Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.32
      1 /*	$NetBSD: if_tap.c,v 1.32 2007/08/30 02:17:35 dyoung Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.32 2007/08/30 02:17:35 dyoung Exp $");
     47 
     48 #if defined(_KERNEL_OPT)
     49 #include "bpfilter.h"
     50 #endif
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/conf.h>
     57 #include <sys/device.h>
     58 #include <sys/file.h>
     59 #include <sys/filedesc.h>
     60 #include <sys/ksyms.h>
     61 #include <sys/poll.h>
     62 #include <sys/select.h>
     63 #include <sys/sockio.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/kauth.h>
     66 
     67 #include <net/if.h>
     68 #include <net/if_dl.h>
     69 #include <net/if_ether.h>
     70 #include <net/if_media.h>
     71 #include <net/if_tap.h>
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 #include <compat/sys/sockio.h>
     77 
     78 /*
     79  * sysctl node management
     80  *
     81  * It's not really possible to use a SYSCTL_SETUP block with
     82  * current LKM implementation, so it is easier to just define
     83  * our own function.
     84  *
     85  * The handler function is a "helper" in Andrew Brown's sysctl
     86  * framework terminology.  It is used as a gateway for sysctl
     87  * requests over the nodes.
     88  *
     89  * tap_log allows the module to log creations of nodes and
     90  * destroy them all at once using sysctl_teardown.
     91  */
     92 static int tap_node;
     93 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     94 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     95 
     96 /*
     97  * Since we're an Ethernet device, we need the 3 following
     98  * components: a leading struct device, a struct ethercom,
     99  * and also a struct ifmedia since we don't attach a PHY to
    100  * ourselves. We could emulate one, but there's no real
    101  * point.
    102  */
    103 
    104 struct tap_softc {
    105 	struct device	sc_dev;
    106 	struct ifmedia	sc_im;
    107 	struct ethercom	sc_ec;
    108 	int		sc_flags;
    109 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    110 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    111 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    112 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    113 	struct selinfo	sc_rsel;
    114 	pid_t		sc_pgid; /* For async. IO */
    115 	struct lock	sc_rdlock;
    116 	struct simplelock	sc_kqlock;
    117 };
    118 
    119 /* autoconf(9) glue */
    120 
    121 void	tapattach(int);
    122 
    123 static int	tap_match(struct device *, struct cfdata *, void *);
    124 static void	tap_attach(struct device *, struct device *, void *);
    125 static int	tap_detach(struct device*, int);
    126 
    127 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    128     tap_match, tap_attach, tap_detach, NULL);
    129 extern struct cfdriver tap_cd;
    130 
    131 /* Real device access routines */
    132 static int	tap_dev_close(struct tap_softc *);
    133 static int	tap_dev_read(int, struct uio *, int);
    134 static int	tap_dev_write(int, struct uio *, int);
    135 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    136 static int	tap_dev_poll(int, int, struct lwp *);
    137 static int	tap_dev_kqfilter(int, struct knote *);
    138 
    139 /* Fileops access routines */
    140 static int	tap_fops_close(struct file *, struct lwp *);
    141 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    142     kauth_cred_t, int);
    143 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_ioctl(struct file *, u_long, void *,
    146     struct lwp *);
    147 static int	tap_fops_poll(struct file *, int, struct lwp *);
    148 static int	tap_fops_kqfilter(struct file *, struct knote *);
    149 
    150 static const struct fileops tap_fileops = {
    151 	tap_fops_read,
    152 	tap_fops_write,
    153 	tap_fops_ioctl,
    154 	fnullop_fcntl,
    155 	tap_fops_poll,
    156 	fbadop_stat,
    157 	tap_fops_close,
    158 	tap_fops_kqfilter,
    159 };
    160 
    161 /* Helper for cloning open() */
    162 static int	tap_dev_cloner(struct lwp *);
    163 
    164 /* Character device routines */
    165 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    166 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    167 static int	tap_cdev_read(dev_t, struct uio *, int);
    168 static int	tap_cdev_write(dev_t, struct uio *, int);
    169 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    170 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    171 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    172 
    173 const struct cdevsw tap_cdevsw = {
    174 	tap_cdev_open, tap_cdev_close,
    175 	tap_cdev_read, tap_cdev_write,
    176 	tap_cdev_ioctl, nostop, notty,
    177 	tap_cdev_poll, nommap,
    178 	tap_cdev_kqfilter,
    179 	D_OTHER,
    180 };
    181 
    182 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    183 
    184 /* kqueue-related routines */
    185 static void	tap_kqdetach(struct knote *);
    186 static int	tap_kqread(struct knote *, long);
    187 
    188 /*
    189  * Those are needed by the if_media interface.
    190  */
    191 
    192 static int	tap_mediachange(struct ifnet *);
    193 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    194 
    195 /*
    196  * Those are needed by the ifnet interface, and would typically be
    197  * there for any network interface driver.
    198  * Some other routines are optional: watchdog and drain.
    199  */
    200 
    201 static void	tap_start(struct ifnet *);
    202 static void	tap_stop(struct ifnet *, int);
    203 static int	tap_init(struct ifnet *);
    204 static int	tap_ioctl(struct ifnet *, u_long, void *);
    205 
    206 /* This is an internal function to keep tap_ioctl readable */
    207 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    208 
    209 /*
    210  * tap is a clonable interface, although it is highly unrealistic for
    211  * an Ethernet device.
    212  *
    213  * Here are the bits needed for a clonable interface.
    214  */
    215 static int	tap_clone_create(struct if_clone *, int);
    216 static int	tap_clone_destroy(struct ifnet *);
    217 
    218 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    219 					tap_clone_create,
    220 					tap_clone_destroy);
    221 
    222 /* Helper functionis shared by the two cloning code paths */
    223 static struct tap_softc *	tap_clone_creator(int);
    224 int	tap_clone_destroyer(struct device *);
    225 
    226 void
    227 tapattach(int n)
    228 {
    229 	int error;
    230 
    231 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    232 	if (error) {
    233 		aprint_error("%s: unable to register cfattach\n",
    234 		    tap_cd.cd_name);
    235 		(void)config_cfdriver_detach(&tap_cd);
    236 		return;
    237 	}
    238 
    239 	if_clone_attach(&tap_cloners);
    240 }
    241 
    242 /* Pretty much useless for a pseudo-device */
    243 static int
    244 tap_match(struct device *self, struct cfdata *cfdata,
    245     void *arg)
    246 {
    247 	return (1);
    248 }
    249 
    250 void
    251 tap_attach(struct device *parent, struct device *self,
    252     void *aux)
    253 {
    254 	struct tap_softc *sc = (struct tap_softc *)self;
    255 	struct ifnet *ifp;
    256 	const struct sysctlnode *node;
    257 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    258 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    259 	char enaddrstr[3 * ETHER_ADDR_LEN];
    260 	struct timeval tv;
    261 	uint32_t ui;
    262 	int error;
    263 
    264 	/*
    265 	 * In order to obtain unique initial Ethernet address on a host,
    266 	 * do some randomisation using the current uptime.  It's not meant
    267 	 * for anything but avoiding hard-coding an address.
    268 	 */
    269 	getmicrouptime(&tv);
    270 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    271 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    272 
    273 	aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    274 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    275 
    276 	/*
    277 	 * Why 1000baseT? Why not? You can add more.
    278 	 *
    279 	 * Note that there are 3 steps: init, one or several additions to
    280 	 * list of supported media, and in the end, the selection of one
    281 	 * of them.
    282 	 */
    283 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    284 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    288 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    291 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    292 
    293 	/*
    294 	 * One should note that an interface must do multicast in order
    295 	 * to support IPv6.
    296 	 */
    297 	ifp = &sc->sc_ec.ec_if;
    298 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    299 	ifp->if_softc	= sc;
    300 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    301 	ifp->if_ioctl	= tap_ioctl;
    302 	ifp->if_start	= tap_start;
    303 	ifp->if_stop	= tap_stop;
    304 	ifp->if_init	= tap_init;
    305 	IFQ_SET_READY(&ifp->if_snd);
    306 
    307 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    308 
    309 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    310 	 * being common to all network interface drivers. */
    311 	if_attach(ifp);
    312 	ether_ifattach(ifp, enaddr);
    313 
    314 	sc->sc_flags = 0;
    315 
    316 	/*
    317 	 * Add a sysctl node for that interface.
    318 	 *
    319 	 * The pointer transmitted is not a string, but instead a pointer to
    320 	 * the softc structure, which we can use to build the string value on
    321 	 * the fly in the helper function of the node.  See the comments for
    322 	 * tap_sysctl_handler for details.
    323 	 *
    324 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    325 	 * component.  However, we can allocate a number ourselves, as we are
    326 	 * the only consumer of the net.link.<iface> node.  In this case, the
    327 	 * unit number is conveniently used to number the node.  CTL_CREATE
    328 	 * would just work, too.
    329 	 */
    330 	if ((error = sysctl_createv(NULL, 0, NULL,
    331 	    &node, CTLFLAG_READWRITE,
    332 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    333 	    tap_sysctl_handler, 0, sc, 18,
    334 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    335 	    CTL_EOL)) != 0)
    336 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    337 		    sc->sc_dev.dv_xname, error);
    338 
    339 	/*
    340 	 * Initialize the two locks for the device.
    341 	 *
    342 	 * We need a lock here because even though the tap device can be
    343 	 * opened only once, the file descriptor might be passed to another
    344 	 * process, say a fork(2)ed child.
    345 	 *
    346 	 * The Giant saves us from most of the hassle, but since the read
    347 	 * operation can sleep, we don't want two processes to wake up at
    348 	 * the same moment and both try and dequeue a single packet.
    349 	 *
    350 	 * The queue for event listeners (used by kqueue(9), see below) has
    351 	 * to be protected, too, but we don't need the same level of
    352 	 * complexity for that lock, so a simple spinning lock is fine.
    353 	 */
    354 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    355 	simple_lock_init(&sc->sc_kqlock);
    356 }
    357 
    358 /*
    359  * When detaching, we do the inverse of what is done in the attach
    360  * routine, in reversed order.
    361  */
    362 static int
    363 tap_detach(struct device* self, int flags)
    364 {
    365 	struct tap_softc *sc = (struct tap_softc *)self;
    366 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    367 	int error, s;
    368 
    369 	/*
    370 	 * Some processes might be sleeping on "tap", so we have to make
    371 	 * them release their hold on the device.
    372 	 *
    373 	 * The LK_DRAIN operation will wait for every locked process to
    374 	 * release their hold.
    375 	 */
    376 	sc->sc_flags |= TAP_GOING;
    377 	s = splnet();
    378 	tap_stop(ifp, 1);
    379 	if_down(ifp);
    380 	splx(s);
    381 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    382 
    383 	/*
    384 	 * Destroying a single leaf is a very straightforward operation using
    385 	 * sysctl_destroyv.  One should be sure to always end the path with
    386 	 * CTL_EOL.
    387 	 */
    388 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    389 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    390 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    391 		    sc->sc_dev.dv_xname, error);
    392 	ether_ifdetach(ifp);
    393 	if_detach(ifp);
    394 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    395 
    396 	return (0);
    397 }
    398 
    399 /*
    400  * This function is called by the ifmedia layer to notify the driver
    401  * that the user requested a media change.  A real driver would
    402  * reconfigure the hardware.
    403  */
    404 static int
    405 tap_mediachange(struct ifnet *ifp)
    406 {
    407 	return (0);
    408 }
    409 
    410 /*
    411  * Here the user asks for the currently used media.
    412  */
    413 static void
    414 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    415 {
    416 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    417 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    418 }
    419 
    420 /*
    421  * This is the function where we SEND packets.
    422  *
    423  * There is no 'receive' equivalent.  A typical driver will get
    424  * interrupts from the hardware, and from there will inject new packets
    425  * into the network stack.
    426  *
    427  * Once handled, a packet must be freed.  A real driver might not be able
    428  * to fit all the pending packets into the hardware, and is allowed to
    429  * return before having sent all the packets.  It should then use the
    430  * if_flags flag IFF_OACTIVE to notify the upper layer.
    431  *
    432  * There are also other flags one should check, such as IFF_PAUSE.
    433  *
    434  * It is our duty to make packets available to BPF listeners.
    435  *
    436  * You should be aware that this function is called by the Ethernet layer
    437  * at splnet().
    438  *
    439  * When the device is opened, we have to pass the packet(s) to the
    440  * userland.  For that we stay in OACTIVE mode while the userland gets
    441  * the packets, and we send a signal to the processes waiting to read.
    442  *
    443  * wakeup(sc) is the counterpart to the tsleep call in
    444  * tap_dev_read, while selnotify() is used for kevent(2) and
    445  * poll(2) (which includes select(2)) listeners.
    446  */
    447 static void
    448 tap_start(struct ifnet *ifp)
    449 {
    450 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    451 	struct mbuf *m0;
    452 
    453 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    454 		/* Simply drop packets */
    455 		for(;;) {
    456 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    457 			if (m0 == NULL)
    458 				return;
    459 
    460 			ifp->if_opackets++;
    461 #if NBPFILTER > 0
    462 			if (ifp->if_bpf)
    463 				bpf_mtap(ifp->if_bpf, m0);
    464 #endif
    465 
    466 			m_freem(m0);
    467 		}
    468 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    469 		ifp->if_flags |= IFF_OACTIVE;
    470 		wakeup(sc);
    471 		selnotify(&sc->sc_rsel, 1);
    472 		if (sc->sc_flags & TAP_ASYNCIO)
    473 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    474 			    POLLIN|POLLRDNORM, NULL);
    475 	}
    476 }
    477 
    478 /*
    479  * A typical driver will only contain the following handlers for
    480  * ioctl calls, except SIOCSIFPHYADDR.
    481  * The latter is a hack I used to set the Ethernet address of the
    482  * faked device.
    483  *
    484  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    485  * called under splnet().
    486  */
    487 static int
    488 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    489 {
    490 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    491 	struct ifreq *ifr = (struct ifreq *)data;
    492 	int s, error;
    493 
    494 	s = splnet();
    495 
    496 	switch (cmd) {
    497 #ifdef OSIOCSIFMEDIA
    498 	case OSIOCSIFMEDIA:
    499 #endif
    500 	case SIOCSIFMEDIA:
    501 	case SIOCGIFMEDIA:
    502 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    503 		break;
    504 	case SIOCSIFPHYADDR:
    505 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    506 		break;
    507 	default:
    508 		error = ether_ioctl(ifp, cmd, data);
    509 		if (error == ENETRESET)
    510 			error = 0;
    511 		break;
    512 	}
    513 
    514 	splx(s);
    515 
    516 	return (error);
    517 }
    518 
    519 /*
    520  * Helper function to set Ethernet address.  This shouldn't be done there,
    521  * and should actually be available to all Ethernet drivers, real or not.
    522  */
    523 static int
    524 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    525 {
    526 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    527 
    528 	if (sa->sa_family != AF_LINK)
    529 		return (EINVAL);
    530 
    531 	(void)sockaddr_dl_setaddr(ifp->if_sadl, ifp->if_sadl->sdl_len,
    532 	    sa->sa_data, ETHER_ADDR_LEN);
    533 
    534 	return (0);
    535 }
    536 
    537 /*
    538  * _init() would typically be called when an interface goes up,
    539  * meaning it should configure itself into the state in which it
    540  * can send packets.
    541  */
    542 static int
    543 tap_init(struct ifnet *ifp)
    544 {
    545 	ifp->if_flags |= IFF_RUNNING;
    546 
    547 	tap_start(ifp);
    548 
    549 	return (0);
    550 }
    551 
    552 /*
    553  * _stop() is called when an interface goes down.  It is our
    554  * responsability to validate that state by clearing the
    555  * IFF_RUNNING flag.
    556  *
    557  * We have to wake up all the sleeping processes to have the pending
    558  * read requests cancelled.
    559  */
    560 static void
    561 tap_stop(struct ifnet *ifp, int disable)
    562 {
    563 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    564 
    565 	ifp->if_flags &= ~IFF_RUNNING;
    566 	wakeup(sc);
    567 	selnotify(&sc->sc_rsel, 1);
    568 	if (sc->sc_flags & TAP_ASYNCIO)
    569 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    570 }
    571 
    572 /*
    573  * The 'create' command of ifconfig can be used to create
    574  * any numbered instance of a given device.  Thus we have to
    575  * make sure we have enough room in cd_devs to create the
    576  * user-specified instance.  config_attach_pseudo will do this
    577  * for us.
    578  */
    579 static int
    580 tap_clone_create(struct if_clone *ifc, int unit)
    581 {
    582 	if (tap_clone_creator(unit) == NULL) {
    583 		aprint_error("%s%d: unable to attach an instance\n",
    584                     tap_cd.cd_name, unit);
    585 		return (ENXIO);
    586 	}
    587 
    588 	return (0);
    589 }
    590 
    591 /*
    592  * tap(4) can be cloned by two ways:
    593  *   using 'ifconfig tap0 create', which will use the network
    594  *     interface cloning API, and call tap_clone_create above.
    595  *   opening the cloning device node, whose minor number is TAP_CLONER.
    596  *     See below for an explanation on how this part work.
    597  */
    598 static struct tap_softc *
    599 tap_clone_creator(int unit)
    600 {
    601 	struct cfdata *cf;
    602 
    603 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    604 	cf->cf_name = tap_cd.cd_name;
    605 	cf->cf_atname = tap_ca.ca_name;
    606 	if (unit == -1) {
    607 		/* let autoconf find the first free one */
    608 		cf->cf_unit = 0;
    609 		cf->cf_fstate = FSTATE_STAR;
    610 	} else {
    611 		cf->cf_unit = unit;
    612 		cf->cf_fstate = FSTATE_NOTFOUND;
    613 	}
    614 
    615 	return (struct tap_softc *)config_attach_pseudo(cf);
    616 }
    617 
    618 /*
    619  * The clean design of if_clone and autoconf(9) makes that part
    620  * really straightforward.  The second argument of config_detach
    621  * means neither QUIET nor FORCED.
    622  */
    623 static int
    624 tap_clone_destroy(struct ifnet *ifp)
    625 {
    626 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    627 }
    628 
    629 int
    630 tap_clone_destroyer(struct device *dev)
    631 {
    632 	struct cfdata *cf = device_cfdata(dev);
    633 	int error;
    634 
    635 	if ((error = config_detach(dev, 0)) != 0)
    636 		aprint_error("%s: unable to detach instance\n",
    637 		    dev->dv_xname);
    638 	free(cf, M_DEVBUF);
    639 
    640 	return (error);
    641 }
    642 
    643 /*
    644  * tap(4) is a bit of an hybrid device.  It can be used in two different
    645  * ways:
    646  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    647  *  2. open /dev/tap, get a new interface created and read/write off it.
    648  *     That interface is destroyed when the process that had it created exits.
    649  *
    650  * The first way is managed by the cdevsw structure, and you access interfaces
    651  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    652  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    653  *
    654  * The second way is the so-called "cloning" device.  It's a special minor
    655  * number (chosen as the maximal number, to allow as much tap devices as
    656  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    657  * call ends in tap_cdev_open.  The actual place where it is handled is
    658  * tap_dev_cloner.
    659  *
    660  * An tap device cannot be opened more than once at a time, so the cdevsw
    661  * part of open() does nothing but noting that the interface is being used and
    662  * hence ready to actually handle packets.
    663  */
    664 
    665 static int
    666 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    667 {
    668 	struct tap_softc *sc;
    669 
    670 	if (minor(dev) == TAP_CLONER)
    671 		return tap_dev_cloner(l);
    672 
    673 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    674 	if (sc == NULL)
    675 		return (ENXIO);
    676 
    677 	/* The device can only be opened once */
    678 	if (sc->sc_flags & TAP_INUSE)
    679 		return (EBUSY);
    680 	sc->sc_flags |= TAP_INUSE;
    681 	return (0);
    682 }
    683 
    684 /*
    685  * There are several kinds of cloning devices, and the most simple is the one
    686  * tap(4) uses.  What it does is change the file descriptor with a new one,
    687  * with its own fileops structure (which maps to the various read, write,
    688  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    689  * then actually creates the new tap devices.
    690  *
    691  * Once those two steps are successful, we can re-wire the existing file
    692  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    693  * structure as needed (notably f_data gets filled with the fifth parameter
    694  * passed, the unit of the tap device which will allows us identifying the
    695  * device later), and returns EMOVEFD.
    696  *
    697  * That magic value is interpreted by sys_open() which then replaces the
    698  * current file descriptor by the new one (through a magic member of struct
    699  * lwp, l_dupfd).
    700  *
    701  * The tap device is flagged as being busy since it otherwise could be
    702  * externally accessed through the corresponding device node with the cdevsw
    703  * interface.
    704  */
    705 
    706 static int
    707 tap_dev_cloner(struct lwp *l)
    708 {
    709 	struct tap_softc *sc;
    710 	struct file *fp;
    711 	int error, fd;
    712 
    713 	if ((error = falloc(l, &fp, &fd)) != 0)
    714 		return (error);
    715 
    716 	if ((sc = tap_clone_creator(-1)) == NULL) {
    717 		FILE_UNUSE(fp, l);
    718 		ffree(fp);
    719 		return (ENXIO);
    720 	}
    721 
    722 	sc->sc_flags |= TAP_INUSE;
    723 
    724 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    725 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    726 }
    727 
    728 /*
    729  * While all other operations (read, write, ioctl, poll and kqfilter) are
    730  * really the same whether we are in cdevsw or fileops mode, the close()
    731  * function is slightly different in the two cases.
    732  *
    733  * As for the other, the core of it is shared in tap_dev_close.  What
    734  * it does is sufficient for the cdevsw interface, but the cloning interface
    735  * needs another thing:  the interface is destroyed when the processes that
    736  * created it closes it.
    737  */
    738 static int
    739 tap_cdev_close(dev_t dev, int flags, int fmt,
    740     struct lwp *l)
    741 {
    742 	struct tap_softc *sc =
    743 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    744 
    745 	if (sc == NULL)
    746 		return (ENXIO);
    747 
    748 	return tap_dev_close(sc);
    749 }
    750 
    751 /*
    752  * It might happen that the administrator used ifconfig to externally destroy
    753  * the interface.  In that case, tap_fops_close will be called while
    754  * tap_detach is already happening.  If we called it again from here, we
    755  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    756  */
    757 static int
    758 tap_fops_close(struct file *fp, struct lwp *l)
    759 {
    760 	int unit = (intptr_t)fp->f_data;
    761 	struct tap_softc *sc;
    762 	int error;
    763 
    764 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    765 	if (sc == NULL)
    766 		return (ENXIO);
    767 
    768 	/* tap_dev_close currently always succeeds, but it might not
    769 	 * always be the case. */
    770 	if ((error = tap_dev_close(sc)) != 0)
    771 		return (error);
    772 
    773 	/* Destroy the device now that it is no longer useful,
    774 	 * unless it's already being destroyed. */
    775 	if ((sc->sc_flags & TAP_GOING) != 0)
    776 		return (0);
    777 
    778 	return tap_clone_destroyer((struct device *)sc);
    779 }
    780 
    781 static int
    782 tap_dev_close(struct tap_softc *sc)
    783 {
    784 	struct ifnet *ifp;
    785 	int s;
    786 
    787 	s = splnet();
    788 	/* Let tap_start handle packets again */
    789 	ifp = &sc->sc_ec.ec_if;
    790 	ifp->if_flags &= ~IFF_OACTIVE;
    791 
    792 	/* Purge output queue */
    793 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    794 		struct mbuf *m;
    795 
    796 		for (;;) {
    797 			IFQ_DEQUEUE(&ifp->if_snd, m);
    798 			if (m == NULL)
    799 				break;
    800 
    801 			ifp->if_opackets++;
    802 #if NBPFILTER > 0
    803 			if (ifp->if_bpf)
    804 				bpf_mtap(ifp->if_bpf, m);
    805 #endif
    806 		}
    807 	}
    808 	splx(s);
    809 
    810 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    811 
    812 	return (0);
    813 }
    814 
    815 static int
    816 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    817 {
    818 	return tap_dev_read(minor(dev), uio, flags);
    819 }
    820 
    821 static int
    822 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    823     kauth_cred_t cred, int flags)
    824 {
    825 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    826 }
    827 
    828 static int
    829 tap_dev_read(int unit, struct uio *uio, int flags)
    830 {
    831 	struct tap_softc *sc =
    832 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    833 	struct ifnet *ifp;
    834 	struct mbuf *m, *n;
    835 	int error = 0, s;
    836 
    837 	if (sc == NULL)
    838 		return (ENXIO);
    839 
    840 	ifp = &sc->sc_ec.ec_if;
    841 	if ((ifp->if_flags & IFF_UP) == 0)
    842 		return (EHOSTDOWN);
    843 
    844 	/*
    845 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    846 	 */
    847 	if ((sc->sc_flags & TAP_NBIO) &&
    848 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    849 		return (EWOULDBLOCK);
    850 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    851 	if (error != 0)
    852 		return (error);
    853 
    854 	s = splnet();
    855 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    856 		ifp->if_flags &= ~IFF_OACTIVE;
    857 		splx(s);
    858 		/*
    859 		 * We must release the lock before sleeping, and re-acquire it
    860 		 * after.
    861 		 */
    862 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    863 		if (sc->sc_flags & TAP_NBIO)
    864 			error = EWOULDBLOCK;
    865 		else
    866 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    867 
    868 		if (error != 0)
    869 			return (error);
    870 		/* The device might have been downed */
    871 		if ((ifp->if_flags & IFF_UP) == 0)
    872 			return (EHOSTDOWN);
    873 		if ((sc->sc_flags & TAP_NBIO) &&
    874 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    875 			return (EWOULDBLOCK);
    876 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    877 		if (error != 0)
    878 			return (error);
    879 		s = splnet();
    880 	}
    881 
    882 	IFQ_DEQUEUE(&ifp->if_snd, m);
    883 	ifp->if_flags &= ~IFF_OACTIVE;
    884 	splx(s);
    885 	if (m == NULL) {
    886 		error = 0;
    887 		goto out;
    888 	}
    889 
    890 	ifp->if_opackets++;
    891 #if NBPFILTER > 0
    892 	if (ifp->if_bpf)
    893 		bpf_mtap(ifp->if_bpf, m);
    894 #endif
    895 
    896 	/*
    897 	 * One read is one packet.
    898 	 */
    899 	do {
    900 		error = uiomove(mtod(m, void *),
    901 		    min(m->m_len, uio->uio_resid), uio);
    902 		MFREE(m, n);
    903 		m = n;
    904 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    905 
    906 	if (m != NULL)
    907 		m_freem(m);
    908 
    909 out:
    910 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    911 	return (error);
    912 }
    913 
    914 static int
    915 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    916 {
    917 	return tap_dev_write(minor(dev), uio, flags);
    918 }
    919 
    920 static int
    921 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    922     kauth_cred_t cred, int flags)
    923 {
    924 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    925 }
    926 
    927 static int
    928 tap_dev_write(int unit, struct uio *uio, int flags)
    929 {
    930 	struct tap_softc *sc =
    931 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    932 	struct ifnet *ifp;
    933 	struct mbuf *m, **mp;
    934 	int error = 0;
    935 	int s;
    936 
    937 	if (sc == NULL)
    938 		return (ENXIO);
    939 
    940 	ifp = &sc->sc_ec.ec_if;
    941 
    942 	/* One write, one packet, that's the rule */
    943 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    944 	if (m == NULL) {
    945 		ifp->if_ierrors++;
    946 		return (ENOBUFS);
    947 	}
    948 	m->m_pkthdr.len = uio->uio_resid;
    949 
    950 	mp = &m;
    951 	while (error == 0 && uio->uio_resid > 0) {
    952 		if (*mp != m) {
    953 			MGET(*mp, M_DONTWAIT, MT_DATA);
    954 			if (*mp == NULL) {
    955 				error = ENOBUFS;
    956 				break;
    957 			}
    958 		}
    959 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    960 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
    961 		mp = &(*mp)->m_next;
    962 	}
    963 	if (error) {
    964 		ifp->if_ierrors++;
    965 		m_freem(m);
    966 		return (error);
    967 	}
    968 
    969 	ifp->if_ipackets++;
    970 	m->m_pkthdr.rcvif = ifp;
    971 
    972 #if NBPFILTER > 0
    973 	if (ifp->if_bpf)
    974 		bpf_mtap(ifp->if_bpf, m);
    975 #endif
    976 	s =splnet();
    977 	(*ifp->if_input)(ifp, m);
    978 	splx(s);
    979 
    980 	return (0);
    981 }
    982 
    983 static int
    984 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
    985     struct lwp *l)
    986 {
    987 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    988 }
    989 
    990 static int
    991 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    992 {
    993 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
    994 }
    995 
    996 static int
    997 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
    998 {
    999 	struct tap_softc *sc =
   1000 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1001 	int error = 0;
   1002 
   1003 	if (sc == NULL)
   1004 		return (ENXIO);
   1005 
   1006 	switch (cmd) {
   1007 	case FIONREAD:
   1008 		{
   1009 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1010 			struct mbuf *m;
   1011 			int s;
   1012 
   1013 			s = splnet();
   1014 			IFQ_POLL(&ifp->if_snd, m);
   1015 
   1016 			if (m == NULL)
   1017 				*(int *)data = 0;
   1018 			else
   1019 				*(int *)data = m->m_pkthdr.len;
   1020 			splx(s);
   1021 		} break;
   1022 	case TIOCSPGRP:
   1023 	case FIOSETOWN:
   1024 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1025 		break;
   1026 	case TIOCGPGRP:
   1027 	case FIOGETOWN:
   1028 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1029 		break;
   1030 	case FIOASYNC:
   1031 		if (*(int *)data)
   1032 			sc->sc_flags |= TAP_ASYNCIO;
   1033 		else
   1034 			sc->sc_flags &= ~TAP_ASYNCIO;
   1035 		break;
   1036 	case FIONBIO:
   1037 		if (*(int *)data)
   1038 			sc->sc_flags |= TAP_NBIO;
   1039 		else
   1040 			sc->sc_flags &= ~TAP_NBIO;
   1041 		break;
   1042 #ifdef OTAPGIFNAME
   1043 	case OTAPGIFNAME:
   1044 #endif
   1045 	case TAPGIFNAME:
   1046 		{
   1047 			struct ifreq *ifr = (struct ifreq *)data;
   1048 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1049 
   1050 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1051 		} break;
   1052 	default:
   1053 		error = ENOTTY;
   1054 		break;
   1055 	}
   1056 
   1057 	return (0);
   1058 }
   1059 
   1060 static int
   1061 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1062 {
   1063 	return tap_dev_poll(minor(dev), events, l);
   1064 }
   1065 
   1066 static int
   1067 tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1068 {
   1069 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1070 }
   1071 
   1072 static int
   1073 tap_dev_poll(int unit, int events, struct lwp *l)
   1074 {
   1075 	struct tap_softc *sc =
   1076 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1077 	int revents = 0;
   1078 
   1079 	if (sc == NULL)
   1080 		return POLLERR;
   1081 
   1082 	if (events & (POLLIN|POLLRDNORM)) {
   1083 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1084 		struct mbuf *m;
   1085 		int s;
   1086 
   1087 		s = splnet();
   1088 		IFQ_POLL(&ifp->if_snd, m);
   1089 		splx(s);
   1090 
   1091 		if (m != NULL)
   1092 			revents |= events & (POLLIN|POLLRDNORM);
   1093 		else {
   1094 			simple_lock(&sc->sc_kqlock);
   1095 			selrecord(l, &sc->sc_rsel);
   1096 			simple_unlock(&sc->sc_kqlock);
   1097 		}
   1098 	}
   1099 	revents |= events & (POLLOUT|POLLWRNORM);
   1100 
   1101 	return (revents);
   1102 }
   1103 
   1104 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1105 	tap_kqread };
   1106 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1107 	filt_seltrue };
   1108 
   1109 static int
   1110 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1111 {
   1112 	return tap_dev_kqfilter(minor(dev), kn);
   1113 }
   1114 
   1115 static int
   1116 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1117 {
   1118 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1119 }
   1120 
   1121 static int
   1122 tap_dev_kqfilter(int unit, struct knote *kn)
   1123 {
   1124 	struct tap_softc *sc =
   1125 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1126 
   1127 	if (sc == NULL)
   1128 		return (ENXIO);
   1129 
   1130 	switch(kn->kn_filter) {
   1131 	case EVFILT_READ:
   1132 		kn->kn_fop = &tap_read_filterops;
   1133 		break;
   1134 	case EVFILT_WRITE:
   1135 		kn->kn_fop = &tap_seltrue_filterops;
   1136 		break;
   1137 	default:
   1138 		return (1);
   1139 	}
   1140 
   1141 	kn->kn_hook = sc;
   1142 	simple_lock(&sc->sc_kqlock);
   1143 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1144 	simple_unlock(&sc->sc_kqlock);
   1145 	return (0);
   1146 }
   1147 
   1148 static void
   1149 tap_kqdetach(struct knote *kn)
   1150 {
   1151 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1152 
   1153 	simple_lock(&sc->sc_kqlock);
   1154 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1155 	simple_unlock(&sc->sc_kqlock);
   1156 }
   1157 
   1158 static int
   1159 tap_kqread(struct knote *kn, long hint)
   1160 {
   1161 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1162 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1163 	struct mbuf *m;
   1164 	int s;
   1165 
   1166 	s = splnet();
   1167 	IFQ_POLL(&ifp->if_snd, m);
   1168 
   1169 	if (m == NULL)
   1170 		kn->kn_data = 0;
   1171 	else
   1172 		kn->kn_data = m->m_pkthdr.len;
   1173 	splx(s);
   1174 	return (kn->kn_data != 0 ? 1 : 0);
   1175 }
   1176 
   1177 /*
   1178  * sysctl management routines
   1179  * You can set the address of an interface through:
   1180  * net.link.tap.tap<number>
   1181  *
   1182  * Note the consistent use of tap_log in order to use
   1183  * sysctl_teardown at unload time.
   1184  *
   1185  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1186  * blocks register a function in a special section of the kernel
   1187  * (called a link set) which is used at init_sysctl() time to cycle
   1188  * through all those functions to create the kernel's sysctl tree.
   1189  *
   1190  * It is not (currently) possible to use link sets in a LKM, so the
   1191  * easiest is to simply call our own setup routine at load time.
   1192  *
   1193  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1194  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1195  * whole kernel sysctl tree is built, it is not possible to add any
   1196  * permanent node.
   1197  *
   1198  * It should be noted that we're not saving the sysctlnode pointer
   1199  * we are returned when creating the "tap" node.  That structure
   1200  * cannot be trusted once out of the calling function, as it might
   1201  * get reused.  So we just save the MIB number, and always give the
   1202  * full path starting from the root for later calls to sysctl_createv
   1203  * and sysctl_destroyv.
   1204  */
   1205 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1206 {
   1207 	const struct sysctlnode *node;
   1208 	int error = 0;
   1209 
   1210 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1211 	    CTLFLAG_PERMANENT,
   1212 	    CTLTYPE_NODE, "net", NULL,
   1213 	    NULL, 0, NULL, 0,
   1214 	    CTL_NET, CTL_EOL)) != 0)
   1215 		return;
   1216 
   1217 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1218 	    CTLFLAG_PERMANENT,
   1219 	    CTLTYPE_NODE, "link", NULL,
   1220 	    NULL, 0, NULL, 0,
   1221 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1222 		return;
   1223 
   1224 	/*
   1225 	 * The first four parameters of sysctl_createv are for management.
   1226 	 *
   1227 	 * The four that follows, here starting with a '0' for the flags,
   1228 	 * describe the node.
   1229 	 *
   1230 	 * The next series of four set its value, through various possible
   1231 	 * means.
   1232 	 *
   1233 	 * Last but not least, the path to the node is described.  That path
   1234 	 * is relative to the given root (third argument).  Here we're
   1235 	 * starting from the root.
   1236 	 */
   1237 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1238 	    CTLFLAG_PERMANENT,
   1239 	    CTLTYPE_NODE, "tap", NULL,
   1240 	    NULL, 0, NULL, 0,
   1241 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1242 		return;
   1243 	tap_node = node->sysctl_num;
   1244 }
   1245 
   1246 /*
   1247  * The helper functions make Andrew Brown's interface really
   1248  * shine.  It makes possible to create value on the fly whether
   1249  * the sysctl value is read or written.
   1250  *
   1251  * As shown as an example in the man page, the first step is to
   1252  * create a copy of the node to have sysctl_lookup work on it.
   1253  *
   1254  * Here, we have more work to do than just a copy, since we have
   1255  * to create the string.  The first step is to collect the actual
   1256  * value of the node, which is a convenient pointer to the softc
   1257  * of the interface.  From there we create the string and use it
   1258  * as the value, but only for the *copy* of the node.
   1259  *
   1260  * Then we let sysctl_lookup do the magic, which consists in
   1261  * setting oldp and newp as required by the operation.  When the
   1262  * value is read, that means that the string will be copied to
   1263  * the user, and when it is written, the new value will be copied
   1264  * over in the addr array.
   1265  *
   1266  * If newp is NULL, the user was reading the value, so we don't
   1267  * have anything else to do.  If a new value was written, we
   1268  * have to check it.
   1269  *
   1270  * If it is incorrect, we can return an error and leave 'node' as
   1271  * it is:  since it is a copy of the actual node, the change will
   1272  * be forgotten.
   1273  *
   1274  * Upon a correct input, we commit the change to the ifnet
   1275  * structure of our interface.
   1276  */
   1277 static int
   1278 tap_sysctl_handler(SYSCTLFN_ARGS)
   1279 {
   1280 	struct sysctlnode node;
   1281 	struct tap_softc *sc;
   1282 	struct ifnet *ifp;
   1283 	int error;
   1284 	size_t len;
   1285 	char addr[3 * ETHER_ADDR_LEN];
   1286 	uint8_t enaddr[ETHER_ADDR_LEN];
   1287 
   1288 	node = *rnode;
   1289 	sc = node.sysctl_data;
   1290 	ifp = &sc->sc_ec.ec_if;
   1291 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1292 	node.sysctl_data = addr;
   1293 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1294 	if (error || newp == NULL)
   1295 		return (error);
   1296 
   1297 	len = strlen(addr);
   1298 	if (len < 11 || len > 17)
   1299 		return (EINVAL);
   1300 
   1301 	/* Commit change */
   1302 	if (ether_nonstatic_aton(enaddr, addr) != 0 ||
   1303 	    sockaddr_dl_setaddr(ifp->if_sadl, ifp->if_sadl->sdl_len, enaddr,
   1304 	                        ETHER_ADDR_LEN) == NULL)
   1305 		return (EINVAL);
   1306 	return (error);
   1307 }
   1308