if_tap.c revision 1.43 1 /* $NetBSD: if_tap.c,v 1.43 2008/04/29 06:53:03 martin Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.43 2008/04/29 06:53:03 martin Exp $");
37
38 #if defined(_KERNEL_OPT)
39 #include "bpfilter.h"
40 #endif
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/conf.h>
47 #include <sys/device.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/ksyms.h>
51 #include <sys/poll.h>
52 #include <sys/select.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/kauth.h>
56 #include <sys/mutex.h>
57 #include <sys/simplelock.h>
58 #include <sys/intr.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64 #include <net/if_tap.h>
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <compat/sys/sockio.h>
70
71 /*
72 * sysctl node management
73 *
74 * It's not really possible to use a SYSCTL_SETUP block with
75 * current LKM implementation, so it is easier to just define
76 * our own function.
77 *
78 * The handler function is a "helper" in Andrew Brown's sysctl
79 * framework terminology. It is used as a gateway for sysctl
80 * requests over the nodes.
81 *
82 * tap_log allows the module to log creations of nodes and
83 * destroy them all at once using sysctl_teardown.
84 */
85 static int tap_node;
86 static int tap_sysctl_handler(SYSCTLFN_PROTO);
87 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
88
89 /*
90 * Since we're an Ethernet device, we need the 3 following
91 * components: a leading struct device, a struct ethercom,
92 * and also a struct ifmedia since we don't attach a PHY to
93 * ourselves. We could emulate one, but there's no real
94 * point.
95 */
96
97 struct tap_softc {
98 device_t sc_dev;
99 struct ifmedia sc_im;
100 struct ethercom sc_ec;
101 int sc_flags;
102 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
103 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
104 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
105 #define TAP_GOING 0x00000008 /* interface is being destroyed */
106 struct selinfo sc_rsel;
107 pid_t sc_pgid; /* For async. IO */
108 kmutex_t sc_rdlock;
109 struct simplelock sc_kqlock;
110 void *sc_sih;
111 };
112
113 /* autoconf(9) glue */
114
115 void tapattach(int);
116
117 static int tap_match(device_t, cfdata_t, void *);
118 static void tap_attach(device_t, device_t, void *);
119 static int tap_detach(device_t, int);
120
121 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
122 tap_match, tap_attach, tap_detach, NULL);
123 extern struct cfdriver tap_cd;
124
125 /* Real device access routines */
126 static int tap_dev_close(struct tap_softc *);
127 static int tap_dev_read(int, struct uio *, int);
128 static int tap_dev_write(int, struct uio *, int);
129 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
130 static int tap_dev_poll(int, int, struct lwp *);
131 static int tap_dev_kqfilter(int, struct knote *);
132
133 /* Fileops access routines */
134 static int tap_fops_close(file_t *);
135 static int tap_fops_read(file_t *, off_t *, struct uio *,
136 kauth_cred_t, int);
137 static int tap_fops_write(file_t *, off_t *, struct uio *,
138 kauth_cred_t, int);
139 static int tap_fops_ioctl(file_t *, u_long, void *);
140 static int tap_fops_poll(file_t *, int);
141 static int tap_fops_kqfilter(file_t *, struct knote *);
142
143 static const struct fileops tap_fileops = {
144 tap_fops_read,
145 tap_fops_write,
146 tap_fops_ioctl,
147 fnullop_fcntl,
148 tap_fops_poll,
149 fbadop_stat,
150 tap_fops_close,
151 tap_fops_kqfilter,
152 };
153
154 /* Helper for cloning open() */
155 static int tap_dev_cloner(struct lwp *);
156
157 /* Character device routines */
158 static int tap_cdev_open(dev_t, int, int, struct lwp *);
159 static int tap_cdev_close(dev_t, int, int, struct lwp *);
160 static int tap_cdev_read(dev_t, struct uio *, int);
161 static int tap_cdev_write(dev_t, struct uio *, int);
162 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
163 static int tap_cdev_poll(dev_t, int, struct lwp *);
164 static int tap_cdev_kqfilter(dev_t, struct knote *);
165
166 const struct cdevsw tap_cdevsw = {
167 tap_cdev_open, tap_cdev_close,
168 tap_cdev_read, tap_cdev_write,
169 tap_cdev_ioctl, nostop, notty,
170 tap_cdev_poll, nommap,
171 tap_cdev_kqfilter,
172 D_OTHER,
173 };
174
175 #define TAP_CLONER 0xfffff /* Maximal minor value */
176
177 /* kqueue-related routines */
178 static void tap_kqdetach(struct knote *);
179 static int tap_kqread(struct knote *, long);
180
181 /*
182 * Those are needed by the if_media interface.
183 */
184
185 static int tap_mediachange(struct ifnet *);
186 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
187
188 /*
189 * Those are needed by the ifnet interface, and would typically be
190 * there for any network interface driver.
191 * Some other routines are optional: watchdog and drain.
192 */
193
194 static void tap_start(struct ifnet *);
195 static void tap_stop(struct ifnet *, int);
196 static int tap_init(struct ifnet *);
197 static int tap_ioctl(struct ifnet *, u_long, void *);
198
199 /* Internal functions */
200 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
201 static void tap_softintr(void *);
202
203 /*
204 * tap is a clonable interface, although it is highly unrealistic for
205 * an Ethernet device.
206 *
207 * Here are the bits needed for a clonable interface.
208 */
209 static int tap_clone_create(struct if_clone *, int);
210 static int tap_clone_destroy(struct ifnet *);
211
212 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
213 tap_clone_create,
214 tap_clone_destroy);
215
216 /* Helper functionis shared by the two cloning code paths */
217 static struct tap_softc * tap_clone_creator(int);
218 int tap_clone_destroyer(device_t);
219
220 void
221 tapattach(int n)
222 {
223 int error;
224
225 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
226 if (error) {
227 aprint_error("%s: unable to register cfattach\n",
228 tap_cd.cd_name);
229 (void)config_cfdriver_detach(&tap_cd);
230 return;
231 }
232
233 if_clone_attach(&tap_cloners);
234 }
235
236 /* Pretty much useless for a pseudo-device */
237 static int
238 tap_match(device_t parent, cfdata_t cfdata, void *arg)
239 {
240
241 return (1);
242 }
243
244 void
245 tap_attach(device_t parent, device_t self, void *aux)
246 {
247 struct tap_softc *sc = device_private(self);
248 struct ifnet *ifp;
249 const struct sysctlnode *node;
250 uint8_t enaddr[ETHER_ADDR_LEN] =
251 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
252 char enaddrstr[3 * ETHER_ADDR_LEN];
253 struct timeval tv;
254 uint32_t ui;
255 int error;
256
257 sc->sc_dev = self;
258 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
259
260 /*
261 * In order to obtain unique initial Ethernet address on a host,
262 * do some randomisation using the current uptime. It's not meant
263 * for anything but avoiding hard-coding an address.
264 */
265 getmicrouptime(&tv);
266 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
267 memcpy(enaddr+3, (uint8_t *)&ui, 3);
268
269 aprint_verbose_dev(self, "Ethernet address %s\n",
270 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
271
272 /*
273 * Why 1000baseT? Why not? You can add more.
274 *
275 * Note that there are 3 steps: init, one or several additions to
276 * list of supported media, and in the end, the selection of one
277 * of them.
278 */
279 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
280 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
281 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
282 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
283 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
284 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
285 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
287 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
288
289 /*
290 * One should note that an interface must do multicast in order
291 * to support IPv6.
292 */
293 ifp = &sc->sc_ec.ec_if;
294 strcpy(ifp->if_xname, device_xname(self));
295 ifp->if_softc = sc;
296 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
297 ifp->if_ioctl = tap_ioctl;
298 ifp->if_start = tap_start;
299 ifp->if_stop = tap_stop;
300 ifp->if_init = tap_init;
301 IFQ_SET_READY(&ifp->if_snd);
302
303 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
304
305 /* Those steps are mandatory for an Ethernet driver, the fisrt call
306 * being common to all network interface drivers. */
307 if_attach(ifp);
308 ether_ifattach(ifp, enaddr);
309
310 sc->sc_flags = 0;
311
312 /*
313 * Add a sysctl node for that interface.
314 *
315 * The pointer transmitted is not a string, but instead a pointer to
316 * the softc structure, which we can use to build the string value on
317 * the fly in the helper function of the node. See the comments for
318 * tap_sysctl_handler for details.
319 *
320 * Usually sysctl_createv is called with CTL_CREATE as the before-last
321 * component. However, we can allocate a number ourselves, as we are
322 * the only consumer of the net.link.<iface> node. In this case, the
323 * unit number is conveniently used to number the node. CTL_CREATE
324 * would just work, too.
325 */
326 if ((error = sysctl_createv(NULL, 0, NULL,
327 &node, CTLFLAG_READWRITE,
328 CTLTYPE_STRING, device_xname(self), NULL,
329 tap_sysctl_handler, 0, sc, 18,
330 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
331 CTL_EOL)) != 0)
332 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
333 error);
334
335 /*
336 * Initialize the two locks for the device.
337 *
338 * We need a lock here because even though the tap device can be
339 * opened only once, the file descriptor might be passed to another
340 * process, say a fork(2)ed child.
341 *
342 * The Giant saves us from most of the hassle, but since the read
343 * operation can sleep, we don't want two processes to wake up at
344 * the same moment and both try and dequeue a single packet.
345 *
346 * The queue for event listeners (used by kqueue(9), see below) has
347 * to be protected, too, but we don't need the same level of
348 * complexity for that lock, so a simple spinning lock is fine.
349 */
350 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
351 simple_lock_init(&sc->sc_kqlock);
352 }
353
354 /*
355 * When detaching, we do the inverse of what is done in the attach
356 * routine, in reversed order.
357 */
358 static int
359 tap_detach(device_t self, int flags)
360 {
361 struct tap_softc *sc = device_private(self);
362 struct ifnet *ifp = &sc->sc_ec.ec_if;
363 int error, s;
364
365 sc->sc_flags |= TAP_GOING;
366 s = splnet();
367 tap_stop(ifp, 1);
368 if_down(ifp);
369 splx(s);
370
371 softint_disestablish(sc->sc_sih);
372
373 /*
374 * Destroying a single leaf is a very straightforward operation using
375 * sysctl_destroyv. One should be sure to always end the path with
376 * CTL_EOL.
377 */
378 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
379 device_unit(sc->sc_dev), CTL_EOL)) != 0)
380 aprint_error_dev(self,
381 "sysctl_destroyv returned %d, ignoring\n", error);
382 ether_ifdetach(ifp);
383 if_detach(ifp);
384 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
385 mutex_destroy(&sc->sc_rdlock);
386
387 return (0);
388 }
389
390 /*
391 * This function is called by the ifmedia layer to notify the driver
392 * that the user requested a media change. A real driver would
393 * reconfigure the hardware.
394 */
395 static int
396 tap_mediachange(struct ifnet *ifp)
397 {
398 return (0);
399 }
400
401 /*
402 * Here the user asks for the currently used media.
403 */
404 static void
405 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
406 {
407 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
408 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
409 }
410
411 /*
412 * This is the function where we SEND packets.
413 *
414 * There is no 'receive' equivalent. A typical driver will get
415 * interrupts from the hardware, and from there will inject new packets
416 * into the network stack.
417 *
418 * Once handled, a packet must be freed. A real driver might not be able
419 * to fit all the pending packets into the hardware, and is allowed to
420 * return before having sent all the packets. It should then use the
421 * if_flags flag IFF_OACTIVE to notify the upper layer.
422 *
423 * There are also other flags one should check, such as IFF_PAUSE.
424 *
425 * It is our duty to make packets available to BPF listeners.
426 *
427 * You should be aware that this function is called by the Ethernet layer
428 * at splnet().
429 *
430 * When the device is opened, we have to pass the packet(s) to the
431 * userland. For that we stay in OACTIVE mode while the userland gets
432 * the packets, and we send a signal to the processes waiting to read.
433 *
434 * wakeup(sc) is the counterpart to the tsleep call in
435 * tap_dev_read, while selnotify() is used for kevent(2) and
436 * poll(2) (which includes select(2)) listeners.
437 */
438 static void
439 tap_start(struct ifnet *ifp)
440 {
441 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
442 struct mbuf *m0;
443
444 if ((sc->sc_flags & TAP_INUSE) == 0) {
445 /* Simply drop packets */
446 for(;;) {
447 IFQ_DEQUEUE(&ifp->if_snd, m0);
448 if (m0 == NULL)
449 return;
450
451 ifp->if_opackets++;
452 #if NBPFILTER > 0
453 if (ifp->if_bpf)
454 bpf_mtap(ifp->if_bpf, m0);
455 #endif
456
457 m_freem(m0);
458 }
459 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
460 ifp->if_flags |= IFF_OACTIVE;
461 wakeup(sc);
462 selnotify(&sc->sc_rsel, 0, 1);
463 if (sc->sc_flags & TAP_ASYNCIO)
464 softint_schedule(sc->sc_sih);
465 }
466 }
467
468 static void
469 tap_softintr(void *cookie)
470 {
471 struct tap_softc *sc;
472 struct ifnet *ifp;
473 int a, b;
474
475 sc = cookie;
476
477 if (sc->sc_flags & TAP_ASYNCIO) {
478 ifp = &sc->sc_ec.ec_if;
479 if (ifp->if_flags & IFF_RUNNING) {
480 a = POLL_IN;
481 b = POLLIN|POLLRDNORM;
482 } else {
483 a = POLL_HUP;
484 b = 0;
485 }
486 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
487 }
488 }
489
490 /*
491 * A typical driver will only contain the following handlers for
492 * ioctl calls, except SIOCSIFPHYADDR.
493 * The latter is a hack I used to set the Ethernet address of the
494 * faked device.
495 *
496 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
497 * called under splnet().
498 */
499 static int
500 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
501 {
502 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
503 struct ifreq *ifr = (struct ifreq *)data;
504 int s, error;
505
506 s = splnet();
507
508 switch (cmd) {
509 #ifdef OSIOCSIFMEDIA
510 case OSIOCSIFMEDIA:
511 #endif
512 case SIOCSIFMEDIA:
513 case SIOCGIFMEDIA:
514 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
515 break;
516 case SIOCSIFPHYADDR:
517 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
518 break;
519 default:
520 error = ether_ioctl(ifp, cmd, data);
521 if (error == ENETRESET)
522 error = 0;
523 break;
524 }
525
526 splx(s);
527
528 return (error);
529 }
530
531 /*
532 * Helper function to set Ethernet address. This shouldn't be done there,
533 * and should actually be available to all Ethernet drivers, real or not.
534 */
535 static int
536 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
537 {
538 const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr);
539
540 if (sdl->sdl_family != AF_LINK)
541 return (EINVAL);
542
543 if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN);
544
545 return (0);
546 }
547
548 /*
549 * _init() would typically be called when an interface goes up,
550 * meaning it should configure itself into the state in which it
551 * can send packets.
552 */
553 static int
554 tap_init(struct ifnet *ifp)
555 {
556 ifp->if_flags |= IFF_RUNNING;
557
558 tap_start(ifp);
559
560 return (0);
561 }
562
563 /*
564 * _stop() is called when an interface goes down. It is our
565 * responsability to validate that state by clearing the
566 * IFF_RUNNING flag.
567 *
568 * We have to wake up all the sleeping processes to have the pending
569 * read requests cancelled.
570 */
571 static void
572 tap_stop(struct ifnet *ifp, int disable)
573 {
574 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
575
576 ifp->if_flags &= ~IFF_RUNNING;
577 wakeup(sc);
578 selnotify(&sc->sc_rsel, 0, 1);
579 if (sc->sc_flags & TAP_ASYNCIO)
580 softint_schedule(sc->sc_sih);
581 }
582
583 /*
584 * The 'create' command of ifconfig can be used to create
585 * any numbered instance of a given device. Thus we have to
586 * make sure we have enough room in cd_devs to create the
587 * user-specified instance. config_attach_pseudo will do this
588 * for us.
589 */
590 static int
591 tap_clone_create(struct if_clone *ifc, int unit)
592 {
593 if (tap_clone_creator(unit) == NULL) {
594 aprint_error("%s%d: unable to attach an instance\n",
595 tap_cd.cd_name, unit);
596 return (ENXIO);
597 }
598
599 return (0);
600 }
601
602 /*
603 * tap(4) can be cloned by two ways:
604 * using 'ifconfig tap0 create', which will use the network
605 * interface cloning API, and call tap_clone_create above.
606 * opening the cloning device node, whose minor number is TAP_CLONER.
607 * See below for an explanation on how this part work.
608 */
609 static struct tap_softc *
610 tap_clone_creator(int unit)
611 {
612 struct cfdata *cf;
613
614 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
615 cf->cf_name = tap_cd.cd_name;
616 cf->cf_atname = tap_ca.ca_name;
617 if (unit == -1) {
618 /* let autoconf find the first free one */
619 cf->cf_unit = 0;
620 cf->cf_fstate = FSTATE_STAR;
621 } else {
622 cf->cf_unit = unit;
623 cf->cf_fstate = FSTATE_NOTFOUND;
624 }
625
626 return device_private(config_attach_pseudo(cf));
627 }
628
629 /*
630 * The clean design of if_clone and autoconf(9) makes that part
631 * really straightforward. The second argument of config_detach
632 * means neither QUIET nor FORCED.
633 */
634 static int
635 tap_clone_destroy(struct ifnet *ifp)
636 {
637 return tap_clone_destroyer(device_private(ifp->if_softc));
638 }
639
640 int
641 tap_clone_destroyer(device_t dev)
642 {
643 cfdata_t cf = device_cfdata(dev);
644 int error;
645
646 if ((error = config_detach(dev, 0)) != 0)
647 aprint_error_dev(dev, "unable to detach instance\n");
648 free(cf, M_DEVBUF);
649
650 return (error);
651 }
652
653 /*
654 * tap(4) is a bit of an hybrid device. It can be used in two different
655 * ways:
656 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
657 * 2. open /dev/tap, get a new interface created and read/write off it.
658 * That interface is destroyed when the process that had it created exits.
659 *
660 * The first way is managed by the cdevsw structure, and you access interfaces
661 * through a (major, minor) mapping: tap4 is obtained by the minor number
662 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
663 *
664 * The second way is the so-called "cloning" device. It's a special minor
665 * number (chosen as the maximal number, to allow as much tap devices as
666 * possible). The user first opens the cloner (e.g., /dev/tap), and that
667 * call ends in tap_cdev_open. The actual place where it is handled is
668 * tap_dev_cloner.
669 *
670 * An tap device cannot be opened more than once at a time, so the cdevsw
671 * part of open() does nothing but noting that the interface is being used and
672 * hence ready to actually handle packets.
673 */
674
675 static int
676 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
677 {
678 struct tap_softc *sc;
679
680 if (minor(dev) == TAP_CLONER)
681 return tap_dev_cloner(l);
682
683 sc = device_private(device_lookup(&tap_cd, minor(dev)));
684 if (sc == NULL)
685 return (ENXIO);
686
687 /* The device can only be opened once */
688 if (sc->sc_flags & TAP_INUSE)
689 return (EBUSY);
690 sc->sc_flags |= TAP_INUSE;
691 return (0);
692 }
693
694 /*
695 * There are several kinds of cloning devices, and the most simple is the one
696 * tap(4) uses. What it does is change the file descriptor with a new one,
697 * with its own fileops structure (which maps to the various read, write,
698 * ioctl functions). It starts allocating a new file descriptor with falloc,
699 * then actually creates the new tap devices.
700 *
701 * Once those two steps are successful, we can re-wire the existing file
702 * descriptor to its new self. This is done with fdclone(): it fills the fp
703 * structure as needed (notably f_data gets filled with the fifth parameter
704 * passed, the unit of the tap device which will allows us identifying the
705 * device later), and returns EMOVEFD.
706 *
707 * That magic value is interpreted by sys_open() which then replaces the
708 * current file descriptor by the new one (through a magic member of struct
709 * lwp, l_dupfd).
710 *
711 * The tap device is flagged as being busy since it otherwise could be
712 * externally accessed through the corresponding device node with the cdevsw
713 * interface.
714 */
715
716 static int
717 tap_dev_cloner(struct lwp *l)
718 {
719 struct tap_softc *sc;
720 file_t *fp;
721 int error, fd;
722
723 if ((error = fd_allocfile(&fp, &fd)) != 0)
724 return (error);
725
726 if ((sc = tap_clone_creator(-1)) == NULL) {
727 fd_abort(curproc, fp, fd);
728 return (ENXIO);
729 }
730
731 sc->sc_flags |= TAP_INUSE;
732
733 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
734 (void *)(intptr_t)device_unit(sc->sc_dev));
735 }
736
737 /*
738 * While all other operations (read, write, ioctl, poll and kqfilter) are
739 * really the same whether we are in cdevsw or fileops mode, the close()
740 * function is slightly different in the two cases.
741 *
742 * As for the other, the core of it is shared in tap_dev_close. What
743 * it does is sufficient for the cdevsw interface, but the cloning interface
744 * needs another thing: the interface is destroyed when the processes that
745 * created it closes it.
746 */
747 static int
748 tap_cdev_close(dev_t dev, int flags, int fmt,
749 struct lwp *l)
750 {
751 struct tap_softc *sc =
752 device_private(device_lookup(&tap_cd, minor(dev)));
753
754 if (sc == NULL)
755 return (ENXIO);
756
757 return tap_dev_close(sc);
758 }
759
760 /*
761 * It might happen that the administrator used ifconfig to externally destroy
762 * the interface. In that case, tap_fops_close will be called while
763 * tap_detach is already happening. If we called it again from here, we
764 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
765 */
766 static int
767 tap_fops_close(file_t *fp)
768 {
769 int unit = (intptr_t)fp->f_data;
770 struct tap_softc *sc;
771 int error;
772
773 sc = device_private(device_lookup(&tap_cd, unit));
774 if (sc == NULL)
775 return (ENXIO);
776
777 /* tap_dev_close currently always succeeds, but it might not
778 * always be the case. */
779 if ((error = tap_dev_close(sc)) != 0)
780 return (error);
781
782 /* Destroy the device now that it is no longer useful,
783 * unless it's already being destroyed. */
784 if ((sc->sc_flags & TAP_GOING) != 0)
785 return (0);
786
787 return tap_clone_destroyer(sc->sc_dev);
788 }
789
790 static int
791 tap_dev_close(struct tap_softc *sc)
792 {
793 struct ifnet *ifp;
794 int s;
795
796 s = splnet();
797 /* Let tap_start handle packets again */
798 ifp = &sc->sc_ec.ec_if;
799 ifp->if_flags &= ~IFF_OACTIVE;
800
801 /* Purge output queue */
802 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
803 struct mbuf *m;
804
805 for (;;) {
806 IFQ_DEQUEUE(&ifp->if_snd, m);
807 if (m == NULL)
808 break;
809
810 ifp->if_opackets++;
811 #if NBPFILTER > 0
812 if (ifp->if_bpf)
813 bpf_mtap(ifp->if_bpf, m);
814 #endif
815 }
816 }
817 splx(s);
818
819 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
820
821 return (0);
822 }
823
824 static int
825 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
826 {
827 return tap_dev_read(minor(dev), uio, flags);
828 }
829
830 static int
831 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
832 kauth_cred_t cred, int flags)
833 {
834 return tap_dev_read((intptr_t)fp->f_data, uio, flags);
835 }
836
837 static int
838 tap_dev_read(int unit, struct uio *uio, int flags)
839 {
840 struct tap_softc *sc =
841 device_private(device_lookup(&tap_cd, unit));
842 struct ifnet *ifp;
843 struct mbuf *m, *n;
844 int error = 0, s;
845
846 if (sc == NULL)
847 return (ENXIO);
848
849 ifp = &sc->sc_ec.ec_if;
850 if ((ifp->if_flags & IFF_UP) == 0)
851 return (EHOSTDOWN);
852
853 /*
854 * In the TAP_NBIO case, we have to make sure we won't be sleeping
855 */
856 if ((sc->sc_flags & TAP_NBIO) != 0) {
857 if (!mutex_tryenter(&sc->sc_rdlock))
858 return (EWOULDBLOCK);
859 } else {
860 mutex_enter(&sc->sc_rdlock);
861 }
862
863 s = splnet();
864 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
865 ifp->if_flags &= ~IFF_OACTIVE;
866 splx(s);
867 /*
868 * We must release the lock before sleeping, and re-acquire it
869 * after.
870 */
871 mutex_exit(&sc->sc_rdlock);
872 if (sc->sc_flags & TAP_NBIO)
873 error = EWOULDBLOCK;
874 else
875 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
876 if (error != 0)
877 return (error);
878 /* The device might have been downed */
879 if ((ifp->if_flags & IFF_UP) == 0)
880 return (EHOSTDOWN);
881 if ((sc->sc_flags & TAP_NBIO)) {
882 if (!mutex_tryenter(&sc->sc_rdlock))
883 return (EWOULDBLOCK);
884 } else {
885 mutex_enter(&sc->sc_rdlock);
886 }
887 s = splnet();
888 }
889
890 IFQ_DEQUEUE(&ifp->if_snd, m);
891 ifp->if_flags &= ~IFF_OACTIVE;
892 splx(s);
893 if (m == NULL) {
894 error = 0;
895 goto out;
896 }
897
898 ifp->if_opackets++;
899 #if NBPFILTER > 0
900 if (ifp->if_bpf)
901 bpf_mtap(ifp->if_bpf, m);
902 #endif
903
904 /*
905 * One read is one packet.
906 */
907 do {
908 error = uiomove(mtod(m, void *),
909 min(m->m_len, uio->uio_resid), uio);
910 MFREE(m, n);
911 m = n;
912 } while (m != NULL && uio->uio_resid > 0 && error == 0);
913
914 if (m != NULL)
915 m_freem(m);
916
917 out:
918 mutex_exit(&sc->sc_rdlock);
919 return (error);
920 }
921
922 static int
923 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
924 {
925 return tap_dev_write(minor(dev), uio, flags);
926 }
927
928 static int
929 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
930 kauth_cred_t cred, int flags)
931 {
932 return tap_dev_write((intptr_t)fp->f_data, uio, flags);
933 }
934
935 static int
936 tap_dev_write(int unit, struct uio *uio, int flags)
937 {
938 struct tap_softc *sc =
939 device_private(device_lookup(&tap_cd, unit));
940 struct ifnet *ifp;
941 struct mbuf *m, **mp;
942 int error = 0;
943 int s;
944
945 if (sc == NULL)
946 return (ENXIO);
947
948 ifp = &sc->sc_ec.ec_if;
949
950 /* One write, one packet, that's the rule */
951 MGETHDR(m, M_DONTWAIT, MT_DATA);
952 if (m == NULL) {
953 ifp->if_ierrors++;
954 return (ENOBUFS);
955 }
956 m->m_pkthdr.len = uio->uio_resid;
957
958 mp = &m;
959 while (error == 0 && uio->uio_resid > 0) {
960 if (*mp != m) {
961 MGET(*mp, M_DONTWAIT, MT_DATA);
962 if (*mp == NULL) {
963 error = ENOBUFS;
964 break;
965 }
966 }
967 (*mp)->m_len = min(MHLEN, uio->uio_resid);
968 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
969 mp = &(*mp)->m_next;
970 }
971 if (error) {
972 ifp->if_ierrors++;
973 m_freem(m);
974 return (error);
975 }
976
977 ifp->if_ipackets++;
978 m->m_pkthdr.rcvif = ifp;
979
980 #if NBPFILTER > 0
981 if (ifp->if_bpf)
982 bpf_mtap(ifp->if_bpf, m);
983 #endif
984 s =splnet();
985 (*ifp->if_input)(ifp, m);
986 splx(s);
987
988 return (0);
989 }
990
991 static int
992 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
993 struct lwp *l)
994 {
995 return tap_dev_ioctl(minor(dev), cmd, data, l);
996 }
997
998 static int
999 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1000 {
1001 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1002 }
1003
1004 static int
1005 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1006 {
1007 struct tap_softc *sc =
1008 device_private(device_lookup(&tap_cd, unit));
1009 int error = 0;
1010
1011 if (sc == NULL)
1012 return (ENXIO);
1013
1014 switch (cmd) {
1015 case FIONREAD:
1016 {
1017 struct ifnet *ifp = &sc->sc_ec.ec_if;
1018 struct mbuf *m;
1019 int s;
1020
1021 s = splnet();
1022 IFQ_POLL(&ifp->if_snd, m);
1023
1024 if (m == NULL)
1025 *(int *)data = 0;
1026 else
1027 *(int *)data = m->m_pkthdr.len;
1028 splx(s);
1029 } break;
1030 case TIOCSPGRP:
1031 case FIOSETOWN:
1032 error = fsetown(&sc->sc_pgid, cmd, data);
1033 break;
1034 case TIOCGPGRP:
1035 case FIOGETOWN:
1036 error = fgetown(sc->sc_pgid, cmd, data);
1037 break;
1038 case FIOASYNC:
1039 if (*(int *)data)
1040 sc->sc_flags |= TAP_ASYNCIO;
1041 else
1042 sc->sc_flags &= ~TAP_ASYNCIO;
1043 break;
1044 case FIONBIO:
1045 if (*(int *)data)
1046 sc->sc_flags |= TAP_NBIO;
1047 else
1048 sc->sc_flags &= ~TAP_NBIO;
1049 break;
1050 #ifdef OTAPGIFNAME
1051 case OTAPGIFNAME:
1052 #endif
1053 case TAPGIFNAME:
1054 {
1055 struct ifreq *ifr = (struct ifreq *)data;
1056 struct ifnet *ifp = &sc->sc_ec.ec_if;
1057
1058 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1059 } break;
1060 default:
1061 error = ENOTTY;
1062 break;
1063 }
1064
1065 return (0);
1066 }
1067
1068 static int
1069 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1070 {
1071 return tap_dev_poll(minor(dev), events, l);
1072 }
1073
1074 static int
1075 tap_fops_poll(file_t *fp, int events)
1076 {
1077 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1078 }
1079
1080 static int
1081 tap_dev_poll(int unit, int events, struct lwp *l)
1082 {
1083 struct tap_softc *sc =
1084 device_private(device_lookup(&tap_cd, unit));
1085 int revents = 0;
1086
1087 if (sc == NULL)
1088 return POLLERR;
1089
1090 if (events & (POLLIN|POLLRDNORM)) {
1091 struct ifnet *ifp = &sc->sc_ec.ec_if;
1092 struct mbuf *m;
1093 int s;
1094
1095 s = splnet();
1096 IFQ_POLL(&ifp->if_snd, m);
1097 splx(s);
1098
1099 if (m != NULL)
1100 revents |= events & (POLLIN|POLLRDNORM);
1101 else {
1102 simple_lock(&sc->sc_kqlock);
1103 selrecord(l, &sc->sc_rsel);
1104 simple_unlock(&sc->sc_kqlock);
1105 }
1106 }
1107 revents |= events & (POLLOUT|POLLWRNORM);
1108
1109 return (revents);
1110 }
1111
1112 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1113 tap_kqread };
1114 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1115 filt_seltrue };
1116
1117 static int
1118 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1119 {
1120 return tap_dev_kqfilter(minor(dev), kn);
1121 }
1122
1123 static int
1124 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1125 {
1126 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1127 }
1128
1129 static int
1130 tap_dev_kqfilter(int unit, struct knote *kn)
1131 {
1132 struct tap_softc *sc =
1133 device_private(device_lookup(&tap_cd, unit));
1134
1135 if (sc == NULL)
1136 return (ENXIO);
1137
1138 switch(kn->kn_filter) {
1139 case EVFILT_READ:
1140 kn->kn_fop = &tap_read_filterops;
1141 break;
1142 case EVFILT_WRITE:
1143 kn->kn_fop = &tap_seltrue_filterops;
1144 break;
1145 default:
1146 return (EINVAL);
1147 }
1148
1149 kn->kn_hook = sc;
1150 simple_lock(&sc->sc_kqlock);
1151 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1152 simple_unlock(&sc->sc_kqlock);
1153 return (0);
1154 }
1155
1156 static void
1157 tap_kqdetach(struct knote *kn)
1158 {
1159 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1160
1161 simple_lock(&sc->sc_kqlock);
1162 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1163 simple_unlock(&sc->sc_kqlock);
1164 }
1165
1166 static int
1167 tap_kqread(struct knote *kn, long hint)
1168 {
1169 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1170 struct ifnet *ifp = &sc->sc_ec.ec_if;
1171 struct mbuf *m;
1172 int s;
1173
1174 s = splnet();
1175 IFQ_POLL(&ifp->if_snd, m);
1176
1177 if (m == NULL)
1178 kn->kn_data = 0;
1179 else
1180 kn->kn_data = m->m_pkthdr.len;
1181 splx(s);
1182 return (kn->kn_data != 0 ? 1 : 0);
1183 }
1184
1185 /*
1186 * sysctl management routines
1187 * You can set the address of an interface through:
1188 * net.link.tap.tap<number>
1189 *
1190 * Note the consistent use of tap_log in order to use
1191 * sysctl_teardown at unload time.
1192 *
1193 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1194 * blocks register a function in a special section of the kernel
1195 * (called a link set) which is used at init_sysctl() time to cycle
1196 * through all those functions to create the kernel's sysctl tree.
1197 *
1198 * It is not (currently) possible to use link sets in a LKM, so the
1199 * easiest is to simply call our own setup routine at load time.
1200 *
1201 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1202 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1203 * whole kernel sysctl tree is built, it is not possible to add any
1204 * permanent node.
1205 *
1206 * It should be noted that we're not saving the sysctlnode pointer
1207 * we are returned when creating the "tap" node. That structure
1208 * cannot be trusted once out of the calling function, as it might
1209 * get reused. So we just save the MIB number, and always give the
1210 * full path starting from the root for later calls to sysctl_createv
1211 * and sysctl_destroyv.
1212 */
1213 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1214 {
1215 const struct sysctlnode *node;
1216 int error = 0;
1217
1218 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1219 CTLFLAG_PERMANENT,
1220 CTLTYPE_NODE, "net", NULL,
1221 NULL, 0, NULL, 0,
1222 CTL_NET, CTL_EOL)) != 0)
1223 return;
1224
1225 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1226 CTLFLAG_PERMANENT,
1227 CTLTYPE_NODE, "link", NULL,
1228 NULL, 0, NULL, 0,
1229 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1230 return;
1231
1232 /*
1233 * The first four parameters of sysctl_createv are for management.
1234 *
1235 * The four that follows, here starting with a '0' for the flags,
1236 * describe the node.
1237 *
1238 * The next series of four set its value, through various possible
1239 * means.
1240 *
1241 * Last but not least, the path to the node is described. That path
1242 * is relative to the given root (third argument). Here we're
1243 * starting from the root.
1244 */
1245 if ((error = sysctl_createv(clog, 0, NULL, &node,
1246 CTLFLAG_PERMANENT,
1247 CTLTYPE_NODE, "tap", NULL,
1248 NULL, 0, NULL, 0,
1249 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1250 return;
1251 tap_node = node->sysctl_num;
1252 }
1253
1254 /*
1255 * The helper functions make Andrew Brown's interface really
1256 * shine. It makes possible to create value on the fly whether
1257 * the sysctl value is read or written.
1258 *
1259 * As shown as an example in the man page, the first step is to
1260 * create a copy of the node to have sysctl_lookup work on it.
1261 *
1262 * Here, we have more work to do than just a copy, since we have
1263 * to create the string. The first step is to collect the actual
1264 * value of the node, which is a convenient pointer to the softc
1265 * of the interface. From there we create the string and use it
1266 * as the value, but only for the *copy* of the node.
1267 *
1268 * Then we let sysctl_lookup do the magic, which consists in
1269 * setting oldp and newp as required by the operation. When the
1270 * value is read, that means that the string will be copied to
1271 * the user, and when it is written, the new value will be copied
1272 * over in the addr array.
1273 *
1274 * If newp is NULL, the user was reading the value, so we don't
1275 * have anything else to do. If a new value was written, we
1276 * have to check it.
1277 *
1278 * If it is incorrect, we can return an error and leave 'node' as
1279 * it is: since it is a copy of the actual node, the change will
1280 * be forgotten.
1281 *
1282 * Upon a correct input, we commit the change to the ifnet
1283 * structure of our interface.
1284 */
1285 static int
1286 tap_sysctl_handler(SYSCTLFN_ARGS)
1287 {
1288 struct sysctlnode node;
1289 struct tap_softc *sc;
1290 struct ifnet *ifp;
1291 int error;
1292 size_t len;
1293 char addr[3 * ETHER_ADDR_LEN];
1294 uint8_t enaddr[ETHER_ADDR_LEN];
1295
1296 node = *rnode;
1297 sc = node.sysctl_data;
1298 ifp = &sc->sc_ec.ec_if;
1299 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1300 node.sysctl_data = addr;
1301 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1302 if (error || newp == NULL)
1303 return (error);
1304
1305 len = strlen(addr);
1306 if (len < 11 || len > 17)
1307 return (EINVAL);
1308
1309 /* Commit change */
1310 if (ether_nonstatic_aton(enaddr, addr) != 0)
1311 return (EINVAL);
1312 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN);
1313 return (error);
1314 }
1315