Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.38.6.1
      1 /*	$NetBSD: if_tap.c,v 1.38.6.1 2008/04/03 12:43:07 mjf Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *  3. Neither the name of The NetBSD Foundation nor the names of its
     16  *     contributors may be used to endorse or promote products derived
     17  *     from this software without specific prior written permission.
     18  *
     19  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  *  POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     34  * device to the system, but can also be accessed by userland through a
     35  * character device interface, which allows reading and injecting frames.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.38.6.1 2008/04/03 12:43:07 mjf Exp $");
     40 
     41 #if defined(_KERNEL_OPT)
     42 #include "bpfilter.h"
     43 #endif
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/malloc.h>
     49 #include <sys/conf.h>
     50 #include <sys/device.h>
     51 #include <sys/file.h>
     52 #include <sys/filedesc.h>
     53 #include <sys/ksyms.h>
     54 #include <sys/poll.h>
     55 #include <sys/select.h>
     56 #include <sys/sockio.h>
     57 #include <sys/sysctl.h>
     58 #include <sys/kauth.h>
     59 #include <sys/mutex.h>
     60 #include <sys/simplelock.h>
     61 
     62 #include <net/if.h>
     63 #include <net/if_dl.h>
     64 #include <net/if_ether.h>
     65 #include <net/if_media.h>
     66 #include <net/if_tap.h>
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <compat/sys/sockio.h>
     72 
     73 /*
     74  * sysctl node management
     75  *
     76  * It's not really possible to use a SYSCTL_SETUP block with
     77  * current LKM implementation, so it is easier to just define
     78  * our own function.
     79  *
     80  * The handler function is a "helper" in Andrew Brown's sysctl
     81  * framework terminology.  It is used as a gateway for sysctl
     82  * requests over the nodes.
     83  *
     84  * tap_log allows the module to log creations of nodes and
     85  * destroy them all at once using sysctl_teardown.
     86  */
     87 static int tap_node;
     88 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     89 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     90 
     91 /*
     92  * Since we're an Ethernet device, we need the 3 following
     93  * components: a leading struct device, a struct ethercom,
     94  * and also a struct ifmedia since we don't attach a PHY to
     95  * ourselves. We could emulate one, but there's no real
     96  * point.
     97  */
     98 
     99 struct tap_softc {
    100 	device_t	sc_dev;
    101 	struct ifmedia	sc_im;
    102 	struct ethercom	sc_ec;
    103 	int		sc_flags;
    104 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    105 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    106 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    107 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    108 	struct selinfo	sc_rsel;
    109 	pid_t		sc_pgid; /* For async. IO */
    110 	kmutex_t	sc_rdlock;
    111 	struct simplelock	sc_kqlock;
    112 };
    113 
    114 /* autoconf(9) glue */
    115 
    116 void	tapattach(int);
    117 
    118 static int	tap_match(device_t, cfdata_t, void *);
    119 static void	tap_attach(device_t, device_t, void *);
    120 static int	tap_detach(device_t, int);
    121 
    122 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    123     tap_match, tap_attach, tap_detach, NULL);
    124 extern struct cfdriver tap_cd;
    125 
    126 /* Real device access routines */
    127 static int	tap_dev_close(struct tap_softc *);
    128 static int	tap_dev_read(int, struct uio *, int);
    129 static int	tap_dev_write(int, struct uio *, int);
    130 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    131 static int	tap_dev_poll(int, int, struct lwp *);
    132 static int	tap_dev_kqfilter(int, struct knote *);
    133 
    134 /* Fileops access routines */
    135 static int	tap_fops_close(file_t *);
    136 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    137     kauth_cred_t, int);
    138 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    139     kauth_cred_t, int);
    140 static int	tap_fops_ioctl(file_t *, u_long, void *);
    141 static int	tap_fops_poll(file_t *, int);
    142 static int	tap_fops_kqfilter(file_t *, struct knote *);
    143 
    144 static const struct fileops tap_fileops = {
    145 	tap_fops_read,
    146 	tap_fops_write,
    147 	tap_fops_ioctl,
    148 	fnullop_fcntl,
    149 	tap_fops_poll,
    150 	fbadop_stat,
    151 	tap_fops_close,
    152 	tap_fops_kqfilter,
    153 };
    154 
    155 /* Helper for cloning open() */
    156 static int	tap_dev_cloner(struct lwp *);
    157 
    158 /* Character device routines */
    159 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    160 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    161 static int	tap_cdev_read(dev_t, struct uio *, int);
    162 static int	tap_cdev_write(dev_t, struct uio *, int);
    163 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    164 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    165 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    166 
    167 const struct cdevsw tap_cdevsw = {
    168 	tap_cdev_open, tap_cdev_close,
    169 	tap_cdev_read, tap_cdev_write,
    170 	tap_cdev_ioctl, nostop, notty,
    171 	tap_cdev_poll, nommap,
    172 	tap_cdev_kqfilter,
    173 	D_OTHER,
    174 };
    175 
    176 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    177 
    178 /* kqueue-related routines */
    179 static void	tap_kqdetach(struct knote *);
    180 static int	tap_kqread(struct knote *, long);
    181 
    182 /*
    183  * Those are needed by the if_media interface.
    184  */
    185 
    186 static int	tap_mediachange(struct ifnet *);
    187 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    188 
    189 /*
    190  * Those are needed by the ifnet interface, and would typically be
    191  * there for any network interface driver.
    192  * Some other routines are optional: watchdog and drain.
    193  */
    194 
    195 static void	tap_start(struct ifnet *);
    196 static void	tap_stop(struct ifnet *, int);
    197 static int	tap_init(struct ifnet *);
    198 static int	tap_ioctl(struct ifnet *, u_long, void *);
    199 
    200 /* This is an internal function to keep tap_ioctl readable */
    201 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    202 
    203 /*
    204  * tap is a clonable interface, although it is highly unrealistic for
    205  * an Ethernet device.
    206  *
    207  * Here are the bits needed for a clonable interface.
    208  */
    209 static int	tap_clone_create(struct if_clone *, int);
    210 static int	tap_clone_destroy(struct ifnet *);
    211 
    212 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    213 					tap_clone_create,
    214 					tap_clone_destroy);
    215 
    216 /* Helper functionis shared by the two cloning code paths */
    217 static struct tap_softc *	tap_clone_creator(int);
    218 int	tap_clone_destroyer(device_t);
    219 
    220 void
    221 tapattach(int n)
    222 {
    223 	int error;
    224 
    225 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    226 	if (error) {
    227 		aprint_error("%s: unable to register cfattach\n",
    228 		    tap_cd.cd_name);
    229 		(void)config_cfdriver_detach(&tap_cd);
    230 		return;
    231 	}
    232 
    233 	if_clone_attach(&tap_cloners);
    234 }
    235 
    236 /* Pretty much useless for a pseudo-device */
    237 static int
    238 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    239 {
    240 
    241 	return (1);
    242 }
    243 
    244 void
    245 tap_attach(device_t parent, device_t self, void *aux)
    246 {
    247 	struct tap_softc *sc = device_private(self);
    248 	struct ifnet *ifp;
    249 	const struct sysctlnode *node;
    250 	uint8_t enaddr[ETHER_ADDR_LEN] =
    251 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    252 	char enaddrstr[3 * ETHER_ADDR_LEN];
    253 	struct timeval tv;
    254 	uint32_t ui;
    255 	int error;
    256 
    257 	sc->sc_dev = self;
    258 
    259 	/*
    260 	 * In order to obtain unique initial Ethernet address on a host,
    261 	 * do some randomisation using the current uptime.  It's not meant
    262 	 * for anything but avoiding hard-coding an address.
    263 	 */
    264 	getmicrouptime(&tv);
    265 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    266 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
    267 
    268 	aprint_verbose_dev(self, "Ethernet address %s\n",
    269 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    270 
    271 	/*
    272 	 * Why 1000baseT? Why not? You can add more.
    273 	 *
    274 	 * Note that there are 3 steps: init, one or several additions to
    275 	 * list of supported media, and in the end, the selection of one
    276 	 * of them.
    277 	 */
    278 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    279 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    280 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    281 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    282 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    283 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    284 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    286 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    287 
    288 	/*
    289 	 * One should note that an interface must do multicast in order
    290 	 * to support IPv6.
    291 	 */
    292 	ifp = &sc->sc_ec.ec_if;
    293 	strcpy(ifp->if_xname, device_xname(self));
    294 	ifp->if_softc	= sc;
    295 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    296 	ifp->if_ioctl	= tap_ioctl;
    297 	ifp->if_start	= tap_start;
    298 	ifp->if_stop	= tap_stop;
    299 	ifp->if_init	= tap_init;
    300 	IFQ_SET_READY(&ifp->if_snd);
    301 
    302 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    303 
    304 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    305 	 * being common to all network interface drivers. */
    306 	if_attach(ifp);
    307 	ether_ifattach(ifp, enaddr);
    308 
    309 	sc->sc_flags = 0;
    310 
    311 	/*
    312 	 * Add a sysctl node for that interface.
    313 	 *
    314 	 * The pointer transmitted is not a string, but instead a pointer to
    315 	 * the softc structure, which we can use to build the string value on
    316 	 * the fly in the helper function of the node.  See the comments for
    317 	 * tap_sysctl_handler for details.
    318 	 *
    319 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    320 	 * component.  However, we can allocate a number ourselves, as we are
    321 	 * the only consumer of the net.link.<iface> node.  In this case, the
    322 	 * unit number is conveniently used to number the node.  CTL_CREATE
    323 	 * would just work, too.
    324 	 */
    325 	if ((error = sysctl_createv(NULL, 0, NULL,
    326 	    &node, CTLFLAG_READWRITE,
    327 	    CTLTYPE_STRING, device_xname(self), NULL,
    328 	    tap_sysctl_handler, 0, sc, 18,
    329 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    330 	    CTL_EOL)) != 0)
    331 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    332 		    error);
    333 
    334 	/*
    335 	 * Initialize the two locks for the device.
    336 	 *
    337 	 * We need a lock here because even though the tap device can be
    338 	 * opened only once, the file descriptor might be passed to another
    339 	 * process, say a fork(2)ed child.
    340 	 *
    341 	 * The Giant saves us from most of the hassle, but since the read
    342 	 * operation can sleep, we don't want two processes to wake up at
    343 	 * the same moment and both try and dequeue a single packet.
    344 	 *
    345 	 * The queue for event listeners (used by kqueue(9), see below) has
    346 	 * to be protected, too, but we don't need the same level of
    347 	 * complexity for that lock, so a simple spinning lock is fine.
    348 	 */
    349 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    350 	simple_lock_init(&sc->sc_kqlock);
    351 }
    352 
    353 /*
    354  * When detaching, we do the inverse of what is done in the attach
    355  * routine, in reversed order.
    356  */
    357 static int
    358 tap_detach(device_t self, int flags)
    359 {
    360 	struct tap_softc *sc = device_private(self);
    361 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    362 	int error, s;
    363 
    364 	sc->sc_flags |= TAP_GOING;
    365 	s = splnet();
    366 	tap_stop(ifp, 1);
    367 	if_down(ifp);
    368 	splx(s);
    369 
    370 	/*
    371 	 * Destroying a single leaf is a very straightforward operation using
    372 	 * sysctl_destroyv.  One should be sure to always end the path with
    373 	 * CTL_EOL.
    374 	 */
    375 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    376 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    377 		aprint_error_dev(self,
    378 		    "sysctl_destroyv returned %d, ignoring\n", error);
    379 	ether_ifdetach(ifp);
    380 	if_detach(ifp);
    381 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    382 	mutex_destroy(&sc->sc_rdlock);
    383 
    384 	return (0);
    385 }
    386 
    387 /*
    388  * This function is called by the ifmedia layer to notify the driver
    389  * that the user requested a media change.  A real driver would
    390  * reconfigure the hardware.
    391  */
    392 static int
    393 tap_mediachange(struct ifnet *ifp)
    394 {
    395 	return (0);
    396 }
    397 
    398 /*
    399  * Here the user asks for the currently used media.
    400  */
    401 static void
    402 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    403 {
    404 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    405 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    406 }
    407 
    408 /*
    409  * This is the function where we SEND packets.
    410  *
    411  * There is no 'receive' equivalent.  A typical driver will get
    412  * interrupts from the hardware, and from there will inject new packets
    413  * into the network stack.
    414  *
    415  * Once handled, a packet must be freed.  A real driver might not be able
    416  * to fit all the pending packets into the hardware, and is allowed to
    417  * return before having sent all the packets.  It should then use the
    418  * if_flags flag IFF_OACTIVE to notify the upper layer.
    419  *
    420  * There are also other flags one should check, such as IFF_PAUSE.
    421  *
    422  * It is our duty to make packets available to BPF listeners.
    423  *
    424  * You should be aware that this function is called by the Ethernet layer
    425  * at splnet().
    426  *
    427  * When the device is opened, we have to pass the packet(s) to the
    428  * userland.  For that we stay in OACTIVE mode while the userland gets
    429  * the packets, and we send a signal to the processes waiting to read.
    430  *
    431  * wakeup(sc) is the counterpart to the tsleep call in
    432  * tap_dev_read, while selnotify() is used for kevent(2) and
    433  * poll(2) (which includes select(2)) listeners.
    434  */
    435 static void
    436 tap_start(struct ifnet *ifp)
    437 {
    438 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    439 	struct mbuf *m0;
    440 
    441 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    442 		/* Simply drop packets */
    443 		for(;;) {
    444 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    445 			if (m0 == NULL)
    446 				return;
    447 
    448 			ifp->if_opackets++;
    449 #if NBPFILTER > 0
    450 			if (ifp->if_bpf)
    451 				bpf_mtap(ifp->if_bpf, m0);
    452 #endif
    453 
    454 			m_freem(m0);
    455 		}
    456 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    457 		ifp->if_flags |= IFF_OACTIVE;
    458 		wakeup(sc);
    459 		selnotify(&sc->sc_rsel, 0, 1);
    460 		if (sc->sc_flags & TAP_ASYNCIO)
    461 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    462 			    POLLIN|POLLRDNORM, NULL);
    463 	}
    464 }
    465 
    466 /*
    467  * A typical driver will only contain the following handlers for
    468  * ioctl calls, except SIOCSIFPHYADDR.
    469  * The latter is a hack I used to set the Ethernet address of the
    470  * faked device.
    471  *
    472  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    473  * called under splnet().
    474  */
    475 static int
    476 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    477 {
    478 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    479 	struct ifreq *ifr = (struct ifreq *)data;
    480 	int s, error;
    481 
    482 	s = splnet();
    483 
    484 	switch (cmd) {
    485 #ifdef OSIOCSIFMEDIA
    486 	case OSIOCSIFMEDIA:
    487 #endif
    488 	case SIOCSIFMEDIA:
    489 	case SIOCGIFMEDIA:
    490 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    491 		break;
    492 	case SIOCSIFPHYADDR:
    493 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    494 		break;
    495 	default:
    496 		error = ether_ioctl(ifp, cmd, data);
    497 		if (error == ENETRESET)
    498 			error = 0;
    499 		break;
    500 	}
    501 
    502 	splx(s);
    503 
    504 	return (error);
    505 }
    506 
    507 /*
    508  * Helper function to set Ethernet address.  This shouldn't be done there,
    509  * and should actually be available to all Ethernet drivers, real or not.
    510  */
    511 static int
    512 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    513 {
    514 	const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr);
    515 
    516 	if (sdl->sdl_family != AF_LINK)
    517 		return (EINVAL);
    518 
    519 	if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN);
    520 
    521 	return (0);
    522 }
    523 
    524 /*
    525  * _init() would typically be called when an interface goes up,
    526  * meaning it should configure itself into the state in which it
    527  * can send packets.
    528  */
    529 static int
    530 tap_init(struct ifnet *ifp)
    531 {
    532 	ifp->if_flags |= IFF_RUNNING;
    533 
    534 	tap_start(ifp);
    535 
    536 	return (0);
    537 }
    538 
    539 /*
    540  * _stop() is called when an interface goes down.  It is our
    541  * responsability to validate that state by clearing the
    542  * IFF_RUNNING flag.
    543  *
    544  * We have to wake up all the sleeping processes to have the pending
    545  * read requests cancelled.
    546  */
    547 static void
    548 tap_stop(struct ifnet *ifp, int disable)
    549 {
    550 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    551 
    552 	ifp->if_flags &= ~IFF_RUNNING;
    553 	wakeup(sc);
    554 	selnotify(&sc->sc_rsel, 0, 1);
    555 	if (sc->sc_flags & TAP_ASYNCIO)
    556 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    557 }
    558 
    559 /*
    560  * The 'create' command of ifconfig can be used to create
    561  * any numbered instance of a given device.  Thus we have to
    562  * make sure we have enough room in cd_devs to create the
    563  * user-specified instance.  config_attach_pseudo will do this
    564  * for us.
    565  */
    566 static int
    567 tap_clone_create(struct if_clone *ifc, int unit)
    568 {
    569 	if (tap_clone_creator(unit) == NULL) {
    570 		aprint_error("%s%d: unable to attach an instance\n",
    571                     tap_cd.cd_name, unit);
    572 		return (ENXIO);
    573 	}
    574 
    575 	return (0);
    576 }
    577 
    578 /*
    579  * tap(4) can be cloned by two ways:
    580  *   using 'ifconfig tap0 create', which will use the network
    581  *     interface cloning API, and call tap_clone_create above.
    582  *   opening the cloning device node, whose minor number is TAP_CLONER.
    583  *     See below for an explanation on how this part work.
    584  */
    585 static struct tap_softc *
    586 tap_clone_creator(int unit)
    587 {
    588 	struct cfdata *cf;
    589 
    590 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    591 	cf->cf_name = tap_cd.cd_name;
    592 	cf->cf_atname = tap_ca.ca_name;
    593 	if (unit == -1) {
    594 		/* let autoconf find the first free one */
    595 		cf->cf_unit = 0;
    596 		cf->cf_fstate = FSTATE_STAR;
    597 	} else {
    598 		cf->cf_unit = unit;
    599 		cf->cf_fstate = FSTATE_NOTFOUND;
    600 	}
    601 
    602 	return device_private(config_attach_pseudo(cf));
    603 }
    604 
    605 /*
    606  * The clean design of if_clone and autoconf(9) makes that part
    607  * really straightforward.  The second argument of config_detach
    608  * means neither QUIET nor FORCED.
    609  */
    610 static int
    611 tap_clone_destroy(struct ifnet *ifp)
    612 {
    613 	return tap_clone_destroyer(device_private(ifp->if_softc));
    614 }
    615 
    616 int
    617 tap_clone_destroyer(device_t dev)
    618 {
    619 	cfdata_t cf = device_cfdata(dev);
    620 	int error;
    621 
    622 	if ((error = config_detach(dev, 0)) != 0)
    623 		aprint_error_dev(dev, "unable to detach instance\n");
    624 	free(cf, M_DEVBUF);
    625 
    626 	return (error);
    627 }
    628 
    629 /*
    630  * tap(4) is a bit of an hybrid device.  It can be used in two different
    631  * ways:
    632  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    633  *  2. open /dev/tap, get a new interface created and read/write off it.
    634  *     That interface is destroyed when the process that had it created exits.
    635  *
    636  * The first way is managed by the cdevsw structure, and you access interfaces
    637  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    638  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    639  *
    640  * The second way is the so-called "cloning" device.  It's a special minor
    641  * number (chosen as the maximal number, to allow as much tap devices as
    642  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    643  * call ends in tap_cdev_open.  The actual place where it is handled is
    644  * tap_dev_cloner.
    645  *
    646  * An tap device cannot be opened more than once at a time, so the cdevsw
    647  * part of open() does nothing but noting that the interface is being used and
    648  * hence ready to actually handle packets.
    649  */
    650 
    651 static int
    652 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    653 {
    654 	struct tap_softc *sc;
    655 
    656 	if (minor(dev) == TAP_CLONER)
    657 		return tap_dev_cloner(l);
    658 
    659 	sc = device_private(device_lookup(&tap_cd, minor(dev)));
    660 	if (sc == NULL)
    661 		return (ENXIO);
    662 
    663 	/* The device can only be opened once */
    664 	if (sc->sc_flags & TAP_INUSE)
    665 		return (EBUSY);
    666 	sc->sc_flags |= TAP_INUSE;
    667 	return (0);
    668 }
    669 
    670 /*
    671  * There are several kinds of cloning devices, and the most simple is the one
    672  * tap(4) uses.  What it does is change the file descriptor with a new one,
    673  * with its own fileops structure (which maps to the various read, write,
    674  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    675  * then actually creates the new tap devices.
    676  *
    677  * Once those two steps are successful, we can re-wire the existing file
    678  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    679  * structure as needed (notably f_data gets filled with the fifth parameter
    680  * passed, the unit of the tap device which will allows us identifying the
    681  * device later), and returns EMOVEFD.
    682  *
    683  * That magic value is interpreted by sys_open() which then replaces the
    684  * current file descriptor by the new one (through a magic member of struct
    685  * lwp, l_dupfd).
    686  *
    687  * The tap device is flagged as being busy since it otherwise could be
    688  * externally accessed through the corresponding device node with the cdevsw
    689  * interface.
    690  */
    691 
    692 static int
    693 tap_dev_cloner(struct lwp *l)
    694 {
    695 	struct tap_softc *sc;
    696 	file_t *fp;
    697 	int error, fd;
    698 
    699 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    700 		return (error);
    701 
    702 	if ((sc = tap_clone_creator(-1)) == NULL) {
    703 		fd_abort(curproc, fp, fd);
    704 		return (ENXIO);
    705 	}
    706 
    707 	sc->sc_flags |= TAP_INUSE;
    708 
    709 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    710 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    711 }
    712 
    713 /*
    714  * While all other operations (read, write, ioctl, poll and kqfilter) are
    715  * really the same whether we are in cdevsw or fileops mode, the close()
    716  * function is slightly different in the two cases.
    717  *
    718  * As for the other, the core of it is shared in tap_dev_close.  What
    719  * it does is sufficient for the cdevsw interface, but the cloning interface
    720  * needs another thing:  the interface is destroyed when the processes that
    721  * created it closes it.
    722  */
    723 static int
    724 tap_cdev_close(dev_t dev, int flags, int fmt,
    725     struct lwp *l)
    726 {
    727 	struct tap_softc *sc =
    728 	    device_private(device_lookup(&tap_cd, minor(dev)));
    729 
    730 	if (sc == NULL)
    731 		return (ENXIO);
    732 
    733 	return tap_dev_close(sc);
    734 }
    735 
    736 /*
    737  * It might happen that the administrator used ifconfig to externally destroy
    738  * the interface.  In that case, tap_fops_close will be called while
    739  * tap_detach is already happening.  If we called it again from here, we
    740  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    741  */
    742 static int
    743 tap_fops_close(file_t *fp)
    744 {
    745 	int unit = (intptr_t)fp->f_data;
    746 	struct tap_softc *sc;
    747 	int error;
    748 
    749 	sc = device_private(device_lookup(&tap_cd, unit));
    750 	if (sc == NULL)
    751 		return (ENXIO);
    752 
    753 	/* tap_dev_close currently always succeeds, but it might not
    754 	 * always be the case. */
    755 	if ((error = tap_dev_close(sc)) != 0)
    756 		return (error);
    757 
    758 	/* Destroy the device now that it is no longer useful,
    759 	 * unless it's already being destroyed. */
    760 	if ((sc->sc_flags & TAP_GOING) != 0)
    761 		return (0);
    762 
    763 	return tap_clone_destroyer(sc->sc_dev);
    764 }
    765 
    766 static int
    767 tap_dev_close(struct tap_softc *sc)
    768 {
    769 	struct ifnet *ifp;
    770 	int s;
    771 
    772 	s = splnet();
    773 	/* Let tap_start handle packets again */
    774 	ifp = &sc->sc_ec.ec_if;
    775 	ifp->if_flags &= ~IFF_OACTIVE;
    776 
    777 	/* Purge output queue */
    778 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    779 		struct mbuf *m;
    780 
    781 		for (;;) {
    782 			IFQ_DEQUEUE(&ifp->if_snd, m);
    783 			if (m == NULL)
    784 				break;
    785 
    786 			ifp->if_opackets++;
    787 #if NBPFILTER > 0
    788 			if (ifp->if_bpf)
    789 				bpf_mtap(ifp->if_bpf, m);
    790 #endif
    791 		}
    792 	}
    793 	splx(s);
    794 
    795 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    796 
    797 	return (0);
    798 }
    799 
    800 static int
    801 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    802 {
    803 	return tap_dev_read(minor(dev), uio, flags);
    804 }
    805 
    806 static int
    807 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    808     kauth_cred_t cred, int flags)
    809 {
    810 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    811 }
    812 
    813 static int
    814 tap_dev_read(int unit, struct uio *uio, int flags)
    815 {
    816 	struct tap_softc *sc =
    817 	    device_private(device_lookup(&tap_cd, unit));
    818 	struct ifnet *ifp;
    819 	struct mbuf *m, *n;
    820 	int error = 0, s;
    821 
    822 	if (sc == NULL)
    823 		return (ENXIO);
    824 
    825 	ifp = &sc->sc_ec.ec_if;
    826 	if ((ifp->if_flags & IFF_UP) == 0)
    827 		return (EHOSTDOWN);
    828 
    829 	/*
    830 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    831 	 */
    832 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    833 		if (!mutex_tryenter(&sc->sc_rdlock))
    834 			return (EWOULDBLOCK);
    835 	} else {
    836 		mutex_enter(&sc->sc_rdlock);
    837 	}
    838 
    839 	s = splnet();
    840 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    841 		ifp->if_flags &= ~IFF_OACTIVE;
    842 		splx(s);
    843 		/*
    844 		 * We must release the lock before sleeping, and re-acquire it
    845 		 * after.
    846 		 */
    847 		mutex_exit(&sc->sc_rdlock);
    848 		if (sc->sc_flags & TAP_NBIO)
    849 			error = EWOULDBLOCK;
    850 		else
    851 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    852 		if (error != 0)
    853 			return (error);
    854 		/* The device might have been downed */
    855 		if ((ifp->if_flags & IFF_UP) == 0)
    856 			return (EHOSTDOWN);
    857 		if ((sc->sc_flags & TAP_NBIO)) {
    858 			if (!mutex_tryenter(&sc->sc_rdlock))
    859 				return (EWOULDBLOCK);
    860 		} else {
    861 			mutex_enter(&sc->sc_rdlock);
    862 		}
    863 		s = splnet();
    864 	}
    865 
    866 	IFQ_DEQUEUE(&ifp->if_snd, m);
    867 	ifp->if_flags &= ~IFF_OACTIVE;
    868 	splx(s);
    869 	if (m == NULL) {
    870 		error = 0;
    871 		goto out;
    872 	}
    873 
    874 	ifp->if_opackets++;
    875 #if NBPFILTER > 0
    876 	if (ifp->if_bpf)
    877 		bpf_mtap(ifp->if_bpf, m);
    878 #endif
    879 
    880 	/*
    881 	 * One read is one packet.
    882 	 */
    883 	do {
    884 		error = uiomove(mtod(m, void *),
    885 		    min(m->m_len, uio->uio_resid), uio);
    886 		MFREE(m, n);
    887 		m = n;
    888 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    889 
    890 	if (m != NULL)
    891 		m_freem(m);
    892 
    893 out:
    894 	mutex_exit(&sc->sc_rdlock);
    895 	return (error);
    896 }
    897 
    898 static int
    899 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    900 {
    901 	return tap_dev_write(minor(dev), uio, flags);
    902 }
    903 
    904 static int
    905 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
    906     kauth_cred_t cred, int flags)
    907 {
    908 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    909 }
    910 
    911 static int
    912 tap_dev_write(int unit, struct uio *uio, int flags)
    913 {
    914 	struct tap_softc *sc =
    915 	    device_private(device_lookup(&tap_cd, unit));
    916 	struct ifnet *ifp;
    917 	struct mbuf *m, **mp;
    918 	int error = 0;
    919 	int s;
    920 
    921 	if (sc == NULL)
    922 		return (ENXIO);
    923 
    924 	ifp = &sc->sc_ec.ec_if;
    925 
    926 	/* One write, one packet, that's the rule */
    927 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    928 	if (m == NULL) {
    929 		ifp->if_ierrors++;
    930 		return (ENOBUFS);
    931 	}
    932 	m->m_pkthdr.len = uio->uio_resid;
    933 
    934 	mp = &m;
    935 	while (error == 0 && uio->uio_resid > 0) {
    936 		if (*mp != m) {
    937 			MGET(*mp, M_DONTWAIT, MT_DATA);
    938 			if (*mp == NULL) {
    939 				error = ENOBUFS;
    940 				break;
    941 			}
    942 		}
    943 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    944 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
    945 		mp = &(*mp)->m_next;
    946 	}
    947 	if (error) {
    948 		ifp->if_ierrors++;
    949 		m_freem(m);
    950 		return (error);
    951 	}
    952 
    953 	ifp->if_ipackets++;
    954 	m->m_pkthdr.rcvif = ifp;
    955 
    956 #if NBPFILTER > 0
    957 	if (ifp->if_bpf)
    958 		bpf_mtap(ifp->if_bpf, m);
    959 #endif
    960 	s =splnet();
    961 	(*ifp->if_input)(ifp, m);
    962 	splx(s);
    963 
    964 	return (0);
    965 }
    966 
    967 static int
    968 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
    969     struct lwp *l)
    970 {
    971 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    972 }
    973 
    974 static int
    975 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
    976 {
    977 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
    978 }
    979 
    980 static int
    981 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
    982 {
    983 	struct tap_softc *sc =
    984 	    device_private(device_lookup(&tap_cd, unit));
    985 	int error = 0;
    986 
    987 	if (sc == NULL)
    988 		return (ENXIO);
    989 
    990 	switch (cmd) {
    991 	case FIONREAD:
    992 		{
    993 			struct ifnet *ifp = &sc->sc_ec.ec_if;
    994 			struct mbuf *m;
    995 			int s;
    996 
    997 			s = splnet();
    998 			IFQ_POLL(&ifp->if_snd, m);
    999 
   1000 			if (m == NULL)
   1001 				*(int *)data = 0;
   1002 			else
   1003 				*(int *)data = m->m_pkthdr.len;
   1004 			splx(s);
   1005 		} break;
   1006 	case TIOCSPGRP:
   1007 	case FIOSETOWN:
   1008 		error = fsetown(&sc->sc_pgid, cmd, data);
   1009 		break;
   1010 	case TIOCGPGRP:
   1011 	case FIOGETOWN:
   1012 		error = fgetown(sc->sc_pgid, cmd, data);
   1013 		break;
   1014 	case FIOASYNC:
   1015 		if (*(int *)data)
   1016 			sc->sc_flags |= TAP_ASYNCIO;
   1017 		else
   1018 			sc->sc_flags &= ~TAP_ASYNCIO;
   1019 		break;
   1020 	case FIONBIO:
   1021 		if (*(int *)data)
   1022 			sc->sc_flags |= TAP_NBIO;
   1023 		else
   1024 			sc->sc_flags &= ~TAP_NBIO;
   1025 		break;
   1026 #ifdef OTAPGIFNAME
   1027 	case OTAPGIFNAME:
   1028 #endif
   1029 	case TAPGIFNAME:
   1030 		{
   1031 			struct ifreq *ifr = (struct ifreq *)data;
   1032 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1033 
   1034 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1035 		} break;
   1036 	default:
   1037 		error = ENOTTY;
   1038 		break;
   1039 	}
   1040 
   1041 	return (0);
   1042 }
   1043 
   1044 static int
   1045 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1046 {
   1047 	return tap_dev_poll(minor(dev), events, l);
   1048 }
   1049 
   1050 static int
   1051 tap_fops_poll(file_t *fp, int events)
   1052 {
   1053 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1054 }
   1055 
   1056 static int
   1057 tap_dev_poll(int unit, int events, struct lwp *l)
   1058 {
   1059 	struct tap_softc *sc =
   1060 	    device_private(device_lookup(&tap_cd, unit));
   1061 	int revents = 0;
   1062 
   1063 	if (sc == NULL)
   1064 		return POLLERR;
   1065 
   1066 	if (events & (POLLIN|POLLRDNORM)) {
   1067 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1068 		struct mbuf *m;
   1069 		int s;
   1070 
   1071 		s = splnet();
   1072 		IFQ_POLL(&ifp->if_snd, m);
   1073 		splx(s);
   1074 
   1075 		if (m != NULL)
   1076 			revents |= events & (POLLIN|POLLRDNORM);
   1077 		else {
   1078 			simple_lock(&sc->sc_kqlock);
   1079 			selrecord(l, &sc->sc_rsel);
   1080 			simple_unlock(&sc->sc_kqlock);
   1081 		}
   1082 	}
   1083 	revents |= events & (POLLOUT|POLLWRNORM);
   1084 
   1085 	return (revents);
   1086 }
   1087 
   1088 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1089 	tap_kqread };
   1090 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1091 	filt_seltrue };
   1092 
   1093 static int
   1094 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1095 {
   1096 	return tap_dev_kqfilter(minor(dev), kn);
   1097 }
   1098 
   1099 static int
   1100 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1101 {
   1102 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1103 }
   1104 
   1105 static int
   1106 tap_dev_kqfilter(int unit, struct knote *kn)
   1107 {
   1108 	struct tap_softc *sc =
   1109 	    device_private(device_lookup(&tap_cd, unit));
   1110 
   1111 	if (sc == NULL)
   1112 		return (ENXIO);
   1113 
   1114 	switch(kn->kn_filter) {
   1115 	case EVFILT_READ:
   1116 		kn->kn_fop = &tap_read_filterops;
   1117 		break;
   1118 	case EVFILT_WRITE:
   1119 		kn->kn_fop = &tap_seltrue_filterops;
   1120 		break;
   1121 	default:
   1122 		return (EINVAL);
   1123 	}
   1124 
   1125 	kn->kn_hook = sc;
   1126 	simple_lock(&sc->sc_kqlock);
   1127 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1128 	simple_unlock(&sc->sc_kqlock);
   1129 	return (0);
   1130 }
   1131 
   1132 static void
   1133 tap_kqdetach(struct knote *kn)
   1134 {
   1135 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1136 
   1137 	simple_lock(&sc->sc_kqlock);
   1138 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1139 	simple_unlock(&sc->sc_kqlock);
   1140 }
   1141 
   1142 static int
   1143 tap_kqread(struct knote *kn, long hint)
   1144 {
   1145 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1146 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1147 	struct mbuf *m;
   1148 	int s;
   1149 
   1150 	s = splnet();
   1151 	IFQ_POLL(&ifp->if_snd, m);
   1152 
   1153 	if (m == NULL)
   1154 		kn->kn_data = 0;
   1155 	else
   1156 		kn->kn_data = m->m_pkthdr.len;
   1157 	splx(s);
   1158 	return (kn->kn_data != 0 ? 1 : 0);
   1159 }
   1160 
   1161 /*
   1162  * sysctl management routines
   1163  * You can set the address of an interface through:
   1164  * net.link.tap.tap<number>
   1165  *
   1166  * Note the consistent use of tap_log in order to use
   1167  * sysctl_teardown at unload time.
   1168  *
   1169  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1170  * blocks register a function in a special section of the kernel
   1171  * (called a link set) which is used at init_sysctl() time to cycle
   1172  * through all those functions to create the kernel's sysctl tree.
   1173  *
   1174  * It is not (currently) possible to use link sets in a LKM, so the
   1175  * easiest is to simply call our own setup routine at load time.
   1176  *
   1177  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1178  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1179  * whole kernel sysctl tree is built, it is not possible to add any
   1180  * permanent node.
   1181  *
   1182  * It should be noted that we're not saving the sysctlnode pointer
   1183  * we are returned when creating the "tap" node.  That structure
   1184  * cannot be trusted once out of the calling function, as it might
   1185  * get reused.  So we just save the MIB number, and always give the
   1186  * full path starting from the root for later calls to sysctl_createv
   1187  * and sysctl_destroyv.
   1188  */
   1189 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1190 {
   1191 	const struct sysctlnode *node;
   1192 	int error = 0;
   1193 
   1194 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1195 	    CTLFLAG_PERMANENT,
   1196 	    CTLTYPE_NODE, "net", NULL,
   1197 	    NULL, 0, NULL, 0,
   1198 	    CTL_NET, CTL_EOL)) != 0)
   1199 		return;
   1200 
   1201 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1202 	    CTLFLAG_PERMANENT,
   1203 	    CTLTYPE_NODE, "link", NULL,
   1204 	    NULL, 0, NULL, 0,
   1205 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1206 		return;
   1207 
   1208 	/*
   1209 	 * The first four parameters of sysctl_createv are for management.
   1210 	 *
   1211 	 * The four that follows, here starting with a '0' for the flags,
   1212 	 * describe the node.
   1213 	 *
   1214 	 * The next series of four set its value, through various possible
   1215 	 * means.
   1216 	 *
   1217 	 * Last but not least, the path to the node is described.  That path
   1218 	 * is relative to the given root (third argument).  Here we're
   1219 	 * starting from the root.
   1220 	 */
   1221 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1222 	    CTLFLAG_PERMANENT,
   1223 	    CTLTYPE_NODE, "tap", NULL,
   1224 	    NULL, 0, NULL, 0,
   1225 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1226 		return;
   1227 	tap_node = node->sysctl_num;
   1228 }
   1229 
   1230 /*
   1231  * The helper functions make Andrew Brown's interface really
   1232  * shine.  It makes possible to create value on the fly whether
   1233  * the sysctl value is read or written.
   1234  *
   1235  * As shown as an example in the man page, the first step is to
   1236  * create a copy of the node to have sysctl_lookup work on it.
   1237  *
   1238  * Here, we have more work to do than just a copy, since we have
   1239  * to create the string.  The first step is to collect the actual
   1240  * value of the node, which is a convenient pointer to the softc
   1241  * of the interface.  From there we create the string and use it
   1242  * as the value, but only for the *copy* of the node.
   1243  *
   1244  * Then we let sysctl_lookup do the magic, which consists in
   1245  * setting oldp and newp as required by the operation.  When the
   1246  * value is read, that means that the string will be copied to
   1247  * the user, and when it is written, the new value will be copied
   1248  * over in the addr array.
   1249  *
   1250  * If newp is NULL, the user was reading the value, so we don't
   1251  * have anything else to do.  If a new value was written, we
   1252  * have to check it.
   1253  *
   1254  * If it is incorrect, we can return an error and leave 'node' as
   1255  * it is:  since it is a copy of the actual node, the change will
   1256  * be forgotten.
   1257  *
   1258  * Upon a correct input, we commit the change to the ifnet
   1259  * structure of our interface.
   1260  */
   1261 static int
   1262 tap_sysctl_handler(SYSCTLFN_ARGS)
   1263 {
   1264 	struct sysctlnode node;
   1265 	struct tap_softc *sc;
   1266 	struct ifnet *ifp;
   1267 	int error;
   1268 	size_t len;
   1269 	char addr[3 * ETHER_ADDR_LEN];
   1270 	uint8_t enaddr[ETHER_ADDR_LEN];
   1271 
   1272 	node = *rnode;
   1273 	sc = node.sysctl_data;
   1274 	ifp = &sc->sc_ec.ec_if;
   1275 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1276 	node.sysctl_data = addr;
   1277 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1278 	if (error || newp == NULL)
   1279 		return (error);
   1280 
   1281 	len = strlen(addr);
   1282 	if (len < 11 || len > 17)
   1283 		return (EINVAL);
   1284 
   1285 	/* Commit change */
   1286 	if (ether_nonstatic_aton(enaddr, addr) != 0)
   1287 		return (EINVAL);
   1288 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN);
   1289 	return (error);
   1290 }
   1291