Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.55
      1 /*	$NetBSD: if_tap.c,v 1.55 2009/04/04 10:12:51 ad Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.55 2009/04/04 10:12:51 ad Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 #include "bpfilter.h"
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/device.h>
     50 #include <sys/file.h>
     51 #include <sys/filedesc.h>
     52 #include <sys/ksyms.h>
     53 #include <sys/poll.h>
     54 #include <sys/proc.h>
     55 #include <sys/select.h>
     56 #include <sys/sockio.h>
     57 #if defined(COMPAT_40) || defined(MODULAR)
     58 #include <sys/sysctl.h>
     59 #endif
     60 #include <sys/kauth.h>
     61 #include <sys/mutex.h>
     62 #include <sys/simplelock.h>
     63 #include <sys/intr.h>
     64 
     65 #include <net/if.h>
     66 #include <net/if_dl.h>
     67 #include <net/if_ether.h>
     68 #include <net/if_media.h>
     69 #include <net/if_tap.h>
     70 #if NBPFILTER > 0
     71 #include <net/bpf.h>
     72 #endif
     73 
     74 #include <compat/sys/sockio.h>
     75 
     76 #if defined(COMPAT_40) || defined(MODULAR)
     77 /*
     78  * sysctl node management
     79  *
     80  * It's not really possible to use a SYSCTL_SETUP block with
     81  * current module implementation, so it is easier to just define
     82  * our own function.
     83  *
     84  * The handler function is a "helper" in Andrew Brown's sysctl
     85  * framework terminology.  It is used as a gateway for sysctl
     86  * requests over the nodes.
     87  *
     88  * tap_log allows the module to log creations of nodes and
     89  * destroy them all at once using sysctl_teardown.
     90  */
     91 static int tap_node;
     92 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     94 #endif
     95 
     96 /*
     97  * Since we're an Ethernet device, we need the 3 following
     98  * components: a leading struct device, a struct ethercom,
     99  * and also a struct ifmedia since we don't attach a PHY to
    100  * ourselves. We could emulate one, but there's no real
    101  * point.
    102  */
    103 
    104 struct tap_softc {
    105 	device_t	sc_dev;
    106 	struct ifmedia	sc_im;
    107 	struct ethercom	sc_ec;
    108 	int		sc_flags;
    109 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    110 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    111 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    112 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    113 	struct selinfo	sc_rsel;
    114 	pid_t		sc_pgid; /* For async. IO */
    115 	kmutex_t	sc_rdlock;
    116 	struct simplelock	sc_kqlock;
    117 	void		*sc_sih;
    118 };
    119 
    120 /* autoconf(9) glue */
    121 
    122 void	tapattach(int);
    123 
    124 static int	tap_match(device_t, cfdata_t, void *);
    125 static void	tap_attach(device_t, device_t, void *);
    126 static int	tap_detach(device_t, int);
    127 
    128 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    129     tap_match, tap_attach, tap_detach, NULL);
    130 extern struct cfdriver tap_cd;
    131 
    132 /* Real device access routines */
    133 static int	tap_dev_close(struct tap_softc *);
    134 static int	tap_dev_read(int, struct uio *, int);
    135 static int	tap_dev_write(int, struct uio *, int);
    136 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    137 static int	tap_dev_poll(int, int, struct lwp *);
    138 static int	tap_dev_kqfilter(int, struct knote *);
    139 
    140 /* Fileops access routines */
    141 static int	tap_fops_close(file_t *);
    142 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    143     kauth_cred_t, int);
    144 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    145     kauth_cred_t, int);
    146 static int	tap_fops_ioctl(file_t *, u_long, void *);
    147 static int	tap_fops_poll(file_t *, int);
    148 static int	tap_fops_kqfilter(file_t *, struct knote *);
    149 
    150 static const struct fileops tap_fileops = {
    151 	.fo_read = tap_fops_read,
    152 	.fo_write = tap_fops_write,
    153 	.fo_ioctl = tap_fops_ioctl,
    154 	.fo_fcntl = fnullop_fcntl,
    155 	.fo_poll = tap_fops_poll,
    156 	.fo_stat = fbadop_stat,
    157 	.fo_close = tap_fops_close,
    158 	.fo_kqfilter = tap_fops_kqfilter,
    159 	.fo_drain = fnullop_drain,
    160 };
    161 
    162 /* Helper for cloning open() */
    163 static int	tap_dev_cloner(struct lwp *);
    164 
    165 /* Character device routines */
    166 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    167 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    168 static int	tap_cdev_read(dev_t, struct uio *, int);
    169 static int	tap_cdev_write(dev_t, struct uio *, int);
    170 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    171 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    172 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    173 
    174 const struct cdevsw tap_cdevsw = {
    175 	tap_cdev_open, tap_cdev_close,
    176 	tap_cdev_read, tap_cdev_write,
    177 	tap_cdev_ioctl, nostop, notty,
    178 	tap_cdev_poll, nommap,
    179 	tap_cdev_kqfilter,
    180 	D_OTHER,
    181 };
    182 
    183 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    184 
    185 /* kqueue-related routines */
    186 static void	tap_kqdetach(struct knote *);
    187 static int	tap_kqread(struct knote *, long);
    188 
    189 /*
    190  * Those are needed by the if_media interface.
    191  */
    192 
    193 static int	tap_mediachange(struct ifnet *);
    194 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    195 
    196 /*
    197  * Those are needed by the ifnet interface, and would typically be
    198  * there for any network interface driver.
    199  * Some other routines are optional: watchdog and drain.
    200  */
    201 
    202 static void	tap_start(struct ifnet *);
    203 static void	tap_stop(struct ifnet *, int);
    204 static int	tap_init(struct ifnet *);
    205 static int	tap_ioctl(struct ifnet *, u_long, void *);
    206 
    207 /* Internal functions */
    208 #if defined(COMPAT_40) || defined(MODULAR)
    209 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    210 #endif
    211 static void	tap_softintr(void *);
    212 
    213 /*
    214  * tap is a clonable interface, although it is highly unrealistic for
    215  * an Ethernet device.
    216  *
    217  * Here are the bits needed for a clonable interface.
    218  */
    219 static int	tap_clone_create(struct if_clone *, int);
    220 static int	tap_clone_destroy(struct ifnet *);
    221 
    222 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    223 					tap_clone_create,
    224 					tap_clone_destroy);
    225 
    226 /* Helper functionis shared by the two cloning code paths */
    227 static struct tap_softc *	tap_clone_creator(int);
    228 int	tap_clone_destroyer(device_t);
    229 
    230 void
    231 tapattach(int n)
    232 {
    233 	int error;
    234 
    235 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    236 	if (error) {
    237 		aprint_error("%s: unable to register cfattach\n",
    238 		    tap_cd.cd_name);
    239 		(void)config_cfdriver_detach(&tap_cd);
    240 		return;
    241 	}
    242 
    243 	if_clone_attach(&tap_cloners);
    244 }
    245 
    246 /* Pretty much useless for a pseudo-device */
    247 static int
    248 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    249 {
    250 
    251 	return (1);
    252 }
    253 
    254 void
    255 tap_attach(device_t parent, device_t self, void *aux)
    256 {
    257 	struct tap_softc *sc = device_private(self);
    258 	struct ifnet *ifp;
    259 #if defined(COMPAT_40) || defined(MODULAR)
    260 	const struct sysctlnode *node;
    261 	int error;
    262 #endif
    263 	uint8_t enaddr[ETHER_ADDR_LEN] =
    264 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    265 	char enaddrstr[3 * ETHER_ADDR_LEN];
    266 	struct timeval tv;
    267 	uint32_t ui;
    268 
    269 	sc->sc_dev = self;
    270 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
    271 
    272 	if (!pmf_device_register(self, NULL, NULL))
    273 		aprint_error_dev(self, "couldn't establish power handler\n");
    274 
    275 	/*
    276 	 * In order to obtain unique initial Ethernet address on a host,
    277 	 * do some randomisation using the current uptime.  It's not meant
    278 	 * for anything but avoiding hard-coding an address.
    279 	 */
    280 	getmicrouptime(&tv);
    281 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    282 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
    283 
    284 	aprint_verbose_dev(self, "Ethernet address %s\n",
    285 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    286 
    287 	/*
    288 	 * Why 1000baseT? Why not? You can add more.
    289 	 *
    290 	 * Note that there are 3 steps: init, one or several additions to
    291 	 * list of supported media, and in the end, the selection of one
    292 	 * of them.
    293 	 */
    294 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    295 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    296 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    297 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    298 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    299 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    300 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    301 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    302 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    303 
    304 	/*
    305 	 * One should note that an interface must do multicast in order
    306 	 * to support IPv6.
    307 	 */
    308 	ifp = &sc->sc_ec.ec_if;
    309 	strcpy(ifp->if_xname, device_xname(self));
    310 	ifp->if_softc	= sc;
    311 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    312 	ifp->if_ioctl	= tap_ioctl;
    313 	ifp->if_start	= tap_start;
    314 	ifp->if_stop	= tap_stop;
    315 	ifp->if_init	= tap_init;
    316 	IFQ_SET_READY(&ifp->if_snd);
    317 
    318 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    319 
    320 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    321 	 * being common to all network interface drivers. */
    322 	if_attach(ifp);
    323 	ether_ifattach(ifp, enaddr);
    324 
    325 	sc->sc_flags = 0;
    326 
    327 #if defined(COMPAT_40) || defined(MODULAR)
    328 	/*
    329 	 * Add a sysctl node for that interface.
    330 	 *
    331 	 * The pointer transmitted is not a string, but instead a pointer to
    332 	 * the softc structure, which we can use to build the string value on
    333 	 * the fly in the helper function of the node.  See the comments for
    334 	 * tap_sysctl_handler for details.
    335 	 *
    336 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    337 	 * component.  However, we can allocate a number ourselves, as we are
    338 	 * the only consumer of the net.link.<iface> node.  In this case, the
    339 	 * unit number is conveniently used to number the node.  CTL_CREATE
    340 	 * would just work, too.
    341 	 */
    342 	if ((error = sysctl_createv(NULL, 0, NULL,
    343 	    &node, CTLFLAG_READWRITE,
    344 	    CTLTYPE_STRING, device_xname(self), NULL,
    345 	    tap_sysctl_handler, 0, sc, 18,
    346 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    347 	    CTL_EOL)) != 0)
    348 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    349 		    error);
    350 #endif
    351 
    352 	/*
    353 	 * Initialize the two locks for the device.
    354 	 *
    355 	 * We need a lock here because even though the tap device can be
    356 	 * opened only once, the file descriptor might be passed to another
    357 	 * process, say a fork(2)ed child.
    358 	 *
    359 	 * The Giant saves us from most of the hassle, but since the read
    360 	 * operation can sleep, we don't want two processes to wake up at
    361 	 * the same moment and both try and dequeue a single packet.
    362 	 *
    363 	 * The queue for event listeners (used by kqueue(9), see below) has
    364 	 * to be protected, too, but we don't need the same level of
    365 	 * complexity for that lock, so a simple spinning lock is fine.
    366 	 */
    367 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    368 	simple_lock_init(&sc->sc_kqlock);
    369 
    370 	selinit(&sc->sc_rsel);
    371 }
    372 
    373 /*
    374  * When detaching, we do the inverse of what is done in the attach
    375  * routine, in reversed order.
    376  */
    377 static int
    378 tap_detach(device_t self, int flags)
    379 {
    380 	struct tap_softc *sc = device_private(self);
    381 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    382 #if defined(COMPAT_40) || defined(MODULAR)
    383 	int error;
    384 #endif
    385 	int s;
    386 
    387 	sc->sc_flags |= TAP_GOING;
    388 	s = splnet();
    389 	tap_stop(ifp, 1);
    390 	if_down(ifp);
    391 	splx(s);
    392 
    393 	softint_disestablish(sc->sc_sih);
    394 
    395 #if defined(COMPAT_40) || defined(MODULAR)
    396 	/*
    397 	 * Destroying a single leaf is a very straightforward operation using
    398 	 * sysctl_destroyv.  One should be sure to always end the path with
    399 	 * CTL_EOL.
    400 	 */
    401 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    402 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    403 		aprint_error_dev(self,
    404 		    "sysctl_destroyv returned %d, ignoring\n", error);
    405 #endif
    406 	ether_ifdetach(ifp);
    407 	if_detach(ifp);
    408 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    409 	seldestroy(&sc->sc_rsel);
    410 	mutex_destroy(&sc->sc_rdlock);
    411 
    412 	pmf_device_deregister(self);
    413 
    414 	return (0);
    415 }
    416 
    417 /*
    418  * This function is called by the ifmedia layer to notify the driver
    419  * that the user requested a media change.  A real driver would
    420  * reconfigure the hardware.
    421  */
    422 static int
    423 tap_mediachange(struct ifnet *ifp)
    424 {
    425 	return (0);
    426 }
    427 
    428 /*
    429  * Here the user asks for the currently used media.
    430  */
    431 static void
    432 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    433 {
    434 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    435 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    436 }
    437 
    438 /*
    439  * This is the function where we SEND packets.
    440  *
    441  * There is no 'receive' equivalent.  A typical driver will get
    442  * interrupts from the hardware, and from there will inject new packets
    443  * into the network stack.
    444  *
    445  * Once handled, a packet must be freed.  A real driver might not be able
    446  * to fit all the pending packets into the hardware, and is allowed to
    447  * return before having sent all the packets.  It should then use the
    448  * if_flags flag IFF_OACTIVE to notify the upper layer.
    449  *
    450  * There are also other flags one should check, such as IFF_PAUSE.
    451  *
    452  * It is our duty to make packets available to BPF listeners.
    453  *
    454  * You should be aware that this function is called by the Ethernet layer
    455  * at splnet().
    456  *
    457  * When the device is opened, we have to pass the packet(s) to the
    458  * userland.  For that we stay in OACTIVE mode while the userland gets
    459  * the packets, and we send a signal to the processes waiting to read.
    460  *
    461  * wakeup(sc) is the counterpart to the tsleep call in
    462  * tap_dev_read, while selnotify() is used for kevent(2) and
    463  * poll(2) (which includes select(2)) listeners.
    464  */
    465 static void
    466 tap_start(struct ifnet *ifp)
    467 {
    468 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    469 	struct mbuf *m0;
    470 
    471 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    472 		/* Simply drop packets */
    473 		for(;;) {
    474 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    475 			if (m0 == NULL)
    476 				return;
    477 
    478 			ifp->if_opackets++;
    479 #if NBPFILTER > 0
    480 			if (ifp->if_bpf)
    481 				bpf_mtap(ifp->if_bpf, m0);
    482 #endif
    483 
    484 			m_freem(m0);
    485 		}
    486 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    487 		ifp->if_flags |= IFF_OACTIVE;
    488 		wakeup(sc);
    489 		selnotify(&sc->sc_rsel, 0, 1);
    490 		if (sc->sc_flags & TAP_ASYNCIO)
    491 			softint_schedule(sc->sc_sih);
    492 	}
    493 }
    494 
    495 static void
    496 tap_softintr(void *cookie)
    497 {
    498 	struct tap_softc *sc;
    499 	struct ifnet *ifp;
    500 	int a, b;
    501 
    502 	sc = cookie;
    503 
    504 	if (sc->sc_flags & TAP_ASYNCIO) {
    505 		ifp = &sc->sc_ec.ec_if;
    506 		if (ifp->if_flags & IFF_RUNNING) {
    507 			a = POLL_IN;
    508 			b = POLLIN|POLLRDNORM;
    509 		} else {
    510 			a = POLL_HUP;
    511 			b = 0;
    512 		}
    513 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    514 	}
    515 }
    516 
    517 /*
    518  * A typical driver will only contain the following handlers for
    519  * ioctl calls, except SIOCSIFPHYADDR.
    520  * The latter is a hack I used to set the Ethernet address of the
    521  * faked device.
    522  *
    523  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    524  * called under splnet().
    525  */
    526 static int
    527 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    528 {
    529 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    530 	struct ifreq *ifr = (struct ifreq *)data;
    531 	int s, error;
    532 
    533 	s = splnet();
    534 
    535 	switch (cmd) {
    536 #ifdef OSIOCSIFMEDIA
    537 	case OSIOCSIFMEDIA:
    538 #endif
    539 	case SIOCSIFMEDIA:
    540 	case SIOCGIFMEDIA:
    541 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    542 		break;
    543 #if defined(COMPAT_40) || defined(MODULAR)
    544 	case SIOCSIFPHYADDR:
    545 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    546 		break;
    547 #endif
    548 	default:
    549 		error = ether_ioctl(ifp, cmd, data);
    550 		if (error == ENETRESET)
    551 			error = 0;
    552 		break;
    553 	}
    554 
    555 	splx(s);
    556 
    557 	return (error);
    558 }
    559 
    560 #if defined(COMPAT_40) || defined(MODULAR)
    561 /*
    562  * Helper function to set Ethernet address.  This has been replaced by
    563  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    564  */
    565 static int
    566 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    567 {
    568 	const struct sockaddr *sa = &ifra->ifra_addr;
    569 
    570 	if (sa->sa_family != AF_LINK)
    571 		return (EINVAL);
    572 
    573 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    574 
    575 	return (0);
    576 }
    577 #endif
    578 
    579 /*
    580  * _init() would typically be called when an interface goes up,
    581  * meaning it should configure itself into the state in which it
    582  * can send packets.
    583  */
    584 static int
    585 tap_init(struct ifnet *ifp)
    586 {
    587 	ifp->if_flags |= IFF_RUNNING;
    588 
    589 	tap_start(ifp);
    590 
    591 	return (0);
    592 }
    593 
    594 /*
    595  * _stop() is called when an interface goes down.  It is our
    596  * responsability to validate that state by clearing the
    597  * IFF_RUNNING flag.
    598  *
    599  * We have to wake up all the sleeping processes to have the pending
    600  * read requests cancelled.
    601  */
    602 static void
    603 tap_stop(struct ifnet *ifp, int disable)
    604 {
    605 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    606 
    607 	ifp->if_flags &= ~IFF_RUNNING;
    608 	wakeup(sc);
    609 	selnotify(&sc->sc_rsel, 0, 1);
    610 	if (sc->sc_flags & TAP_ASYNCIO)
    611 		softint_schedule(sc->sc_sih);
    612 }
    613 
    614 /*
    615  * The 'create' command of ifconfig can be used to create
    616  * any numbered instance of a given device.  Thus we have to
    617  * make sure we have enough room in cd_devs to create the
    618  * user-specified instance.  config_attach_pseudo will do this
    619  * for us.
    620  */
    621 static int
    622 tap_clone_create(struct if_clone *ifc, int unit)
    623 {
    624 	if (tap_clone_creator(unit) == NULL) {
    625 		aprint_error("%s%d: unable to attach an instance\n",
    626                     tap_cd.cd_name, unit);
    627 		return (ENXIO);
    628 	}
    629 
    630 	return (0);
    631 }
    632 
    633 /*
    634  * tap(4) can be cloned by two ways:
    635  *   using 'ifconfig tap0 create', which will use the network
    636  *     interface cloning API, and call tap_clone_create above.
    637  *   opening the cloning device node, whose minor number is TAP_CLONER.
    638  *     See below for an explanation on how this part work.
    639  */
    640 static struct tap_softc *
    641 tap_clone_creator(int unit)
    642 {
    643 	struct cfdata *cf;
    644 
    645 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    646 	cf->cf_name = tap_cd.cd_name;
    647 	cf->cf_atname = tap_ca.ca_name;
    648 	if (unit == -1) {
    649 		/* let autoconf find the first free one */
    650 		cf->cf_unit = 0;
    651 		cf->cf_fstate = FSTATE_STAR;
    652 	} else {
    653 		cf->cf_unit = unit;
    654 		cf->cf_fstate = FSTATE_FOUND;
    655 	}
    656 
    657 	return device_private(config_attach_pseudo(cf));
    658 }
    659 
    660 /*
    661  * The clean design of if_clone and autoconf(9) makes that part
    662  * really straightforward.  The second argument of config_detach
    663  * means neither QUIET nor FORCED.
    664  */
    665 static int
    666 tap_clone_destroy(struct ifnet *ifp)
    667 {
    668 	struct tap_softc *sc = ifp->if_softc;
    669 
    670 	return tap_clone_destroyer(sc->sc_dev);
    671 }
    672 
    673 int
    674 tap_clone_destroyer(device_t dev)
    675 {
    676 	cfdata_t cf = device_cfdata(dev);
    677 	int error;
    678 
    679 	if ((error = config_detach(dev, 0)) != 0)
    680 		aprint_error_dev(dev, "unable to detach instance\n");
    681 	free(cf, M_DEVBUF);
    682 
    683 	return (error);
    684 }
    685 
    686 /*
    687  * tap(4) is a bit of an hybrid device.  It can be used in two different
    688  * ways:
    689  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    690  *  2. open /dev/tap, get a new interface created and read/write off it.
    691  *     That interface is destroyed when the process that had it created exits.
    692  *
    693  * The first way is managed by the cdevsw structure, and you access interfaces
    694  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    695  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    696  *
    697  * The second way is the so-called "cloning" device.  It's a special minor
    698  * number (chosen as the maximal number, to allow as much tap devices as
    699  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    700  * call ends in tap_cdev_open.  The actual place where it is handled is
    701  * tap_dev_cloner.
    702  *
    703  * An tap device cannot be opened more than once at a time, so the cdevsw
    704  * part of open() does nothing but noting that the interface is being used and
    705  * hence ready to actually handle packets.
    706  */
    707 
    708 static int
    709 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    710 {
    711 	struct tap_softc *sc;
    712 
    713 	if (minor(dev) == TAP_CLONER)
    714 		return tap_dev_cloner(l);
    715 
    716 	sc = device_lookup_private(&tap_cd, minor(dev));
    717 	if (sc == NULL)
    718 		return (ENXIO);
    719 
    720 	/* The device can only be opened once */
    721 	if (sc->sc_flags & TAP_INUSE)
    722 		return (EBUSY);
    723 	sc->sc_flags |= TAP_INUSE;
    724 	return (0);
    725 }
    726 
    727 /*
    728  * There are several kinds of cloning devices, and the most simple is the one
    729  * tap(4) uses.  What it does is change the file descriptor with a new one,
    730  * with its own fileops structure (which maps to the various read, write,
    731  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    732  * then actually creates the new tap devices.
    733  *
    734  * Once those two steps are successful, we can re-wire the existing file
    735  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    736  * structure as needed (notably f_data gets filled with the fifth parameter
    737  * passed, the unit of the tap device which will allows us identifying the
    738  * device later), and returns EMOVEFD.
    739  *
    740  * That magic value is interpreted by sys_open() which then replaces the
    741  * current file descriptor by the new one (through a magic member of struct
    742  * lwp, l_dupfd).
    743  *
    744  * The tap device is flagged as being busy since it otherwise could be
    745  * externally accessed through the corresponding device node with the cdevsw
    746  * interface.
    747  */
    748 
    749 static int
    750 tap_dev_cloner(struct lwp *l)
    751 {
    752 	struct tap_softc *sc;
    753 	file_t *fp;
    754 	int error, fd;
    755 
    756 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    757 		return (error);
    758 
    759 	if ((sc = tap_clone_creator(-1)) == NULL) {
    760 		fd_abort(curproc, fp, fd);
    761 		return (ENXIO);
    762 	}
    763 
    764 	sc->sc_flags |= TAP_INUSE;
    765 
    766 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    767 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    768 }
    769 
    770 /*
    771  * While all other operations (read, write, ioctl, poll and kqfilter) are
    772  * really the same whether we are in cdevsw or fileops mode, the close()
    773  * function is slightly different in the two cases.
    774  *
    775  * As for the other, the core of it is shared in tap_dev_close.  What
    776  * it does is sufficient for the cdevsw interface, but the cloning interface
    777  * needs another thing:  the interface is destroyed when the processes that
    778  * created it closes it.
    779  */
    780 static int
    781 tap_cdev_close(dev_t dev, int flags, int fmt,
    782     struct lwp *l)
    783 {
    784 	struct tap_softc *sc =
    785 	    device_lookup_private(&tap_cd, minor(dev));
    786 
    787 	if (sc == NULL)
    788 		return (ENXIO);
    789 
    790 	return tap_dev_close(sc);
    791 }
    792 
    793 /*
    794  * It might happen that the administrator used ifconfig to externally destroy
    795  * the interface.  In that case, tap_fops_close will be called while
    796  * tap_detach is already happening.  If we called it again from here, we
    797  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    798  */
    799 static int
    800 tap_fops_close(file_t *fp)
    801 {
    802 	int unit = (intptr_t)fp->f_data;
    803 	struct tap_softc *sc;
    804 	int error;
    805 
    806 	sc = device_lookup_private(&tap_cd, unit);
    807 	if (sc == NULL)
    808 		return (ENXIO);
    809 
    810 	/* tap_dev_close currently always succeeds, but it might not
    811 	 * always be the case. */
    812 	KERNEL_LOCK(1, NULL);
    813 	if ((error = tap_dev_close(sc)) != 0) {
    814 		KERNEL_UNLOCK_ONE(NULL);
    815 		return (error);
    816 	}
    817 
    818 	/* Destroy the device now that it is no longer useful,
    819 	 * unless it's already being destroyed. */
    820 	if ((sc->sc_flags & TAP_GOING) != 0) {
    821 		KERNEL_UNLOCK_ONE(NULL);
    822 		return (0);
    823 	}
    824 
    825 	error = tap_clone_destroyer(sc->sc_dev);
    826 	KERNEL_UNLOCK_ONE(NULL);
    827 	return error;
    828 }
    829 
    830 static int
    831 tap_dev_close(struct tap_softc *sc)
    832 {
    833 	struct ifnet *ifp;
    834 	int s;
    835 
    836 	s = splnet();
    837 	/* Let tap_start handle packets again */
    838 	ifp = &sc->sc_ec.ec_if;
    839 	ifp->if_flags &= ~IFF_OACTIVE;
    840 
    841 	/* Purge output queue */
    842 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    843 		struct mbuf *m;
    844 
    845 		for (;;) {
    846 			IFQ_DEQUEUE(&ifp->if_snd, m);
    847 			if (m == NULL)
    848 				break;
    849 
    850 			ifp->if_opackets++;
    851 #if NBPFILTER > 0
    852 			if (ifp->if_bpf)
    853 				bpf_mtap(ifp->if_bpf, m);
    854 #endif
    855 		}
    856 	}
    857 	splx(s);
    858 
    859 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    860 
    861 	return (0);
    862 }
    863 
    864 static int
    865 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    866 {
    867 	return tap_dev_read(minor(dev), uio, flags);
    868 }
    869 
    870 static int
    871 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    872     kauth_cred_t cred, int flags)
    873 {
    874 	int error;
    875 
    876 	KERNEL_LOCK(1, NULL);
    877 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
    878 	KERNEL_UNLOCK_ONE(NULL);
    879 	return error;
    880 }
    881 
    882 static int
    883 tap_dev_read(int unit, struct uio *uio, int flags)
    884 {
    885 	struct tap_softc *sc =
    886 	    device_lookup_private(&tap_cd, unit);
    887 	struct ifnet *ifp;
    888 	struct mbuf *m, *n;
    889 	int error = 0, s;
    890 
    891 	if (sc == NULL)
    892 		return (ENXIO);
    893 
    894 	ifp = &sc->sc_ec.ec_if;
    895 	if ((ifp->if_flags & IFF_UP) == 0)
    896 		return (EHOSTDOWN);
    897 
    898 	/*
    899 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    900 	 */
    901 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    902 		if (!mutex_tryenter(&sc->sc_rdlock))
    903 			return (EWOULDBLOCK);
    904 	} else {
    905 		mutex_enter(&sc->sc_rdlock);
    906 	}
    907 
    908 	s = splnet();
    909 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    910 		ifp->if_flags &= ~IFF_OACTIVE;
    911 		/*
    912 		 * We must release the lock before sleeping, and re-acquire it
    913 		 * after.
    914 		 */
    915 		mutex_exit(&sc->sc_rdlock);
    916 		if (sc->sc_flags & TAP_NBIO)
    917 			error = EWOULDBLOCK;
    918 		else
    919 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    920 		splx(s);
    921 
    922 		if (error != 0)
    923 			return (error);
    924 		/* The device might have been downed */
    925 		if ((ifp->if_flags & IFF_UP) == 0)
    926 			return (EHOSTDOWN);
    927 		if ((sc->sc_flags & TAP_NBIO)) {
    928 			if (!mutex_tryenter(&sc->sc_rdlock))
    929 				return (EWOULDBLOCK);
    930 		} else {
    931 			mutex_enter(&sc->sc_rdlock);
    932 		}
    933 		s = splnet();
    934 	}
    935 
    936 	IFQ_DEQUEUE(&ifp->if_snd, m);
    937 	ifp->if_flags &= ~IFF_OACTIVE;
    938 	splx(s);
    939 	if (m == NULL) {
    940 		error = 0;
    941 		goto out;
    942 	}
    943 
    944 	ifp->if_opackets++;
    945 #if NBPFILTER > 0
    946 	if (ifp->if_bpf)
    947 		bpf_mtap(ifp->if_bpf, m);
    948 #endif
    949 
    950 	/*
    951 	 * One read is one packet.
    952 	 */
    953 	do {
    954 		error = uiomove(mtod(m, void *),
    955 		    min(m->m_len, uio->uio_resid), uio);
    956 		MFREE(m, n);
    957 		m = n;
    958 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    959 
    960 	if (m != NULL)
    961 		m_freem(m);
    962 
    963 out:
    964 	mutex_exit(&sc->sc_rdlock);
    965 	return (error);
    966 }
    967 
    968 static int
    969 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    970 {
    971 	return tap_dev_write(minor(dev), uio, flags);
    972 }
    973 
    974 static int
    975 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
    976     kauth_cred_t cred, int flags)
    977 {
    978 	int error;
    979 
    980 	KERNEL_LOCK(1, NULL);
    981 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
    982 	KERNEL_UNLOCK_ONE(NULL);
    983 	return error;
    984 }
    985 
    986 static int
    987 tap_dev_write(int unit, struct uio *uio, int flags)
    988 {
    989 	struct tap_softc *sc =
    990 	    device_lookup_private(&tap_cd, unit);
    991 	struct ifnet *ifp;
    992 	struct mbuf *m, **mp;
    993 	int error = 0;
    994 	int s;
    995 
    996 	if (sc == NULL)
    997 		return (ENXIO);
    998 
    999 	ifp = &sc->sc_ec.ec_if;
   1000 
   1001 	/* One write, one packet, that's the rule */
   1002 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1003 	if (m == NULL) {
   1004 		ifp->if_ierrors++;
   1005 		return (ENOBUFS);
   1006 	}
   1007 	m->m_pkthdr.len = uio->uio_resid;
   1008 
   1009 	mp = &m;
   1010 	while (error == 0 && uio->uio_resid > 0) {
   1011 		if (*mp != m) {
   1012 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1013 			if (*mp == NULL) {
   1014 				error = ENOBUFS;
   1015 				break;
   1016 			}
   1017 		}
   1018 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1019 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1020 		mp = &(*mp)->m_next;
   1021 	}
   1022 	if (error) {
   1023 		ifp->if_ierrors++;
   1024 		m_freem(m);
   1025 		return (error);
   1026 	}
   1027 
   1028 	ifp->if_ipackets++;
   1029 	m->m_pkthdr.rcvif = ifp;
   1030 
   1031 #if NBPFILTER > 0
   1032 	if (ifp->if_bpf)
   1033 		bpf_mtap(ifp->if_bpf, m);
   1034 #endif
   1035 	s =splnet();
   1036 	(*ifp->if_input)(ifp, m);
   1037 	splx(s);
   1038 
   1039 	return (0);
   1040 }
   1041 
   1042 static int
   1043 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1044     struct lwp *l)
   1045 {
   1046 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1047 }
   1048 
   1049 static int
   1050 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1051 {
   1052 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
   1053 }
   1054 
   1055 static int
   1056 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1057 {
   1058 	struct tap_softc *sc =
   1059 	    device_lookup_private(&tap_cd, unit);
   1060 	int error = 0;
   1061 
   1062 	if (sc == NULL)
   1063 		return (ENXIO);
   1064 
   1065 	switch (cmd) {
   1066 	case FIONREAD:
   1067 		{
   1068 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1069 			struct mbuf *m;
   1070 			int s;
   1071 
   1072 			s = splnet();
   1073 			IFQ_POLL(&ifp->if_snd, m);
   1074 
   1075 			if (m == NULL)
   1076 				*(int *)data = 0;
   1077 			else
   1078 				*(int *)data = m->m_pkthdr.len;
   1079 			splx(s);
   1080 		} break;
   1081 	case TIOCSPGRP:
   1082 	case FIOSETOWN:
   1083 		error = fsetown(&sc->sc_pgid, cmd, data);
   1084 		break;
   1085 	case TIOCGPGRP:
   1086 	case FIOGETOWN:
   1087 		error = fgetown(sc->sc_pgid, cmd, data);
   1088 		break;
   1089 	case FIOASYNC:
   1090 		if (*(int *)data)
   1091 			sc->sc_flags |= TAP_ASYNCIO;
   1092 		else
   1093 			sc->sc_flags &= ~TAP_ASYNCIO;
   1094 		break;
   1095 	case FIONBIO:
   1096 		if (*(int *)data)
   1097 			sc->sc_flags |= TAP_NBIO;
   1098 		else
   1099 			sc->sc_flags &= ~TAP_NBIO;
   1100 		break;
   1101 #ifdef OTAPGIFNAME
   1102 	case OTAPGIFNAME:
   1103 #endif
   1104 	case TAPGIFNAME:
   1105 		{
   1106 			struct ifreq *ifr = (struct ifreq *)data;
   1107 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1108 
   1109 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1110 		} break;
   1111 	default:
   1112 		error = ENOTTY;
   1113 		break;
   1114 	}
   1115 
   1116 	return (0);
   1117 }
   1118 
   1119 static int
   1120 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1121 {
   1122 	return tap_dev_poll(minor(dev), events, l);
   1123 }
   1124 
   1125 static int
   1126 tap_fops_poll(file_t *fp, int events)
   1127 {
   1128 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1129 }
   1130 
   1131 static int
   1132 tap_dev_poll(int unit, int events, struct lwp *l)
   1133 {
   1134 	struct tap_softc *sc =
   1135 	    device_lookup_private(&tap_cd, unit);
   1136 	int revents = 0;
   1137 
   1138 	if (sc == NULL)
   1139 		return POLLERR;
   1140 
   1141 	if (events & (POLLIN|POLLRDNORM)) {
   1142 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1143 		struct mbuf *m;
   1144 		int s;
   1145 
   1146 		s = splnet();
   1147 		IFQ_POLL(&ifp->if_snd, m);
   1148 		splx(s);
   1149 
   1150 		if (m != NULL)
   1151 			revents |= events & (POLLIN|POLLRDNORM);
   1152 		else {
   1153 			simple_lock(&sc->sc_kqlock);
   1154 			selrecord(l, &sc->sc_rsel);
   1155 			simple_unlock(&sc->sc_kqlock);
   1156 		}
   1157 	}
   1158 	revents |= events & (POLLOUT|POLLWRNORM);
   1159 
   1160 	return (revents);
   1161 }
   1162 
   1163 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1164 	tap_kqread };
   1165 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1166 	filt_seltrue };
   1167 
   1168 static int
   1169 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1170 {
   1171 	return tap_dev_kqfilter(minor(dev), kn);
   1172 }
   1173 
   1174 static int
   1175 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1176 {
   1177 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1178 }
   1179 
   1180 static int
   1181 tap_dev_kqfilter(int unit, struct knote *kn)
   1182 {
   1183 	struct tap_softc *sc =
   1184 	    device_lookup_private(&tap_cd, unit);
   1185 
   1186 	if (sc == NULL)
   1187 		return (ENXIO);
   1188 
   1189 	KERNEL_LOCK(1, NULL);
   1190 	switch(kn->kn_filter) {
   1191 	case EVFILT_READ:
   1192 		kn->kn_fop = &tap_read_filterops;
   1193 		break;
   1194 	case EVFILT_WRITE:
   1195 		kn->kn_fop = &tap_seltrue_filterops;
   1196 		break;
   1197 	default:
   1198 		KERNEL_UNLOCK_ONE(NULL);
   1199 		return (EINVAL);
   1200 	}
   1201 
   1202 	kn->kn_hook = sc;
   1203 	simple_lock(&sc->sc_kqlock);
   1204 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1205 	simple_unlock(&sc->sc_kqlock);
   1206 	KERNEL_UNLOCK_ONE(NULL);
   1207 	return (0);
   1208 }
   1209 
   1210 static void
   1211 tap_kqdetach(struct knote *kn)
   1212 {
   1213 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1214 
   1215 	KERNEL_LOCK(1, NULL);
   1216 	simple_lock(&sc->sc_kqlock);
   1217 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1218 	simple_unlock(&sc->sc_kqlock);
   1219 	KERNEL_UNLOCK_ONE(NULL);
   1220 }
   1221 
   1222 static int
   1223 tap_kqread(struct knote *kn, long hint)
   1224 {
   1225 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1226 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1227 	struct mbuf *m;
   1228 	int s, rv;
   1229 
   1230 	KERNEL_LOCK(1, NULL);
   1231 	s = splnet();
   1232 	IFQ_POLL(&ifp->if_snd, m);
   1233 
   1234 	if (m == NULL)
   1235 		kn->kn_data = 0;
   1236 	else
   1237 		kn->kn_data = m->m_pkthdr.len;
   1238 	splx(s);
   1239 	rv = (kn->kn_data != 0 ? 1 : 0);
   1240 	KERNEL_UNLOCK_ONE(NULL);
   1241 	return rv;
   1242 }
   1243 
   1244 #if defined(COMPAT_40) || defined(MODULAR)
   1245 /*
   1246  * sysctl management routines
   1247  * You can set the address of an interface through:
   1248  * net.link.tap.tap<number>
   1249  *
   1250  * Note the consistent use of tap_log in order to use
   1251  * sysctl_teardown at unload time.
   1252  *
   1253  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1254  * blocks register a function in a special section of the kernel
   1255  * (called a link set) which is used at init_sysctl() time to cycle
   1256  * through all those functions to create the kernel's sysctl tree.
   1257  *
   1258  * It is not possible to use link sets in a module, so the
   1259  * easiest is to simply call our own setup routine at load time.
   1260  *
   1261  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1262  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1263  * whole kernel sysctl tree is built, it is not possible to add any
   1264  * permanent node.
   1265  *
   1266  * It should be noted that we're not saving the sysctlnode pointer
   1267  * we are returned when creating the "tap" node.  That structure
   1268  * cannot be trusted once out of the calling function, as it might
   1269  * get reused.  So we just save the MIB number, and always give the
   1270  * full path starting from the root for later calls to sysctl_createv
   1271  * and sysctl_destroyv.
   1272  */
   1273 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1274 {
   1275 	const struct sysctlnode *node;
   1276 	int error = 0;
   1277 
   1278 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1279 	    CTLFLAG_PERMANENT,
   1280 	    CTLTYPE_NODE, "net", NULL,
   1281 	    NULL, 0, NULL, 0,
   1282 	    CTL_NET, CTL_EOL)) != 0)
   1283 		return;
   1284 
   1285 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1286 	    CTLFLAG_PERMANENT,
   1287 	    CTLTYPE_NODE, "link", NULL,
   1288 	    NULL, 0, NULL, 0,
   1289 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1290 		return;
   1291 
   1292 	/*
   1293 	 * The first four parameters of sysctl_createv are for management.
   1294 	 *
   1295 	 * The four that follows, here starting with a '0' for the flags,
   1296 	 * describe the node.
   1297 	 *
   1298 	 * The next series of four set its value, through various possible
   1299 	 * means.
   1300 	 *
   1301 	 * Last but not least, the path to the node is described.  That path
   1302 	 * is relative to the given root (third argument).  Here we're
   1303 	 * starting from the root.
   1304 	 */
   1305 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1306 	    CTLFLAG_PERMANENT,
   1307 	    CTLTYPE_NODE, "tap", NULL,
   1308 	    NULL, 0, NULL, 0,
   1309 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1310 		return;
   1311 	tap_node = node->sysctl_num;
   1312 }
   1313 
   1314 /*
   1315  * The helper functions make Andrew Brown's interface really
   1316  * shine.  It makes possible to create value on the fly whether
   1317  * the sysctl value is read or written.
   1318  *
   1319  * As shown as an example in the man page, the first step is to
   1320  * create a copy of the node to have sysctl_lookup work on it.
   1321  *
   1322  * Here, we have more work to do than just a copy, since we have
   1323  * to create the string.  The first step is to collect the actual
   1324  * value of the node, which is a convenient pointer to the softc
   1325  * of the interface.  From there we create the string and use it
   1326  * as the value, but only for the *copy* of the node.
   1327  *
   1328  * Then we let sysctl_lookup do the magic, which consists in
   1329  * setting oldp and newp as required by the operation.  When the
   1330  * value is read, that means that the string will be copied to
   1331  * the user, and when it is written, the new value will be copied
   1332  * over in the addr array.
   1333  *
   1334  * If newp is NULL, the user was reading the value, so we don't
   1335  * have anything else to do.  If a new value was written, we
   1336  * have to check it.
   1337  *
   1338  * If it is incorrect, we can return an error and leave 'node' as
   1339  * it is:  since it is a copy of the actual node, the change will
   1340  * be forgotten.
   1341  *
   1342  * Upon a correct input, we commit the change to the ifnet
   1343  * structure of our interface.
   1344  */
   1345 static int
   1346 tap_sysctl_handler(SYSCTLFN_ARGS)
   1347 {
   1348 	struct sysctlnode node;
   1349 	struct tap_softc *sc;
   1350 	struct ifnet *ifp;
   1351 	int error;
   1352 	size_t len;
   1353 	char addr[3 * ETHER_ADDR_LEN];
   1354 	uint8_t enaddr[ETHER_ADDR_LEN];
   1355 
   1356 	node = *rnode;
   1357 	sc = node.sysctl_data;
   1358 	ifp = &sc->sc_ec.ec_if;
   1359 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1360 	node.sysctl_data = addr;
   1361 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1362 	if (error || newp == NULL)
   1363 		return (error);
   1364 
   1365 	len = strlen(addr);
   1366 	if (len < 11 || len > 17)
   1367 		return (EINVAL);
   1368 
   1369 	/* Commit change */
   1370 	if (ether_nonstatic_aton(enaddr, addr) != 0)
   1371 		return (EINVAL);
   1372 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1373 	return (error);
   1374 }
   1375 #endif
   1376