if_tap.c revision 1.48 1 /* $NetBSD: if_tap.c,v 1.48 2008/11/02 14:46:55 hans Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.48 2008/11/02 14:46:55 hans Exp $");
37
38 #if defined(_KERNEL_OPT)
39 #include "bpfilter.h"
40 #endif
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/conf.h>
47 #include <sys/device.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/ksyms.h>
51 #include <sys/poll.h>
52 #include <sys/select.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/kauth.h>
56 #include <sys/mutex.h>
57 #include <sys/simplelock.h>
58 #include <sys/intr.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64 #include <net/if_tap.h>
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <compat/sys/sockio.h>
70
71 /*
72 * sysctl node management
73 *
74 * It's not really possible to use a SYSCTL_SETUP block with
75 * current LKM implementation, so it is easier to just define
76 * our own function.
77 *
78 * The handler function is a "helper" in Andrew Brown's sysctl
79 * framework terminology. It is used as a gateway for sysctl
80 * requests over the nodes.
81 *
82 * tap_log allows the module to log creations of nodes and
83 * destroy them all at once using sysctl_teardown.
84 */
85 static int tap_node;
86 static int tap_sysctl_handler(SYSCTLFN_PROTO);
87 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
88
89 /*
90 * Since we're an Ethernet device, we need the 3 following
91 * components: a leading struct device, a struct ethercom,
92 * and also a struct ifmedia since we don't attach a PHY to
93 * ourselves. We could emulate one, but there's no real
94 * point.
95 */
96
97 struct tap_softc {
98 device_t sc_dev;
99 struct ifmedia sc_im;
100 struct ethercom sc_ec;
101 int sc_flags;
102 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
103 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
104 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
105 #define TAP_GOING 0x00000008 /* interface is being destroyed */
106 struct selinfo sc_rsel;
107 pid_t sc_pgid; /* For async. IO */
108 kmutex_t sc_rdlock;
109 struct simplelock sc_kqlock;
110 void *sc_sih;
111 };
112
113 /* autoconf(9) glue */
114
115 void tapattach(int);
116
117 static int tap_match(device_t, cfdata_t, void *);
118 static void tap_attach(device_t, device_t, void *);
119 static int tap_detach(device_t, int);
120
121 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
122 tap_match, tap_attach, tap_detach, NULL);
123 extern struct cfdriver tap_cd;
124
125 /* Real device access routines */
126 static int tap_dev_close(struct tap_softc *);
127 static int tap_dev_read(int, struct uio *, int);
128 static int tap_dev_write(int, struct uio *, int);
129 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
130 static int tap_dev_poll(int, int, struct lwp *);
131 static int tap_dev_kqfilter(int, struct knote *);
132
133 /* Fileops access routines */
134 static int tap_fops_close(file_t *);
135 static int tap_fops_read(file_t *, off_t *, struct uio *,
136 kauth_cred_t, int);
137 static int tap_fops_write(file_t *, off_t *, struct uio *,
138 kauth_cred_t, int);
139 static int tap_fops_ioctl(file_t *, u_long, void *);
140 static int tap_fops_poll(file_t *, int);
141 static int tap_fops_kqfilter(file_t *, struct knote *);
142
143 static const struct fileops tap_fileops = {
144 tap_fops_read,
145 tap_fops_write,
146 tap_fops_ioctl,
147 fnullop_fcntl,
148 tap_fops_poll,
149 fbadop_stat,
150 tap_fops_close,
151 tap_fops_kqfilter,
152 };
153
154 /* Helper for cloning open() */
155 static int tap_dev_cloner(struct lwp *);
156
157 /* Character device routines */
158 static int tap_cdev_open(dev_t, int, int, struct lwp *);
159 static int tap_cdev_close(dev_t, int, int, struct lwp *);
160 static int tap_cdev_read(dev_t, struct uio *, int);
161 static int tap_cdev_write(dev_t, struct uio *, int);
162 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
163 static int tap_cdev_poll(dev_t, int, struct lwp *);
164 static int tap_cdev_kqfilter(dev_t, struct knote *);
165
166 const struct cdevsw tap_cdevsw = {
167 tap_cdev_open, tap_cdev_close,
168 tap_cdev_read, tap_cdev_write,
169 tap_cdev_ioctl, nostop, notty,
170 tap_cdev_poll, nommap,
171 tap_cdev_kqfilter,
172 D_OTHER,
173 };
174
175 #define TAP_CLONER 0xfffff /* Maximal minor value */
176
177 /* kqueue-related routines */
178 static void tap_kqdetach(struct knote *);
179 static int tap_kqread(struct knote *, long);
180
181 /*
182 * Those are needed by the if_media interface.
183 */
184
185 static int tap_mediachange(struct ifnet *);
186 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
187
188 /*
189 * Those are needed by the ifnet interface, and would typically be
190 * there for any network interface driver.
191 * Some other routines are optional: watchdog and drain.
192 */
193
194 static void tap_start(struct ifnet *);
195 static void tap_stop(struct ifnet *, int);
196 static int tap_init(struct ifnet *);
197 static int tap_ioctl(struct ifnet *, u_long, void *);
198
199 /* Internal functions */
200 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
201 static void tap_softintr(void *);
202
203 /*
204 * tap is a clonable interface, although it is highly unrealistic for
205 * an Ethernet device.
206 *
207 * Here are the bits needed for a clonable interface.
208 */
209 static int tap_clone_create(struct if_clone *, int);
210 static int tap_clone_destroy(struct ifnet *);
211
212 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
213 tap_clone_create,
214 tap_clone_destroy);
215
216 /* Helper functionis shared by the two cloning code paths */
217 static struct tap_softc * tap_clone_creator(int);
218 int tap_clone_destroyer(device_t);
219
220 void
221 tapattach(int n)
222 {
223 int error;
224
225 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
226 if (error) {
227 aprint_error("%s: unable to register cfattach\n",
228 tap_cd.cd_name);
229 (void)config_cfdriver_detach(&tap_cd);
230 return;
231 }
232
233 if_clone_attach(&tap_cloners);
234 }
235
236 /* Pretty much useless for a pseudo-device */
237 static int
238 tap_match(device_t parent, cfdata_t cfdata, void *arg)
239 {
240
241 return (1);
242 }
243
244 void
245 tap_attach(device_t parent, device_t self, void *aux)
246 {
247 struct tap_softc *sc = device_private(self);
248 struct ifnet *ifp;
249 const struct sysctlnode *node;
250 uint8_t enaddr[ETHER_ADDR_LEN] =
251 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
252 char enaddrstr[3 * ETHER_ADDR_LEN];
253 struct timeval tv;
254 uint32_t ui;
255 int error;
256
257 sc->sc_dev = self;
258 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
259
260 if (!pmf_device_register(self, NULL, NULL))
261 aprint_error_dev(self, "couldn't establish power handler\n");
262
263 /*
264 * In order to obtain unique initial Ethernet address on a host,
265 * do some randomisation using the current uptime. It's not meant
266 * for anything but avoiding hard-coding an address.
267 */
268 getmicrouptime(&tv);
269 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
270 memcpy(enaddr+3, (uint8_t *)&ui, 3);
271
272 aprint_verbose_dev(self, "Ethernet address %s\n",
273 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
274
275 /*
276 * Why 1000baseT? Why not? You can add more.
277 *
278 * Note that there are 3 steps: init, one or several additions to
279 * list of supported media, and in the end, the selection of one
280 * of them.
281 */
282 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
283 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
284 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
285 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
289 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
290 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
291
292 /*
293 * One should note that an interface must do multicast in order
294 * to support IPv6.
295 */
296 ifp = &sc->sc_ec.ec_if;
297 strcpy(ifp->if_xname, device_xname(self));
298 ifp->if_softc = sc;
299 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
300 ifp->if_ioctl = tap_ioctl;
301 ifp->if_start = tap_start;
302 ifp->if_stop = tap_stop;
303 ifp->if_init = tap_init;
304 IFQ_SET_READY(&ifp->if_snd);
305
306 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
307
308 /* Those steps are mandatory for an Ethernet driver, the fisrt call
309 * being common to all network interface drivers. */
310 if_attach(ifp);
311 ether_ifattach(ifp, enaddr);
312
313 sc->sc_flags = 0;
314
315 /*
316 * Add a sysctl node for that interface.
317 *
318 * The pointer transmitted is not a string, but instead a pointer to
319 * the softc structure, which we can use to build the string value on
320 * the fly in the helper function of the node. See the comments for
321 * tap_sysctl_handler for details.
322 *
323 * Usually sysctl_createv is called with CTL_CREATE as the before-last
324 * component. However, we can allocate a number ourselves, as we are
325 * the only consumer of the net.link.<iface> node. In this case, the
326 * unit number is conveniently used to number the node. CTL_CREATE
327 * would just work, too.
328 */
329 if ((error = sysctl_createv(NULL, 0, NULL,
330 &node, CTLFLAG_READWRITE,
331 CTLTYPE_STRING, device_xname(self), NULL,
332 tap_sysctl_handler, 0, sc, 18,
333 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
334 CTL_EOL)) != 0)
335 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
336 error);
337
338 /*
339 * Initialize the two locks for the device.
340 *
341 * We need a lock here because even though the tap device can be
342 * opened only once, the file descriptor might be passed to another
343 * process, say a fork(2)ed child.
344 *
345 * The Giant saves us from most of the hassle, but since the read
346 * operation can sleep, we don't want two processes to wake up at
347 * the same moment and both try and dequeue a single packet.
348 *
349 * The queue for event listeners (used by kqueue(9), see below) has
350 * to be protected, too, but we don't need the same level of
351 * complexity for that lock, so a simple spinning lock is fine.
352 */
353 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
354 simple_lock_init(&sc->sc_kqlock);
355
356 selinit(&sc->sc_rsel);
357 }
358
359 /*
360 * When detaching, we do the inverse of what is done in the attach
361 * routine, in reversed order.
362 */
363 static int
364 tap_detach(device_t self, int flags)
365 {
366 struct tap_softc *sc = device_private(self);
367 struct ifnet *ifp = &sc->sc_ec.ec_if;
368 int error, s;
369
370 sc->sc_flags |= TAP_GOING;
371 s = splnet();
372 tap_stop(ifp, 1);
373 if_down(ifp);
374 splx(s);
375
376 softint_disestablish(sc->sc_sih);
377
378 /*
379 * Destroying a single leaf is a very straightforward operation using
380 * sysctl_destroyv. One should be sure to always end the path with
381 * CTL_EOL.
382 */
383 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
384 device_unit(sc->sc_dev), CTL_EOL)) != 0)
385 aprint_error_dev(self,
386 "sysctl_destroyv returned %d, ignoring\n", error);
387 ether_ifdetach(ifp);
388 if_detach(ifp);
389 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
390 seldestroy(&sc->sc_rsel);
391 mutex_destroy(&sc->sc_rdlock);
392
393 return (0);
394 }
395
396 /*
397 * This function is called by the ifmedia layer to notify the driver
398 * that the user requested a media change. A real driver would
399 * reconfigure the hardware.
400 */
401 static int
402 tap_mediachange(struct ifnet *ifp)
403 {
404 return (0);
405 }
406
407 /*
408 * Here the user asks for the currently used media.
409 */
410 static void
411 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
412 {
413 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
414 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
415 }
416
417 /*
418 * This is the function where we SEND packets.
419 *
420 * There is no 'receive' equivalent. A typical driver will get
421 * interrupts from the hardware, and from there will inject new packets
422 * into the network stack.
423 *
424 * Once handled, a packet must be freed. A real driver might not be able
425 * to fit all the pending packets into the hardware, and is allowed to
426 * return before having sent all the packets. It should then use the
427 * if_flags flag IFF_OACTIVE to notify the upper layer.
428 *
429 * There are also other flags one should check, such as IFF_PAUSE.
430 *
431 * It is our duty to make packets available to BPF listeners.
432 *
433 * You should be aware that this function is called by the Ethernet layer
434 * at splnet().
435 *
436 * When the device is opened, we have to pass the packet(s) to the
437 * userland. For that we stay in OACTIVE mode while the userland gets
438 * the packets, and we send a signal to the processes waiting to read.
439 *
440 * wakeup(sc) is the counterpart to the tsleep call in
441 * tap_dev_read, while selnotify() is used for kevent(2) and
442 * poll(2) (which includes select(2)) listeners.
443 */
444 static void
445 tap_start(struct ifnet *ifp)
446 {
447 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
448 struct mbuf *m0;
449
450 if ((sc->sc_flags & TAP_INUSE) == 0) {
451 /* Simply drop packets */
452 for(;;) {
453 IFQ_DEQUEUE(&ifp->if_snd, m0);
454 if (m0 == NULL)
455 return;
456
457 ifp->if_opackets++;
458 #if NBPFILTER > 0
459 if (ifp->if_bpf)
460 bpf_mtap(ifp->if_bpf, m0);
461 #endif
462
463 m_freem(m0);
464 }
465 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
466 ifp->if_flags |= IFF_OACTIVE;
467 wakeup(sc);
468 selnotify(&sc->sc_rsel, 0, 1);
469 if (sc->sc_flags & TAP_ASYNCIO)
470 softint_schedule(sc->sc_sih);
471 }
472 }
473
474 static void
475 tap_softintr(void *cookie)
476 {
477 struct tap_softc *sc;
478 struct ifnet *ifp;
479 int a, b;
480
481 sc = cookie;
482
483 if (sc->sc_flags & TAP_ASYNCIO) {
484 ifp = &sc->sc_ec.ec_if;
485 if (ifp->if_flags & IFF_RUNNING) {
486 a = POLL_IN;
487 b = POLLIN|POLLRDNORM;
488 } else {
489 a = POLL_HUP;
490 b = 0;
491 }
492 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
493 }
494 }
495
496 /*
497 * A typical driver will only contain the following handlers for
498 * ioctl calls, except SIOCSIFPHYADDR.
499 * The latter is a hack I used to set the Ethernet address of the
500 * faked device.
501 *
502 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
503 * called under splnet().
504 */
505 static int
506 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
507 {
508 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
509 struct ifreq *ifr = (struct ifreq *)data;
510 int s, error;
511
512 s = splnet();
513
514 switch (cmd) {
515 #ifdef OSIOCSIFMEDIA
516 case OSIOCSIFMEDIA:
517 #endif
518 case SIOCSIFMEDIA:
519 case SIOCGIFMEDIA:
520 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
521 break;
522 case SIOCSIFPHYADDR:
523 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
524 break;
525 default:
526 error = ether_ioctl(ifp, cmd, data);
527 if (error == ENETRESET)
528 error = 0;
529 break;
530 }
531
532 splx(s);
533
534 return (error);
535 }
536
537 /*
538 * Helper function to set Ethernet address. This shouldn't be done there,
539 * and should actually be available to all Ethernet drivers, real or not.
540 */
541 static int
542 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
543 {
544 const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr);
545
546 if (sdl->sdl_family != AF_LINK)
547 return (EINVAL);
548
549 if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN);
550
551 return (0);
552 }
553
554 /*
555 * _init() would typically be called when an interface goes up,
556 * meaning it should configure itself into the state in which it
557 * can send packets.
558 */
559 static int
560 tap_init(struct ifnet *ifp)
561 {
562 ifp->if_flags |= IFF_RUNNING;
563
564 tap_start(ifp);
565
566 return (0);
567 }
568
569 /*
570 * _stop() is called when an interface goes down. It is our
571 * responsability to validate that state by clearing the
572 * IFF_RUNNING flag.
573 *
574 * We have to wake up all the sleeping processes to have the pending
575 * read requests cancelled.
576 */
577 static void
578 tap_stop(struct ifnet *ifp, int disable)
579 {
580 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
581
582 ifp->if_flags &= ~IFF_RUNNING;
583 wakeup(sc);
584 selnotify(&sc->sc_rsel, 0, 1);
585 if (sc->sc_flags & TAP_ASYNCIO)
586 softint_schedule(sc->sc_sih);
587 }
588
589 /*
590 * The 'create' command of ifconfig can be used to create
591 * any numbered instance of a given device. Thus we have to
592 * make sure we have enough room in cd_devs to create the
593 * user-specified instance. config_attach_pseudo will do this
594 * for us.
595 */
596 static int
597 tap_clone_create(struct if_clone *ifc, int unit)
598 {
599 if (tap_clone_creator(unit) == NULL) {
600 aprint_error("%s%d: unable to attach an instance\n",
601 tap_cd.cd_name, unit);
602 return (ENXIO);
603 }
604
605 return (0);
606 }
607
608 /*
609 * tap(4) can be cloned by two ways:
610 * using 'ifconfig tap0 create', which will use the network
611 * interface cloning API, and call tap_clone_create above.
612 * opening the cloning device node, whose minor number is TAP_CLONER.
613 * See below for an explanation on how this part work.
614 */
615 static struct tap_softc *
616 tap_clone_creator(int unit)
617 {
618 struct cfdata *cf;
619
620 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
621 cf->cf_name = tap_cd.cd_name;
622 cf->cf_atname = tap_ca.ca_name;
623 if (unit == -1) {
624 /* let autoconf find the first free one */
625 cf->cf_unit = 0;
626 cf->cf_fstate = FSTATE_STAR;
627 } else {
628 cf->cf_unit = unit;
629 cf->cf_fstate = FSTATE_FOUND;
630 }
631
632 return device_private(config_attach_pseudo(cf));
633 }
634
635 /*
636 * The clean design of if_clone and autoconf(9) makes that part
637 * really straightforward. The second argument of config_detach
638 * means neither QUIET nor FORCED.
639 */
640 static int
641 tap_clone_destroy(struct ifnet *ifp)
642 {
643 struct tap_softc *sc = ifp->if_softc;
644
645 return tap_clone_destroyer(sc->sc_dev);
646 }
647
648 int
649 tap_clone_destroyer(device_t dev)
650 {
651 cfdata_t cf = device_cfdata(dev);
652 int error;
653
654 if ((error = config_detach(dev, 0)) != 0)
655 aprint_error_dev(dev, "unable to detach instance\n");
656 free(cf, M_DEVBUF);
657
658 return (error);
659 }
660
661 /*
662 * tap(4) is a bit of an hybrid device. It can be used in two different
663 * ways:
664 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
665 * 2. open /dev/tap, get a new interface created and read/write off it.
666 * That interface is destroyed when the process that had it created exits.
667 *
668 * The first way is managed by the cdevsw structure, and you access interfaces
669 * through a (major, minor) mapping: tap4 is obtained by the minor number
670 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
671 *
672 * The second way is the so-called "cloning" device. It's a special minor
673 * number (chosen as the maximal number, to allow as much tap devices as
674 * possible). The user first opens the cloner (e.g., /dev/tap), and that
675 * call ends in tap_cdev_open. The actual place where it is handled is
676 * tap_dev_cloner.
677 *
678 * An tap device cannot be opened more than once at a time, so the cdevsw
679 * part of open() does nothing but noting that the interface is being used and
680 * hence ready to actually handle packets.
681 */
682
683 static int
684 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
685 {
686 struct tap_softc *sc;
687
688 if (minor(dev) == TAP_CLONER)
689 return tap_dev_cloner(l);
690
691 sc = device_lookup_private(&tap_cd, minor(dev));
692 if (sc == NULL)
693 return (ENXIO);
694
695 /* The device can only be opened once */
696 if (sc->sc_flags & TAP_INUSE)
697 return (EBUSY);
698 sc->sc_flags |= TAP_INUSE;
699 return (0);
700 }
701
702 /*
703 * There are several kinds of cloning devices, and the most simple is the one
704 * tap(4) uses. What it does is change the file descriptor with a new one,
705 * with its own fileops structure (which maps to the various read, write,
706 * ioctl functions). It starts allocating a new file descriptor with falloc,
707 * then actually creates the new tap devices.
708 *
709 * Once those two steps are successful, we can re-wire the existing file
710 * descriptor to its new self. This is done with fdclone(): it fills the fp
711 * structure as needed (notably f_data gets filled with the fifth parameter
712 * passed, the unit of the tap device which will allows us identifying the
713 * device later), and returns EMOVEFD.
714 *
715 * That magic value is interpreted by sys_open() which then replaces the
716 * current file descriptor by the new one (through a magic member of struct
717 * lwp, l_dupfd).
718 *
719 * The tap device is flagged as being busy since it otherwise could be
720 * externally accessed through the corresponding device node with the cdevsw
721 * interface.
722 */
723
724 static int
725 tap_dev_cloner(struct lwp *l)
726 {
727 struct tap_softc *sc;
728 file_t *fp;
729 int error, fd;
730
731 if ((error = fd_allocfile(&fp, &fd)) != 0)
732 return (error);
733
734 if ((sc = tap_clone_creator(-1)) == NULL) {
735 fd_abort(curproc, fp, fd);
736 return (ENXIO);
737 }
738
739 sc->sc_flags |= TAP_INUSE;
740
741 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
742 (void *)(intptr_t)device_unit(sc->sc_dev));
743 }
744
745 /*
746 * While all other operations (read, write, ioctl, poll and kqfilter) are
747 * really the same whether we are in cdevsw or fileops mode, the close()
748 * function is slightly different in the two cases.
749 *
750 * As for the other, the core of it is shared in tap_dev_close. What
751 * it does is sufficient for the cdevsw interface, but the cloning interface
752 * needs another thing: the interface is destroyed when the processes that
753 * created it closes it.
754 */
755 static int
756 tap_cdev_close(dev_t dev, int flags, int fmt,
757 struct lwp *l)
758 {
759 struct tap_softc *sc =
760 device_lookup_private(&tap_cd, minor(dev));
761
762 if (sc == NULL)
763 return (ENXIO);
764
765 return tap_dev_close(sc);
766 }
767
768 /*
769 * It might happen that the administrator used ifconfig to externally destroy
770 * the interface. In that case, tap_fops_close will be called while
771 * tap_detach is already happening. If we called it again from here, we
772 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
773 */
774 static int
775 tap_fops_close(file_t *fp)
776 {
777 int unit = (intptr_t)fp->f_data;
778 struct tap_softc *sc;
779 int error;
780
781 sc = device_lookup_private(&tap_cd, unit);
782 if (sc == NULL)
783 return (ENXIO);
784
785 /* tap_dev_close currently always succeeds, but it might not
786 * always be the case. */
787 KERNEL_LOCK(1, NULL);
788 if ((error = tap_dev_close(sc)) != 0) {
789 KERNEL_UNLOCK_ONE(NULL);
790 return (error);
791 }
792
793 /* Destroy the device now that it is no longer useful,
794 * unless it's already being destroyed. */
795 if ((sc->sc_flags & TAP_GOING) != 0) {
796 KERNEL_UNLOCK_ONE(NULL);
797 return (0);
798 }
799
800 error = tap_clone_destroyer(sc->sc_dev);
801 KERNEL_UNLOCK_ONE(NULL);
802 return error;
803 }
804
805 static int
806 tap_dev_close(struct tap_softc *sc)
807 {
808 struct ifnet *ifp;
809 int s;
810
811 s = splnet();
812 /* Let tap_start handle packets again */
813 ifp = &sc->sc_ec.ec_if;
814 ifp->if_flags &= ~IFF_OACTIVE;
815
816 /* Purge output queue */
817 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
818 struct mbuf *m;
819
820 for (;;) {
821 IFQ_DEQUEUE(&ifp->if_snd, m);
822 if (m == NULL)
823 break;
824
825 ifp->if_opackets++;
826 #if NBPFILTER > 0
827 if (ifp->if_bpf)
828 bpf_mtap(ifp->if_bpf, m);
829 #endif
830 }
831 }
832 splx(s);
833
834 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
835
836 return (0);
837 }
838
839 static int
840 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
841 {
842 return tap_dev_read(minor(dev), uio, flags);
843 }
844
845 static int
846 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
847 kauth_cred_t cred, int flags)
848 {
849 int error;
850
851 KERNEL_LOCK(1, NULL);
852 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
853 KERNEL_UNLOCK_ONE(NULL);
854 return error;
855 }
856
857 static int
858 tap_dev_read(int unit, struct uio *uio, int flags)
859 {
860 struct tap_softc *sc =
861 device_lookup_private(&tap_cd, unit);
862 struct ifnet *ifp;
863 struct mbuf *m, *n;
864 int error = 0, s;
865
866 if (sc == NULL)
867 return (ENXIO);
868
869 ifp = &sc->sc_ec.ec_if;
870 if ((ifp->if_flags & IFF_UP) == 0)
871 return (EHOSTDOWN);
872
873 /*
874 * In the TAP_NBIO case, we have to make sure we won't be sleeping
875 */
876 if ((sc->sc_flags & TAP_NBIO) != 0) {
877 if (!mutex_tryenter(&sc->sc_rdlock))
878 return (EWOULDBLOCK);
879 } else {
880 mutex_enter(&sc->sc_rdlock);
881 }
882
883 s = splnet();
884 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
885 ifp->if_flags &= ~IFF_OACTIVE;
886 splx(s);
887 /*
888 * We must release the lock before sleeping, and re-acquire it
889 * after.
890 */
891 mutex_exit(&sc->sc_rdlock);
892 if (sc->sc_flags & TAP_NBIO)
893 error = EWOULDBLOCK;
894 else
895 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
896 if (error != 0)
897 return (error);
898 /* The device might have been downed */
899 if ((ifp->if_flags & IFF_UP) == 0)
900 return (EHOSTDOWN);
901 if ((sc->sc_flags & TAP_NBIO)) {
902 if (!mutex_tryenter(&sc->sc_rdlock))
903 return (EWOULDBLOCK);
904 } else {
905 mutex_enter(&sc->sc_rdlock);
906 }
907 s = splnet();
908 }
909
910 IFQ_DEQUEUE(&ifp->if_snd, m);
911 ifp->if_flags &= ~IFF_OACTIVE;
912 splx(s);
913 if (m == NULL) {
914 error = 0;
915 goto out;
916 }
917
918 ifp->if_opackets++;
919 #if NBPFILTER > 0
920 if (ifp->if_bpf)
921 bpf_mtap(ifp->if_bpf, m);
922 #endif
923
924 /*
925 * One read is one packet.
926 */
927 do {
928 error = uiomove(mtod(m, void *),
929 min(m->m_len, uio->uio_resid), uio);
930 MFREE(m, n);
931 m = n;
932 } while (m != NULL && uio->uio_resid > 0 && error == 0);
933
934 if (m != NULL)
935 m_freem(m);
936
937 out:
938 mutex_exit(&sc->sc_rdlock);
939 return (error);
940 }
941
942 static int
943 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
944 {
945 return tap_dev_write(minor(dev), uio, flags);
946 }
947
948 static int
949 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
950 kauth_cred_t cred, int flags)
951 {
952 int error;
953
954 KERNEL_LOCK(1, NULL);
955 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
956 KERNEL_UNLOCK_ONE(NULL);
957 return error;
958 }
959
960 static int
961 tap_dev_write(int unit, struct uio *uio, int flags)
962 {
963 struct tap_softc *sc =
964 device_lookup_private(&tap_cd, unit);
965 struct ifnet *ifp;
966 struct mbuf *m, **mp;
967 int error = 0;
968 int s;
969
970 if (sc == NULL)
971 return (ENXIO);
972
973 ifp = &sc->sc_ec.ec_if;
974
975 /* One write, one packet, that's the rule */
976 MGETHDR(m, M_DONTWAIT, MT_DATA);
977 if (m == NULL) {
978 ifp->if_ierrors++;
979 return (ENOBUFS);
980 }
981 m->m_pkthdr.len = uio->uio_resid;
982
983 mp = &m;
984 while (error == 0 && uio->uio_resid > 0) {
985 if (*mp != m) {
986 MGET(*mp, M_DONTWAIT, MT_DATA);
987 if (*mp == NULL) {
988 error = ENOBUFS;
989 break;
990 }
991 }
992 (*mp)->m_len = min(MHLEN, uio->uio_resid);
993 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
994 mp = &(*mp)->m_next;
995 }
996 if (error) {
997 ifp->if_ierrors++;
998 m_freem(m);
999 return (error);
1000 }
1001
1002 ifp->if_ipackets++;
1003 m->m_pkthdr.rcvif = ifp;
1004
1005 #if NBPFILTER > 0
1006 if (ifp->if_bpf)
1007 bpf_mtap(ifp->if_bpf, m);
1008 #endif
1009 s =splnet();
1010 (*ifp->if_input)(ifp, m);
1011 splx(s);
1012
1013 return (0);
1014 }
1015
1016 static int
1017 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1018 struct lwp *l)
1019 {
1020 return tap_dev_ioctl(minor(dev), cmd, data, l);
1021 }
1022
1023 static int
1024 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1025 {
1026 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1027 }
1028
1029 static int
1030 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1031 {
1032 struct tap_softc *sc =
1033 device_lookup_private(&tap_cd, unit);
1034 int error = 0;
1035
1036 if (sc == NULL)
1037 return (ENXIO);
1038
1039 switch (cmd) {
1040 case FIONREAD:
1041 {
1042 struct ifnet *ifp = &sc->sc_ec.ec_if;
1043 struct mbuf *m;
1044 int s;
1045
1046 s = splnet();
1047 IFQ_POLL(&ifp->if_snd, m);
1048
1049 if (m == NULL)
1050 *(int *)data = 0;
1051 else
1052 *(int *)data = m->m_pkthdr.len;
1053 splx(s);
1054 } break;
1055 case TIOCSPGRP:
1056 case FIOSETOWN:
1057 error = fsetown(&sc->sc_pgid, cmd, data);
1058 break;
1059 case TIOCGPGRP:
1060 case FIOGETOWN:
1061 error = fgetown(sc->sc_pgid, cmd, data);
1062 break;
1063 case FIOASYNC:
1064 if (*(int *)data)
1065 sc->sc_flags |= TAP_ASYNCIO;
1066 else
1067 sc->sc_flags &= ~TAP_ASYNCIO;
1068 break;
1069 case FIONBIO:
1070 if (*(int *)data)
1071 sc->sc_flags |= TAP_NBIO;
1072 else
1073 sc->sc_flags &= ~TAP_NBIO;
1074 break;
1075 #ifdef OTAPGIFNAME
1076 case OTAPGIFNAME:
1077 #endif
1078 case TAPGIFNAME:
1079 {
1080 struct ifreq *ifr = (struct ifreq *)data;
1081 struct ifnet *ifp = &sc->sc_ec.ec_if;
1082
1083 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1084 } break;
1085 default:
1086 error = ENOTTY;
1087 break;
1088 }
1089
1090 return (0);
1091 }
1092
1093 static int
1094 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1095 {
1096 return tap_dev_poll(minor(dev), events, l);
1097 }
1098
1099 static int
1100 tap_fops_poll(file_t *fp, int events)
1101 {
1102 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1103 }
1104
1105 static int
1106 tap_dev_poll(int unit, int events, struct lwp *l)
1107 {
1108 struct tap_softc *sc =
1109 device_lookup_private(&tap_cd, unit);
1110 int revents = 0;
1111
1112 if (sc == NULL)
1113 return POLLERR;
1114
1115 if (events & (POLLIN|POLLRDNORM)) {
1116 struct ifnet *ifp = &sc->sc_ec.ec_if;
1117 struct mbuf *m;
1118 int s;
1119
1120 s = splnet();
1121 IFQ_POLL(&ifp->if_snd, m);
1122 splx(s);
1123
1124 if (m != NULL)
1125 revents |= events & (POLLIN|POLLRDNORM);
1126 else {
1127 simple_lock(&sc->sc_kqlock);
1128 selrecord(l, &sc->sc_rsel);
1129 simple_unlock(&sc->sc_kqlock);
1130 }
1131 }
1132 revents |= events & (POLLOUT|POLLWRNORM);
1133
1134 return (revents);
1135 }
1136
1137 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1138 tap_kqread };
1139 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1140 filt_seltrue };
1141
1142 static int
1143 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1144 {
1145 return tap_dev_kqfilter(minor(dev), kn);
1146 }
1147
1148 static int
1149 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1150 {
1151 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1152 }
1153
1154 static int
1155 tap_dev_kqfilter(int unit, struct knote *kn)
1156 {
1157 struct tap_softc *sc =
1158 device_lookup_private(&tap_cd, unit);
1159
1160 if (sc == NULL)
1161 return (ENXIO);
1162
1163 KERNEL_LOCK(1, NULL);
1164 switch(kn->kn_filter) {
1165 case EVFILT_READ:
1166 kn->kn_fop = &tap_read_filterops;
1167 break;
1168 case EVFILT_WRITE:
1169 kn->kn_fop = &tap_seltrue_filterops;
1170 break;
1171 default:
1172 KERNEL_UNLOCK_ONE(NULL);
1173 return (EINVAL);
1174 }
1175
1176 kn->kn_hook = sc;
1177 simple_lock(&sc->sc_kqlock);
1178 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1179 simple_unlock(&sc->sc_kqlock);
1180 KERNEL_UNLOCK_ONE(NULL);
1181 return (0);
1182 }
1183
1184 static void
1185 tap_kqdetach(struct knote *kn)
1186 {
1187 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1188
1189 KERNEL_LOCK(1, NULL);
1190 simple_lock(&sc->sc_kqlock);
1191 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1192 simple_unlock(&sc->sc_kqlock);
1193 KERNEL_UNLOCK_ONE(NULL);
1194 }
1195
1196 static int
1197 tap_kqread(struct knote *kn, long hint)
1198 {
1199 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1200 struct ifnet *ifp = &sc->sc_ec.ec_if;
1201 struct mbuf *m;
1202 int s, rv;
1203
1204 KERNEL_LOCK(1, NULL);
1205 s = splnet();
1206 IFQ_POLL(&ifp->if_snd, m);
1207
1208 if (m == NULL)
1209 kn->kn_data = 0;
1210 else
1211 kn->kn_data = m->m_pkthdr.len;
1212 splx(s);
1213 rv = (kn->kn_data != 0 ? 1 : 0);
1214 KERNEL_UNLOCK_ONE(NULL);
1215 return rv;
1216 }
1217
1218 /*
1219 * sysctl management routines
1220 * You can set the address of an interface through:
1221 * net.link.tap.tap<number>
1222 *
1223 * Note the consistent use of tap_log in order to use
1224 * sysctl_teardown at unload time.
1225 *
1226 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1227 * blocks register a function in a special section of the kernel
1228 * (called a link set) which is used at init_sysctl() time to cycle
1229 * through all those functions to create the kernel's sysctl tree.
1230 *
1231 * It is not (currently) possible to use link sets in a LKM, so the
1232 * easiest is to simply call our own setup routine at load time.
1233 *
1234 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1235 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1236 * whole kernel sysctl tree is built, it is not possible to add any
1237 * permanent node.
1238 *
1239 * It should be noted that we're not saving the sysctlnode pointer
1240 * we are returned when creating the "tap" node. That structure
1241 * cannot be trusted once out of the calling function, as it might
1242 * get reused. So we just save the MIB number, and always give the
1243 * full path starting from the root for later calls to sysctl_createv
1244 * and sysctl_destroyv.
1245 */
1246 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1247 {
1248 const struct sysctlnode *node;
1249 int error = 0;
1250
1251 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1252 CTLFLAG_PERMANENT,
1253 CTLTYPE_NODE, "net", NULL,
1254 NULL, 0, NULL, 0,
1255 CTL_NET, CTL_EOL)) != 0)
1256 return;
1257
1258 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1259 CTLFLAG_PERMANENT,
1260 CTLTYPE_NODE, "link", NULL,
1261 NULL, 0, NULL, 0,
1262 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1263 return;
1264
1265 /*
1266 * The first four parameters of sysctl_createv are for management.
1267 *
1268 * The four that follows, here starting with a '0' for the flags,
1269 * describe the node.
1270 *
1271 * The next series of four set its value, through various possible
1272 * means.
1273 *
1274 * Last but not least, the path to the node is described. That path
1275 * is relative to the given root (third argument). Here we're
1276 * starting from the root.
1277 */
1278 if ((error = sysctl_createv(clog, 0, NULL, &node,
1279 CTLFLAG_PERMANENT,
1280 CTLTYPE_NODE, "tap", NULL,
1281 NULL, 0, NULL, 0,
1282 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1283 return;
1284 tap_node = node->sysctl_num;
1285 }
1286
1287 /*
1288 * The helper functions make Andrew Brown's interface really
1289 * shine. It makes possible to create value on the fly whether
1290 * the sysctl value is read or written.
1291 *
1292 * As shown as an example in the man page, the first step is to
1293 * create a copy of the node to have sysctl_lookup work on it.
1294 *
1295 * Here, we have more work to do than just a copy, since we have
1296 * to create the string. The first step is to collect the actual
1297 * value of the node, which is a convenient pointer to the softc
1298 * of the interface. From there we create the string and use it
1299 * as the value, but only for the *copy* of the node.
1300 *
1301 * Then we let sysctl_lookup do the magic, which consists in
1302 * setting oldp and newp as required by the operation. When the
1303 * value is read, that means that the string will be copied to
1304 * the user, and when it is written, the new value will be copied
1305 * over in the addr array.
1306 *
1307 * If newp is NULL, the user was reading the value, so we don't
1308 * have anything else to do. If a new value was written, we
1309 * have to check it.
1310 *
1311 * If it is incorrect, we can return an error and leave 'node' as
1312 * it is: since it is a copy of the actual node, the change will
1313 * be forgotten.
1314 *
1315 * Upon a correct input, we commit the change to the ifnet
1316 * structure of our interface.
1317 */
1318 static int
1319 tap_sysctl_handler(SYSCTLFN_ARGS)
1320 {
1321 struct sysctlnode node;
1322 struct tap_softc *sc;
1323 struct ifnet *ifp;
1324 int error;
1325 size_t len;
1326 char addr[3 * ETHER_ADDR_LEN];
1327 uint8_t enaddr[ETHER_ADDR_LEN];
1328
1329 node = *rnode;
1330 sc = node.sysctl_data;
1331 ifp = &sc->sc_ec.ec_if;
1332 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1333 node.sysctl_data = addr;
1334 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1335 if (error || newp == NULL)
1336 return (error);
1337
1338 len = strlen(addr);
1339 if (len < 11 || len > 17)
1340 return (EINVAL);
1341
1342 /* Commit change */
1343 if (ether_nonstatic_aton(enaddr, addr) != 0)
1344 return (EINVAL);
1345 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN);
1346 return (error);
1347 }
1348