Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.51
      1 /*	$NetBSD: if_tap.c,v 1.51 2008/11/12 12:36:28 ad Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.51 2008/11/12 12:36:28 ad Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 #include "bpfilter.h"
     40 #endif
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/malloc.h>
     46 #include <sys/conf.h>
     47 #include <sys/device.h>
     48 #include <sys/file.h>
     49 #include <sys/filedesc.h>
     50 #include <sys/ksyms.h>
     51 #include <sys/poll.h>
     52 #include <sys/select.h>
     53 #include <sys/sockio.h>
     54 #include <sys/sysctl.h>
     55 #include <sys/kauth.h>
     56 #include <sys/mutex.h>
     57 #include <sys/simplelock.h>
     58 #include <sys/intr.h>
     59 
     60 #include <net/if.h>
     61 #include <net/if_dl.h>
     62 #include <net/if_ether.h>
     63 #include <net/if_media.h>
     64 #include <net/if_tap.h>
     65 #if NBPFILTER > 0
     66 #include <net/bpf.h>
     67 #endif
     68 
     69 #include <compat/sys/sockio.h>
     70 
     71 /*
     72  * sysctl node management
     73  *
     74  * It's not really possible to use a SYSCTL_SETUP block with
     75  * current module implementation, so it is easier to just define
     76  * our own function.
     77  *
     78  * The handler function is a "helper" in Andrew Brown's sysctl
     79  * framework terminology.  It is used as a gateway for sysctl
     80  * requests over the nodes.
     81  *
     82  * tap_log allows the module to log creations of nodes and
     83  * destroy them all at once using sysctl_teardown.
     84  */
     85 static int tap_node;
     86 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     87 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     88 
     89 /*
     90  * Since we're an Ethernet device, we need the 3 following
     91  * components: a leading struct device, a struct ethercom,
     92  * and also a struct ifmedia since we don't attach a PHY to
     93  * ourselves. We could emulate one, but there's no real
     94  * point.
     95  */
     96 
     97 struct tap_softc {
     98 	device_t	sc_dev;
     99 	struct ifmedia	sc_im;
    100 	struct ethercom	sc_ec;
    101 	int		sc_flags;
    102 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    103 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    104 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    105 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    106 	struct selinfo	sc_rsel;
    107 	pid_t		sc_pgid; /* For async. IO */
    108 	kmutex_t	sc_rdlock;
    109 	struct simplelock	sc_kqlock;
    110 	void		*sc_sih;
    111 };
    112 
    113 /* autoconf(9) glue */
    114 
    115 void	tapattach(int);
    116 
    117 static int	tap_match(device_t, cfdata_t, void *);
    118 static void	tap_attach(device_t, device_t, void *);
    119 static int	tap_detach(device_t, int);
    120 
    121 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    122     tap_match, tap_attach, tap_detach, NULL);
    123 extern struct cfdriver tap_cd;
    124 
    125 /* Real device access routines */
    126 static int	tap_dev_close(struct tap_softc *);
    127 static int	tap_dev_read(int, struct uio *, int);
    128 static int	tap_dev_write(int, struct uio *, int);
    129 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    130 static int	tap_dev_poll(int, int, struct lwp *);
    131 static int	tap_dev_kqfilter(int, struct knote *);
    132 
    133 /* Fileops access routines */
    134 static int	tap_fops_close(file_t *);
    135 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    136     kauth_cred_t, int);
    137 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    138     kauth_cred_t, int);
    139 static int	tap_fops_ioctl(file_t *, u_long, void *);
    140 static int	tap_fops_poll(file_t *, int);
    141 static int	tap_fops_kqfilter(file_t *, struct knote *);
    142 
    143 static const struct fileops tap_fileops = {
    144 	tap_fops_read,
    145 	tap_fops_write,
    146 	tap_fops_ioctl,
    147 	fnullop_fcntl,
    148 	tap_fops_poll,
    149 	fbadop_stat,
    150 	tap_fops_close,
    151 	tap_fops_kqfilter,
    152 };
    153 
    154 /* Helper for cloning open() */
    155 static int	tap_dev_cloner(struct lwp *);
    156 
    157 /* Character device routines */
    158 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    159 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    160 static int	tap_cdev_read(dev_t, struct uio *, int);
    161 static int	tap_cdev_write(dev_t, struct uio *, int);
    162 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    163 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    164 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    165 
    166 const struct cdevsw tap_cdevsw = {
    167 	tap_cdev_open, tap_cdev_close,
    168 	tap_cdev_read, tap_cdev_write,
    169 	tap_cdev_ioctl, nostop, notty,
    170 	tap_cdev_poll, nommap,
    171 	tap_cdev_kqfilter,
    172 	D_OTHER,
    173 };
    174 
    175 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    176 
    177 /* kqueue-related routines */
    178 static void	tap_kqdetach(struct knote *);
    179 static int	tap_kqread(struct knote *, long);
    180 
    181 /*
    182  * Those are needed by the if_media interface.
    183  */
    184 
    185 static int	tap_mediachange(struct ifnet *);
    186 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    187 
    188 /*
    189  * Those are needed by the ifnet interface, and would typically be
    190  * there for any network interface driver.
    191  * Some other routines are optional: watchdog and drain.
    192  */
    193 
    194 static void	tap_start(struct ifnet *);
    195 static void	tap_stop(struct ifnet *, int);
    196 static int	tap_init(struct ifnet *);
    197 static int	tap_ioctl(struct ifnet *, u_long, void *);
    198 
    199 /* Internal functions */
    200 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    201 static void	tap_softintr(void *);
    202 
    203 /*
    204  * tap is a clonable interface, although it is highly unrealistic for
    205  * an Ethernet device.
    206  *
    207  * Here are the bits needed for a clonable interface.
    208  */
    209 static int	tap_clone_create(struct if_clone *, int);
    210 static int	tap_clone_destroy(struct ifnet *);
    211 
    212 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    213 					tap_clone_create,
    214 					tap_clone_destroy);
    215 
    216 /* Helper functionis shared by the two cloning code paths */
    217 static struct tap_softc *	tap_clone_creator(int);
    218 int	tap_clone_destroyer(device_t);
    219 
    220 void
    221 tapattach(int n)
    222 {
    223 	int error;
    224 
    225 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    226 	if (error) {
    227 		aprint_error("%s: unable to register cfattach\n",
    228 		    tap_cd.cd_name);
    229 		(void)config_cfdriver_detach(&tap_cd);
    230 		return;
    231 	}
    232 
    233 	if_clone_attach(&tap_cloners);
    234 }
    235 
    236 /* Pretty much useless for a pseudo-device */
    237 static int
    238 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    239 {
    240 
    241 	return (1);
    242 }
    243 
    244 void
    245 tap_attach(device_t parent, device_t self, void *aux)
    246 {
    247 	struct tap_softc *sc = device_private(self);
    248 	struct ifnet *ifp;
    249 	const struct sysctlnode *node;
    250 	uint8_t enaddr[ETHER_ADDR_LEN] =
    251 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    252 	char enaddrstr[3 * ETHER_ADDR_LEN];
    253 	struct timeval tv;
    254 	uint32_t ui;
    255 	int error;
    256 
    257 	sc->sc_dev = self;
    258 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
    259 
    260 	if (!pmf_device_register(self, NULL, NULL))
    261 		aprint_error_dev(self, "couldn't establish power handler\n");
    262 
    263 	/*
    264 	 * In order to obtain unique initial Ethernet address on a host,
    265 	 * do some randomisation using the current uptime.  It's not meant
    266 	 * for anything but avoiding hard-coding an address.
    267 	 */
    268 	getmicrouptime(&tv);
    269 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    270 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
    271 
    272 	aprint_verbose_dev(self, "Ethernet address %s\n",
    273 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    274 
    275 	/*
    276 	 * Why 1000baseT? Why not? You can add more.
    277 	 *
    278 	 * Note that there are 3 steps: init, one or several additions to
    279 	 * list of supported media, and in the end, the selection of one
    280 	 * of them.
    281 	 */
    282 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    283 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    284 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    288 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    290 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    291 
    292 	/*
    293 	 * One should note that an interface must do multicast in order
    294 	 * to support IPv6.
    295 	 */
    296 	ifp = &sc->sc_ec.ec_if;
    297 	strcpy(ifp->if_xname, device_xname(self));
    298 	ifp->if_softc	= sc;
    299 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    300 	ifp->if_ioctl	= tap_ioctl;
    301 	ifp->if_start	= tap_start;
    302 	ifp->if_stop	= tap_stop;
    303 	ifp->if_init	= tap_init;
    304 	IFQ_SET_READY(&ifp->if_snd);
    305 
    306 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    307 
    308 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    309 	 * being common to all network interface drivers. */
    310 	if_attach(ifp);
    311 	ether_ifattach(ifp, enaddr);
    312 
    313 	sc->sc_flags = 0;
    314 
    315 	/*
    316 	 * Add a sysctl node for that interface.
    317 	 *
    318 	 * The pointer transmitted is not a string, but instead a pointer to
    319 	 * the softc structure, which we can use to build the string value on
    320 	 * the fly in the helper function of the node.  See the comments for
    321 	 * tap_sysctl_handler for details.
    322 	 *
    323 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    324 	 * component.  However, we can allocate a number ourselves, as we are
    325 	 * the only consumer of the net.link.<iface> node.  In this case, the
    326 	 * unit number is conveniently used to number the node.  CTL_CREATE
    327 	 * would just work, too.
    328 	 */
    329 	if ((error = sysctl_createv(NULL, 0, NULL,
    330 	    &node, CTLFLAG_READWRITE,
    331 	    CTLTYPE_STRING, device_xname(self), NULL,
    332 	    tap_sysctl_handler, 0, sc, 18,
    333 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    334 	    CTL_EOL)) != 0)
    335 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    336 		    error);
    337 
    338 	/*
    339 	 * Initialize the two locks for the device.
    340 	 *
    341 	 * We need a lock here because even though the tap device can be
    342 	 * opened only once, the file descriptor might be passed to another
    343 	 * process, say a fork(2)ed child.
    344 	 *
    345 	 * The Giant saves us from most of the hassle, but since the read
    346 	 * operation can sleep, we don't want two processes to wake up at
    347 	 * the same moment and both try and dequeue a single packet.
    348 	 *
    349 	 * The queue for event listeners (used by kqueue(9), see below) has
    350 	 * to be protected, too, but we don't need the same level of
    351 	 * complexity for that lock, so a simple spinning lock is fine.
    352 	 */
    353 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    354 	simple_lock_init(&sc->sc_kqlock);
    355 
    356 	selinit(&sc->sc_rsel);
    357 }
    358 
    359 /*
    360  * When detaching, we do the inverse of what is done in the attach
    361  * routine, in reversed order.
    362  */
    363 static int
    364 tap_detach(device_t self, int flags)
    365 {
    366 	struct tap_softc *sc = device_private(self);
    367 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    368 	int error, s;
    369 
    370 	sc->sc_flags |= TAP_GOING;
    371 	s = splnet();
    372 	tap_stop(ifp, 1);
    373 	if_down(ifp);
    374 	splx(s);
    375 
    376 	softint_disestablish(sc->sc_sih);
    377 
    378 	/*
    379 	 * Destroying a single leaf is a very straightforward operation using
    380 	 * sysctl_destroyv.  One should be sure to always end the path with
    381 	 * CTL_EOL.
    382 	 */
    383 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    384 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    385 		aprint_error_dev(self,
    386 		    "sysctl_destroyv returned %d, ignoring\n", error);
    387 	ether_ifdetach(ifp);
    388 	if_detach(ifp);
    389 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    390 	seldestroy(&sc->sc_rsel);
    391 	mutex_destroy(&sc->sc_rdlock);
    392 
    393 	pmf_device_deregister(self);
    394 
    395 	return (0);
    396 }
    397 
    398 /*
    399  * This function is called by the ifmedia layer to notify the driver
    400  * that the user requested a media change.  A real driver would
    401  * reconfigure the hardware.
    402  */
    403 static int
    404 tap_mediachange(struct ifnet *ifp)
    405 {
    406 	return (0);
    407 }
    408 
    409 /*
    410  * Here the user asks for the currently used media.
    411  */
    412 static void
    413 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    414 {
    415 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    416 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    417 }
    418 
    419 /*
    420  * This is the function where we SEND packets.
    421  *
    422  * There is no 'receive' equivalent.  A typical driver will get
    423  * interrupts from the hardware, and from there will inject new packets
    424  * into the network stack.
    425  *
    426  * Once handled, a packet must be freed.  A real driver might not be able
    427  * to fit all the pending packets into the hardware, and is allowed to
    428  * return before having sent all the packets.  It should then use the
    429  * if_flags flag IFF_OACTIVE to notify the upper layer.
    430  *
    431  * There are also other flags one should check, such as IFF_PAUSE.
    432  *
    433  * It is our duty to make packets available to BPF listeners.
    434  *
    435  * You should be aware that this function is called by the Ethernet layer
    436  * at splnet().
    437  *
    438  * When the device is opened, we have to pass the packet(s) to the
    439  * userland.  For that we stay in OACTIVE mode while the userland gets
    440  * the packets, and we send a signal to the processes waiting to read.
    441  *
    442  * wakeup(sc) is the counterpart to the tsleep call in
    443  * tap_dev_read, while selnotify() is used for kevent(2) and
    444  * poll(2) (which includes select(2)) listeners.
    445  */
    446 static void
    447 tap_start(struct ifnet *ifp)
    448 {
    449 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    450 	struct mbuf *m0;
    451 
    452 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    453 		/* Simply drop packets */
    454 		for(;;) {
    455 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    456 			if (m0 == NULL)
    457 				return;
    458 
    459 			ifp->if_opackets++;
    460 #if NBPFILTER > 0
    461 			if (ifp->if_bpf)
    462 				bpf_mtap(ifp->if_bpf, m0);
    463 #endif
    464 
    465 			m_freem(m0);
    466 		}
    467 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    468 		ifp->if_flags |= IFF_OACTIVE;
    469 		wakeup(sc);
    470 		selnotify(&sc->sc_rsel, 0, 1);
    471 		if (sc->sc_flags & TAP_ASYNCIO)
    472 			softint_schedule(sc->sc_sih);
    473 	}
    474 }
    475 
    476 static void
    477 tap_softintr(void *cookie)
    478 {
    479 	struct tap_softc *sc;
    480 	struct ifnet *ifp;
    481 	int a, b;
    482 
    483 	sc = cookie;
    484 
    485 	if (sc->sc_flags & TAP_ASYNCIO) {
    486 		ifp = &sc->sc_ec.ec_if;
    487 		if (ifp->if_flags & IFF_RUNNING) {
    488 			a = POLL_IN;
    489 			b = POLLIN|POLLRDNORM;
    490 		} else {
    491 			a = POLL_HUP;
    492 			b = 0;
    493 		}
    494 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    495 	}
    496 }
    497 
    498 /*
    499  * A typical driver will only contain the following handlers for
    500  * ioctl calls, except SIOCSIFPHYADDR.
    501  * The latter is a hack I used to set the Ethernet address of the
    502  * faked device.
    503  *
    504  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    505  * called under splnet().
    506  */
    507 static int
    508 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    509 {
    510 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    511 	struct ifreq *ifr = (struct ifreq *)data;
    512 	int s, error;
    513 
    514 	s = splnet();
    515 
    516 	switch (cmd) {
    517 #ifdef OSIOCSIFMEDIA
    518 	case OSIOCSIFMEDIA:
    519 #endif
    520 	case SIOCSIFMEDIA:
    521 	case SIOCGIFMEDIA:
    522 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    523 		break;
    524 	case SIOCSIFPHYADDR:
    525 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    526 		break;
    527 	default:
    528 		error = ether_ioctl(ifp, cmd, data);
    529 		if (error == ENETRESET)
    530 			error = 0;
    531 		break;
    532 	}
    533 
    534 	splx(s);
    535 
    536 	return (error);
    537 }
    538 
    539 /*
    540  * Helper function to set Ethernet address.  This shouldn't be done there,
    541  * and should actually be available to all Ethernet drivers, real or not.
    542  */
    543 static int
    544 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    545 {
    546 	const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr);
    547 
    548 	if (sdl->sdl_family != AF_LINK)
    549 		return (EINVAL);
    550 
    551 	if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN, false);
    552 
    553 	return (0);
    554 }
    555 
    556 /*
    557  * _init() would typically be called when an interface goes up,
    558  * meaning it should configure itself into the state in which it
    559  * can send packets.
    560  */
    561 static int
    562 tap_init(struct ifnet *ifp)
    563 {
    564 	ifp->if_flags |= IFF_RUNNING;
    565 
    566 	tap_start(ifp);
    567 
    568 	return (0);
    569 }
    570 
    571 /*
    572  * _stop() is called when an interface goes down.  It is our
    573  * responsability to validate that state by clearing the
    574  * IFF_RUNNING flag.
    575  *
    576  * We have to wake up all the sleeping processes to have the pending
    577  * read requests cancelled.
    578  */
    579 static void
    580 tap_stop(struct ifnet *ifp, int disable)
    581 {
    582 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    583 
    584 	ifp->if_flags &= ~IFF_RUNNING;
    585 	wakeup(sc);
    586 	selnotify(&sc->sc_rsel, 0, 1);
    587 	if (sc->sc_flags & TAP_ASYNCIO)
    588 		softint_schedule(sc->sc_sih);
    589 }
    590 
    591 /*
    592  * The 'create' command of ifconfig can be used to create
    593  * any numbered instance of a given device.  Thus we have to
    594  * make sure we have enough room in cd_devs to create the
    595  * user-specified instance.  config_attach_pseudo will do this
    596  * for us.
    597  */
    598 static int
    599 tap_clone_create(struct if_clone *ifc, int unit)
    600 {
    601 	if (tap_clone_creator(unit) == NULL) {
    602 		aprint_error("%s%d: unable to attach an instance\n",
    603                     tap_cd.cd_name, unit);
    604 		return (ENXIO);
    605 	}
    606 
    607 	return (0);
    608 }
    609 
    610 /*
    611  * tap(4) can be cloned by two ways:
    612  *   using 'ifconfig tap0 create', which will use the network
    613  *     interface cloning API, and call tap_clone_create above.
    614  *   opening the cloning device node, whose minor number is TAP_CLONER.
    615  *     See below for an explanation on how this part work.
    616  */
    617 static struct tap_softc *
    618 tap_clone_creator(int unit)
    619 {
    620 	struct cfdata *cf;
    621 
    622 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    623 	cf->cf_name = tap_cd.cd_name;
    624 	cf->cf_atname = tap_ca.ca_name;
    625 	if (unit == -1) {
    626 		/* let autoconf find the first free one */
    627 		cf->cf_unit = 0;
    628 		cf->cf_fstate = FSTATE_STAR;
    629 	} else {
    630 		cf->cf_unit = unit;
    631 		cf->cf_fstate = FSTATE_FOUND;
    632 	}
    633 
    634 	return device_private(config_attach_pseudo(cf));
    635 }
    636 
    637 /*
    638  * The clean design of if_clone and autoconf(9) makes that part
    639  * really straightforward.  The second argument of config_detach
    640  * means neither QUIET nor FORCED.
    641  */
    642 static int
    643 tap_clone_destroy(struct ifnet *ifp)
    644 {
    645 	struct tap_softc *sc = ifp->if_softc;
    646 
    647 	return tap_clone_destroyer(sc->sc_dev);
    648 }
    649 
    650 int
    651 tap_clone_destroyer(device_t dev)
    652 {
    653 	cfdata_t cf = device_cfdata(dev);
    654 	int error;
    655 
    656 	if ((error = config_detach(dev, 0)) != 0)
    657 		aprint_error_dev(dev, "unable to detach instance\n");
    658 	free(cf, M_DEVBUF);
    659 
    660 	return (error);
    661 }
    662 
    663 /*
    664  * tap(4) is a bit of an hybrid device.  It can be used in two different
    665  * ways:
    666  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    667  *  2. open /dev/tap, get a new interface created and read/write off it.
    668  *     That interface is destroyed when the process that had it created exits.
    669  *
    670  * The first way is managed by the cdevsw structure, and you access interfaces
    671  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    672  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    673  *
    674  * The second way is the so-called "cloning" device.  It's a special minor
    675  * number (chosen as the maximal number, to allow as much tap devices as
    676  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    677  * call ends in tap_cdev_open.  The actual place where it is handled is
    678  * tap_dev_cloner.
    679  *
    680  * An tap device cannot be opened more than once at a time, so the cdevsw
    681  * part of open() does nothing but noting that the interface is being used and
    682  * hence ready to actually handle packets.
    683  */
    684 
    685 static int
    686 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    687 {
    688 	struct tap_softc *sc;
    689 
    690 	if (minor(dev) == TAP_CLONER)
    691 		return tap_dev_cloner(l);
    692 
    693 	sc = device_lookup_private(&tap_cd, minor(dev));
    694 	if (sc == NULL)
    695 		return (ENXIO);
    696 
    697 	/* The device can only be opened once */
    698 	if (sc->sc_flags & TAP_INUSE)
    699 		return (EBUSY);
    700 	sc->sc_flags |= TAP_INUSE;
    701 	return (0);
    702 }
    703 
    704 /*
    705  * There are several kinds of cloning devices, and the most simple is the one
    706  * tap(4) uses.  What it does is change the file descriptor with a new one,
    707  * with its own fileops structure (which maps to the various read, write,
    708  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    709  * then actually creates the new tap devices.
    710  *
    711  * Once those two steps are successful, we can re-wire the existing file
    712  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    713  * structure as needed (notably f_data gets filled with the fifth parameter
    714  * passed, the unit of the tap device which will allows us identifying the
    715  * device later), and returns EMOVEFD.
    716  *
    717  * That magic value is interpreted by sys_open() which then replaces the
    718  * current file descriptor by the new one (through a magic member of struct
    719  * lwp, l_dupfd).
    720  *
    721  * The tap device is flagged as being busy since it otherwise could be
    722  * externally accessed through the corresponding device node with the cdevsw
    723  * interface.
    724  */
    725 
    726 static int
    727 tap_dev_cloner(struct lwp *l)
    728 {
    729 	struct tap_softc *sc;
    730 	file_t *fp;
    731 	int error, fd;
    732 
    733 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    734 		return (error);
    735 
    736 	if ((sc = tap_clone_creator(-1)) == NULL) {
    737 		fd_abort(curproc, fp, fd);
    738 		return (ENXIO);
    739 	}
    740 
    741 	sc->sc_flags |= TAP_INUSE;
    742 
    743 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    744 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    745 }
    746 
    747 /*
    748  * While all other operations (read, write, ioctl, poll and kqfilter) are
    749  * really the same whether we are in cdevsw or fileops mode, the close()
    750  * function is slightly different in the two cases.
    751  *
    752  * As for the other, the core of it is shared in tap_dev_close.  What
    753  * it does is sufficient for the cdevsw interface, but the cloning interface
    754  * needs another thing:  the interface is destroyed when the processes that
    755  * created it closes it.
    756  */
    757 static int
    758 tap_cdev_close(dev_t dev, int flags, int fmt,
    759     struct lwp *l)
    760 {
    761 	struct tap_softc *sc =
    762 	    device_lookup_private(&tap_cd, minor(dev));
    763 
    764 	if (sc == NULL)
    765 		return (ENXIO);
    766 
    767 	return tap_dev_close(sc);
    768 }
    769 
    770 /*
    771  * It might happen that the administrator used ifconfig to externally destroy
    772  * the interface.  In that case, tap_fops_close will be called while
    773  * tap_detach is already happening.  If we called it again from here, we
    774  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    775  */
    776 static int
    777 tap_fops_close(file_t *fp)
    778 {
    779 	int unit = (intptr_t)fp->f_data;
    780 	struct tap_softc *sc;
    781 	int error;
    782 
    783 	sc = device_lookup_private(&tap_cd, unit);
    784 	if (sc == NULL)
    785 		return (ENXIO);
    786 
    787 	/* tap_dev_close currently always succeeds, but it might not
    788 	 * always be the case. */
    789 	KERNEL_LOCK(1, NULL);
    790 	if ((error = tap_dev_close(sc)) != 0) {
    791 		KERNEL_UNLOCK_ONE(NULL);
    792 		return (error);
    793 	}
    794 
    795 	/* Destroy the device now that it is no longer useful,
    796 	 * unless it's already being destroyed. */
    797 	if ((sc->sc_flags & TAP_GOING) != 0) {
    798 		KERNEL_UNLOCK_ONE(NULL);
    799 		return (0);
    800 	}
    801 
    802 	error = tap_clone_destroyer(sc->sc_dev);
    803 	KERNEL_UNLOCK_ONE(NULL);
    804 	return error;
    805 }
    806 
    807 static int
    808 tap_dev_close(struct tap_softc *sc)
    809 {
    810 	struct ifnet *ifp;
    811 	int s;
    812 
    813 	s = splnet();
    814 	/* Let tap_start handle packets again */
    815 	ifp = &sc->sc_ec.ec_if;
    816 	ifp->if_flags &= ~IFF_OACTIVE;
    817 
    818 	/* Purge output queue */
    819 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    820 		struct mbuf *m;
    821 
    822 		for (;;) {
    823 			IFQ_DEQUEUE(&ifp->if_snd, m);
    824 			if (m == NULL)
    825 				break;
    826 
    827 			ifp->if_opackets++;
    828 #if NBPFILTER > 0
    829 			if (ifp->if_bpf)
    830 				bpf_mtap(ifp->if_bpf, m);
    831 #endif
    832 		}
    833 	}
    834 	splx(s);
    835 
    836 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    837 
    838 	return (0);
    839 }
    840 
    841 static int
    842 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    843 {
    844 	return tap_dev_read(minor(dev), uio, flags);
    845 }
    846 
    847 static int
    848 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    849     kauth_cred_t cred, int flags)
    850 {
    851 	int error;
    852 
    853 	KERNEL_LOCK(1, NULL);
    854 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
    855 	KERNEL_UNLOCK_ONE(NULL);
    856 	return error;
    857 }
    858 
    859 static int
    860 tap_dev_read(int unit, struct uio *uio, int flags)
    861 {
    862 	struct tap_softc *sc =
    863 	    device_lookup_private(&tap_cd, unit);
    864 	struct ifnet *ifp;
    865 	struct mbuf *m, *n;
    866 	int error = 0, s;
    867 
    868 	if (sc == NULL)
    869 		return (ENXIO);
    870 
    871 	ifp = &sc->sc_ec.ec_if;
    872 	if ((ifp->if_flags & IFF_UP) == 0)
    873 		return (EHOSTDOWN);
    874 
    875 	/*
    876 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    877 	 */
    878 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    879 		if (!mutex_tryenter(&sc->sc_rdlock))
    880 			return (EWOULDBLOCK);
    881 	} else {
    882 		mutex_enter(&sc->sc_rdlock);
    883 	}
    884 
    885 	s = splnet();
    886 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    887 		ifp->if_flags &= ~IFF_OACTIVE;
    888 		splx(s);
    889 		/*
    890 		 * We must release the lock before sleeping, and re-acquire it
    891 		 * after.
    892 		 */
    893 		mutex_exit(&sc->sc_rdlock);
    894 		if (sc->sc_flags & TAP_NBIO)
    895 			error = EWOULDBLOCK;
    896 		else
    897 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    898 		if (error != 0)
    899 			return (error);
    900 		/* The device might have been downed */
    901 		if ((ifp->if_flags & IFF_UP) == 0)
    902 			return (EHOSTDOWN);
    903 		if ((sc->sc_flags & TAP_NBIO)) {
    904 			if (!mutex_tryenter(&sc->sc_rdlock))
    905 				return (EWOULDBLOCK);
    906 		} else {
    907 			mutex_enter(&sc->sc_rdlock);
    908 		}
    909 		s = splnet();
    910 	}
    911 
    912 	IFQ_DEQUEUE(&ifp->if_snd, m);
    913 	ifp->if_flags &= ~IFF_OACTIVE;
    914 	splx(s);
    915 	if (m == NULL) {
    916 		error = 0;
    917 		goto out;
    918 	}
    919 
    920 	ifp->if_opackets++;
    921 #if NBPFILTER > 0
    922 	if (ifp->if_bpf)
    923 		bpf_mtap(ifp->if_bpf, m);
    924 #endif
    925 
    926 	/*
    927 	 * One read is one packet.
    928 	 */
    929 	do {
    930 		error = uiomove(mtod(m, void *),
    931 		    min(m->m_len, uio->uio_resid), uio);
    932 		MFREE(m, n);
    933 		m = n;
    934 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    935 
    936 	if (m != NULL)
    937 		m_freem(m);
    938 
    939 out:
    940 	mutex_exit(&sc->sc_rdlock);
    941 	return (error);
    942 }
    943 
    944 static int
    945 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    946 {
    947 	return tap_dev_write(minor(dev), uio, flags);
    948 }
    949 
    950 static int
    951 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
    952     kauth_cred_t cred, int flags)
    953 {
    954 	int error;
    955 
    956 	KERNEL_LOCK(1, NULL);
    957 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
    958 	KERNEL_UNLOCK_ONE(NULL);
    959 	return error;
    960 }
    961 
    962 static int
    963 tap_dev_write(int unit, struct uio *uio, int flags)
    964 {
    965 	struct tap_softc *sc =
    966 	    device_lookup_private(&tap_cd, unit);
    967 	struct ifnet *ifp;
    968 	struct mbuf *m, **mp;
    969 	int error = 0;
    970 	int s;
    971 
    972 	if (sc == NULL)
    973 		return (ENXIO);
    974 
    975 	ifp = &sc->sc_ec.ec_if;
    976 
    977 	/* One write, one packet, that's the rule */
    978 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    979 	if (m == NULL) {
    980 		ifp->if_ierrors++;
    981 		return (ENOBUFS);
    982 	}
    983 	m->m_pkthdr.len = uio->uio_resid;
    984 
    985 	mp = &m;
    986 	while (error == 0 && uio->uio_resid > 0) {
    987 		if (*mp != m) {
    988 			MGET(*mp, M_DONTWAIT, MT_DATA);
    989 			if (*mp == NULL) {
    990 				error = ENOBUFS;
    991 				break;
    992 			}
    993 		}
    994 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    995 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
    996 		mp = &(*mp)->m_next;
    997 	}
    998 	if (error) {
    999 		ifp->if_ierrors++;
   1000 		m_freem(m);
   1001 		return (error);
   1002 	}
   1003 
   1004 	ifp->if_ipackets++;
   1005 	m->m_pkthdr.rcvif = ifp;
   1006 
   1007 #if NBPFILTER > 0
   1008 	if (ifp->if_bpf)
   1009 		bpf_mtap(ifp->if_bpf, m);
   1010 #endif
   1011 	s =splnet();
   1012 	(*ifp->if_input)(ifp, m);
   1013 	splx(s);
   1014 
   1015 	return (0);
   1016 }
   1017 
   1018 static int
   1019 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1020     struct lwp *l)
   1021 {
   1022 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1023 }
   1024 
   1025 static int
   1026 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1027 {
   1028 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
   1029 }
   1030 
   1031 static int
   1032 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1033 {
   1034 	struct tap_softc *sc =
   1035 	    device_lookup_private(&tap_cd, unit);
   1036 	int error = 0;
   1037 
   1038 	if (sc == NULL)
   1039 		return (ENXIO);
   1040 
   1041 	switch (cmd) {
   1042 	case FIONREAD:
   1043 		{
   1044 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1045 			struct mbuf *m;
   1046 			int s;
   1047 
   1048 			s = splnet();
   1049 			IFQ_POLL(&ifp->if_snd, m);
   1050 
   1051 			if (m == NULL)
   1052 				*(int *)data = 0;
   1053 			else
   1054 				*(int *)data = m->m_pkthdr.len;
   1055 			splx(s);
   1056 		} break;
   1057 	case TIOCSPGRP:
   1058 	case FIOSETOWN:
   1059 		error = fsetown(&sc->sc_pgid, cmd, data);
   1060 		break;
   1061 	case TIOCGPGRP:
   1062 	case FIOGETOWN:
   1063 		error = fgetown(sc->sc_pgid, cmd, data);
   1064 		break;
   1065 	case FIOASYNC:
   1066 		if (*(int *)data)
   1067 			sc->sc_flags |= TAP_ASYNCIO;
   1068 		else
   1069 			sc->sc_flags &= ~TAP_ASYNCIO;
   1070 		break;
   1071 	case FIONBIO:
   1072 		if (*(int *)data)
   1073 			sc->sc_flags |= TAP_NBIO;
   1074 		else
   1075 			sc->sc_flags &= ~TAP_NBIO;
   1076 		break;
   1077 #ifdef OTAPGIFNAME
   1078 	case OTAPGIFNAME:
   1079 #endif
   1080 	case TAPGIFNAME:
   1081 		{
   1082 			struct ifreq *ifr = (struct ifreq *)data;
   1083 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1084 
   1085 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1086 		} break;
   1087 	default:
   1088 		error = ENOTTY;
   1089 		break;
   1090 	}
   1091 
   1092 	return (0);
   1093 }
   1094 
   1095 static int
   1096 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1097 {
   1098 	return tap_dev_poll(minor(dev), events, l);
   1099 }
   1100 
   1101 static int
   1102 tap_fops_poll(file_t *fp, int events)
   1103 {
   1104 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1105 }
   1106 
   1107 static int
   1108 tap_dev_poll(int unit, int events, struct lwp *l)
   1109 {
   1110 	struct tap_softc *sc =
   1111 	    device_lookup_private(&tap_cd, unit);
   1112 	int revents = 0;
   1113 
   1114 	if (sc == NULL)
   1115 		return POLLERR;
   1116 
   1117 	if (events & (POLLIN|POLLRDNORM)) {
   1118 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1119 		struct mbuf *m;
   1120 		int s;
   1121 
   1122 		s = splnet();
   1123 		IFQ_POLL(&ifp->if_snd, m);
   1124 		splx(s);
   1125 
   1126 		if (m != NULL)
   1127 			revents |= events & (POLLIN|POLLRDNORM);
   1128 		else {
   1129 			simple_lock(&sc->sc_kqlock);
   1130 			selrecord(l, &sc->sc_rsel);
   1131 			simple_unlock(&sc->sc_kqlock);
   1132 		}
   1133 	}
   1134 	revents |= events & (POLLOUT|POLLWRNORM);
   1135 
   1136 	return (revents);
   1137 }
   1138 
   1139 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1140 	tap_kqread };
   1141 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1142 	filt_seltrue };
   1143 
   1144 static int
   1145 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1146 {
   1147 	return tap_dev_kqfilter(minor(dev), kn);
   1148 }
   1149 
   1150 static int
   1151 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1152 {
   1153 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1154 }
   1155 
   1156 static int
   1157 tap_dev_kqfilter(int unit, struct knote *kn)
   1158 {
   1159 	struct tap_softc *sc =
   1160 	    device_lookup_private(&tap_cd, unit);
   1161 
   1162 	if (sc == NULL)
   1163 		return (ENXIO);
   1164 
   1165 	KERNEL_LOCK(1, NULL);
   1166 	switch(kn->kn_filter) {
   1167 	case EVFILT_READ:
   1168 		kn->kn_fop = &tap_read_filterops;
   1169 		break;
   1170 	case EVFILT_WRITE:
   1171 		kn->kn_fop = &tap_seltrue_filterops;
   1172 		break;
   1173 	default:
   1174 		KERNEL_UNLOCK_ONE(NULL);
   1175 		return (EINVAL);
   1176 	}
   1177 
   1178 	kn->kn_hook = sc;
   1179 	simple_lock(&sc->sc_kqlock);
   1180 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1181 	simple_unlock(&sc->sc_kqlock);
   1182 	KERNEL_UNLOCK_ONE(NULL);
   1183 	return (0);
   1184 }
   1185 
   1186 static void
   1187 tap_kqdetach(struct knote *kn)
   1188 {
   1189 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1190 
   1191 	KERNEL_LOCK(1, NULL);
   1192 	simple_lock(&sc->sc_kqlock);
   1193 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1194 	simple_unlock(&sc->sc_kqlock);
   1195 	KERNEL_UNLOCK_ONE(NULL);
   1196 }
   1197 
   1198 static int
   1199 tap_kqread(struct knote *kn, long hint)
   1200 {
   1201 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1202 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1203 	struct mbuf *m;
   1204 	int s, rv;
   1205 
   1206 	KERNEL_LOCK(1, NULL);
   1207 	s = splnet();
   1208 	IFQ_POLL(&ifp->if_snd, m);
   1209 
   1210 	if (m == NULL)
   1211 		kn->kn_data = 0;
   1212 	else
   1213 		kn->kn_data = m->m_pkthdr.len;
   1214 	splx(s);
   1215 	rv = (kn->kn_data != 0 ? 1 : 0);
   1216 	KERNEL_UNLOCK_ONE(NULL);
   1217 	return rv;
   1218 }
   1219 
   1220 /*
   1221  * sysctl management routines
   1222  * You can set the address of an interface through:
   1223  * net.link.tap.tap<number>
   1224  *
   1225  * Note the consistent use of tap_log in order to use
   1226  * sysctl_teardown at unload time.
   1227  *
   1228  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1229  * blocks register a function in a special section of the kernel
   1230  * (called a link set) which is used at init_sysctl() time to cycle
   1231  * through all those functions to create the kernel's sysctl tree.
   1232  *
   1233  * It is not possible to use link sets in a module, so the
   1234  * easiest is to simply call our own setup routine at load time.
   1235  *
   1236  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1237  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1238  * whole kernel sysctl tree is built, it is not possible to add any
   1239  * permanent node.
   1240  *
   1241  * It should be noted that we're not saving the sysctlnode pointer
   1242  * we are returned when creating the "tap" node.  That structure
   1243  * cannot be trusted once out of the calling function, as it might
   1244  * get reused.  So we just save the MIB number, and always give the
   1245  * full path starting from the root for later calls to sysctl_createv
   1246  * and sysctl_destroyv.
   1247  */
   1248 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1249 {
   1250 	const struct sysctlnode *node;
   1251 	int error = 0;
   1252 
   1253 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1254 	    CTLFLAG_PERMANENT,
   1255 	    CTLTYPE_NODE, "net", NULL,
   1256 	    NULL, 0, NULL, 0,
   1257 	    CTL_NET, CTL_EOL)) != 0)
   1258 		return;
   1259 
   1260 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1261 	    CTLFLAG_PERMANENT,
   1262 	    CTLTYPE_NODE, "link", NULL,
   1263 	    NULL, 0, NULL, 0,
   1264 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1265 		return;
   1266 
   1267 	/*
   1268 	 * The first four parameters of sysctl_createv are for management.
   1269 	 *
   1270 	 * The four that follows, here starting with a '0' for the flags,
   1271 	 * describe the node.
   1272 	 *
   1273 	 * The next series of four set its value, through various possible
   1274 	 * means.
   1275 	 *
   1276 	 * Last but not least, the path to the node is described.  That path
   1277 	 * is relative to the given root (third argument).  Here we're
   1278 	 * starting from the root.
   1279 	 */
   1280 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1281 	    CTLFLAG_PERMANENT,
   1282 	    CTLTYPE_NODE, "tap", NULL,
   1283 	    NULL, 0, NULL, 0,
   1284 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1285 		return;
   1286 	tap_node = node->sysctl_num;
   1287 }
   1288 
   1289 /*
   1290  * The helper functions make Andrew Brown's interface really
   1291  * shine.  It makes possible to create value on the fly whether
   1292  * the sysctl value is read or written.
   1293  *
   1294  * As shown as an example in the man page, the first step is to
   1295  * create a copy of the node to have sysctl_lookup work on it.
   1296  *
   1297  * Here, we have more work to do than just a copy, since we have
   1298  * to create the string.  The first step is to collect the actual
   1299  * value of the node, which is a convenient pointer to the softc
   1300  * of the interface.  From there we create the string and use it
   1301  * as the value, but only for the *copy* of the node.
   1302  *
   1303  * Then we let sysctl_lookup do the magic, which consists in
   1304  * setting oldp and newp as required by the operation.  When the
   1305  * value is read, that means that the string will be copied to
   1306  * the user, and when it is written, the new value will be copied
   1307  * over in the addr array.
   1308  *
   1309  * If newp is NULL, the user was reading the value, so we don't
   1310  * have anything else to do.  If a new value was written, we
   1311  * have to check it.
   1312  *
   1313  * If it is incorrect, we can return an error and leave 'node' as
   1314  * it is:  since it is a copy of the actual node, the change will
   1315  * be forgotten.
   1316  *
   1317  * Upon a correct input, we commit the change to the ifnet
   1318  * structure of our interface.
   1319  */
   1320 static int
   1321 tap_sysctl_handler(SYSCTLFN_ARGS)
   1322 {
   1323 	struct sysctlnode node;
   1324 	struct tap_softc *sc;
   1325 	struct ifnet *ifp;
   1326 	int error;
   1327 	size_t len;
   1328 	char addr[3 * ETHER_ADDR_LEN];
   1329 	uint8_t enaddr[ETHER_ADDR_LEN];
   1330 
   1331 	node = *rnode;
   1332 	sc = node.sysctl_data;
   1333 	ifp = &sc->sc_ec.ec_if;
   1334 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1335 	node.sysctl_data = addr;
   1336 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1337 	if (error || newp == NULL)
   1338 		return (error);
   1339 
   1340 	len = strlen(addr);
   1341 	if (len < 11 || len > 17)
   1342 		return (EINVAL);
   1343 
   1344 	/* Commit change */
   1345 	if (ether_nonstatic_aton(enaddr, addr) != 0)
   1346 		return (EINVAL);
   1347 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1348 	return (error);
   1349 }
   1350