Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.29
      1 /*	$NetBSD: if_tap.c,v 1.29 2007/05/29 21:32:30 christos Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.29 2007/05/29 21:32:30 christos Exp $");
     47 
     48 #if defined(_KERNEL_OPT)
     49 #include "bpfilter.h"
     50 #include "opt_compat_netbsd.h"
     51 #endif
     52 
     53 #include <sys/param.h>
     54 #include <sys/systm.h>
     55 #include <sys/kernel.h>
     56 #include <sys/malloc.h>
     57 #include <sys/conf.h>
     58 #include <sys/device.h>
     59 #include <sys/file.h>
     60 #include <sys/filedesc.h>
     61 #include <sys/ksyms.h>
     62 #include <sys/poll.h>
     63 #include <sys/select.h>
     64 #include <sys/sockio.h>
     65 #include <sys/sysctl.h>
     66 #include <sys/kauth.h>
     67 
     68 #include <net/if.h>
     69 #include <net/if_dl.h>
     70 #include <net/if_ether.h>
     71 #include <net/if_media.h>
     72 #include <net/if_tap.h>
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #if defined(COMPAT_09) || defined(COMPAT_10) || defined(COMPAT_11) || \
     78     defined(COMPAT_12) || defined(COMPAT_13) || defined(COMPAT_14) || \
     79     defined(COMPAT_15) || defined(COMPAT_16) || defined(COMPAT_20) || \
     80     defined(COMPAT_30) || defined(COMPAT_40)
     81 #include <compat/sys/sockio.h>
     82 #endif
     83 
     84 /*
     85  * sysctl node management
     86  *
     87  * It's not really possible to use a SYSCTL_SETUP block with
     88  * current LKM implementation, so it is easier to just define
     89  * our own function.
     90  *
     91  * The handler function is a "helper" in Andrew Brown's sysctl
     92  * framework terminology.  It is used as a gateway for sysctl
     93  * requests over the nodes.
     94  *
     95  * tap_log allows the module to log creations of nodes and
     96  * destroy them all at once using sysctl_teardown.
     97  */
     98 static int tap_node;
     99 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
    100 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
    101 
    102 /*
    103  * Since we're an Ethernet device, we need the 3 following
    104  * components: a leading struct device, a struct ethercom,
    105  * and also a struct ifmedia since we don't attach a PHY to
    106  * ourselves. We could emulate one, but there's no real
    107  * point.
    108  */
    109 
    110 struct tap_softc {
    111 	struct device	sc_dev;
    112 	struct ifmedia	sc_im;
    113 	struct ethercom	sc_ec;
    114 	int		sc_flags;
    115 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    116 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    117 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    118 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    119 	struct selinfo	sc_rsel;
    120 	pid_t		sc_pgid; /* For async. IO */
    121 	struct lock	sc_rdlock;
    122 	struct simplelock	sc_kqlock;
    123 };
    124 
    125 /* autoconf(9) glue */
    126 
    127 void	tapattach(int);
    128 
    129 static int	tap_match(struct device *, struct cfdata *, void *);
    130 static void	tap_attach(struct device *, struct device *, void *);
    131 static int	tap_detach(struct device*, int);
    132 
    133 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    134     tap_match, tap_attach, tap_detach, NULL);
    135 extern struct cfdriver tap_cd;
    136 
    137 /* Real device access routines */
    138 static int	tap_dev_close(struct tap_softc *);
    139 static int	tap_dev_read(int, struct uio *, int);
    140 static int	tap_dev_write(int, struct uio *, int);
    141 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    142 static int	tap_dev_poll(int, int, struct lwp *);
    143 static int	tap_dev_kqfilter(int, struct knote *);
    144 
    145 /* Fileops access routines */
    146 static int	tap_fops_close(struct file *, struct lwp *);
    147 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    148     kauth_cred_t, int);
    149 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    150     kauth_cred_t, int);
    151 static int	tap_fops_ioctl(struct file *, u_long, void *,
    152     struct lwp *);
    153 static int	tap_fops_poll(struct file *, int, struct lwp *);
    154 static int	tap_fops_kqfilter(struct file *, struct knote *);
    155 
    156 static const struct fileops tap_fileops = {
    157 	tap_fops_read,
    158 	tap_fops_write,
    159 	tap_fops_ioctl,
    160 	fnullop_fcntl,
    161 	tap_fops_poll,
    162 	fbadop_stat,
    163 	tap_fops_close,
    164 	tap_fops_kqfilter,
    165 };
    166 
    167 /* Helper for cloning open() */
    168 static int	tap_dev_cloner(struct lwp *);
    169 
    170 /* Character device routines */
    171 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    172 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    173 static int	tap_cdev_read(dev_t, struct uio *, int);
    174 static int	tap_cdev_write(dev_t, struct uio *, int);
    175 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    176 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    177 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    178 
    179 const struct cdevsw tap_cdevsw = {
    180 	tap_cdev_open, tap_cdev_close,
    181 	tap_cdev_read, tap_cdev_write,
    182 	tap_cdev_ioctl, nostop, notty,
    183 	tap_cdev_poll, nommap,
    184 	tap_cdev_kqfilter,
    185 	D_OTHER,
    186 };
    187 
    188 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    189 
    190 /* kqueue-related routines */
    191 static void	tap_kqdetach(struct knote *);
    192 static int	tap_kqread(struct knote *, long);
    193 
    194 /*
    195  * Those are needed by the if_media interface.
    196  */
    197 
    198 static int	tap_mediachange(struct ifnet *);
    199 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    200 
    201 /*
    202  * Those are needed by the ifnet interface, and would typically be
    203  * there for any network interface driver.
    204  * Some other routines are optional: watchdog and drain.
    205  */
    206 
    207 static void	tap_start(struct ifnet *);
    208 static void	tap_stop(struct ifnet *, int);
    209 static int	tap_init(struct ifnet *);
    210 static int	tap_ioctl(struct ifnet *, u_long, void *);
    211 
    212 /* This is an internal function to keep tap_ioctl readable */
    213 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    214 
    215 /*
    216  * tap is a clonable interface, although it is highly unrealistic for
    217  * an Ethernet device.
    218  *
    219  * Here are the bits needed for a clonable interface.
    220  */
    221 static int	tap_clone_create(struct if_clone *, int);
    222 static int	tap_clone_destroy(struct ifnet *);
    223 
    224 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    225 					tap_clone_create,
    226 					tap_clone_destroy);
    227 
    228 /* Helper functionis shared by the two cloning code paths */
    229 static struct tap_softc *	tap_clone_creator(int);
    230 int	tap_clone_destroyer(struct device *);
    231 
    232 void
    233 tapattach(int n)
    234 {
    235 	int error;
    236 
    237 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    238 	if (error) {
    239 		aprint_error("%s: unable to register cfattach\n",
    240 		    tap_cd.cd_name);
    241 		(void)config_cfdriver_detach(&tap_cd);
    242 		return;
    243 	}
    244 
    245 	if_clone_attach(&tap_cloners);
    246 }
    247 
    248 /* Pretty much useless for a pseudo-device */
    249 static int
    250 tap_match(struct device *self, struct cfdata *cfdata,
    251     void *arg)
    252 {
    253 	return (1);
    254 }
    255 
    256 void
    257 tap_attach(struct device *parent, struct device *self,
    258     void *aux)
    259 {
    260 	struct tap_softc *sc = (struct tap_softc *)self;
    261 	struct ifnet *ifp;
    262 	const struct sysctlnode *node;
    263 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    264 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    265 	char enaddrstr[3 * ETHER_ADDR_LEN];
    266 	struct timeval tv;
    267 	uint32_t ui;
    268 	int error;
    269 
    270 	/*
    271 	 * In order to obtain unique initial Ethernet address on a host,
    272 	 * do some randomisation using the current uptime.  It's not meant
    273 	 * for anything but avoiding hard-coding an address.
    274 	 */
    275 	getmicrouptime(&tv);
    276 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    277 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    278 
    279 	aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    280 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    281 
    282 	/*
    283 	 * Why 1000baseT? Why not? You can add more.
    284 	 *
    285 	 * Note that there are 3 steps: init, one or several additions to
    286 	 * list of supported media, and in the end, the selection of one
    287 	 * of them.
    288 	 */
    289 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    291 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    292 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    293 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    294 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    295 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    296 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    297 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    298 
    299 	/*
    300 	 * One should note that an interface must do multicast in order
    301 	 * to support IPv6.
    302 	 */
    303 	ifp = &sc->sc_ec.ec_if;
    304 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    305 	ifp->if_softc	= sc;
    306 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    307 	ifp->if_ioctl	= tap_ioctl;
    308 	ifp->if_start	= tap_start;
    309 	ifp->if_stop	= tap_stop;
    310 	ifp->if_init	= tap_init;
    311 	IFQ_SET_READY(&ifp->if_snd);
    312 
    313 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    314 
    315 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    316 	 * being common to all network interface drivers. */
    317 	if_attach(ifp);
    318 	ether_ifattach(ifp, enaddr);
    319 
    320 	sc->sc_flags = 0;
    321 
    322 	/*
    323 	 * Add a sysctl node for that interface.
    324 	 *
    325 	 * The pointer transmitted is not a string, but instead a pointer to
    326 	 * the softc structure, which we can use to build the string value on
    327 	 * the fly in the helper function of the node.  See the comments for
    328 	 * tap_sysctl_handler for details.
    329 	 *
    330 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    331 	 * component.  However, we can allocate a number ourselves, as we are
    332 	 * the only consumer of the net.link.<iface> node.  In this case, the
    333 	 * unit number is conveniently used to number the node.  CTL_CREATE
    334 	 * would just work, too.
    335 	 */
    336 	if ((error = sysctl_createv(NULL, 0, NULL,
    337 	    &node, CTLFLAG_READWRITE,
    338 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    339 	    tap_sysctl_handler, 0, sc, 18,
    340 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    341 	    CTL_EOL)) != 0)
    342 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    343 		    sc->sc_dev.dv_xname, error);
    344 
    345 	/*
    346 	 * Initialize the two locks for the device.
    347 	 *
    348 	 * We need a lock here because even though the tap device can be
    349 	 * opened only once, the file descriptor might be passed to another
    350 	 * process, say a fork(2)ed child.
    351 	 *
    352 	 * The Giant saves us from most of the hassle, but since the read
    353 	 * operation can sleep, we don't want two processes to wake up at
    354 	 * the same moment and both try and dequeue a single packet.
    355 	 *
    356 	 * The queue for event listeners (used by kqueue(9), see below) has
    357 	 * to be protected, too, but we don't need the same level of
    358 	 * complexity for that lock, so a simple spinning lock is fine.
    359 	 */
    360 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    361 	simple_lock_init(&sc->sc_kqlock);
    362 }
    363 
    364 /*
    365  * When detaching, we do the inverse of what is done in the attach
    366  * routine, in reversed order.
    367  */
    368 static int
    369 tap_detach(struct device* self, int flags)
    370 {
    371 	struct tap_softc *sc = (struct tap_softc *)self;
    372 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    373 	int error, s;
    374 
    375 	/*
    376 	 * Some processes might be sleeping on "tap", so we have to make
    377 	 * them release their hold on the device.
    378 	 *
    379 	 * The LK_DRAIN operation will wait for every locked process to
    380 	 * release their hold.
    381 	 */
    382 	sc->sc_flags |= TAP_GOING;
    383 	s = splnet();
    384 	tap_stop(ifp, 1);
    385 	if_down(ifp);
    386 	splx(s);
    387 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    388 
    389 	/*
    390 	 * Destroying a single leaf is a very straightforward operation using
    391 	 * sysctl_destroyv.  One should be sure to always end the path with
    392 	 * CTL_EOL.
    393 	 */
    394 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    395 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    396 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    397 		    sc->sc_dev.dv_xname, error);
    398 	ether_ifdetach(ifp);
    399 	if_detach(ifp);
    400 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    401 
    402 	return (0);
    403 }
    404 
    405 /*
    406  * This function is called by the ifmedia layer to notify the driver
    407  * that the user requested a media change.  A real driver would
    408  * reconfigure the hardware.
    409  */
    410 static int
    411 tap_mediachange(struct ifnet *ifp)
    412 {
    413 	return (0);
    414 }
    415 
    416 /*
    417  * Here the user asks for the currently used media.
    418  */
    419 static void
    420 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    421 {
    422 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    423 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    424 }
    425 
    426 /*
    427  * This is the function where we SEND packets.
    428  *
    429  * There is no 'receive' equivalent.  A typical driver will get
    430  * interrupts from the hardware, and from there will inject new packets
    431  * into the network stack.
    432  *
    433  * Once handled, a packet must be freed.  A real driver might not be able
    434  * to fit all the pending packets into the hardware, and is allowed to
    435  * return before having sent all the packets.  It should then use the
    436  * if_flags flag IFF_OACTIVE to notify the upper layer.
    437  *
    438  * There are also other flags one should check, such as IFF_PAUSE.
    439  *
    440  * It is our duty to make packets available to BPF listeners.
    441  *
    442  * You should be aware that this function is called by the Ethernet layer
    443  * at splnet().
    444  *
    445  * When the device is opened, we have to pass the packet(s) to the
    446  * userland.  For that we stay in OACTIVE mode while the userland gets
    447  * the packets, and we send a signal to the processes waiting to read.
    448  *
    449  * wakeup(sc) is the counterpart to the tsleep call in
    450  * tap_dev_read, while selnotify() is used for kevent(2) and
    451  * poll(2) (which includes select(2)) listeners.
    452  */
    453 static void
    454 tap_start(struct ifnet *ifp)
    455 {
    456 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    457 	struct mbuf *m0;
    458 
    459 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    460 		/* Simply drop packets */
    461 		for(;;) {
    462 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    463 			if (m0 == NULL)
    464 				return;
    465 
    466 			ifp->if_opackets++;
    467 #if NBPFILTER > 0
    468 			if (ifp->if_bpf)
    469 				bpf_mtap(ifp->if_bpf, m0);
    470 #endif
    471 
    472 			m_freem(m0);
    473 		}
    474 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    475 		ifp->if_flags |= IFF_OACTIVE;
    476 		wakeup(sc);
    477 		selnotify(&sc->sc_rsel, 1);
    478 		if (sc->sc_flags & TAP_ASYNCIO)
    479 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    480 			    POLLIN|POLLRDNORM, NULL);
    481 	}
    482 }
    483 
    484 /*
    485  * A typical driver will only contain the following handlers for
    486  * ioctl calls, except SIOCSIFPHYADDR.
    487  * The latter is a hack I used to set the Ethernet address of the
    488  * faked device.
    489  *
    490  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    491  * called under splnet().
    492  */
    493 static int
    494 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    495 {
    496 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    497 	struct ifreq *ifr = (struct ifreq *)data;
    498 	int s, error;
    499 
    500 	s = splnet();
    501 
    502 	switch (cmd) {
    503 #ifdef OSIOCSIFMEDIA
    504 	case OSIOCSIFMEDIA:
    505 #endif
    506 	case SIOCSIFMEDIA:
    507 	case SIOCGIFMEDIA:
    508 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    509 		break;
    510 	case SIOCSIFPHYADDR:
    511 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    512 		break;
    513 	default:
    514 		error = ether_ioctl(ifp, cmd, data);
    515 		if (error == ENETRESET)
    516 			error = 0;
    517 		break;
    518 	}
    519 
    520 	splx(s);
    521 
    522 	return (error);
    523 }
    524 
    525 /*
    526  * Helper function to set Ethernet address.  This shouldn't be done there,
    527  * and should actually be available to all Ethernet drivers, real or not.
    528  */
    529 static int
    530 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    531 {
    532 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    533 
    534 	if (sa->sa_family != AF_LINK)
    535 		return (EINVAL);
    536 
    537 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    538 
    539 	return (0);
    540 }
    541 
    542 /*
    543  * _init() would typically be called when an interface goes up,
    544  * meaning it should configure itself into the state in which it
    545  * can send packets.
    546  */
    547 static int
    548 tap_init(struct ifnet *ifp)
    549 {
    550 	ifp->if_flags |= IFF_RUNNING;
    551 
    552 	tap_start(ifp);
    553 
    554 	return (0);
    555 }
    556 
    557 /*
    558  * _stop() is called when an interface goes down.  It is our
    559  * responsability to validate that state by clearing the
    560  * IFF_RUNNING flag.
    561  *
    562  * We have to wake up all the sleeping processes to have the pending
    563  * read requests cancelled.
    564  */
    565 static void
    566 tap_stop(struct ifnet *ifp, int disable)
    567 {
    568 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    569 
    570 	ifp->if_flags &= ~IFF_RUNNING;
    571 	wakeup(sc);
    572 	selnotify(&sc->sc_rsel, 1);
    573 	if (sc->sc_flags & TAP_ASYNCIO)
    574 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    575 }
    576 
    577 /*
    578  * The 'create' command of ifconfig can be used to create
    579  * any numbered instance of a given device.  Thus we have to
    580  * make sure we have enough room in cd_devs to create the
    581  * user-specified instance.  config_attach_pseudo will do this
    582  * for us.
    583  */
    584 static int
    585 tap_clone_create(struct if_clone *ifc, int unit)
    586 {
    587 	if (tap_clone_creator(unit) == NULL) {
    588 		aprint_error("%s%d: unable to attach an instance\n",
    589                     tap_cd.cd_name, unit);
    590 		return (ENXIO);
    591 	}
    592 
    593 	return (0);
    594 }
    595 
    596 /*
    597  * tap(4) can be cloned by two ways:
    598  *   using 'ifconfig tap0 create', which will use the network
    599  *     interface cloning API, and call tap_clone_create above.
    600  *   opening the cloning device node, whose minor number is TAP_CLONER.
    601  *     See below for an explanation on how this part work.
    602  */
    603 static struct tap_softc *
    604 tap_clone_creator(int unit)
    605 {
    606 	struct cfdata *cf;
    607 
    608 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    609 	cf->cf_name = tap_cd.cd_name;
    610 	cf->cf_atname = tap_ca.ca_name;
    611 	if (unit == -1) {
    612 		/* let autoconf find the first free one */
    613 		cf->cf_unit = 0;
    614 		cf->cf_fstate = FSTATE_STAR;
    615 	} else {
    616 		cf->cf_unit = unit;
    617 		cf->cf_fstate = FSTATE_NOTFOUND;
    618 	}
    619 
    620 	return (struct tap_softc *)config_attach_pseudo(cf);
    621 }
    622 
    623 /*
    624  * The clean design of if_clone and autoconf(9) makes that part
    625  * really straightforward.  The second argument of config_detach
    626  * means neither QUIET nor FORCED.
    627  */
    628 static int
    629 tap_clone_destroy(struct ifnet *ifp)
    630 {
    631 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    632 }
    633 
    634 int
    635 tap_clone_destroyer(struct device *dev)
    636 {
    637 	struct cfdata *cf = device_cfdata(dev);
    638 	int error;
    639 
    640 	if ((error = config_detach(dev, 0)) != 0)
    641 		aprint_error("%s: unable to detach instance\n",
    642 		    dev->dv_xname);
    643 	free(cf, M_DEVBUF);
    644 
    645 	return (error);
    646 }
    647 
    648 /*
    649  * tap(4) is a bit of an hybrid device.  It can be used in two different
    650  * ways:
    651  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    652  *  2. open /dev/tap, get a new interface created and read/write off it.
    653  *     That interface is destroyed when the process that had it created exits.
    654  *
    655  * The first way is managed by the cdevsw structure, and you access interfaces
    656  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    657  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    658  *
    659  * The second way is the so-called "cloning" device.  It's a special minor
    660  * number (chosen as the maximal number, to allow as much tap devices as
    661  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    662  * call ends in tap_cdev_open.  The actual place where it is handled is
    663  * tap_dev_cloner.
    664  *
    665  * An tap device cannot be opened more than once at a time, so the cdevsw
    666  * part of open() does nothing but noting that the interface is being used and
    667  * hence ready to actually handle packets.
    668  */
    669 
    670 static int
    671 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    672 {
    673 	struct tap_softc *sc;
    674 
    675 	if (minor(dev) == TAP_CLONER)
    676 		return tap_dev_cloner(l);
    677 
    678 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    679 	if (sc == NULL)
    680 		return (ENXIO);
    681 
    682 	/* The device can only be opened once */
    683 	if (sc->sc_flags & TAP_INUSE)
    684 		return (EBUSY);
    685 	sc->sc_flags |= TAP_INUSE;
    686 	return (0);
    687 }
    688 
    689 /*
    690  * There are several kinds of cloning devices, and the most simple is the one
    691  * tap(4) uses.  What it does is change the file descriptor with a new one,
    692  * with its own fileops structure (which maps to the various read, write,
    693  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    694  * then actually creates the new tap devices.
    695  *
    696  * Once those two steps are successful, we can re-wire the existing file
    697  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    698  * structure as needed (notably f_data gets filled with the fifth parameter
    699  * passed, the unit of the tap device which will allows us identifying the
    700  * device later), and returns EMOVEFD.
    701  *
    702  * That magic value is interpreted by sys_open() which then replaces the
    703  * current file descriptor by the new one (through a magic member of struct
    704  * lwp, l_dupfd).
    705  *
    706  * The tap device is flagged as being busy since it otherwise could be
    707  * externally accessed through the corresponding device node with the cdevsw
    708  * interface.
    709  */
    710 
    711 static int
    712 tap_dev_cloner(struct lwp *l)
    713 {
    714 	struct tap_softc *sc;
    715 	struct file *fp;
    716 	int error, fd;
    717 
    718 	if ((error = falloc(l, &fp, &fd)) != 0)
    719 		return (error);
    720 
    721 	if ((sc = tap_clone_creator(-1)) == NULL) {
    722 		FILE_UNUSE(fp, l);
    723 		ffree(fp);
    724 		return (ENXIO);
    725 	}
    726 
    727 	sc->sc_flags |= TAP_INUSE;
    728 
    729 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    730 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    731 }
    732 
    733 /*
    734  * While all other operations (read, write, ioctl, poll and kqfilter) are
    735  * really the same whether we are in cdevsw or fileops mode, the close()
    736  * function is slightly different in the two cases.
    737  *
    738  * As for the other, the core of it is shared in tap_dev_close.  What
    739  * it does is sufficient for the cdevsw interface, but the cloning interface
    740  * needs another thing:  the interface is destroyed when the processes that
    741  * created it closes it.
    742  */
    743 static int
    744 tap_cdev_close(dev_t dev, int flags, int fmt,
    745     struct lwp *l)
    746 {
    747 	struct tap_softc *sc =
    748 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    749 
    750 	if (sc == NULL)
    751 		return (ENXIO);
    752 
    753 	return tap_dev_close(sc);
    754 }
    755 
    756 /*
    757  * It might happen that the administrator used ifconfig to externally destroy
    758  * the interface.  In that case, tap_fops_close will be called while
    759  * tap_detach is already happening.  If we called it again from here, we
    760  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    761  */
    762 static int
    763 tap_fops_close(struct file *fp, struct lwp *l)
    764 {
    765 	int unit = (intptr_t)fp->f_data;
    766 	struct tap_softc *sc;
    767 	int error;
    768 
    769 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    770 	if (sc == NULL)
    771 		return (ENXIO);
    772 
    773 	/* tap_dev_close currently always succeeds, but it might not
    774 	 * always be the case. */
    775 	if ((error = tap_dev_close(sc)) != 0)
    776 		return (error);
    777 
    778 	/* Destroy the device now that it is no longer useful,
    779 	 * unless it's already being destroyed. */
    780 	if ((sc->sc_flags & TAP_GOING) != 0)
    781 		return (0);
    782 
    783 	return tap_clone_destroyer((struct device *)sc);
    784 }
    785 
    786 static int
    787 tap_dev_close(struct tap_softc *sc)
    788 {
    789 	struct ifnet *ifp;
    790 	int s;
    791 
    792 	s = splnet();
    793 	/* Let tap_start handle packets again */
    794 	ifp = &sc->sc_ec.ec_if;
    795 	ifp->if_flags &= ~IFF_OACTIVE;
    796 
    797 	/* Purge output queue */
    798 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    799 		struct mbuf *m;
    800 
    801 		for (;;) {
    802 			IFQ_DEQUEUE(&ifp->if_snd, m);
    803 			if (m == NULL)
    804 				break;
    805 
    806 			ifp->if_opackets++;
    807 #if NBPFILTER > 0
    808 			if (ifp->if_bpf)
    809 				bpf_mtap(ifp->if_bpf, m);
    810 #endif
    811 		}
    812 	}
    813 	splx(s);
    814 
    815 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    816 
    817 	return (0);
    818 }
    819 
    820 static int
    821 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    822 {
    823 	return tap_dev_read(minor(dev), uio, flags);
    824 }
    825 
    826 static int
    827 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    828     kauth_cred_t cred, int flags)
    829 {
    830 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    831 }
    832 
    833 static int
    834 tap_dev_read(int unit, struct uio *uio, int flags)
    835 {
    836 	struct tap_softc *sc =
    837 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    838 	struct ifnet *ifp;
    839 	struct mbuf *m, *n;
    840 	int error = 0, s;
    841 
    842 	if (sc == NULL)
    843 		return (ENXIO);
    844 
    845 	ifp = &sc->sc_ec.ec_if;
    846 	if ((ifp->if_flags & IFF_UP) == 0)
    847 		return (EHOSTDOWN);
    848 
    849 	/*
    850 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    851 	 */
    852 	if ((sc->sc_flags & TAP_NBIO) &&
    853 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    854 		return (EWOULDBLOCK);
    855 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    856 	if (error != 0)
    857 		return (error);
    858 
    859 	s = splnet();
    860 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    861 		ifp->if_flags &= ~IFF_OACTIVE;
    862 		splx(s);
    863 		/*
    864 		 * We must release the lock before sleeping, and re-acquire it
    865 		 * after.
    866 		 */
    867 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    868 		if (sc->sc_flags & TAP_NBIO)
    869 			error = EWOULDBLOCK;
    870 		else
    871 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    872 
    873 		if (error != 0)
    874 			return (error);
    875 		/* The device might have been downed */
    876 		if ((ifp->if_flags & IFF_UP) == 0)
    877 			return (EHOSTDOWN);
    878 		if ((sc->sc_flags & TAP_NBIO) &&
    879 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    880 			return (EWOULDBLOCK);
    881 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    882 		if (error != 0)
    883 			return (error);
    884 		s = splnet();
    885 	}
    886 
    887 	IFQ_DEQUEUE(&ifp->if_snd, m);
    888 	ifp->if_flags &= ~IFF_OACTIVE;
    889 	splx(s);
    890 	if (m == NULL) {
    891 		error = 0;
    892 		goto out;
    893 	}
    894 
    895 	ifp->if_opackets++;
    896 #if NBPFILTER > 0
    897 	if (ifp->if_bpf)
    898 		bpf_mtap(ifp->if_bpf, m);
    899 #endif
    900 
    901 	/*
    902 	 * One read is one packet.
    903 	 */
    904 	do {
    905 		error = uiomove(mtod(m, void *),
    906 		    min(m->m_len, uio->uio_resid), uio);
    907 		MFREE(m, n);
    908 		m = n;
    909 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    910 
    911 	if (m != NULL)
    912 		m_freem(m);
    913 
    914 out:
    915 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    916 	return (error);
    917 }
    918 
    919 static int
    920 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    921 {
    922 	return tap_dev_write(minor(dev), uio, flags);
    923 }
    924 
    925 static int
    926 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    927     kauth_cred_t cred, int flags)
    928 {
    929 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    930 }
    931 
    932 static int
    933 tap_dev_write(int unit, struct uio *uio, int flags)
    934 {
    935 	struct tap_softc *sc =
    936 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    937 	struct ifnet *ifp;
    938 	struct mbuf *m, **mp;
    939 	int error = 0;
    940 	int s;
    941 
    942 	if (sc == NULL)
    943 		return (ENXIO);
    944 
    945 	ifp = &sc->sc_ec.ec_if;
    946 
    947 	/* One write, one packet, that's the rule */
    948 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    949 	if (m == NULL) {
    950 		ifp->if_ierrors++;
    951 		return (ENOBUFS);
    952 	}
    953 	m->m_pkthdr.len = uio->uio_resid;
    954 
    955 	mp = &m;
    956 	while (error == 0 && uio->uio_resid > 0) {
    957 		if (*mp != m) {
    958 			MGET(*mp, M_DONTWAIT, MT_DATA);
    959 			if (*mp == NULL) {
    960 				error = ENOBUFS;
    961 				break;
    962 			}
    963 		}
    964 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    965 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
    966 		mp = &(*mp)->m_next;
    967 	}
    968 	if (error) {
    969 		ifp->if_ierrors++;
    970 		m_freem(m);
    971 		return (error);
    972 	}
    973 
    974 	ifp->if_ipackets++;
    975 	m->m_pkthdr.rcvif = ifp;
    976 
    977 #if NBPFILTER > 0
    978 	if (ifp->if_bpf)
    979 		bpf_mtap(ifp->if_bpf, m);
    980 #endif
    981 	s =splnet();
    982 	(*ifp->if_input)(ifp, m);
    983 	splx(s);
    984 
    985 	return (0);
    986 }
    987 
    988 static int
    989 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
    990     struct lwp *l)
    991 {
    992 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    993 }
    994 
    995 static int
    996 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    997 {
    998 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
    999 }
   1000 
   1001 static int
   1002 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1003 {
   1004 	struct tap_softc *sc =
   1005 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1006 	int error = 0;
   1007 
   1008 	if (sc == NULL)
   1009 		return (ENXIO);
   1010 
   1011 	switch (cmd) {
   1012 	case FIONREAD:
   1013 		{
   1014 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1015 			struct mbuf *m;
   1016 			int s;
   1017 
   1018 			s = splnet();
   1019 			IFQ_POLL(&ifp->if_snd, m);
   1020 
   1021 			if (m == NULL)
   1022 				*(int *)data = 0;
   1023 			else
   1024 				*(int *)data = m->m_pkthdr.len;
   1025 			splx(s);
   1026 		} break;
   1027 	case TIOCSPGRP:
   1028 	case FIOSETOWN:
   1029 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1030 		break;
   1031 	case TIOCGPGRP:
   1032 	case FIOGETOWN:
   1033 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1034 		break;
   1035 	case FIOASYNC:
   1036 		if (*(int *)data)
   1037 			sc->sc_flags |= TAP_ASYNCIO;
   1038 		else
   1039 			sc->sc_flags &= ~TAP_ASYNCIO;
   1040 		break;
   1041 	case FIONBIO:
   1042 		if (*(int *)data)
   1043 			sc->sc_flags |= TAP_NBIO;
   1044 		else
   1045 			sc->sc_flags &= ~TAP_NBIO;
   1046 		break;
   1047 #ifdef OTAPGIFNAME
   1048 	case OTAPGIFNAME:
   1049 #endif
   1050 	case TAPGIFNAME:
   1051 		{
   1052 			struct ifreq *ifr = (struct ifreq *)data;
   1053 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1054 
   1055 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1056 		} break;
   1057 	default:
   1058 		error = ENOTTY;
   1059 		break;
   1060 	}
   1061 
   1062 	return (0);
   1063 }
   1064 
   1065 static int
   1066 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1067 {
   1068 	return tap_dev_poll(minor(dev), events, l);
   1069 }
   1070 
   1071 static int
   1072 tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1073 {
   1074 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1075 }
   1076 
   1077 static int
   1078 tap_dev_poll(int unit, int events, struct lwp *l)
   1079 {
   1080 	struct tap_softc *sc =
   1081 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1082 	int revents = 0;
   1083 
   1084 	if (sc == NULL)
   1085 		return POLLERR;
   1086 
   1087 	if (events & (POLLIN|POLLRDNORM)) {
   1088 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1089 		struct mbuf *m;
   1090 		int s;
   1091 
   1092 		s = splnet();
   1093 		IFQ_POLL(&ifp->if_snd, m);
   1094 		splx(s);
   1095 
   1096 		if (m != NULL)
   1097 			revents |= events & (POLLIN|POLLRDNORM);
   1098 		else {
   1099 			simple_lock(&sc->sc_kqlock);
   1100 			selrecord(l, &sc->sc_rsel);
   1101 			simple_unlock(&sc->sc_kqlock);
   1102 		}
   1103 	}
   1104 	revents |= events & (POLLOUT|POLLWRNORM);
   1105 
   1106 	return (revents);
   1107 }
   1108 
   1109 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1110 	tap_kqread };
   1111 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1112 	filt_seltrue };
   1113 
   1114 static int
   1115 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1116 {
   1117 	return tap_dev_kqfilter(minor(dev), kn);
   1118 }
   1119 
   1120 static int
   1121 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1122 {
   1123 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1124 }
   1125 
   1126 static int
   1127 tap_dev_kqfilter(int unit, struct knote *kn)
   1128 {
   1129 	struct tap_softc *sc =
   1130 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1131 
   1132 	if (sc == NULL)
   1133 		return (ENXIO);
   1134 
   1135 	switch(kn->kn_filter) {
   1136 	case EVFILT_READ:
   1137 		kn->kn_fop = &tap_read_filterops;
   1138 		break;
   1139 	case EVFILT_WRITE:
   1140 		kn->kn_fop = &tap_seltrue_filterops;
   1141 		break;
   1142 	default:
   1143 		return (1);
   1144 	}
   1145 
   1146 	kn->kn_hook = sc;
   1147 	simple_lock(&sc->sc_kqlock);
   1148 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1149 	simple_unlock(&sc->sc_kqlock);
   1150 	return (0);
   1151 }
   1152 
   1153 static void
   1154 tap_kqdetach(struct knote *kn)
   1155 {
   1156 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1157 
   1158 	simple_lock(&sc->sc_kqlock);
   1159 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1160 	simple_unlock(&sc->sc_kqlock);
   1161 }
   1162 
   1163 static int
   1164 tap_kqread(struct knote *kn, long hint)
   1165 {
   1166 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1167 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1168 	struct mbuf *m;
   1169 	int s;
   1170 
   1171 	s = splnet();
   1172 	IFQ_POLL(&ifp->if_snd, m);
   1173 
   1174 	if (m == NULL)
   1175 		kn->kn_data = 0;
   1176 	else
   1177 		kn->kn_data = m->m_pkthdr.len;
   1178 	splx(s);
   1179 	return (kn->kn_data != 0 ? 1 : 0);
   1180 }
   1181 
   1182 /*
   1183  * sysctl management routines
   1184  * You can set the address of an interface through:
   1185  * net.link.tap.tap<number>
   1186  *
   1187  * Note the consistent use of tap_log in order to use
   1188  * sysctl_teardown at unload time.
   1189  *
   1190  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1191  * blocks register a function in a special section of the kernel
   1192  * (called a link set) which is used at init_sysctl() time to cycle
   1193  * through all those functions to create the kernel's sysctl tree.
   1194  *
   1195  * It is not (currently) possible to use link sets in a LKM, so the
   1196  * easiest is to simply call our own setup routine at load time.
   1197  *
   1198  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1199  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1200  * whole kernel sysctl tree is built, it is not possible to add any
   1201  * permanent node.
   1202  *
   1203  * It should be noted that we're not saving the sysctlnode pointer
   1204  * we are returned when creating the "tap" node.  That structure
   1205  * cannot be trusted once out of the calling function, as it might
   1206  * get reused.  So we just save the MIB number, and always give the
   1207  * full path starting from the root for later calls to sysctl_createv
   1208  * and sysctl_destroyv.
   1209  */
   1210 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1211 {
   1212 	const struct sysctlnode *node;
   1213 	int error = 0;
   1214 
   1215 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1216 	    CTLFLAG_PERMANENT,
   1217 	    CTLTYPE_NODE, "net", NULL,
   1218 	    NULL, 0, NULL, 0,
   1219 	    CTL_NET, CTL_EOL)) != 0)
   1220 		return;
   1221 
   1222 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1223 	    CTLFLAG_PERMANENT,
   1224 	    CTLTYPE_NODE, "link", NULL,
   1225 	    NULL, 0, NULL, 0,
   1226 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1227 		return;
   1228 
   1229 	/*
   1230 	 * The first four parameters of sysctl_createv are for management.
   1231 	 *
   1232 	 * The four that follows, here starting with a '0' for the flags,
   1233 	 * describe the node.
   1234 	 *
   1235 	 * The next series of four set its value, through various possible
   1236 	 * means.
   1237 	 *
   1238 	 * Last but not least, the path to the node is described.  That path
   1239 	 * is relative to the given root (third argument).  Here we're
   1240 	 * starting from the root.
   1241 	 */
   1242 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1243 	    CTLFLAG_PERMANENT,
   1244 	    CTLTYPE_NODE, "tap", NULL,
   1245 	    NULL, 0, NULL, 0,
   1246 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1247 		return;
   1248 	tap_node = node->sysctl_num;
   1249 }
   1250 
   1251 /*
   1252  * The helper functions make Andrew Brown's interface really
   1253  * shine.  It makes possible to create value on the fly whether
   1254  * the sysctl value is read or written.
   1255  *
   1256  * As shown as an example in the man page, the first step is to
   1257  * create a copy of the node to have sysctl_lookup work on it.
   1258  *
   1259  * Here, we have more work to do than just a copy, since we have
   1260  * to create the string.  The first step is to collect the actual
   1261  * value of the node, which is a convenient pointer to the softc
   1262  * of the interface.  From there we create the string and use it
   1263  * as the value, but only for the *copy* of the node.
   1264  *
   1265  * Then we let sysctl_lookup do the magic, which consists in
   1266  * setting oldp and newp as required by the operation.  When the
   1267  * value is read, that means that the string will be copied to
   1268  * the user, and when it is written, the new value will be copied
   1269  * over in the addr array.
   1270  *
   1271  * If newp is NULL, the user was reading the value, so we don't
   1272  * have anything else to do.  If a new value was written, we
   1273  * have to check it.
   1274  *
   1275  * If it is incorrect, we can return an error and leave 'node' as
   1276  * it is:  since it is a copy of the actual node, the change will
   1277  * be forgotten.
   1278  *
   1279  * Upon a correct input, we commit the change to the ifnet
   1280  * structure of our interface.
   1281  */
   1282 static int
   1283 tap_sysctl_handler(SYSCTLFN_ARGS)
   1284 {
   1285 	struct sysctlnode node;
   1286 	struct tap_softc *sc;
   1287 	struct ifnet *ifp;
   1288 	int error;
   1289 	size_t len;
   1290 	char addr[3 * ETHER_ADDR_LEN];
   1291 
   1292 	node = *rnode;
   1293 	sc = node.sysctl_data;
   1294 	ifp = &sc->sc_ec.ec_if;
   1295 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
   1296 	node.sysctl_data = addr;
   1297 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1298 	if (error || newp == NULL)
   1299 		return (error);
   1300 
   1301 	len = strlen(addr);
   1302 	if (len < 11 || len > 17)
   1303 		return (EINVAL);
   1304 
   1305 	/* Commit change */
   1306 	if (ether_nonstatic_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1307 		return (EINVAL);
   1308 	return (error);
   1309 }
   1310