Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.31
      1 /*	$NetBSD: if_tap.c,v 1.31 2007/08/26 22:59:08 dyoung Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.31 2007/08/26 22:59:08 dyoung Exp $");
     47 
     48 #if defined(_KERNEL_OPT)
     49 #include "bpfilter.h"
     50 #endif
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/conf.h>
     57 #include <sys/device.h>
     58 #include <sys/file.h>
     59 #include <sys/filedesc.h>
     60 #include <sys/ksyms.h>
     61 #include <sys/poll.h>
     62 #include <sys/select.h>
     63 #include <sys/sockio.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/kauth.h>
     66 
     67 #include <net/if.h>
     68 #include <net/if_dl.h>
     69 #include <net/if_ether.h>
     70 #include <net/if_media.h>
     71 #include <net/if_tap.h>
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 #include <compat/sys/sockio.h>
     77 
     78 /*
     79  * sysctl node management
     80  *
     81  * It's not really possible to use a SYSCTL_SETUP block with
     82  * current LKM implementation, so it is easier to just define
     83  * our own function.
     84  *
     85  * The handler function is a "helper" in Andrew Brown's sysctl
     86  * framework terminology.  It is used as a gateway for sysctl
     87  * requests over the nodes.
     88  *
     89  * tap_log allows the module to log creations of nodes and
     90  * destroy them all at once using sysctl_teardown.
     91  */
     92 static int tap_node;
     93 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     94 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     95 
     96 /*
     97  * Since we're an Ethernet device, we need the 3 following
     98  * components: a leading struct device, a struct ethercom,
     99  * and also a struct ifmedia since we don't attach a PHY to
    100  * ourselves. We could emulate one, but there's no real
    101  * point.
    102  */
    103 
    104 struct tap_softc {
    105 	struct device	sc_dev;
    106 	struct ifmedia	sc_im;
    107 	struct ethercom	sc_ec;
    108 	int		sc_flags;
    109 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    110 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    111 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    112 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    113 	struct selinfo	sc_rsel;
    114 	pid_t		sc_pgid; /* For async. IO */
    115 	struct lock	sc_rdlock;
    116 	struct simplelock	sc_kqlock;
    117 };
    118 
    119 /* autoconf(9) glue */
    120 
    121 void	tapattach(int);
    122 
    123 static int	tap_match(struct device *, struct cfdata *, void *);
    124 static void	tap_attach(struct device *, struct device *, void *);
    125 static int	tap_detach(struct device*, int);
    126 
    127 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    128     tap_match, tap_attach, tap_detach, NULL);
    129 extern struct cfdriver tap_cd;
    130 
    131 /* Real device access routines */
    132 static int	tap_dev_close(struct tap_softc *);
    133 static int	tap_dev_read(int, struct uio *, int);
    134 static int	tap_dev_write(int, struct uio *, int);
    135 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    136 static int	tap_dev_poll(int, int, struct lwp *);
    137 static int	tap_dev_kqfilter(int, struct knote *);
    138 
    139 /* Fileops access routines */
    140 static int	tap_fops_close(struct file *, struct lwp *);
    141 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    142     kauth_cred_t, int);
    143 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_ioctl(struct file *, u_long, void *,
    146     struct lwp *);
    147 static int	tap_fops_poll(struct file *, int, struct lwp *);
    148 static int	tap_fops_kqfilter(struct file *, struct knote *);
    149 
    150 static const struct fileops tap_fileops = {
    151 	tap_fops_read,
    152 	tap_fops_write,
    153 	tap_fops_ioctl,
    154 	fnullop_fcntl,
    155 	tap_fops_poll,
    156 	fbadop_stat,
    157 	tap_fops_close,
    158 	tap_fops_kqfilter,
    159 };
    160 
    161 /* Helper for cloning open() */
    162 static int	tap_dev_cloner(struct lwp *);
    163 
    164 /* Character device routines */
    165 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    166 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    167 static int	tap_cdev_read(dev_t, struct uio *, int);
    168 static int	tap_cdev_write(dev_t, struct uio *, int);
    169 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    170 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    171 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    172 
    173 const struct cdevsw tap_cdevsw = {
    174 	tap_cdev_open, tap_cdev_close,
    175 	tap_cdev_read, tap_cdev_write,
    176 	tap_cdev_ioctl, nostop, notty,
    177 	tap_cdev_poll, nommap,
    178 	tap_cdev_kqfilter,
    179 	D_OTHER,
    180 };
    181 
    182 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    183 
    184 /* kqueue-related routines */
    185 static void	tap_kqdetach(struct knote *);
    186 static int	tap_kqread(struct knote *, long);
    187 
    188 /*
    189  * Those are needed by the if_media interface.
    190  */
    191 
    192 static int	tap_mediachange(struct ifnet *);
    193 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    194 
    195 /*
    196  * Those are needed by the ifnet interface, and would typically be
    197  * there for any network interface driver.
    198  * Some other routines are optional: watchdog and drain.
    199  */
    200 
    201 static void	tap_start(struct ifnet *);
    202 static void	tap_stop(struct ifnet *, int);
    203 static int	tap_init(struct ifnet *);
    204 static int	tap_ioctl(struct ifnet *, u_long, void *);
    205 
    206 /* This is an internal function to keep tap_ioctl readable */
    207 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    208 
    209 /*
    210  * tap is a clonable interface, although it is highly unrealistic for
    211  * an Ethernet device.
    212  *
    213  * Here are the bits needed for a clonable interface.
    214  */
    215 static int	tap_clone_create(struct if_clone *, int);
    216 static int	tap_clone_destroy(struct ifnet *);
    217 
    218 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    219 					tap_clone_create,
    220 					tap_clone_destroy);
    221 
    222 /* Helper functionis shared by the two cloning code paths */
    223 static struct tap_softc *	tap_clone_creator(int);
    224 int	tap_clone_destroyer(struct device *);
    225 
    226 void
    227 tapattach(int n)
    228 {
    229 	int error;
    230 
    231 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    232 	if (error) {
    233 		aprint_error("%s: unable to register cfattach\n",
    234 		    tap_cd.cd_name);
    235 		(void)config_cfdriver_detach(&tap_cd);
    236 		return;
    237 	}
    238 
    239 	if_clone_attach(&tap_cloners);
    240 }
    241 
    242 /* Pretty much useless for a pseudo-device */
    243 static int
    244 tap_match(struct device *self, struct cfdata *cfdata,
    245     void *arg)
    246 {
    247 	return (1);
    248 }
    249 
    250 void
    251 tap_attach(struct device *parent, struct device *self,
    252     void *aux)
    253 {
    254 	struct tap_softc *sc = (struct tap_softc *)self;
    255 	struct ifnet *ifp;
    256 	const struct sysctlnode *node;
    257 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    258 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    259 	char enaddrstr[3 * ETHER_ADDR_LEN];
    260 	struct timeval tv;
    261 	uint32_t ui;
    262 	int error;
    263 
    264 	/*
    265 	 * In order to obtain unique initial Ethernet address on a host,
    266 	 * do some randomisation using the current uptime.  It's not meant
    267 	 * for anything but avoiding hard-coding an address.
    268 	 */
    269 	getmicrouptime(&tv);
    270 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    271 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    272 
    273 	aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    274 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    275 
    276 	/*
    277 	 * Why 1000baseT? Why not? You can add more.
    278 	 *
    279 	 * Note that there are 3 steps: init, one or several additions to
    280 	 * list of supported media, and in the end, the selection of one
    281 	 * of them.
    282 	 */
    283 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    284 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    288 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    291 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    292 
    293 	/*
    294 	 * One should note that an interface must do multicast in order
    295 	 * to support IPv6.
    296 	 */
    297 	ifp = &sc->sc_ec.ec_if;
    298 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    299 	ifp->if_softc	= sc;
    300 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    301 	ifp->if_ioctl	= tap_ioctl;
    302 	ifp->if_start	= tap_start;
    303 	ifp->if_stop	= tap_stop;
    304 	ifp->if_init	= tap_init;
    305 	IFQ_SET_READY(&ifp->if_snd);
    306 
    307 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    308 
    309 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    310 	 * being common to all network interface drivers. */
    311 	if_attach(ifp);
    312 	ether_ifattach(ifp, enaddr);
    313 
    314 	sc->sc_flags = 0;
    315 
    316 	/*
    317 	 * Add a sysctl node for that interface.
    318 	 *
    319 	 * The pointer transmitted is not a string, but instead a pointer to
    320 	 * the softc structure, which we can use to build the string value on
    321 	 * the fly in the helper function of the node.  See the comments for
    322 	 * tap_sysctl_handler for details.
    323 	 *
    324 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    325 	 * component.  However, we can allocate a number ourselves, as we are
    326 	 * the only consumer of the net.link.<iface> node.  In this case, the
    327 	 * unit number is conveniently used to number the node.  CTL_CREATE
    328 	 * would just work, too.
    329 	 */
    330 	if ((error = sysctl_createv(NULL, 0, NULL,
    331 	    &node, CTLFLAG_READWRITE,
    332 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    333 	    tap_sysctl_handler, 0, sc, 18,
    334 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    335 	    CTL_EOL)) != 0)
    336 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    337 		    sc->sc_dev.dv_xname, error);
    338 
    339 	/*
    340 	 * Initialize the two locks for the device.
    341 	 *
    342 	 * We need a lock here because even though the tap device can be
    343 	 * opened only once, the file descriptor might be passed to another
    344 	 * process, say a fork(2)ed child.
    345 	 *
    346 	 * The Giant saves us from most of the hassle, but since the read
    347 	 * operation can sleep, we don't want two processes to wake up at
    348 	 * the same moment and both try and dequeue a single packet.
    349 	 *
    350 	 * The queue for event listeners (used by kqueue(9), see below) has
    351 	 * to be protected, too, but we don't need the same level of
    352 	 * complexity for that lock, so a simple spinning lock is fine.
    353 	 */
    354 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    355 	simple_lock_init(&sc->sc_kqlock);
    356 }
    357 
    358 /*
    359  * When detaching, we do the inverse of what is done in the attach
    360  * routine, in reversed order.
    361  */
    362 static int
    363 tap_detach(struct device* self, int flags)
    364 {
    365 	struct tap_softc *sc = (struct tap_softc *)self;
    366 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    367 	int error, s;
    368 
    369 	/*
    370 	 * Some processes might be sleeping on "tap", so we have to make
    371 	 * them release their hold on the device.
    372 	 *
    373 	 * The LK_DRAIN operation will wait for every locked process to
    374 	 * release their hold.
    375 	 */
    376 	sc->sc_flags |= TAP_GOING;
    377 	s = splnet();
    378 	tap_stop(ifp, 1);
    379 	if_down(ifp);
    380 	splx(s);
    381 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    382 
    383 	/*
    384 	 * Destroying a single leaf is a very straightforward operation using
    385 	 * sysctl_destroyv.  One should be sure to always end the path with
    386 	 * CTL_EOL.
    387 	 */
    388 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    389 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    390 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    391 		    sc->sc_dev.dv_xname, error);
    392 	ether_ifdetach(ifp);
    393 	if_detach(ifp);
    394 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    395 
    396 	return (0);
    397 }
    398 
    399 /*
    400  * This function is called by the ifmedia layer to notify the driver
    401  * that the user requested a media change.  A real driver would
    402  * reconfigure the hardware.
    403  */
    404 static int
    405 tap_mediachange(struct ifnet *ifp)
    406 {
    407 	return (0);
    408 }
    409 
    410 /*
    411  * Here the user asks for the currently used media.
    412  */
    413 static void
    414 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    415 {
    416 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    417 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    418 }
    419 
    420 /*
    421  * This is the function where we SEND packets.
    422  *
    423  * There is no 'receive' equivalent.  A typical driver will get
    424  * interrupts from the hardware, and from there will inject new packets
    425  * into the network stack.
    426  *
    427  * Once handled, a packet must be freed.  A real driver might not be able
    428  * to fit all the pending packets into the hardware, and is allowed to
    429  * return before having sent all the packets.  It should then use the
    430  * if_flags flag IFF_OACTIVE to notify the upper layer.
    431  *
    432  * There are also other flags one should check, such as IFF_PAUSE.
    433  *
    434  * It is our duty to make packets available to BPF listeners.
    435  *
    436  * You should be aware that this function is called by the Ethernet layer
    437  * at splnet().
    438  *
    439  * When the device is opened, we have to pass the packet(s) to the
    440  * userland.  For that we stay in OACTIVE mode while the userland gets
    441  * the packets, and we send a signal to the processes waiting to read.
    442  *
    443  * wakeup(sc) is the counterpart to the tsleep call in
    444  * tap_dev_read, while selnotify() is used for kevent(2) and
    445  * poll(2) (which includes select(2)) listeners.
    446  */
    447 static void
    448 tap_start(struct ifnet *ifp)
    449 {
    450 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    451 	struct mbuf *m0;
    452 
    453 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    454 		/* Simply drop packets */
    455 		for(;;) {
    456 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    457 			if (m0 == NULL)
    458 				return;
    459 
    460 			ifp->if_opackets++;
    461 #if NBPFILTER > 0
    462 			if (ifp->if_bpf)
    463 				bpf_mtap(ifp->if_bpf, m0);
    464 #endif
    465 
    466 			m_freem(m0);
    467 		}
    468 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    469 		ifp->if_flags |= IFF_OACTIVE;
    470 		wakeup(sc);
    471 		selnotify(&sc->sc_rsel, 1);
    472 		if (sc->sc_flags & TAP_ASYNCIO)
    473 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    474 			    POLLIN|POLLRDNORM, NULL);
    475 	}
    476 }
    477 
    478 /*
    479  * A typical driver will only contain the following handlers for
    480  * ioctl calls, except SIOCSIFPHYADDR.
    481  * The latter is a hack I used to set the Ethernet address of the
    482  * faked device.
    483  *
    484  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    485  * called under splnet().
    486  */
    487 static int
    488 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    489 {
    490 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    491 	struct ifreq *ifr = (struct ifreq *)data;
    492 	int s, error;
    493 
    494 	s = splnet();
    495 
    496 	switch (cmd) {
    497 #ifdef OSIOCSIFMEDIA
    498 	case OSIOCSIFMEDIA:
    499 #endif
    500 	case SIOCSIFMEDIA:
    501 	case SIOCGIFMEDIA:
    502 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    503 		break;
    504 	case SIOCSIFPHYADDR:
    505 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    506 		break;
    507 	default:
    508 		error = ether_ioctl(ifp, cmd, data);
    509 		if (error == ENETRESET)
    510 			error = 0;
    511 		break;
    512 	}
    513 
    514 	splx(s);
    515 
    516 	return (error);
    517 }
    518 
    519 /*
    520  * Helper function to set Ethernet address.  This shouldn't be done there,
    521  * and should actually be available to all Ethernet drivers, real or not.
    522  */
    523 static int
    524 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    525 {
    526 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    527 
    528 	if (sa->sa_family != AF_LINK)
    529 		return (EINVAL);
    530 
    531 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    532 
    533 	return (0);
    534 }
    535 
    536 /*
    537  * _init() would typically be called when an interface goes up,
    538  * meaning it should configure itself into the state in which it
    539  * can send packets.
    540  */
    541 static int
    542 tap_init(struct ifnet *ifp)
    543 {
    544 	ifp->if_flags |= IFF_RUNNING;
    545 
    546 	tap_start(ifp);
    547 
    548 	return (0);
    549 }
    550 
    551 /*
    552  * _stop() is called when an interface goes down.  It is our
    553  * responsability to validate that state by clearing the
    554  * IFF_RUNNING flag.
    555  *
    556  * We have to wake up all the sleeping processes to have the pending
    557  * read requests cancelled.
    558  */
    559 static void
    560 tap_stop(struct ifnet *ifp, int disable)
    561 {
    562 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    563 
    564 	ifp->if_flags &= ~IFF_RUNNING;
    565 	wakeup(sc);
    566 	selnotify(&sc->sc_rsel, 1);
    567 	if (sc->sc_flags & TAP_ASYNCIO)
    568 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    569 }
    570 
    571 /*
    572  * The 'create' command of ifconfig can be used to create
    573  * any numbered instance of a given device.  Thus we have to
    574  * make sure we have enough room in cd_devs to create the
    575  * user-specified instance.  config_attach_pseudo will do this
    576  * for us.
    577  */
    578 static int
    579 tap_clone_create(struct if_clone *ifc, int unit)
    580 {
    581 	if (tap_clone_creator(unit) == NULL) {
    582 		aprint_error("%s%d: unable to attach an instance\n",
    583                     tap_cd.cd_name, unit);
    584 		return (ENXIO);
    585 	}
    586 
    587 	return (0);
    588 }
    589 
    590 /*
    591  * tap(4) can be cloned by two ways:
    592  *   using 'ifconfig tap0 create', which will use the network
    593  *     interface cloning API, and call tap_clone_create above.
    594  *   opening the cloning device node, whose minor number is TAP_CLONER.
    595  *     See below for an explanation on how this part work.
    596  */
    597 static struct tap_softc *
    598 tap_clone_creator(int unit)
    599 {
    600 	struct cfdata *cf;
    601 
    602 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    603 	cf->cf_name = tap_cd.cd_name;
    604 	cf->cf_atname = tap_ca.ca_name;
    605 	if (unit == -1) {
    606 		/* let autoconf find the first free one */
    607 		cf->cf_unit = 0;
    608 		cf->cf_fstate = FSTATE_STAR;
    609 	} else {
    610 		cf->cf_unit = unit;
    611 		cf->cf_fstate = FSTATE_NOTFOUND;
    612 	}
    613 
    614 	return (struct tap_softc *)config_attach_pseudo(cf);
    615 }
    616 
    617 /*
    618  * The clean design of if_clone and autoconf(9) makes that part
    619  * really straightforward.  The second argument of config_detach
    620  * means neither QUIET nor FORCED.
    621  */
    622 static int
    623 tap_clone_destroy(struct ifnet *ifp)
    624 {
    625 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    626 }
    627 
    628 int
    629 tap_clone_destroyer(struct device *dev)
    630 {
    631 	struct cfdata *cf = device_cfdata(dev);
    632 	int error;
    633 
    634 	if ((error = config_detach(dev, 0)) != 0)
    635 		aprint_error("%s: unable to detach instance\n",
    636 		    dev->dv_xname);
    637 	free(cf, M_DEVBUF);
    638 
    639 	return (error);
    640 }
    641 
    642 /*
    643  * tap(4) is a bit of an hybrid device.  It can be used in two different
    644  * ways:
    645  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    646  *  2. open /dev/tap, get a new interface created and read/write off it.
    647  *     That interface is destroyed when the process that had it created exits.
    648  *
    649  * The first way is managed by the cdevsw structure, and you access interfaces
    650  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    651  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    652  *
    653  * The second way is the so-called "cloning" device.  It's a special minor
    654  * number (chosen as the maximal number, to allow as much tap devices as
    655  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    656  * call ends in tap_cdev_open.  The actual place where it is handled is
    657  * tap_dev_cloner.
    658  *
    659  * An tap device cannot be opened more than once at a time, so the cdevsw
    660  * part of open() does nothing but noting that the interface is being used and
    661  * hence ready to actually handle packets.
    662  */
    663 
    664 static int
    665 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    666 {
    667 	struct tap_softc *sc;
    668 
    669 	if (minor(dev) == TAP_CLONER)
    670 		return tap_dev_cloner(l);
    671 
    672 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    673 	if (sc == NULL)
    674 		return (ENXIO);
    675 
    676 	/* The device can only be opened once */
    677 	if (sc->sc_flags & TAP_INUSE)
    678 		return (EBUSY);
    679 	sc->sc_flags |= TAP_INUSE;
    680 	return (0);
    681 }
    682 
    683 /*
    684  * There are several kinds of cloning devices, and the most simple is the one
    685  * tap(4) uses.  What it does is change the file descriptor with a new one,
    686  * with its own fileops structure (which maps to the various read, write,
    687  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    688  * then actually creates the new tap devices.
    689  *
    690  * Once those two steps are successful, we can re-wire the existing file
    691  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    692  * structure as needed (notably f_data gets filled with the fifth parameter
    693  * passed, the unit of the tap device which will allows us identifying the
    694  * device later), and returns EMOVEFD.
    695  *
    696  * That magic value is interpreted by sys_open() which then replaces the
    697  * current file descriptor by the new one (through a magic member of struct
    698  * lwp, l_dupfd).
    699  *
    700  * The tap device is flagged as being busy since it otherwise could be
    701  * externally accessed through the corresponding device node with the cdevsw
    702  * interface.
    703  */
    704 
    705 static int
    706 tap_dev_cloner(struct lwp *l)
    707 {
    708 	struct tap_softc *sc;
    709 	struct file *fp;
    710 	int error, fd;
    711 
    712 	if ((error = falloc(l, &fp, &fd)) != 0)
    713 		return (error);
    714 
    715 	if ((sc = tap_clone_creator(-1)) == NULL) {
    716 		FILE_UNUSE(fp, l);
    717 		ffree(fp);
    718 		return (ENXIO);
    719 	}
    720 
    721 	sc->sc_flags |= TAP_INUSE;
    722 
    723 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    724 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    725 }
    726 
    727 /*
    728  * While all other operations (read, write, ioctl, poll and kqfilter) are
    729  * really the same whether we are in cdevsw or fileops mode, the close()
    730  * function is slightly different in the two cases.
    731  *
    732  * As for the other, the core of it is shared in tap_dev_close.  What
    733  * it does is sufficient for the cdevsw interface, but the cloning interface
    734  * needs another thing:  the interface is destroyed when the processes that
    735  * created it closes it.
    736  */
    737 static int
    738 tap_cdev_close(dev_t dev, int flags, int fmt,
    739     struct lwp *l)
    740 {
    741 	struct tap_softc *sc =
    742 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    743 
    744 	if (sc == NULL)
    745 		return (ENXIO);
    746 
    747 	return tap_dev_close(sc);
    748 }
    749 
    750 /*
    751  * It might happen that the administrator used ifconfig to externally destroy
    752  * the interface.  In that case, tap_fops_close will be called while
    753  * tap_detach is already happening.  If we called it again from here, we
    754  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    755  */
    756 static int
    757 tap_fops_close(struct file *fp, struct lwp *l)
    758 {
    759 	int unit = (intptr_t)fp->f_data;
    760 	struct tap_softc *sc;
    761 	int error;
    762 
    763 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    764 	if (sc == NULL)
    765 		return (ENXIO);
    766 
    767 	/* tap_dev_close currently always succeeds, but it might not
    768 	 * always be the case. */
    769 	if ((error = tap_dev_close(sc)) != 0)
    770 		return (error);
    771 
    772 	/* Destroy the device now that it is no longer useful,
    773 	 * unless it's already being destroyed. */
    774 	if ((sc->sc_flags & TAP_GOING) != 0)
    775 		return (0);
    776 
    777 	return tap_clone_destroyer((struct device *)sc);
    778 }
    779 
    780 static int
    781 tap_dev_close(struct tap_softc *sc)
    782 {
    783 	struct ifnet *ifp;
    784 	int s;
    785 
    786 	s = splnet();
    787 	/* Let tap_start handle packets again */
    788 	ifp = &sc->sc_ec.ec_if;
    789 	ifp->if_flags &= ~IFF_OACTIVE;
    790 
    791 	/* Purge output queue */
    792 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    793 		struct mbuf *m;
    794 
    795 		for (;;) {
    796 			IFQ_DEQUEUE(&ifp->if_snd, m);
    797 			if (m == NULL)
    798 				break;
    799 
    800 			ifp->if_opackets++;
    801 #if NBPFILTER > 0
    802 			if (ifp->if_bpf)
    803 				bpf_mtap(ifp->if_bpf, m);
    804 #endif
    805 		}
    806 	}
    807 	splx(s);
    808 
    809 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    810 
    811 	return (0);
    812 }
    813 
    814 static int
    815 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    816 {
    817 	return tap_dev_read(minor(dev), uio, flags);
    818 }
    819 
    820 static int
    821 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    822     kauth_cred_t cred, int flags)
    823 {
    824 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    825 }
    826 
    827 static int
    828 tap_dev_read(int unit, struct uio *uio, int flags)
    829 {
    830 	struct tap_softc *sc =
    831 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    832 	struct ifnet *ifp;
    833 	struct mbuf *m, *n;
    834 	int error = 0, s;
    835 
    836 	if (sc == NULL)
    837 		return (ENXIO);
    838 
    839 	ifp = &sc->sc_ec.ec_if;
    840 	if ((ifp->if_flags & IFF_UP) == 0)
    841 		return (EHOSTDOWN);
    842 
    843 	/*
    844 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    845 	 */
    846 	if ((sc->sc_flags & TAP_NBIO) &&
    847 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    848 		return (EWOULDBLOCK);
    849 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    850 	if (error != 0)
    851 		return (error);
    852 
    853 	s = splnet();
    854 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    855 		ifp->if_flags &= ~IFF_OACTIVE;
    856 		splx(s);
    857 		/*
    858 		 * We must release the lock before sleeping, and re-acquire it
    859 		 * after.
    860 		 */
    861 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    862 		if (sc->sc_flags & TAP_NBIO)
    863 			error = EWOULDBLOCK;
    864 		else
    865 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    866 
    867 		if (error != 0)
    868 			return (error);
    869 		/* The device might have been downed */
    870 		if ((ifp->if_flags & IFF_UP) == 0)
    871 			return (EHOSTDOWN);
    872 		if ((sc->sc_flags & TAP_NBIO) &&
    873 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    874 			return (EWOULDBLOCK);
    875 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    876 		if (error != 0)
    877 			return (error);
    878 		s = splnet();
    879 	}
    880 
    881 	IFQ_DEQUEUE(&ifp->if_snd, m);
    882 	ifp->if_flags &= ~IFF_OACTIVE;
    883 	splx(s);
    884 	if (m == NULL) {
    885 		error = 0;
    886 		goto out;
    887 	}
    888 
    889 	ifp->if_opackets++;
    890 #if NBPFILTER > 0
    891 	if (ifp->if_bpf)
    892 		bpf_mtap(ifp->if_bpf, m);
    893 #endif
    894 
    895 	/*
    896 	 * One read is one packet.
    897 	 */
    898 	do {
    899 		error = uiomove(mtod(m, void *),
    900 		    min(m->m_len, uio->uio_resid), uio);
    901 		MFREE(m, n);
    902 		m = n;
    903 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    904 
    905 	if (m != NULL)
    906 		m_freem(m);
    907 
    908 out:
    909 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    910 	return (error);
    911 }
    912 
    913 static int
    914 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    915 {
    916 	return tap_dev_write(minor(dev), uio, flags);
    917 }
    918 
    919 static int
    920 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    921     kauth_cred_t cred, int flags)
    922 {
    923 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    924 }
    925 
    926 static int
    927 tap_dev_write(int unit, struct uio *uio, int flags)
    928 {
    929 	struct tap_softc *sc =
    930 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    931 	struct ifnet *ifp;
    932 	struct mbuf *m, **mp;
    933 	int error = 0;
    934 	int s;
    935 
    936 	if (sc == NULL)
    937 		return (ENXIO);
    938 
    939 	ifp = &sc->sc_ec.ec_if;
    940 
    941 	/* One write, one packet, that's the rule */
    942 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    943 	if (m == NULL) {
    944 		ifp->if_ierrors++;
    945 		return (ENOBUFS);
    946 	}
    947 	m->m_pkthdr.len = uio->uio_resid;
    948 
    949 	mp = &m;
    950 	while (error == 0 && uio->uio_resid > 0) {
    951 		if (*mp != m) {
    952 			MGET(*mp, M_DONTWAIT, MT_DATA);
    953 			if (*mp == NULL) {
    954 				error = ENOBUFS;
    955 				break;
    956 			}
    957 		}
    958 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    959 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
    960 		mp = &(*mp)->m_next;
    961 	}
    962 	if (error) {
    963 		ifp->if_ierrors++;
    964 		m_freem(m);
    965 		return (error);
    966 	}
    967 
    968 	ifp->if_ipackets++;
    969 	m->m_pkthdr.rcvif = ifp;
    970 
    971 #if NBPFILTER > 0
    972 	if (ifp->if_bpf)
    973 		bpf_mtap(ifp->if_bpf, m);
    974 #endif
    975 	s =splnet();
    976 	(*ifp->if_input)(ifp, m);
    977 	splx(s);
    978 
    979 	return (0);
    980 }
    981 
    982 static int
    983 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
    984     struct lwp *l)
    985 {
    986 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    987 }
    988 
    989 static int
    990 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    991 {
    992 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
    993 }
    994 
    995 static int
    996 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
    997 {
    998 	struct tap_softc *sc =
    999 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1000 	int error = 0;
   1001 
   1002 	if (sc == NULL)
   1003 		return (ENXIO);
   1004 
   1005 	switch (cmd) {
   1006 	case FIONREAD:
   1007 		{
   1008 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1009 			struct mbuf *m;
   1010 			int s;
   1011 
   1012 			s = splnet();
   1013 			IFQ_POLL(&ifp->if_snd, m);
   1014 
   1015 			if (m == NULL)
   1016 				*(int *)data = 0;
   1017 			else
   1018 				*(int *)data = m->m_pkthdr.len;
   1019 			splx(s);
   1020 		} break;
   1021 	case TIOCSPGRP:
   1022 	case FIOSETOWN:
   1023 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1024 		break;
   1025 	case TIOCGPGRP:
   1026 	case FIOGETOWN:
   1027 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1028 		break;
   1029 	case FIOASYNC:
   1030 		if (*(int *)data)
   1031 			sc->sc_flags |= TAP_ASYNCIO;
   1032 		else
   1033 			sc->sc_flags &= ~TAP_ASYNCIO;
   1034 		break;
   1035 	case FIONBIO:
   1036 		if (*(int *)data)
   1037 			sc->sc_flags |= TAP_NBIO;
   1038 		else
   1039 			sc->sc_flags &= ~TAP_NBIO;
   1040 		break;
   1041 #ifdef OTAPGIFNAME
   1042 	case OTAPGIFNAME:
   1043 #endif
   1044 	case TAPGIFNAME:
   1045 		{
   1046 			struct ifreq *ifr = (struct ifreq *)data;
   1047 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1048 
   1049 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1050 		} break;
   1051 	default:
   1052 		error = ENOTTY;
   1053 		break;
   1054 	}
   1055 
   1056 	return (0);
   1057 }
   1058 
   1059 static int
   1060 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1061 {
   1062 	return tap_dev_poll(minor(dev), events, l);
   1063 }
   1064 
   1065 static int
   1066 tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1067 {
   1068 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1069 }
   1070 
   1071 static int
   1072 tap_dev_poll(int unit, int events, struct lwp *l)
   1073 {
   1074 	struct tap_softc *sc =
   1075 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1076 	int revents = 0;
   1077 
   1078 	if (sc == NULL)
   1079 		return POLLERR;
   1080 
   1081 	if (events & (POLLIN|POLLRDNORM)) {
   1082 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1083 		struct mbuf *m;
   1084 		int s;
   1085 
   1086 		s = splnet();
   1087 		IFQ_POLL(&ifp->if_snd, m);
   1088 		splx(s);
   1089 
   1090 		if (m != NULL)
   1091 			revents |= events & (POLLIN|POLLRDNORM);
   1092 		else {
   1093 			simple_lock(&sc->sc_kqlock);
   1094 			selrecord(l, &sc->sc_rsel);
   1095 			simple_unlock(&sc->sc_kqlock);
   1096 		}
   1097 	}
   1098 	revents |= events & (POLLOUT|POLLWRNORM);
   1099 
   1100 	return (revents);
   1101 }
   1102 
   1103 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1104 	tap_kqread };
   1105 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1106 	filt_seltrue };
   1107 
   1108 static int
   1109 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1110 {
   1111 	return tap_dev_kqfilter(minor(dev), kn);
   1112 }
   1113 
   1114 static int
   1115 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1116 {
   1117 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1118 }
   1119 
   1120 static int
   1121 tap_dev_kqfilter(int unit, struct knote *kn)
   1122 {
   1123 	struct tap_softc *sc =
   1124 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1125 
   1126 	if (sc == NULL)
   1127 		return (ENXIO);
   1128 
   1129 	switch(kn->kn_filter) {
   1130 	case EVFILT_READ:
   1131 		kn->kn_fop = &tap_read_filterops;
   1132 		break;
   1133 	case EVFILT_WRITE:
   1134 		kn->kn_fop = &tap_seltrue_filterops;
   1135 		break;
   1136 	default:
   1137 		return (1);
   1138 	}
   1139 
   1140 	kn->kn_hook = sc;
   1141 	simple_lock(&sc->sc_kqlock);
   1142 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1143 	simple_unlock(&sc->sc_kqlock);
   1144 	return (0);
   1145 }
   1146 
   1147 static void
   1148 tap_kqdetach(struct knote *kn)
   1149 {
   1150 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1151 
   1152 	simple_lock(&sc->sc_kqlock);
   1153 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1154 	simple_unlock(&sc->sc_kqlock);
   1155 }
   1156 
   1157 static int
   1158 tap_kqread(struct knote *kn, long hint)
   1159 {
   1160 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1161 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1162 	struct mbuf *m;
   1163 	int s;
   1164 
   1165 	s = splnet();
   1166 	IFQ_POLL(&ifp->if_snd, m);
   1167 
   1168 	if (m == NULL)
   1169 		kn->kn_data = 0;
   1170 	else
   1171 		kn->kn_data = m->m_pkthdr.len;
   1172 	splx(s);
   1173 	return (kn->kn_data != 0 ? 1 : 0);
   1174 }
   1175 
   1176 /*
   1177  * sysctl management routines
   1178  * You can set the address of an interface through:
   1179  * net.link.tap.tap<number>
   1180  *
   1181  * Note the consistent use of tap_log in order to use
   1182  * sysctl_teardown at unload time.
   1183  *
   1184  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1185  * blocks register a function in a special section of the kernel
   1186  * (called a link set) which is used at init_sysctl() time to cycle
   1187  * through all those functions to create the kernel's sysctl tree.
   1188  *
   1189  * It is not (currently) possible to use link sets in a LKM, so the
   1190  * easiest is to simply call our own setup routine at load time.
   1191  *
   1192  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1193  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1194  * whole kernel sysctl tree is built, it is not possible to add any
   1195  * permanent node.
   1196  *
   1197  * It should be noted that we're not saving the sysctlnode pointer
   1198  * we are returned when creating the "tap" node.  That structure
   1199  * cannot be trusted once out of the calling function, as it might
   1200  * get reused.  So we just save the MIB number, and always give the
   1201  * full path starting from the root for later calls to sysctl_createv
   1202  * and sysctl_destroyv.
   1203  */
   1204 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1205 {
   1206 	const struct sysctlnode *node;
   1207 	int error = 0;
   1208 
   1209 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1210 	    CTLFLAG_PERMANENT,
   1211 	    CTLTYPE_NODE, "net", NULL,
   1212 	    NULL, 0, NULL, 0,
   1213 	    CTL_NET, CTL_EOL)) != 0)
   1214 		return;
   1215 
   1216 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1217 	    CTLFLAG_PERMANENT,
   1218 	    CTLTYPE_NODE, "link", NULL,
   1219 	    NULL, 0, NULL, 0,
   1220 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1221 		return;
   1222 
   1223 	/*
   1224 	 * The first four parameters of sysctl_createv are for management.
   1225 	 *
   1226 	 * The four that follows, here starting with a '0' for the flags,
   1227 	 * describe the node.
   1228 	 *
   1229 	 * The next series of four set its value, through various possible
   1230 	 * means.
   1231 	 *
   1232 	 * Last but not least, the path to the node is described.  That path
   1233 	 * is relative to the given root (third argument).  Here we're
   1234 	 * starting from the root.
   1235 	 */
   1236 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1237 	    CTLFLAG_PERMANENT,
   1238 	    CTLTYPE_NODE, "tap", NULL,
   1239 	    NULL, 0, NULL, 0,
   1240 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1241 		return;
   1242 	tap_node = node->sysctl_num;
   1243 }
   1244 
   1245 /*
   1246  * The helper functions make Andrew Brown's interface really
   1247  * shine.  It makes possible to create value on the fly whether
   1248  * the sysctl value is read or written.
   1249  *
   1250  * As shown as an example in the man page, the first step is to
   1251  * create a copy of the node to have sysctl_lookup work on it.
   1252  *
   1253  * Here, we have more work to do than just a copy, since we have
   1254  * to create the string.  The first step is to collect the actual
   1255  * value of the node, which is a convenient pointer to the softc
   1256  * of the interface.  From there we create the string and use it
   1257  * as the value, but only for the *copy* of the node.
   1258  *
   1259  * Then we let sysctl_lookup do the magic, which consists in
   1260  * setting oldp and newp as required by the operation.  When the
   1261  * value is read, that means that the string will be copied to
   1262  * the user, and when it is written, the new value will be copied
   1263  * over in the addr array.
   1264  *
   1265  * If newp is NULL, the user was reading the value, so we don't
   1266  * have anything else to do.  If a new value was written, we
   1267  * have to check it.
   1268  *
   1269  * If it is incorrect, we can return an error and leave 'node' as
   1270  * it is:  since it is a copy of the actual node, the change will
   1271  * be forgotten.
   1272  *
   1273  * Upon a correct input, we commit the change to the ifnet
   1274  * structure of our interface.
   1275  */
   1276 static int
   1277 tap_sysctl_handler(SYSCTLFN_ARGS)
   1278 {
   1279 	struct sysctlnode node;
   1280 	struct tap_softc *sc;
   1281 	struct ifnet *ifp;
   1282 	int error;
   1283 	size_t len;
   1284 	char addr[3 * ETHER_ADDR_LEN];
   1285 
   1286 	node = *rnode;
   1287 	sc = node.sysctl_data;
   1288 	ifp = &sc->sc_ec.ec_if;
   1289 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1290 	node.sysctl_data = addr;
   1291 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1292 	if (error || newp == NULL)
   1293 		return (error);
   1294 
   1295 	len = strlen(addr);
   1296 	if (len < 11 || len > 17)
   1297 		return (EINVAL);
   1298 
   1299 	/* Commit change */
   1300 	if (ether_nonstatic_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1301 		return (EINVAL);
   1302 	return (error);
   1303 }
   1304