if_tap.c revision 1.27 1 /* $NetBSD: if_tap.c,v 1.27 2007/03/09 18:42:22 drochner Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to the NetBSD Foundation
8 * by Quentin Garnier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
41 * device to the system, but can also be accessed by userland through a
42 * character device interface, which allows reading and injecting frames.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.27 2007/03/09 18:42:22 drochner Exp $");
47
48 #if defined(_KERNEL_OPT)
49 #include "bpfilter.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/ksyms.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/kauth.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current LKM implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93
94 /*
95 * Since we're an Ethernet device, we need the 3 following
96 * components: a leading struct device, a struct ethercom,
97 * and also a struct ifmedia since we don't attach a PHY to
98 * ourselves. We could emulate one, but there's no real
99 * point.
100 */
101
102 struct tap_softc {
103 struct device sc_dev;
104 struct ifmedia sc_im;
105 struct ethercom sc_ec;
106 int sc_flags;
107 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 struct selinfo sc_rsel;
112 pid_t sc_pgid; /* For async. IO */
113 struct lock sc_rdlock;
114 struct simplelock sc_kqlock;
115 };
116
117 /* autoconf(9) glue */
118
119 void tapattach(int);
120
121 static int tap_match(struct device *, struct cfdata *, void *);
122 static void tap_attach(struct device *, struct device *, void *);
123 static int tap_detach(struct device*, int);
124
125 CFATTACH_DECL(tap, sizeof(struct tap_softc),
126 tap_match, tap_attach, tap_detach, NULL);
127 extern struct cfdriver tap_cd;
128
129 /* Real device access routines */
130 static int tap_dev_close(struct tap_softc *);
131 static int tap_dev_read(int, struct uio *, int);
132 static int tap_dev_write(int, struct uio *, int);
133 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
134 static int tap_dev_poll(int, int, struct lwp *);
135 static int tap_dev_kqfilter(int, struct knote *);
136
137 /* Fileops access routines */
138 static int tap_fops_close(struct file *, struct lwp *);
139 static int tap_fops_read(struct file *, off_t *, struct uio *,
140 kauth_cred_t, int);
141 static int tap_fops_write(struct file *, off_t *, struct uio *,
142 kauth_cred_t, int);
143 static int tap_fops_ioctl(struct file *, u_long, void *,
144 struct lwp *);
145 static int tap_fops_poll(struct file *, int, struct lwp *);
146 static int tap_fops_kqfilter(struct file *, struct knote *);
147
148 static const struct fileops tap_fileops = {
149 tap_fops_read,
150 tap_fops_write,
151 tap_fops_ioctl,
152 fnullop_fcntl,
153 tap_fops_poll,
154 fbadop_stat,
155 tap_fops_close,
156 tap_fops_kqfilter,
157 };
158
159 /* Helper for cloning open() */
160 static int tap_dev_cloner(struct lwp *);
161
162 /* Character device routines */
163 static int tap_cdev_open(dev_t, int, int, struct lwp *);
164 static int tap_cdev_close(dev_t, int, int, struct lwp *);
165 static int tap_cdev_read(dev_t, struct uio *, int);
166 static int tap_cdev_write(dev_t, struct uio *, int);
167 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
168 static int tap_cdev_poll(dev_t, int, struct lwp *);
169 static int tap_cdev_kqfilter(dev_t, struct knote *);
170
171 const struct cdevsw tap_cdevsw = {
172 tap_cdev_open, tap_cdev_close,
173 tap_cdev_read, tap_cdev_write,
174 tap_cdev_ioctl, nostop, notty,
175 tap_cdev_poll, nommap,
176 tap_cdev_kqfilter,
177 D_OTHER,
178 };
179
180 #define TAP_CLONER 0xfffff /* Maximal minor value */
181
182 /* kqueue-related routines */
183 static void tap_kqdetach(struct knote *);
184 static int tap_kqread(struct knote *, long);
185
186 /*
187 * Those are needed by the if_media interface.
188 */
189
190 static int tap_mediachange(struct ifnet *);
191 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
192
193 /*
194 * Those are needed by the ifnet interface, and would typically be
195 * there for any network interface driver.
196 * Some other routines are optional: watchdog and drain.
197 */
198
199 static void tap_start(struct ifnet *);
200 static void tap_stop(struct ifnet *, int);
201 static int tap_init(struct ifnet *);
202 static int tap_ioctl(struct ifnet *, u_long, void *);
203
204 /* This is an internal function to keep tap_ioctl readable */
205 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
206
207 /*
208 * tap is a clonable interface, although it is highly unrealistic for
209 * an Ethernet device.
210 *
211 * Here are the bits needed for a clonable interface.
212 */
213 static int tap_clone_create(struct if_clone *, int);
214 static int tap_clone_destroy(struct ifnet *);
215
216 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
217 tap_clone_create,
218 tap_clone_destroy);
219
220 /* Helper functionis shared by the two cloning code paths */
221 static struct tap_softc * tap_clone_creator(int);
222 int tap_clone_destroyer(struct device *);
223
224 void
225 tapattach(int n)
226 {
227 int error;
228
229 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
230 if (error) {
231 aprint_error("%s: unable to register cfattach\n",
232 tap_cd.cd_name);
233 (void)config_cfdriver_detach(&tap_cd);
234 return;
235 }
236
237 if_clone_attach(&tap_cloners);
238 }
239
240 /* Pretty much useless for a pseudo-device */
241 static int
242 tap_match(struct device *self, struct cfdata *cfdata,
243 void *arg)
244 {
245 return (1);
246 }
247
248 void
249 tap_attach(struct device *parent, struct device *self,
250 void *aux)
251 {
252 struct tap_softc *sc = (struct tap_softc *)self;
253 struct ifnet *ifp;
254 const struct sysctlnode *node;
255 u_int8_t enaddr[ETHER_ADDR_LEN] =
256 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
257 char enaddrstr[3 * ETHER_ADDR_LEN];
258 struct timeval tv;
259 uint32_t ui;
260 int error;
261
262 /*
263 * In order to obtain unique initial Ethernet address on a host,
264 * do some randomisation using the current uptime. It's not meant
265 * for anything but avoiding hard-coding an address.
266 */
267 getmicrouptime(&tv);
268 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
269 memcpy(enaddr+3, (u_int8_t *)&ui, 3);
270
271 aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
272 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
273
274 /*
275 * Why 1000baseT? Why not? You can add more.
276 *
277 * Note that there are 3 steps: init, one or several additions to
278 * list of supported media, and in the end, the selection of one
279 * of them.
280 */
281 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
282 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
283 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
284 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
285 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
289 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
290
291 /*
292 * One should note that an interface must do multicast in order
293 * to support IPv6.
294 */
295 ifp = &sc->sc_ec.ec_if;
296 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
297 ifp->if_softc = sc;
298 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
299 ifp->if_ioctl = tap_ioctl;
300 ifp->if_start = tap_start;
301 ifp->if_stop = tap_stop;
302 ifp->if_init = tap_init;
303 IFQ_SET_READY(&ifp->if_snd);
304
305 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
306
307 /* Those steps are mandatory for an Ethernet driver, the fisrt call
308 * being common to all network interface drivers. */
309 if_attach(ifp);
310 ether_ifattach(ifp, enaddr);
311
312 sc->sc_flags = 0;
313
314 /*
315 * Add a sysctl node for that interface.
316 *
317 * The pointer transmitted is not a string, but instead a pointer to
318 * the softc structure, which we can use to build the string value on
319 * the fly in the helper function of the node. See the comments for
320 * tap_sysctl_handler for details.
321 *
322 * Usually sysctl_createv is called with CTL_CREATE as the before-last
323 * component. However, we can allocate a number ourselves, as we are
324 * the only consumer of the net.link.<iface> node. In this case, the
325 * unit number is conveniently used to number the node. CTL_CREATE
326 * would just work, too.
327 */
328 if ((error = sysctl_createv(NULL, 0, NULL,
329 &node, CTLFLAG_READWRITE,
330 CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
331 tap_sysctl_handler, 0, sc, 18,
332 CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
333 CTL_EOL)) != 0)
334 aprint_error("%s: sysctl_createv returned %d, ignoring\n",
335 sc->sc_dev.dv_xname, error);
336
337 /*
338 * Initialize the two locks for the device.
339 *
340 * We need a lock here because even though the tap device can be
341 * opened only once, the file descriptor might be passed to another
342 * process, say a fork(2)ed child.
343 *
344 * The Giant saves us from most of the hassle, but since the read
345 * operation can sleep, we don't want two processes to wake up at
346 * the same moment and both try and dequeue a single packet.
347 *
348 * The queue for event listeners (used by kqueue(9), see below) has
349 * to be protected, too, but we don't need the same level of
350 * complexity for that lock, so a simple spinning lock is fine.
351 */
352 lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
353 simple_lock_init(&sc->sc_kqlock);
354 }
355
356 /*
357 * When detaching, we do the inverse of what is done in the attach
358 * routine, in reversed order.
359 */
360 static int
361 tap_detach(struct device* self, int flags)
362 {
363 struct tap_softc *sc = (struct tap_softc *)self;
364 struct ifnet *ifp = &sc->sc_ec.ec_if;
365 int error, s;
366
367 /*
368 * Some processes might be sleeping on "tap", so we have to make
369 * them release their hold on the device.
370 *
371 * The LK_DRAIN operation will wait for every locked process to
372 * release their hold.
373 */
374 sc->sc_flags |= TAP_GOING;
375 s = splnet();
376 tap_stop(ifp, 1);
377 if_down(ifp);
378 splx(s);
379 lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
380
381 /*
382 * Destroying a single leaf is a very straightforward operation using
383 * sysctl_destroyv. One should be sure to always end the path with
384 * CTL_EOL.
385 */
386 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
387 device_unit(&sc->sc_dev), CTL_EOL)) != 0)
388 aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
389 sc->sc_dev.dv_xname, error);
390 ether_ifdetach(ifp);
391 if_detach(ifp);
392 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
393
394 return (0);
395 }
396
397 /*
398 * This function is called by the ifmedia layer to notify the driver
399 * that the user requested a media change. A real driver would
400 * reconfigure the hardware.
401 */
402 static int
403 tap_mediachange(struct ifnet *ifp)
404 {
405 return (0);
406 }
407
408 /*
409 * Here the user asks for the currently used media.
410 */
411 static void
412 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
413 {
414 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
415 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
416 }
417
418 /*
419 * This is the function where we SEND packets.
420 *
421 * There is no 'receive' equivalent. A typical driver will get
422 * interrupts from the hardware, and from there will inject new packets
423 * into the network stack.
424 *
425 * Once handled, a packet must be freed. A real driver might not be able
426 * to fit all the pending packets into the hardware, and is allowed to
427 * return before having sent all the packets. It should then use the
428 * if_flags flag IFF_OACTIVE to notify the upper layer.
429 *
430 * There are also other flags one should check, such as IFF_PAUSE.
431 *
432 * It is our duty to make packets available to BPF listeners.
433 *
434 * You should be aware that this function is called by the Ethernet layer
435 * at splnet().
436 *
437 * When the device is opened, we have to pass the packet(s) to the
438 * userland. For that we stay in OACTIVE mode while the userland gets
439 * the packets, and we send a signal to the processes waiting to read.
440 *
441 * wakeup(sc) is the counterpart to the tsleep call in
442 * tap_dev_read, while selnotify() is used for kevent(2) and
443 * poll(2) (which includes select(2)) listeners.
444 */
445 static void
446 tap_start(struct ifnet *ifp)
447 {
448 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
449 struct mbuf *m0;
450
451 if ((sc->sc_flags & TAP_INUSE) == 0) {
452 /* Simply drop packets */
453 for(;;) {
454 IFQ_DEQUEUE(&ifp->if_snd, m0);
455 if (m0 == NULL)
456 return;
457
458 ifp->if_opackets++;
459 #if NBPFILTER > 0
460 if (ifp->if_bpf)
461 bpf_mtap(ifp->if_bpf, m0);
462 #endif
463
464 m_freem(m0);
465 }
466 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
467 ifp->if_flags |= IFF_OACTIVE;
468 wakeup(sc);
469 selnotify(&sc->sc_rsel, 1);
470 if (sc->sc_flags & TAP_ASYNCIO)
471 fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
472 POLLIN|POLLRDNORM, NULL);
473 }
474 }
475
476 /*
477 * A typical driver will only contain the following handlers for
478 * ioctl calls, except SIOCSIFPHYADDR.
479 * The latter is a hack I used to set the Ethernet address of the
480 * faked device.
481 *
482 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
483 * called under splnet().
484 */
485 static int
486 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
487 {
488 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
489 struct ifreq *ifr = (struct ifreq *)data;
490 int s, error;
491
492 s = splnet();
493
494 switch (cmd) {
495 case SIOCSIFMEDIA:
496 case SIOCGIFMEDIA:
497 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
498 break;
499 case SIOCSIFPHYADDR:
500 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
501 break;
502 default:
503 error = ether_ioctl(ifp, cmd, data);
504 if (error == ENETRESET)
505 error = 0;
506 break;
507 }
508
509 splx(s);
510
511 return (error);
512 }
513
514 /*
515 * Helper function to set Ethernet address. This shouldn't be done there,
516 * and should actually be available to all Ethernet drivers, real or not.
517 */
518 static int
519 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
520 {
521 struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
522
523 if (sa->sa_family != AF_LINK)
524 return (EINVAL);
525
526 memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
527
528 return (0);
529 }
530
531 /*
532 * _init() would typically be called when an interface goes up,
533 * meaning it should configure itself into the state in which it
534 * can send packets.
535 */
536 static int
537 tap_init(struct ifnet *ifp)
538 {
539 ifp->if_flags |= IFF_RUNNING;
540
541 tap_start(ifp);
542
543 return (0);
544 }
545
546 /*
547 * _stop() is called when an interface goes down. It is our
548 * responsability to validate that state by clearing the
549 * IFF_RUNNING flag.
550 *
551 * We have to wake up all the sleeping processes to have the pending
552 * read requests cancelled.
553 */
554 static void
555 tap_stop(struct ifnet *ifp, int disable)
556 {
557 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
558
559 ifp->if_flags &= ~IFF_RUNNING;
560 wakeup(sc);
561 selnotify(&sc->sc_rsel, 1);
562 if (sc->sc_flags & TAP_ASYNCIO)
563 fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
564 }
565
566 /*
567 * The 'create' command of ifconfig can be used to create
568 * any numbered instance of a given device. Thus we have to
569 * make sure we have enough room in cd_devs to create the
570 * user-specified instance. config_attach_pseudo will do this
571 * for us.
572 */
573 static int
574 tap_clone_create(struct if_clone *ifc, int unit)
575 {
576 if (tap_clone_creator(unit) == NULL) {
577 aprint_error("%s%d: unable to attach an instance\n",
578 tap_cd.cd_name, unit);
579 return (ENXIO);
580 }
581
582 return (0);
583 }
584
585 /*
586 * tap(4) can be cloned by two ways:
587 * using 'ifconfig tap0 create', which will use the network
588 * interface cloning API, and call tap_clone_create above.
589 * opening the cloning device node, whose minor number is TAP_CLONER.
590 * See below for an explanation on how this part work.
591 */
592 static struct tap_softc *
593 tap_clone_creator(int unit)
594 {
595 struct cfdata *cf;
596
597 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
598 cf->cf_name = tap_cd.cd_name;
599 cf->cf_atname = tap_ca.ca_name;
600 if (unit == -1) {
601 /* let autoconf find the first free one */
602 cf->cf_unit = 0;
603 cf->cf_fstate = FSTATE_STAR;
604 } else {
605 cf->cf_unit = unit;
606 cf->cf_fstate = FSTATE_NOTFOUND;
607 }
608
609 return (struct tap_softc *)config_attach_pseudo(cf);
610 }
611
612 /*
613 * The clean design of if_clone and autoconf(9) makes that part
614 * really straightforward. The second argument of config_detach
615 * means neither QUIET nor FORCED.
616 */
617 static int
618 tap_clone_destroy(struct ifnet *ifp)
619 {
620 return tap_clone_destroyer((struct device *)ifp->if_softc);
621 }
622
623 int
624 tap_clone_destroyer(struct device *dev)
625 {
626 struct cfdata *cf = device_cfdata(dev);
627 int error;
628
629 if ((error = config_detach(dev, 0)) != 0)
630 aprint_error("%s: unable to detach instance\n",
631 dev->dv_xname);
632 free(cf, M_DEVBUF);
633
634 return (error);
635 }
636
637 /*
638 * tap(4) is a bit of an hybrid device. It can be used in two different
639 * ways:
640 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
641 * 2. open /dev/tap, get a new interface created and read/write off it.
642 * That interface is destroyed when the process that had it created exits.
643 *
644 * The first way is managed by the cdevsw structure, and you access interfaces
645 * through a (major, minor) mapping: tap4 is obtained by the minor number
646 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
647 *
648 * The second way is the so-called "cloning" device. It's a special minor
649 * number (chosen as the maximal number, to allow as much tap devices as
650 * possible). The user first opens the cloner (e.g., /dev/tap), and that
651 * call ends in tap_cdev_open. The actual place where it is handled is
652 * tap_dev_cloner.
653 *
654 * An tap device cannot be opened more than once at a time, so the cdevsw
655 * part of open() does nothing but noting that the interface is being used and
656 * hence ready to actually handle packets.
657 */
658
659 static int
660 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
661 {
662 struct tap_softc *sc;
663
664 if (minor(dev) == TAP_CLONER)
665 return tap_dev_cloner(l);
666
667 sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
668 if (sc == NULL)
669 return (ENXIO);
670
671 /* The device can only be opened once */
672 if (sc->sc_flags & TAP_INUSE)
673 return (EBUSY);
674 sc->sc_flags |= TAP_INUSE;
675 return (0);
676 }
677
678 /*
679 * There are several kinds of cloning devices, and the most simple is the one
680 * tap(4) uses. What it does is change the file descriptor with a new one,
681 * with its own fileops structure (which maps to the various read, write,
682 * ioctl functions). It starts allocating a new file descriptor with falloc,
683 * then actually creates the new tap devices.
684 *
685 * Once those two steps are successful, we can re-wire the existing file
686 * descriptor to its new self. This is done with fdclone(): it fills the fp
687 * structure as needed (notably f_data gets filled with the fifth parameter
688 * passed, the unit of the tap device which will allows us identifying the
689 * device later), and returns EMOVEFD.
690 *
691 * That magic value is interpreted by sys_open() which then replaces the
692 * current file descriptor by the new one (through a magic member of struct
693 * lwp, l_dupfd).
694 *
695 * The tap device is flagged as being busy since it otherwise could be
696 * externally accessed through the corresponding device node with the cdevsw
697 * interface.
698 */
699
700 static int
701 tap_dev_cloner(struct lwp *l)
702 {
703 struct tap_softc *sc;
704 struct file *fp;
705 int error, fd;
706
707 if ((error = falloc(l, &fp, &fd)) != 0)
708 return (error);
709
710 if ((sc = tap_clone_creator(-1)) == NULL) {
711 FILE_UNUSE(fp, l);
712 ffree(fp);
713 return (ENXIO);
714 }
715
716 sc->sc_flags |= TAP_INUSE;
717
718 return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
719 (void *)(intptr_t)device_unit(&sc->sc_dev));
720 }
721
722 /*
723 * While all other operations (read, write, ioctl, poll and kqfilter) are
724 * really the same whether we are in cdevsw or fileops mode, the close()
725 * function is slightly different in the two cases.
726 *
727 * As for the other, the core of it is shared in tap_dev_close. What
728 * it does is sufficient for the cdevsw interface, but the cloning interface
729 * needs another thing: the interface is destroyed when the processes that
730 * created it closes it.
731 */
732 static int
733 tap_cdev_close(dev_t dev, int flags, int fmt,
734 struct lwp *l)
735 {
736 struct tap_softc *sc =
737 (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
738
739 if (sc == NULL)
740 return (ENXIO);
741
742 return tap_dev_close(sc);
743 }
744
745 /*
746 * It might happen that the administrator used ifconfig to externally destroy
747 * the interface. In that case, tap_fops_close will be called while
748 * tap_detach is already happening. If we called it again from here, we
749 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
750 */
751 static int
752 tap_fops_close(struct file *fp, struct lwp *l)
753 {
754 int unit = (intptr_t)fp->f_data;
755 struct tap_softc *sc;
756 int error;
757
758 sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
759 if (sc == NULL)
760 return (ENXIO);
761
762 /* tap_dev_close currently always succeeds, but it might not
763 * always be the case. */
764 if ((error = tap_dev_close(sc)) != 0)
765 return (error);
766
767 /* Destroy the device now that it is no longer useful,
768 * unless it's already being destroyed. */
769 if ((sc->sc_flags & TAP_GOING) != 0)
770 return (0);
771
772 return tap_clone_destroyer((struct device *)sc);
773 }
774
775 static int
776 tap_dev_close(struct tap_softc *sc)
777 {
778 struct ifnet *ifp;
779 int s;
780
781 s = splnet();
782 /* Let tap_start handle packets again */
783 ifp = &sc->sc_ec.ec_if;
784 ifp->if_flags &= ~IFF_OACTIVE;
785
786 /* Purge output queue */
787 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
788 struct mbuf *m;
789
790 for (;;) {
791 IFQ_DEQUEUE(&ifp->if_snd, m);
792 if (m == NULL)
793 break;
794
795 ifp->if_opackets++;
796 #if NBPFILTER > 0
797 if (ifp->if_bpf)
798 bpf_mtap(ifp->if_bpf, m);
799 #endif
800 }
801 }
802 splx(s);
803
804 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
805
806 return (0);
807 }
808
809 static int
810 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
811 {
812 return tap_dev_read(minor(dev), uio, flags);
813 }
814
815 static int
816 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
817 kauth_cred_t cred, int flags)
818 {
819 return tap_dev_read((intptr_t)fp->f_data, uio, flags);
820 }
821
822 static int
823 tap_dev_read(int unit, struct uio *uio, int flags)
824 {
825 struct tap_softc *sc =
826 (struct tap_softc *)device_lookup(&tap_cd, unit);
827 struct ifnet *ifp;
828 struct mbuf *m, *n;
829 int error = 0, s;
830
831 if (sc == NULL)
832 return (ENXIO);
833
834 ifp = &sc->sc_ec.ec_if;
835 if ((ifp->if_flags & IFF_UP) == 0)
836 return (EHOSTDOWN);
837
838 /*
839 * In the TAP_NBIO case, we have to make sure we won't be sleeping
840 */
841 if ((sc->sc_flags & TAP_NBIO) &&
842 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
843 return (EWOULDBLOCK);
844 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
845 if (error != 0)
846 return (error);
847
848 s = splnet();
849 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
850 ifp->if_flags &= ~IFF_OACTIVE;
851 splx(s);
852 /*
853 * We must release the lock before sleeping, and re-acquire it
854 * after.
855 */
856 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
857 if (sc->sc_flags & TAP_NBIO)
858 error = EWOULDBLOCK;
859 else
860 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
861
862 if (error != 0)
863 return (error);
864 /* The device might have been downed */
865 if ((ifp->if_flags & IFF_UP) == 0)
866 return (EHOSTDOWN);
867 if ((sc->sc_flags & TAP_NBIO) &&
868 lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
869 return (EWOULDBLOCK);
870 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
871 if (error != 0)
872 return (error);
873 s = splnet();
874 }
875
876 IFQ_DEQUEUE(&ifp->if_snd, m);
877 ifp->if_flags &= ~IFF_OACTIVE;
878 splx(s);
879 if (m == NULL) {
880 error = 0;
881 goto out;
882 }
883
884 ifp->if_opackets++;
885 #if NBPFILTER > 0
886 if (ifp->if_bpf)
887 bpf_mtap(ifp->if_bpf, m);
888 #endif
889
890 /*
891 * One read is one packet.
892 */
893 do {
894 error = uiomove(mtod(m, void *),
895 min(m->m_len, uio->uio_resid), uio);
896 MFREE(m, n);
897 m = n;
898 } while (m != NULL && uio->uio_resid > 0 && error == 0);
899
900 if (m != NULL)
901 m_freem(m);
902
903 out:
904 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
905 return (error);
906 }
907
908 static int
909 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
910 {
911 return tap_dev_write(minor(dev), uio, flags);
912 }
913
914 static int
915 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
916 kauth_cred_t cred, int flags)
917 {
918 return tap_dev_write((intptr_t)fp->f_data, uio, flags);
919 }
920
921 static int
922 tap_dev_write(int unit, struct uio *uio, int flags)
923 {
924 struct tap_softc *sc =
925 (struct tap_softc *)device_lookup(&tap_cd, unit);
926 struct ifnet *ifp;
927 struct mbuf *m, **mp;
928 int error = 0;
929 int s;
930
931 if (sc == NULL)
932 return (ENXIO);
933
934 ifp = &sc->sc_ec.ec_if;
935
936 /* One write, one packet, that's the rule */
937 MGETHDR(m, M_DONTWAIT, MT_DATA);
938 if (m == NULL) {
939 ifp->if_ierrors++;
940 return (ENOBUFS);
941 }
942 m->m_pkthdr.len = uio->uio_resid;
943
944 mp = &m;
945 while (error == 0 && uio->uio_resid > 0) {
946 if (*mp != m) {
947 MGET(*mp, M_DONTWAIT, MT_DATA);
948 if (*mp == NULL) {
949 error = ENOBUFS;
950 break;
951 }
952 }
953 (*mp)->m_len = min(MHLEN, uio->uio_resid);
954 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
955 mp = &(*mp)->m_next;
956 }
957 if (error) {
958 ifp->if_ierrors++;
959 m_freem(m);
960 return (error);
961 }
962
963 ifp->if_ipackets++;
964 m->m_pkthdr.rcvif = ifp;
965
966 #if NBPFILTER > 0
967 if (ifp->if_bpf)
968 bpf_mtap(ifp->if_bpf, m);
969 #endif
970 s =splnet();
971 (*ifp->if_input)(ifp, m);
972 splx(s);
973
974 return (0);
975 }
976
977 static int
978 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
979 struct lwp *l)
980 {
981 return tap_dev_ioctl(minor(dev), cmd, data, l);
982 }
983
984 static int
985 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
986 {
987 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
988 }
989
990 static int
991 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
992 {
993 struct tap_softc *sc =
994 (struct tap_softc *)device_lookup(&tap_cd, unit);
995 int error = 0;
996
997 if (sc == NULL)
998 return (ENXIO);
999
1000 switch (cmd) {
1001 case FIONREAD:
1002 {
1003 struct ifnet *ifp = &sc->sc_ec.ec_if;
1004 struct mbuf *m;
1005 int s;
1006
1007 s = splnet();
1008 IFQ_POLL(&ifp->if_snd, m);
1009
1010 if (m == NULL)
1011 *(int *)data = 0;
1012 else
1013 *(int *)data = m->m_pkthdr.len;
1014 splx(s);
1015 } break;
1016 case TIOCSPGRP:
1017 case FIOSETOWN:
1018 error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1019 break;
1020 case TIOCGPGRP:
1021 case FIOGETOWN:
1022 error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1023 break;
1024 case FIOASYNC:
1025 if (*(int *)data)
1026 sc->sc_flags |= TAP_ASYNCIO;
1027 else
1028 sc->sc_flags &= ~TAP_ASYNCIO;
1029 break;
1030 case FIONBIO:
1031 if (*(int *)data)
1032 sc->sc_flags |= TAP_NBIO;
1033 else
1034 sc->sc_flags &= ~TAP_NBIO;
1035 break;
1036 case TAPGIFNAME:
1037 {
1038 struct ifreq *ifr = (struct ifreq *)data;
1039 struct ifnet *ifp = &sc->sc_ec.ec_if;
1040
1041 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1042 } break;
1043 default:
1044 error = ENOTTY;
1045 break;
1046 }
1047
1048 return (0);
1049 }
1050
1051 static int
1052 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1053 {
1054 return tap_dev_poll(minor(dev), events, l);
1055 }
1056
1057 static int
1058 tap_fops_poll(struct file *fp, int events, struct lwp *l)
1059 {
1060 return tap_dev_poll((intptr_t)fp->f_data, events, l);
1061 }
1062
1063 static int
1064 tap_dev_poll(int unit, int events, struct lwp *l)
1065 {
1066 struct tap_softc *sc =
1067 (struct tap_softc *)device_lookup(&tap_cd, unit);
1068 int revents = 0;
1069
1070 if (sc == NULL)
1071 return (ENXIO);
1072
1073 if (events & (POLLIN|POLLRDNORM)) {
1074 struct ifnet *ifp = &sc->sc_ec.ec_if;
1075 struct mbuf *m;
1076 int s;
1077
1078 s = splnet();
1079 IFQ_POLL(&ifp->if_snd, m);
1080 splx(s);
1081
1082 if (m != NULL)
1083 revents |= events & (POLLIN|POLLRDNORM);
1084 else {
1085 simple_lock(&sc->sc_kqlock);
1086 selrecord(l, &sc->sc_rsel);
1087 simple_unlock(&sc->sc_kqlock);
1088 }
1089 }
1090 revents |= events & (POLLOUT|POLLWRNORM);
1091
1092 return (revents);
1093 }
1094
1095 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1096 tap_kqread };
1097 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1098 filt_seltrue };
1099
1100 static int
1101 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1102 {
1103 return tap_dev_kqfilter(minor(dev), kn);
1104 }
1105
1106 static int
1107 tap_fops_kqfilter(struct file *fp, struct knote *kn)
1108 {
1109 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1110 }
1111
1112 static int
1113 tap_dev_kqfilter(int unit, struct knote *kn)
1114 {
1115 struct tap_softc *sc =
1116 (struct tap_softc *)device_lookup(&tap_cd, unit);
1117
1118 if (sc == NULL)
1119 return (ENXIO);
1120
1121 switch(kn->kn_filter) {
1122 case EVFILT_READ:
1123 kn->kn_fop = &tap_read_filterops;
1124 break;
1125 case EVFILT_WRITE:
1126 kn->kn_fop = &tap_seltrue_filterops;
1127 break;
1128 default:
1129 return (1);
1130 }
1131
1132 kn->kn_hook = sc;
1133 simple_lock(&sc->sc_kqlock);
1134 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1135 simple_unlock(&sc->sc_kqlock);
1136 return (0);
1137 }
1138
1139 static void
1140 tap_kqdetach(struct knote *kn)
1141 {
1142 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1143
1144 simple_lock(&sc->sc_kqlock);
1145 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1146 simple_unlock(&sc->sc_kqlock);
1147 }
1148
1149 static int
1150 tap_kqread(struct knote *kn, long hint)
1151 {
1152 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1153 struct ifnet *ifp = &sc->sc_ec.ec_if;
1154 struct mbuf *m;
1155 int s;
1156
1157 s = splnet();
1158 IFQ_POLL(&ifp->if_snd, m);
1159
1160 if (m == NULL)
1161 kn->kn_data = 0;
1162 else
1163 kn->kn_data = m->m_pkthdr.len;
1164 splx(s);
1165 return (kn->kn_data != 0 ? 1 : 0);
1166 }
1167
1168 /*
1169 * sysctl management routines
1170 * You can set the address of an interface through:
1171 * net.link.tap.tap<number>
1172 *
1173 * Note the consistent use of tap_log in order to use
1174 * sysctl_teardown at unload time.
1175 *
1176 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1177 * blocks register a function in a special section of the kernel
1178 * (called a link set) which is used at init_sysctl() time to cycle
1179 * through all those functions to create the kernel's sysctl tree.
1180 *
1181 * It is not (currently) possible to use link sets in a LKM, so the
1182 * easiest is to simply call our own setup routine at load time.
1183 *
1184 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1185 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1186 * whole kernel sysctl tree is built, it is not possible to add any
1187 * permanent node.
1188 *
1189 * It should be noted that we're not saving the sysctlnode pointer
1190 * we are returned when creating the "tap" node. That structure
1191 * cannot be trusted once out of the calling function, as it might
1192 * get reused. So we just save the MIB number, and always give the
1193 * full path starting from the root for later calls to sysctl_createv
1194 * and sysctl_destroyv.
1195 */
1196 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1197 {
1198 const struct sysctlnode *node;
1199 int error = 0;
1200
1201 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1202 CTLFLAG_PERMANENT,
1203 CTLTYPE_NODE, "net", NULL,
1204 NULL, 0, NULL, 0,
1205 CTL_NET, CTL_EOL)) != 0)
1206 return;
1207
1208 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1209 CTLFLAG_PERMANENT,
1210 CTLTYPE_NODE, "link", NULL,
1211 NULL, 0, NULL, 0,
1212 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1213 return;
1214
1215 /*
1216 * The first four parameters of sysctl_createv are for management.
1217 *
1218 * The four that follows, here starting with a '0' for the flags,
1219 * describe the node.
1220 *
1221 * The next series of four set its value, through various possible
1222 * means.
1223 *
1224 * Last but not least, the path to the node is described. That path
1225 * is relative to the given root (third argument). Here we're
1226 * starting from the root.
1227 */
1228 if ((error = sysctl_createv(clog, 0, NULL, &node,
1229 CTLFLAG_PERMANENT,
1230 CTLTYPE_NODE, "tap", NULL,
1231 NULL, 0, NULL, 0,
1232 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1233 return;
1234 tap_node = node->sysctl_num;
1235 }
1236
1237 /*
1238 * The helper functions make Andrew Brown's interface really
1239 * shine. It makes possible to create value on the fly whether
1240 * the sysctl value is read or written.
1241 *
1242 * As shown as an example in the man page, the first step is to
1243 * create a copy of the node to have sysctl_lookup work on it.
1244 *
1245 * Here, we have more work to do than just a copy, since we have
1246 * to create the string. The first step is to collect the actual
1247 * value of the node, which is a convenient pointer to the softc
1248 * of the interface. From there we create the string and use it
1249 * as the value, but only for the *copy* of the node.
1250 *
1251 * Then we let sysctl_lookup do the magic, which consists in
1252 * setting oldp and newp as required by the operation. When the
1253 * value is read, that means that the string will be copied to
1254 * the user, and when it is written, the new value will be copied
1255 * over in the addr array.
1256 *
1257 * If newp is NULL, the user was reading the value, so we don't
1258 * have anything else to do. If a new value was written, we
1259 * have to check it.
1260 *
1261 * If it is incorrect, we can return an error and leave 'node' as
1262 * it is: since it is a copy of the actual node, the change will
1263 * be forgotten.
1264 *
1265 * Upon a correct input, we commit the change to the ifnet
1266 * structure of our interface.
1267 */
1268 static int
1269 tap_sysctl_handler(SYSCTLFN_ARGS)
1270 {
1271 struct sysctlnode node;
1272 struct tap_softc *sc;
1273 struct ifnet *ifp;
1274 int error;
1275 size_t len;
1276 char addr[3 * ETHER_ADDR_LEN];
1277
1278 node = *rnode;
1279 sc = node.sysctl_data;
1280 ifp = &sc->sc_ec.ec_if;
1281 (void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
1282 node.sysctl_data = addr;
1283 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1284 if (error || newp == NULL)
1285 return (error);
1286
1287 len = strlen(addr);
1288 if (len < 11 || len > 17)
1289 return (EINVAL);
1290
1291 /* Commit change */
1292 if (ether_nonstatic_aton(LLADDR(ifp->if_sadl), addr) != 0)
1293 return (EINVAL);
1294 return (error);
1295 }
1296