if_tap.c revision 1.51 1 /* $NetBSD: if_tap.c,v 1.51 2008/11/12 12:36:28 ad Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.51 2008/11/12 12:36:28 ad Exp $");
37
38 #if defined(_KERNEL_OPT)
39 #include "bpfilter.h"
40 #endif
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/conf.h>
47 #include <sys/device.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/ksyms.h>
51 #include <sys/poll.h>
52 #include <sys/select.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/kauth.h>
56 #include <sys/mutex.h>
57 #include <sys/simplelock.h>
58 #include <sys/intr.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64 #include <net/if_tap.h>
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <compat/sys/sockio.h>
70
71 /*
72 * sysctl node management
73 *
74 * It's not really possible to use a SYSCTL_SETUP block with
75 * current module implementation, so it is easier to just define
76 * our own function.
77 *
78 * The handler function is a "helper" in Andrew Brown's sysctl
79 * framework terminology. It is used as a gateway for sysctl
80 * requests over the nodes.
81 *
82 * tap_log allows the module to log creations of nodes and
83 * destroy them all at once using sysctl_teardown.
84 */
85 static int tap_node;
86 static int tap_sysctl_handler(SYSCTLFN_PROTO);
87 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
88
89 /*
90 * Since we're an Ethernet device, we need the 3 following
91 * components: a leading struct device, a struct ethercom,
92 * and also a struct ifmedia since we don't attach a PHY to
93 * ourselves. We could emulate one, but there's no real
94 * point.
95 */
96
97 struct tap_softc {
98 device_t sc_dev;
99 struct ifmedia sc_im;
100 struct ethercom sc_ec;
101 int sc_flags;
102 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
103 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
104 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
105 #define TAP_GOING 0x00000008 /* interface is being destroyed */
106 struct selinfo sc_rsel;
107 pid_t sc_pgid; /* For async. IO */
108 kmutex_t sc_rdlock;
109 struct simplelock sc_kqlock;
110 void *sc_sih;
111 };
112
113 /* autoconf(9) glue */
114
115 void tapattach(int);
116
117 static int tap_match(device_t, cfdata_t, void *);
118 static void tap_attach(device_t, device_t, void *);
119 static int tap_detach(device_t, int);
120
121 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
122 tap_match, tap_attach, tap_detach, NULL);
123 extern struct cfdriver tap_cd;
124
125 /* Real device access routines */
126 static int tap_dev_close(struct tap_softc *);
127 static int tap_dev_read(int, struct uio *, int);
128 static int tap_dev_write(int, struct uio *, int);
129 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
130 static int tap_dev_poll(int, int, struct lwp *);
131 static int tap_dev_kqfilter(int, struct knote *);
132
133 /* Fileops access routines */
134 static int tap_fops_close(file_t *);
135 static int tap_fops_read(file_t *, off_t *, struct uio *,
136 kauth_cred_t, int);
137 static int tap_fops_write(file_t *, off_t *, struct uio *,
138 kauth_cred_t, int);
139 static int tap_fops_ioctl(file_t *, u_long, void *);
140 static int tap_fops_poll(file_t *, int);
141 static int tap_fops_kqfilter(file_t *, struct knote *);
142
143 static const struct fileops tap_fileops = {
144 tap_fops_read,
145 tap_fops_write,
146 tap_fops_ioctl,
147 fnullop_fcntl,
148 tap_fops_poll,
149 fbadop_stat,
150 tap_fops_close,
151 tap_fops_kqfilter,
152 };
153
154 /* Helper for cloning open() */
155 static int tap_dev_cloner(struct lwp *);
156
157 /* Character device routines */
158 static int tap_cdev_open(dev_t, int, int, struct lwp *);
159 static int tap_cdev_close(dev_t, int, int, struct lwp *);
160 static int tap_cdev_read(dev_t, struct uio *, int);
161 static int tap_cdev_write(dev_t, struct uio *, int);
162 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
163 static int tap_cdev_poll(dev_t, int, struct lwp *);
164 static int tap_cdev_kqfilter(dev_t, struct knote *);
165
166 const struct cdevsw tap_cdevsw = {
167 tap_cdev_open, tap_cdev_close,
168 tap_cdev_read, tap_cdev_write,
169 tap_cdev_ioctl, nostop, notty,
170 tap_cdev_poll, nommap,
171 tap_cdev_kqfilter,
172 D_OTHER,
173 };
174
175 #define TAP_CLONER 0xfffff /* Maximal minor value */
176
177 /* kqueue-related routines */
178 static void tap_kqdetach(struct knote *);
179 static int tap_kqread(struct knote *, long);
180
181 /*
182 * Those are needed by the if_media interface.
183 */
184
185 static int tap_mediachange(struct ifnet *);
186 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
187
188 /*
189 * Those are needed by the ifnet interface, and would typically be
190 * there for any network interface driver.
191 * Some other routines are optional: watchdog and drain.
192 */
193
194 static void tap_start(struct ifnet *);
195 static void tap_stop(struct ifnet *, int);
196 static int tap_init(struct ifnet *);
197 static int tap_ioctl(struct ifnet *, u_long, void *);
198
199 /* Internal functions */
200 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
201 static void tap_softintr(void *);
202
203 /*
204 * tap is a clonable interface, although it is highly unrealistic for
205 * an Ethernet device.
206 *
207 * Here are the bits needed for a clonable interface.
208 */
209 static int tap_clone_create(struct if_clone *, int);
210 static int tap_clone_destroy(struct ifnet *);
211
212 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
213 tap_clone_create,
214 tap_clone_destroy);
215
216 /* Helper functionis shared by the two cloning code paths */
217 static struct tap_softc * tap_clone_creator(int);
218 int tap_clone_destroyer(device_t);
219
220 void
221 tapattach(int n)
222 {
223 int error;
224
225 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
226 if (error) {
227 aprint_error("%s: unable to register cfattach\n",
228 tap_cd.cd_name);
229 (void)config_cfdriver_detach(&tap_cd);
230 return;
231 }
232
233 if_clone_attach(&tap_cloners);
234 }
235
236 /* Pretty much useless for a pseudo-device */
237 static int
238 tap_match(device_t parent, cfdata_t cfdata, void *arg)
239 {
240
241 return (1);
242 }
243
244 void
245 tap_attach(device_t parent, device_t self, void *aux)
246 {
247 struct tap_softc *sc = device_private(self);
248 struct ifnet *ifp;
249 const struct sysctlnode *node;
250 uint8_t enaddr[ETHER_ADDR_LEN] =
251 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
252 char enaddrstr[3 * ETHER_ADDR_LEN];
253 struct timeval tv;
254 uint32_t ui;
255 int error;
256
257 sc->sc_dev = self;
258 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
259
260 if (!pmf_device_register(self, NULL, NULL))
261 aprint_error_dev(self, "couldn't establish power handler\n");
262
263 /*
264 * In order to obtain unique initial Ethernet address on a host,
265 * do some randomisation using the current uptime. It's not meant
266 * for anything but avoiding hard-coding an address.
267 */
268 getmicrouptime(&tv);
269 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
270 memcpy(enaddr+3, (uint8_t *)&ui, 3);
271
272 aprint_verbose_dev(self, "Ethernet address %s\n",
273 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
274
275 /*
276 * Why 1000baseT? Why not? You can add more.
277 *
278 * Note that there are 3 steps: init, one or several additions to
279 * list of supported media, and in the end, the selection of one
280 * of them.
281 */
282 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
283 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
284 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
285 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
289 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
290 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
291
292 /*
293 * One should note that an interface must do multicast in order
294 * to support IPv6.
295 */
296 ifp = &sc->sc_ec.ec_if;
297 strcpy(ifp->if_xname, device_xname(self));
298 ifp->if_softc = sc;
299 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
300 ifp->if_ioctl = tap_ioctl;
301 ifp->if_start = tap_start;
302 ifp->if_stop = tap_stop;
303 ifp->if_init = tap_init;
304 IFQ_SET_READY(&ifp->if_snd);
305
306 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
307
308 /* Those steps are mandatory for an Ethernet driver, the fisrt call
309 * being common to all network interface drivers. */
310 if_attach(ifp);
311 ether_ifattach(ifp, enaddr);
312
313 sc->sc_flags = 0;
314
315 /*
316 * Add a sysctl node for that interface.
317 *
318 * The pointer transmitted is not a string, but instead a pointer to
319 * the softc structure, which we can use to build the string value on
320 * the fly in the helper function of the node. See the comments for
321 * tap_sysctl_handler for details.
322 *
323 * Usually sysctl_createv is called with CTL_CREATE as the before-last
324 * component. However, we can allocate a number ourselves, as we are
325 * the only consumer of the net.link.<iface> node. In this case, the
326 * unit number is conveniently used to number the node. CTL_CREATE
327 * would just work, too.
328 */
329 if ((error = sysctl_createv(NULL, 0, NULL,
330 &node, CTLFLAG_READWRITE,
331 CTLTYPE_STRING, device_xname(self), NULL,
332 tap_sysctl_handler, 0, sc, 18,
333 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
334 CTL_EOL)) != 0)
335 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
336 error);
337
338 /*
339 * Initialize the two locks for the device.
340 *
341 * We need a lock here because even though the tap device can be
342 * opened only once, the file descriptor might be passed to another
343 * process, say a fork(2)ed child.
344 *
345 * The Giant saves us from most of the hassle, but since the read
346 * operation can sleep, we don't want two processes to wake up at
347 * the same moment and both try and dequeue a single packet.
348 *
349 * The queue for event listeners (used by kqueue(9), see below) has
350 * to be protected, too, but we don't need the same level of
351 * complexity for that lock, so a simple spinning lock is fine.
352 */
353 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
354 simple_lock_init(&sc->sc_kqlock);
355
356 selinit(&sc->sc_rsel);
357 }
358
359 /*
360 * When detaching, we do the inverse of what is done in the attach
361 * routine, in reversed order.
362 */
363 static int
364 tap_detach(device_t self, int flags)
365 {
366 struct tap_softc *sc = device_private(self);
367 struct ifnet *ifp = &sc->sc_ec.ec_if;
368 int error, s;
369
370 sc->sc_flags |= TAP_GOING;
371 s = splnet();
372 tap_stop(ifp, 1);
373 if_down(ifp);
374 splx(s);
375
376 softint_disestablish(sc->sc_sih);
377
378 /*
379 * Destroying a single leaf is a very straightforward operation using
380 * sysctl_destroyv. One should be sure to always end the path with
381 * CTL_EOL.
382 */
383 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
384 device_unit(sc->sc_dev), CTL_EOL)) != 0)
385 aprint_error_dev(self,
386 "sysctl_destroyv returned %d, ignoring\n", error);
387 ether_ifdetach(ifp);
388 if_detach(ifp);
389 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
390 seldestroy(&sc->sc_rsel);
391 mutex_destroy(&sc->sc_rdlock);
392
393 pmf_device_deregister(self);
394
395 return (0);
396 }
397
398 /*
399 * This function is called by the ifmedia layer to notify the driver
400 * that the user requested a media change. A real driver would
401 * reconfigure the hardware.
402 */
403 static int
404 tap_mediachange(struct ifnet *ifp)
405 {
406 return (0);
407 }
408
409 /*
410 * Here the user asks for the currently used media.
411 */
412 static void
413 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
414 {
415 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
416 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
417 }
418
419 /*
420 * This is the function where we SEND packets.
421 *
422 * There is no 'receive' equivalent. A typical driver will get
423 * interrupts from the hardware, and from there will inject new packets
424 * into the network stack.
425 *
426 * Once handled, a packet must be freed. A real driver might not be able
427 * to fit all the pending packets into the hardware, and is allowed to
428 * return before having sent all the packets. It should then use the
429 * if_flags flag IFF_OACTIVE to notify the upper layer.
430 *
431 * There are also other flags one should check, such as IFF_PAUSE.
432 *
433 * It is our duty to make packets available to BPF listeners.
434 *
435 * You should be aware that this function is called by the Ethernet layer
436 * at splnet().
437 *
438 * When the device is opened, we have to pass the packet(s) to the
439 * userland. For that we stay in OACTIVE mode while the userland gets
440 * the packets, and we send a signal to the processes waiting to read.
441 *
442 * wakeup(sc) is the counterpart to the tsleep call in
443 * tap_dev_read, while selnotify() is used for kevent(2) and
444 * poll(2) (which includes select(2)) listeners.
445 */
446 static void
447 tap_start(struct ifnet *ifp)
448 {
449 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
450 struct mbuf *m0;
451
452 if ((sc->sc_flags & TAP_INUSE) == 0) {
453 /* Simply drop packets */
454 for(;;) {
455 IFQ_DEQUEUE(&ifp->if_snd, m0);
456 if (m0 == NULL)
457 return;
458
459 ifp->if_opackets++;
460 #if NBPFILTER > 0
461 if (ifp->if_bpf)
462 bpf_mtap(ifp->if_bpf, m0);
463 #endif
464
465 m_freem(m0);
466 }
467 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
468 ifp->if_flags |= IFF_OACTIVE;
469 wakeup(sc);
470 selnotify(&sc->sc_rsel, 0, 1);
471 if (sc->sc_flags & TAP_ASYNCIO)
472 softint_schedule(sc->sc_sih);
473 }
474 }
475
476 static void
477 tap_softintr(void *cookie)
478 {
479 struct tap_softc *sc;
480 struct ifnet *ifp;
481 int a, b;
482
483 sc = cookie;
484
485 if (sc->sc_flags & TAP_ASYNCIO) {
486 ifp = &sc->sc_ec.ec_if;
487 if (ifp->if_flags & IFF_RUNNING) {
488 a = POLL_IN;
489 b = POLLIN|POLLRDNORM;
490 } else {
491 a = POLL_HUP;
492 b = 0;
493 }
494 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
495 }
496 }
497
498 /*
499 * A typical driver will only contain the following handlers for
500 * ioctl calls, except SIOCSIFPHYADDR.
501 * The latter is a hack I used to set the Ethernet address of the
502 * faked device.
503 *
504 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
505 * called under splnet().
506 */
507 static int
508 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
509 {
510 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
511 struct ifreq *ifr = (struct ifreq *)data;
512 int s, error;
513
514 s = splnet();
515
516 switch (cmd) {
517 #ifdef OSIOCSIFMEDIA
518 case OSIOCSIFMEDIA:
519 #endif
520 case SIOCSIFMEDIA:
521 case SIOCGIFMEDIA:
522 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
523 break;
524 case SIOCSIFPHYADDR:
525 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
526 break;
527 default:
528 error = ether_ioctl(ifp, cmd, data);
529 if (error == ENETRESET)
530 error = 0;
531 break;
532 }
533
534 splx(s);
535
536 return (error);
537 }
538
539 /*
540 * Helper function to set Ethernet address. This shouldn't be done there,
541 * and should actually be available to all Ethernet drivers, real or not.
542 */
543 static int
544 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
545 {
546 const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr);
547
548 if (sdl->sdl_family != AF_LINK)
549 return (EINVAL);
550
551 if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN, false);
552
553 return (0);
554 }
555
556 /*
557 * _init() would typically be called when an interface goes up,
558 * meaning it should configure itself into the state in which it
559 * can send packets.
560 */
561 static int
562 tap_init(struct ifnet *ifp)
563 {
564 ifp->if_flags |= IFF_RUNNING;
565
566 tap_start(ifp);
567
568 return (0);
569 }
570
571 /*
572 * _stop() is called when an interface goes down. It is our
573 * responsability to validate that state by clearing the
574 * IFF_RUNNING flag.
575 *
576 * We have to wake up all the sleeping processes to have the pending
577 * read requests cancelled.
578 */
579 static void
580 tap_stop(struct ifnet *ifp, int disable)
581 {
582 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
583
584 ifp->if_flags &= ~IFF_RUNNING;
585 wakeup(sc);
586 selnotify(&sc->sc_rsel, 0, 1);
587 if (sc->sc_flags & TAP_ASYNCIO)
588 softint_schedule(sc->sc_sih);
589 }
590
591 /*
592 * The 'create' command of ifconfig can be used to create
593 * any numbered instance of a given device. Thus we have to
594 * make sure we have enough room in cd_devs to create the
595 * user-specified instance. config_attach_pseudo will do this
596 * for us.
597 */
598 static int
599 tap_clone_create(struct if_clone *ifc, int unit)
600 {
601 if (tap_clone_creator(unit) == NULL) {
602 aprint_error("%s%d: unable to attach an instance\n",
603 tap_cd.cd_name, unit);
604 return (ENXIO);
605 }
606
607 return (0);
608 }
609
610 /*
611 * tap(4) can be cloned by two ways:
612 * using 'ifconfig tap0 create', which will use the network
613 * interface cloning API, and call tap_clone_create above.
614 * opening the cloning device node, whose minor number is TAP_CLONER.
615 * See below for an explanation on how this part work.
616 */
617 static struct tap_softc *
618 tap_clone_creator(int unit)
619 {
620 struct cfdata *cf;
621
622 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
623 cf->cf_name = tap_cd.cd_name;
624 cf->cf_atname = tap_ca.ca_name;
625 if (unit == -1) {
626 /* let autoconf find the first free one */
627 cf->cf_unit = 0;
628 cf->cf_fstate = FSTATE_STAR;
629 } else {
630 cf->cf_unit = unit;
631 cf->cf_fstate = FSTATE_FOUND;
632 }
633
634 return device_private(config_attach_pseudo(cf));
635 }
636
637 /*
638 * The clean design of if_clone and autoconf(9) makes that part
639 * really straightforward. The second argument of config_detach
640 * means neither QUIET nor FORCED.
641 */
642 static int
643 tap_clone_destroy(struct ifnet *ifp)
644 {
645 struct tap_softc *sc = ifp->if_softc;
646
647 return tap_clone_destroyer(sc->sc_dev);
648 }
649
650 int
651 tap_clone_destroyer(device_t dev)
652 {
653 cfdata_t cf = device_cfdata(dev);
654 int error;
655
656 if ((error = config_detach(dev, 0)) != 0)
657 aprint_error_dev(dev, "unable to detach instance\n");
658 free(cf, M_DEVBUF);
659
660 return (error);
661 }
662
663 /*
664 * tap(4) is a bit of an hybrid device. It can be used in two different
665 * ways:
666 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
667 * 2. open /dev/tap, get a new interface created and read/write off it.
668 * That interface is destroyed when the process that had it created exits.
669 *
670 * The first way is managed by the cdevsw structure, and you access interfaces
671 * through a (major, minor) mapping: tap4 is obtained by the minor number
672 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
673 *
674 * The second way is the so-called "cloning" device. It's a special minor
675 * number (chosen as the maximal number, to allow as much tap devices as
676 * possible). The user first opens the cloner (e.g., /dev/tap), and that
677 * call ends in tap_cdev_open. The actual place where it is handled is
678 * tap_dev_cloner.
679 *
680 * An tap device cannot be opened more than once at a time, so the cdevsw
681 * part of open() does nothing but noting that the interface is being used and
682 * hence ready to actually handle packets.
683 */
684
685 static int
686 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
687 {
688 struct tap_softc *sc;
689
690 if (minor(dev) == TAP_CLONER)
691 return tap_dev_cloner(l);
692
693 sc = device_lookup_private(&tap_cd, minor(dev));
694 if (sc == NULL)
695 return (ENXIO);
696
697 /* The device can only be opened once */
698 if (sc->sc_flags & TAP_INUSE)
699 return (EBUSY);
700 sc->sc_flags |= TAP_INUSE;
701 return (0);
702 }
703
704 /*
705 * There are several kinds of cloning devices, and the most simple is the one
706 * tap(4) uses. What it does is change the file descriptor with a new one,
707 * with its own fileops structure (which maps to the various read, write,
708 * ioctl functions). It starts allocating a new file descriptor with falloc,
709 * then actually creates the new tap devices.
710 *
711 * Once those two steps are successful, we can re-wire the existing file
712 * descriptor to its new self. This is done with fdclone(): it fills the fp
713 * structure as needed (notably f_data gets filled with the fifth parameter
714 * passed, the unit of the tap device which will allows us identifying the
715 * device later), and returns EMOVEFD.
716 *
717 * That magic value is interpreted by sys_open() which then replaces the
718 * current file descriptor by the new one (through a magic member of struct
719 * lwp, l_dupfd).
720 *
721 * The tap device is flagged as being busy since it otherwise could be
722 * externally accessed through the corresponding device node with the cdevsw
723 * interface.
724 */
725
726 static int
727 tap_dev_cloner(struct lwp *l)
728 {
729 struct tap_softc *sc;
730 file_t *fp;
731 int error, fd;
732
733 if ((error = fd_allocfile(&fp, &fd)) != 0)
734 return (error);
735
736 if ((sc = tap_clone_creator(-1)) == NULL) {
737 fd_abort(curproc, fp, fd);
738 return (ENXIO);
739 }
740
741 sc->sc_flags |= TAP_INUSE;
742
743 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
744 (void *)(intptr_t)device_unit(sc->sc_dev));
745 }
746
747 /*
748 * While all other operations (read, write, ioctl, poll and kqfilter) are
749 * really the same whether we are in cdevsw or fileops mode, the close()
750 * function is slightly different in the two cases.
751 *
752 * As for the other, the core of it is shared in tap_dev_close. What
753 * it does is sufficient for the cdevsw interface, but the cloning interface
754 * needs another thing: the interface is destroyed when the processes that
755 * created it closes it.
756 */
757 static int
758 tap_cdev_close(dev_t dev, int flags, int fmt,
759 struct lwp *l)
760 {
761 struct tap_softc *sc =
762 device_lookup_private(&tap_cd, minor(dev));
763
764 if (sc == NULL)
765 return (ENXIO);
766
767 return tap_dev_close(sc);
768 }
769
770 /*
771 * It might happen that the administrator used ifconfig to externally destroy
772 * the interface. In that case, tap_fops_close will be called while
773 * tap_detach is already happening. If we called it again from here, we
774 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
775 */
776 static int
777 tap_fops_close(file_t *fp)
778 {
779 int unit = (intptr_t)fp->f_data;
780 struct tap_softc *sc;
781 int error;
782
783 sc = device_lookup_private(&tap_cd, unit);
784 if (sc == NULL)
785 return (ENXIO);
786
787 /* tap_dev_close currently always succeeds, but it might not
788 * always be the case. */
789 KERNEL_LOCK(1, NULL);
790 if ((error = tap_dev_close(sc)) != 0) {
791 KERNEL_UNLOCK_ONE(NULL);
792 return (error);
793 }
794
795 /* Destroy the device now that it is no longer useful,
796 * unless it's already being destroyed. */
797 if ((sc->sc_flags & TAP_GOING) != 0) {
798 KERNEL_UNLOCK_ONE(NULL);
799 return (0);
800 }
801
802 error = tap_clone_destroyer(sc->sc_dev);
803 KERNEL_UNLOCK_ONE(NULL);
804 return error;
805 }
806
807 static int
808 tap_dev_close(struct tap_softc *sc)
809 {
810 struct ifnet *ifp;
811 int s;
812
813 s = splnet();
814 /* Let tap_start handle packets again */
815 ifp = &sc->sc_ec.ec_if;
816 ifp->if_flags &= ~IFF_OACTIVE;
817
818 /* Purge output queue */
819 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
820 struct mbuf *m;
821
822 for (;;) {
823 IFQ_DEQUEUE(&ifp->if_snd, m);
824 if (m == NULL)
825 break;
826
827 ifp->if_opackets++;
828 #if NBPFILTER > 0
829 if (ifp->if_bpf)
830 bpf_mtap(ifp->if_bpf, m);
831 #endif
832 }
833 }
834 splx(s);
835
836 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
837
838 return (0);
839 }
840
841 static int
842 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
843 {
844 return tap_dev_read(minor(dev), uio, flags);
845 }
846
847 static int
848 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
849 kauth_cred_t cred, int flags)
850 {
851 int error;
852
853 KERNEL_LOCK(1, NULL);
854 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
855 KERNEL_UNLOCK_ONE(NULL);
856 return error;
857 }
858
859 static int
860 tap_dev_read(int unit, struct uio *uio, int flags)
861 {
862 struct tap_softc *sc =
863 device_lookup_private(&tap_cd, unit);
864 struct ifnet *ifp;
865 struct mbuf *m, *n;
866 int error = 0, s;
867
868 if (sc == NULL)
869 return (ENXIO);
870
871 ifp = &sc->sc_ec.ec_if;
872 if ((ifp->if_flags & IFF_UP) == 0)
873 return (EHOSTDOWN);
874
875 /*
876 * In the TAP_NBIO case, we have to make sure we won't be sleeping
877 */
878 if ((sc->sc_flags & TAP_NBIO) != 0) {
879 if (!mutex_tryenter(&sc->sc_rdlock))
880 return (EWOULDBLOCK);
881 } else {
882 mutex_enter(&sc->sc_rdlock);
883 }
884
885 s = splnet();
886 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
887 ifp->if_flags &= ~IFF_OACTIVE;
888 splx(s);
889 /*
890 * We must release the lock before sleeping, and re-acquire it
891 * after.
892 */
893 mutex_exit(&sc->sc_rdlock);
894 if (sc->sc_flags & TAP_NBIO)
895 error = EWOULDBLOCK;
896 else
897 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
898 if (error != 0)
899 return (error);
900 /* The device might have been downed */
901 if ((ifp->if_flags & IFF_UP) == 0)
902 return (EHOSTDOWN);
903 if ((sc->sc_flags & TAP_NBIO)) {
904 if (!mutex_tryenter(&sc->sc_rdlock))
905 return (EWOULDBLOCK);
906 } else {
907 mutex_enter(&sc->sc_rdlock);
908 }
909 s = splnet();
910 }
911
912 IFQ_DEQUEUE(&ifp->if_snd, m);
913 ifp->if_flags &= ~IFF_OACTIVE;
914 splx(s);
915 if (m == NULL) {
916 error = 0;
917 goto out;
918 }
919
920 ifp->if_opackets++;
921 #if NBPFILTER > 0
922 if (ifp->if_bpf)
923 bpf_mtap(ifp->if_bpf, m);
924 #endif
925
926 /*
927 * One read is one packet.
928 */
929 do {
930 error = uiomove(mtod(m, void *),
931 min(m->m_len, uio->uio_resid), uio);
932 MFREE(m, n);
933 m = n;
934 } while (m != NULL && uio->uio_resid > 0 && error == 0);
935
936 if (m != NULL)
937 m_freem(m);
938
939 out:
940 mutex_exit(&sc->sc_rdlock);
941 return (error);
942 }
943
944 static int
945 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
946 {
947 return tap_dev_write(minor(dev), uio, flags);
948 }
949
950 static int
951 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
952 kauth_cred_t cred, int flags)
953 {
954 int error;
955
956 KERNEL_LOCK(1, NULL);
957 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
958 KERNEL_UNLOCK_ONE(NULL);
959 return error;
960 }
961
962 static int
963 tap_dev_write(int unit, struct uio *uio, int flags)
964 {
965 struct tap_softc *sc =
966 device_lookup_private(&tap_cd, unit);
967 struct ifnet *ifp;
968 struct mbuf *m, **mp;
969 int error = 0;
970 int s;
971
972 if (sc == NULL)
973 return (ENXIO);
974
975 ifp = &sc->sc_ec.ec_if;
976
977 /* One write, one packet, that's the rule */
978 MGETHDR(m, M_DONTWAIT, MT_DATA);
979 if (m == NULL) {
980 ifp->if_ierrors++;
981 return (ENOBUFS);
982 }
983 m->m_pkthdr.len = uio->uio_resid;
984
985 mp = &m;
986 while (error == 0 && uio->uio_resid > 0) {
987 if (*mp != m) {
988 MGET(*mp, M_DONTWAIT, MT_DATA);
989 if (*mp == NULL) {
990 error = ENOBUFS;
991 break;
992 }
993 }
994 (*mp)->m_len = min(MHLEN, uio->uio_resid);
995 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
996 mp = &(*mp)->m_next;
997 }
998 if (error) {
999 ifp->if_ierrors++;
1000 m_freem(m);
1001 return (error);
1002 }
1003
1004 ifp->if_ipackets++;
1005 m->m_pkthdr.rcvif = ifp;
1006
1007 #if NBPFILTER > 0
1008 if (ifp->if_bpf)
1009 bpf_mtap(ifp->if_bpf, m);
1010 #endif
1011 s =splnet();
1012 (*ifp->if_input)(ifp, m);
1013 splx(s);
1014
1015 return (0);
1016 }
1017
1018 static int
1019 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1020 struct lwp *l)
1021 {
1022 return tap_dev_ioctl(minor(dev), cmd, data, l);
1023 }
1024
1025 static int
1026 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1027 {
1028 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1029 }
1030
1031 static int
1032 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1033 {
1034 struct tap_softc *sc =
1035 device_lookup_private(&tap_cd, unit);
1036 int error = 0;
1037
1038 if (sc == NULL)
1039 return (ENXIO);
1040
1041 switch (cmd) {
1042 case FIONREAD:
1043 {
1044 struct ifnet *ifp = &sc->sc_ec.ec_if;
1045 struct mbuf *m;
1046 int s;
1047
1048 s = splnet();
1049 IFQ_POLL(&ifp->if_snd, m);
1050
1051 if (m == NULL)
1052 *(int *)data = 0;
1053 else
1054 *(int *)data = m->m_pkthdr.len;
1055 splx(s);
1056 } break;
1057 case TIOCSPGRP:
1058 case FIOSETOWN:
1059 error = fsetown(&sc->sc_pgid, cmd, data);
1060 break;
1061 case TIOCGPGRP:
1062 case FIOGETOWN:
1063 error = fgetown(sc->sc_pgid, cmd, data);
1064 break;
1065 case FIOASYNC:
1066 if (*(int *)data)
1067 sc->sc_flags |= TAP_ASYNCIO;
1068 else
1069 sc->sc_flags &= ~TAP_ASYNCIO;
1070 break;
1071 case FIONBIO:
1072 if (*(int *)data)
1073 sc->sc_flags |= TAP_NBIO;
1074 else
1075 sc->sc_flags &= ~TAP_NBIO;
1076 break;
1077 #ifdef OTAPGIFNAME
1078 case OTAPGIFNAME:
1079 #endif
1080 case TAPGIFNAME:
1081 {
1082 struct ifreq *ifr = (struct ifreq *)data;
1083 struct ifnet *ifp = &sc->sc_ec.ec_if;
1084
1085 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1086 } break;
1087 default:
1088 error = ENOTTY;
1089 break;
1090 }
1091
1092 return (0);
1093 }
1094
1095 static int
1096 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1097 {
1098 return tap_dev_poll(minor(dev), events, l);
1099 }
1100
1101 static int
1102 tap_fops_poll(file_t *fp, int events)
1103 {
1104 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1105 }
1106
1107 static int
1108 tap_dev_poll(int unit, int events, struct lwp *l)
1109 {
1110 struct tap_softc *sc =
1111 device_lookup_private(&tap_cd, unit);
1112 int revents = 0;
1113
1114 if (sc == NULL)
1115 return POLLERR;
1116
1117 if (events & (POLLIN|POLLRDNORM)) {
1118 struct ifnet *ifp = &sc->sc_ec.ec_if;
1119 struct mbuf *m;
1120 int s;
1121
1122 s = splnet();
1123 IFQ_POLL(&ifp->if_snd, m);
1124 splx(s);
1125
1126 if (m != NULL)
1127 revents |= events & (POLLIN|POLLRDNORM);
1128 else {
1129 simple_lock(&sc->sc_kqlock);
1130 selrecord(l, &sc->sc_rsel);
1131 simple_unlock(&sc->sc_kqlock);
1132 }
1133 }
1134 revents |= events & (POLLOUT|POLLWRNORM);
1135
1136 return (revents);
1137 }
1138
1139 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1140 tap_kqread };
1141 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1142 filt_seltrue };
1143
1144 static int
1145 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1146 {
1147 return tap_dev_kqfilter(minor(dev), kn);
1148 }
1149
1150 static int
1151 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1152 {
1153 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1154 }
1155
1156 static int
1157 tap_dev_kqfilter(int unit, struct knote *kn)
1158 {
1159 struct tap_softc *sc =
1160 device_lookup_private(&tap_cd, unit);
1161
1162 if (sc == NULL)
1163 return (ENXIO);
1164
1165 KERNEL_LOCK(1, NULL);
1166 switch(kn->kn_filter) {
1167 case EVFILT_READ:
1168 kn->kn_fop = &tap_read_filterops;
1169 break;
1170 case EVFILT_WRITE:
1171 kn->kn_fop = &tap_seltrue_filterops;
1172 break;
1173 default:
1174 KERNEL_UNLOCK_ONE(NULL);
1175 return (EINVAL);
1176 }
1177
1178 kn->kn_hook = sc;
1179 simple_lock(&sc->sc_kqlock);
1180 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1181 simple_unlock(&sc->sc_kqlock);
1182 KERNEL_UNLOCK_ONE(NULL);
1183 return (0);
1184 }
1185
1186 static void
1187 tap_kqdetach(struct knote *kn)
1188 {
1189 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1190
1191 KERNEL_LOCK(1, NULL);
1192 simple_lock(&sc->sc_kqlock);
1193 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1194 simple_unlock(&sc->sc_kqlock);
1195 KERNEL_UNLOCK_ONE(NULL);
1196 }
1197
1198 static int
1199 tap_kqread(struct knote *kn, long hint)
1200 {
1201 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1202 struct ifnet *ifp = &sc->sc_ec.ec_if;
1203 struct mbuf *m;
1204 int s, rv;
1205
1206 KERNEL_LOCK(1, NULL);
1207 s = splnet();
1208 IFQ_POLL(&ifp->if_snd, m);
1209
1210 if (m == NULL)
1211 kn->kn_data = 0;
1212 else
1213 kn->kn_data = m->m_pkthdr.len;
1214 splx(s);
1215 rv = (kn->kn_data != 0 ? 1 : 0);
1216 KERNEL_UNLOCK_ONE(NULL);
1217 return rv;
1218 }
1219
1220 /*
1221 * sysctl management routines
1222 * You can set the address of an interface through:
1223 * net.link.tap.tap<number>
1224 *
1225 * Note the consistent use of tap_log in order to use
1226 * sysctl_teardown at unload time.
1227 *
1228 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1229 * blocks register a function in a special section of the kernel
1230 * (called a link set) which is used at init_sysctl() time to cycle
1231 * through all those functions to create the kernel's sysctl tree.
1232 *
1233 * It is not possible to use link sets in a module, so the
1234 * easiest is to simply call our own setup routine at load time.
1235 *
1236 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1237 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1238 * whole kernel sysctl tree is built, it is not possible to add any
1239 * permanent node.
1240 *
1241 * It should be noted that we're not saving the sysctlnode pointer
1242 * we are returned when creating the "tap" node. That structure
1243 * cannot be trusted once out of the calling function, as it might
1244 * get reused. So we just save the MIB number, and always give the
1245 * full path starting from the root for later calls to sysctl_createv
1246 * and sysctl_destroyv.
1247 */
1248 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1249 {
1250 const struct sysctlnode *node;
1251 int error = 0;
1252
1253 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1254 CTLFLAG_PERMANENT,
1255 CTLTYPE_NODE, "net", NULL,
1256 NULL, 0, NULL, 0,
1257 CTL_NET, CTL_EOL)) != 0)
1258 return;
1259
1260 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1261 CTLFLAG_PERMANENT,
1262 CTLTYPE_NODE, "link", NULL,
1263 NULL, 0, NULL, 0,
1264 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1265 return;
1266
1267 /*
1268 * The first four parameters of sysctl_createv are for management.
1269 *
1270 * The four that follows, here starting with a '0' for the flags,
1271 * describe the node.
1272 *
1273 * The next series of four set its value, through various possible
1274 * means.
1275 *
1276 * Last but not least, the path to the node is described. That path
1277 * is relative to the given root (third argument). Here we're
1278 * starting from the root.
1279 */
1280 if ((error = sysctl_createv(clog, 0, NULL, &node,
1281 CTLFLAG_PERMANENT,
1282 CTLTYPE_NODE, "tap", NULL,
1283 NULL, 0, NULL, 0,
1284 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1285 return;
1286 tap_node = node->sysctl_num;
1287 }
1288
1289 /*
1290 * The helper functions make Andrew Brown's interface really
1291 * shine. It makes possible to create value on the fly whether
1292 * the sysctl value is read or written.
1293 *
1294 * As shown as an example in the man page, the first step is to
1295 * create a copy of the node to have sysctl_lookup work on it.
1296 *
1297 * Here, we have more work to do than just a copy, since we have
1298 * to create the string. The first step is to collect the actual
1299 * value of the node, which is a convenient pointer to the softc
1300 * of the interface. From there we create the string and use it
1301 * as the value, but only for the *copy* of the node.
1302 *
1303 * Then we let sysctl_lookup do the magic, which consists in
1304 * setting oldp and newp as required by the operation. When the
1305 * value is read, that means that the string will be copied to
1306 * the user, and when it is written, the new value will be copied
1307 * over in the addr array.
1308 *
1309 * If newp is NULL, the user was reading the value, so we don't
1310 * have anything else to do. If a new value was written, we
1311 * have to check it.
1312 *
1313 * If it is incorrect, we can return an error and leave 'node' as
1314 * it is: since it is a copy of the actual node, the change will
1315 * be forgotten.
1316 *
1317 * Upon a correct input, we commit the change to the ifnet
1318 * structure of our interface.
1319 */
1320 static int
1321 tap_sysctl_handler(SYSCTLFN_ARGS)
1322 {
1323 struct sysctlnode node;
1324 struct tap_softc *sc;
1325 struct ifnet *ifp;
1326 int error;
1327 size_t len;
1328 char addr[3 * ETHER_ADDR_LEN];
1329 uint8_t enaddr[ETHER_ADDR_LEN];
1330
1331 node = *rnode;
1332 sc = node.sysctl_data;
1333 ifp = &sc->sc_ec.ec_if;
1334 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1335 node.sysctl_data = addr;
1336 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1337 if (error || newp == NULL)
1338 return (error);
1339
1340 len = strlen(addr);
1341 if (len < 11 || len > 17)
1342 return (EINVAL);
1343
1344 /* Commit change */
1345 if (ether_nonstatic_aton(enaddr, addr) != 0)
1346 return (EINVAL);
1347 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1348 return (error);
1349 }
1350