
743
744 /*
745 * It might happen that the administrator used ifconfig to externally destroy
746 * the interface. In that case, tap_fops_close will be called while
747 * tap_detach is already happening. If we called it again from here, we
748 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
749 */
750 static int
751 tap_fops_close(struct file *fp, struct lwp *l)
752 {
753 int unit = (intptr_t)fp->f_data;
754 struct tap_softc *sc;
755 int error;
756
757 sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
758 if (sc == NULL)
759 return (ENXIO);
760
761 /* tap_dev_close currently always succeeds, but it might not
762 * always be the case. */
763 if ((error = tap_dev_close(sc)) != 0)
764 return (error);
765
766 /* Destroy the device now that it is no longer useful,
767 * unless it's already being destroyed. */
768 if ((sc->sc_flags & TAP_GOING) != 0)
769 return (0);
770
771 return tap_clone_destroyer((struct device *)sc);
772 }
773
774 static int
775 tap_dev_close(struct tap_softc *sc)
776 {
777 struct ifnet *ifp;
778 int s;
779
780 s = splnet();
781 /* Let tap_start handle packets again */
782 ifp = &sc->sc_ec.ec_if;
783 ifp->if_flags &= ~IFF_OACTIVE;
784
785 /* Purge output queue */
786 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
787 struct mbuf *m;
788
789 for (;;) {
790 IFQ_DEQUEUE(&ifp->if_snd, m);
791 if (m == NULL)
792 break;
793
794 ifp->if_opackets++;
795 #if NBPFILTER > 0
796 if (ifp->if_bpf)
797 bpf_mtap(ifp->if_bpf, m);
798 #endif
799 }
800 }
801 splx(s);
802
803 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
804
805 return (0);
806 }
807
808 static int
809 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
810 {
811 return tap_dev_read(minor(dev), uio, flags);
812 }
813
814 static int
815 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
816 kauth_cred_t cred, int flags)
817 {
818 return tap_dev_read((intptr_t)fp->f_data, uio, flags);
819 }
820
821 static int
822 tap_dev_read(int unit, struct uio *uio, int flags)
823 {
824 struct tap_softc *sc =
825 (struct tap_softc *)device_lookup(&tap_cd, unit);
826 struct ifnet *ifp;
827 struct mbuf *m, *n;
828 int error = 0, s;
829
830 if (sc == NULL)
831 return (ENXIO);
832
833 ifp = &sc->sc_ec.ec_if;
834 if ((ifp->if_flags & IFF_UP) == 0)
835 return (EHOSTDOWN);
836
837 /*
838 * In the TAP_NBIO case, we have to make sure we won't be sleeping
839 */
840 if ((sc->sc_flags & TAP_NBIO) &&
841 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
842 return (EWOULDBLOCK);
843 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
844 if (error != 0)
845 return (error);
846
847 s = splnet();
848 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
849 ifp->if_flags &= ~IFF_OACTIVE;
850 splx(s);
851 /*
852 * We must release the lock before sleeping, and re-acquire it
853 * after.
854 */
855 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
856 if (sc->sc_flags & TAP_NBIO)
857 error = EWOULDBLOCK;
858 else
859 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
860
861 if (error != 0)
862 return (error);
863 /* The device might have been downed */
864 if ((ifp->if_flags & IFF_UP) == 0)
865 return (EHOSTDOWN);
866 if ((sc->sc_flags & TAP_NBIO) &&
867 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
868 return (EWOULDBLOCK);
869 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
870 if (error != 0)
871 return (error);
872 s = splnet();
873 }
874
875 IFQ_DEQUEUE(&ifp->if_snd, m);
876 ifp->if_flags &= ~IFF_OACTIVE;
877 splx(s);
878 if (m == NULL) {
879 error = 0;
880 goto out;
881 }
882
883 ifp->if_opackets++;
884 #if NBPFILTER > 0
885 if (ifp->if_bpf)
886 bpf_mtap(ifp->if_bpf, m);
887 #endif
888
889 /*
890 * One read is one packet.
891 */
892 do {
893 error = uiomove(mtod(m, void *),
894 min(m->m_len, uio->uio_resid), uio);
895 MFREE(m, n);
896 m = n;
897 } while (m != NULL && uio->uio_resid > 0 && error == 0);
898
899 if (m != NULL)
900 m_freem(m);
901
902 out:
903 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
904 return (error);
905 }
906
907 static int
908 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
909 {
910 return tap_dev_write(minor(dev), uio, flags);
911 }
912
913 static int
914 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
915 kauth_cred_t cred, int flags)
916 {
917 return tap_dev_write((intptr_t)fp->f_data, uio, flags);
918 }
919
920 static int
921 tap_dev_write(int unit, struct uio *uio, int flags)
922 {
923 struct tap_softc *sc =
924 (struct tap_softc *)device_lookup(&tap_cd, unit);
925 struct ifnet *ifp;
926 struct mbuf *m, **mp;
927 int error = 0;
928 int s;
929
930 if (sc == NULL)
931 return (ENXIO);
932
933 ifp = &sc->sc_ec.ec_if;
934
935 /* One write, one packet, that's the rule */
936 MGETHDR(m, M_DONTWAIT, MT_DATA);
937 if (m == NULL) {
938 ifp->if_ierrors++;
939 return (ENOBUFS);
940 }
941 m->m_pkthdr.len = uio->uio_resid;
942
943 mp = &m;
944 while (error == 0 && uio->uio_resid > 0) {
945 if (*mp != m) {
946 MGET(*mp, M_DONTWAIT, MT_DATA);
947 if (*mp == NULL) {
948 error = ENOBUFS;
949 break;
950 }
951 }
952 (*mp)->m_len = min(MHLEN, uio->uio_resid);
953 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
954 mp = &(*mp)->m_next;
955 }
956 if (error) {
957 ifp->if_ierrors++;
958 m_freem(m);
959 return (error);
960 }
961
962 ifp->if_ipackets++;
963 m->m_pkthdr.rcvif = ifp;
964
965 #if NBPFILTER > 0
966 if (ifp->if_bpf)
967 bpf_mtap(ifp->if_bpf, m);
968 #endif
969 s =splnet();
970 (*ifp->if_input)(ifp, m);
971 splx(s);
972
973 return (0);
974 }
975
976 static int
977 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
978 struct lwp *l)
979 {
980 return tap_dev_ioctl(minor(dev), cmd, data, l);
981 }
982
983 static int
984 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
985 {
986 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
987 }
988
989 static int
990 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
991 {
992 struct tap_softc *sc =
993 (struct tap_softc *)device_lookup(&tap_cd, unit);
994 int error = 0;
995
996 if (sc == NULL)
997 return (ENXIO);
998
999 switch (cmd) {
1000 case FIONREAD:
1001 {
1002 struct ifnet *ifp = &sc->sc_ec.ec_if;
1003 struct mbuf *m;
1004 int s;
1005
1006 s = splnet();
1007 IFQ_POLL(&ifp->if_snd, m);
1008
1009 if (m == NULL)
1010 *(int *)data = 0;
1011 else
1012 *(int *)data = m->m_pkthdr.len;
1013 splx(s);
1014 } break;
1015 case TIOCSPGRP:
1016 case FIOSETOWN:
1017 error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1018 break;
1019 case TIOCGPGRP:
1020 case FIOGETOWN:
1021 error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1022 break;
1023 case FIOASYNC:
1024 if (*(int *)data)
1025 sc->sc_flags |= TAP_ASYNCIO;
1026 else
1027 sc->sc_flags &= ~TAP_ASYNCIO;
1028 break;
1029 case FIONBIO:
1030 if (*(int *)data)
1031 sc->sc_flags |= TAP_NBIO;
1032 else
1033 sc->sc_flags &= ~TAP_NBIO;
1034 break;
1035 case TAPGIFNAME:
1036 {
1037 struct ifreq *ifr = (struct ifreq *)data;
1038 struct ifnet *ifp = &sc->sc_ec.ec_if;
1039
1040 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1041 } break;
1042 default:
1043 error = ENOTTY;
1044 break;
1045 }
1046
1047 return (0);
1048 }
1049
1050 static int
1051 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1052 {
1053 return tap_dev_poll(minor(dev), events, l);
1054 }
1055
1056 static int
1057 tap_fops_poll(struct file *fp, int events, struct lwp *l)
1058 {
1059 return tap_dev_poll((intptr_t)fp->f_data, events, l);
1060 }
1061
1062 static int
1063 tap_dev_poll(int unit, int events, struct lwp *l)
1064 {
1065 struct tap_softc *sc =
1066 (struct tap_softc *)device_lookup(&tap_cd, unit);
1067 int revents = 0;
1068
1069 if (sc == NULL)
1070 return (ENXIO);
1071
1072 if (events & (POLLIN|POLLRDNORM)) {
1073 struct ifnet *ifp = &sc->sc_ec.ec_if;
1074 struct mbuf *m;
1075 int s;
1076
1077 s = splnet();
1078 IFQ_POLL(&ifp->if_snd, m);
1079 splx(s);
1080
1081 if (m != NULL)
1082 revents |= events & (POLLIN|POLLRDNORM);
1083 else {
1084 simple_lock(&sc->sc_kqlock);
1085 selrecord(l, &sc->sc_rsel);
1086 simple_unlock(&sc->sc_kqlock);
1087 }
1088 }
1089 revents |= events & (POLLOUT|POLLWRNORM);
1090
1091 return (revents);
1092 }
1093
1094 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1095 tap_kqread };
1096 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1097 filt_seltrue };
1098
1099 static int
1100 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1101 {
1102 return tap_dev_kqfilter(minor(dev), kn);
1103 }
1104
1105 static int
1106 tap_fops_kqfilter(struct file *fp, struct knote *kn)
1107 {
1108 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1109 }
1110
1111 static int
1112 tap_dev_kqfilter(int unit, struct knote *kn)
1113 {
1114 struct tap_softc *sc =
1115 (struct tap_softc *)device_lookup(&tap_cd, unit);
1116
1117 if (sc == NULL)
1118 return (ENXIO);
1119
1120 switch(kn->kn_filter) {
1121 case EVFILT_READ:
1122 kn->kn_fop = &tap_read_filterops;
1123 break;
1124 case EVFILT_WRITE:
1125 kn->kn_fop = &tap_seltrue_filterops;
1126 break;
1127 default:
1128 return (1);
1129 }
1130
1131 kn->kn_hook = sc;
1132 simple_lock(&sc->sc_kqlock);
1133 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1134 simple_unlock(&sc->sc_kqlock);
1135 return (0);
1136 }
1137
1138 static void
1139 tap_kqdetach(struct knote *kn)
1140 {
1141 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1142
1143 simple_lock(&sc->sc_kqlock);
1144 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1145 simple_unlock(&sc->sc_kqlock);
1146 }
1147
1148 static int
1149 tap_kqread(struct knote *kn, long hint)
1150 {
1151 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1152 struct ifnet *ifp = &sc->sc_ec.ec_if;
1153 struct mbuf *m;
1154 int s;
1155
1156 s = splnet();
1157 IFQ_POLL(&ifp->if_snd, m);
1158
1159 if (m == NULL)
1160 kn->kn_data = 0;
1161 else
1162 kn->kn_data = m->m_pkthdr.len;
1163 splx(s);
1164 return (kn->kn_data != 0 ? 1 : 0);
1165 }
1166
1167 /*
1168 * sysctl management routines
1169 * You can set the address of an interface through:
1170 * net.link.tap.tap<number>
1171 *
1172 * Note the consistent use of tap_log in order to use
1173 * sysctl_teardown at unload time.
1174 *
1175 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1176 * blocks register a function in a special section of the kernel
1177 * (called a link set) which is used at init_sysctl() time to cycle
1178 * through all those functions to create the kernel's sysctl tree.
1179 *
1180 * It is not (currently) possible to use link sets in a LKM, so the
1181 * easiest is to simply call our own setup routine at load time.
1182 *
1183 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1184 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1185 * whole kernel sysctl tree is built, it is not possible to add any
1186 * permanent node.
1187 *
1188 * It should be noted that we're not saving the sysctlnode pointer
1189 * we are returned when creating the "tap" node. That structure
1190 * cannot be trusted once out of the calling function, as it might
1191 * get reused. So we just save the MIB number, and always give the
1192 * full path starting from the root for later calls to sysctl_createv
1193 * and sysctl_destroyv.
1194 */
1195 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1196 {
1197 const struct sysctlnode *node;
1198 int error = 0;
1199
1200 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1201 CTLFLAG_PERMANENT,
1202 CTLTYPE_NODE, "net", NULL,
1203 NULL, 0, NULL, 0,
1204 CTL_NET, CTL_EOL)) != 0)
1205 return;
1206
1207 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1208 CTLFLAG_PERMANENT,
1209 CTLTYPE_NODE, "link", NULL,
1210 NULL, 0, NULL, 0,
1211 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1212 return;
1213
1214 /*
1215 * The first four parameters of sysctl_createv are for management.
1216 *
1217 * The four that follows, here starting with a '0' for the flags,
1218 * describe the node.
1219 *
1220 * The next series of four set its value, through various possible
1221 * means.
1222 *
1223 * Last but not least, the path to the node is described. That path
1224 * is relative to the given root (third argument). Here we're
1225 * starting from the root.
1226 */
1227 if ((error = sysctl_createv(clog, 0, NULL, &node,
1228 CTLFLAG_PERMANENT,
1229 CTLTYPE_NODE, "tap", NULL,
1230 NULL, 0, NULL, 0,
1231 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1232 return;
1233 tap_node = node->sysctl_num;
1234 }
1235
1236 /*
1237 * The helper functions make Andrew Brown's interface really
1238 * shine. It makes possible to create value on the fly whether
1239 * the sysctl value is read or written.
1240 *
1241 * As shown as an example in the man page, the first step is to
1242 * create a copy of the node to have sysctl_lookup work on it.
1243 *
1244 * Here, we have more work to do than just a copy, since we have
1245 * to create the string. The first step is to collect the actual
1246 * value of the node, which is a convenient pointer to the softc
1247 * of the interface. From there we create the string and use it
1248 * as the value, but only for the *copy* of the node.
1249 *
1250 * Then we let sysctl_lookup do the magic, which consists in
1251 * setting oldp and newp as required by the operation. When the
1252 * value is read, that means that the string will be copied to
1253 * the user, and when it is written, the new value will be copied
1254 * over in the addr array.
1255 *
1256 * If newp is NULL, the user was reading the value, so we don't
1257 * have anything else to do. If a new value was written, we
1258 * have to check it.
1259 *
1260 * If it is incorrect, we can return an error and leave 'node' as
1261 * it is: since it is a copy of the actual node, the change will
1262 * be forgotten.
1263 *
1264 * Upon a correct input, we commit the change to the ifnet
1265 * structure of our interface.
1266 */
1267 static int
1268 tap_sysctl_handler(SYSCTLFN_ARGS)
1269 {
1270 struct sysctlnode node;
1271 struct tap_softc *sc;
1272 struct ifnet *ifp;
1273 int error;
1274 size_t len;
1275 char addr[3 * ETHER_ADDR_LEN];
1276
1277 node = *rnode;
1278 sc = node.sysctl_data;
1279 ifp = &sc->sc_ec.ec_if;
1280 (void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
1281 node.sysctl_data = addr;
1282 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1283 if (error || newp == NULL)
1284 return (error);
1285
1286 len = strlen(addr);
1287 if (len < 11 || len > 17)
1288 return (EINVAL);
1289
1290 /* Commit change */
1291 if (ether_nonstatic_aton(LLADDR(ifp->if_sadl), addr) != 0)
1292 return (EINVAL);
1293 return (error);
1294 }
1295