if_tap.c revision 1.57 1 /* $NetBSD: if_tap.c,v 1.57 2009/04/11 23:05:26 christos Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.57 2009/04/11 23:05:26 christos Exp $");
37
38 #if defined(_KERNEL_OPT)
39 #include "bpfilter.h"
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/device.h>
50 #include <sys/file.h>
51 #include <sys/filedesc.h>
52 #include <sys/ksyms.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/simplelock.h>
63 #include <sys/intr.h>
64 #include <sys/stat.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <compat/sys/sockio.h>
76
77 #if defined(COMPAT_40) || defined(MODULAR)
78 /*
79 * sysctl node management
80 *
81 * It's not really possible to use a SYSCTL_SETUP block with
82 * current module implementation, so it is easier to just define
83 * our own function.
84 *
85 * The handler function is a "helper" in Andrew Brown's sysctl
86 * framework terminology. It is used as a gateway for sysctl
87 * requests over the nodes.
88 *
89 * tap_log allows the module to log creations of nodes and
90 * destroy them all at once using sysctl_teardown.
91 */
92 static int tap_node;
93 static int tap_sysctl_handler(SYSCTLFN_PROTO);
94 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
95 #endif
96
97 /*
98 * Since we're an Ethernet device, we need the 3 following
99 * components: a leading struct device, a struct ethercom,
100 * and also a struct ifmedia since we don't attach a PHY to
101 * ourselves. We could emulate one, but there's no real
102 * point.
103 */
104
105 struct tap_softc {
106 device_t sc_dev;
107 struct ifmedia sc_im;
108 struct ethercom sc_ec;
109 int sc_flags;
110 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
111 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
112 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
113 #define TAP_GOING 0x00000008 /* interface is being destroyed */
114 struct selinfo sc_rsel;
115 pid_t sc_pgid; /* For async. IO */
116 kmutex_t sc_rdlock;
117 struct simplelock sc_kqlock;
118 void *sc_sih;
119 struct timespec sc_atime;
120 struct timespec sc_mtime;
121 struct timespec sc_btime;
122 };
123
124 /* autoconf(9) glue */
125
126 void tapattach(int);
127
128 static int tap_match(device_t, cfdata_t, void *);
129 static void tap_attach(device_t, device_t, void *);
130 static int tap_detach(device_t, int);
131
132 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
133 tap_match, tap_attach, tap_detach, NULL);
134 extern struct cfdriver tap_cd;
135
136 /* Real device access routines */
137 static int tap_dev_close(struct tap_softc *);
138 static int tap_dev_read(int, struct uio *, int);
139 static int tap_dev_write(int, struct uio *, int);
140 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
141 static int tap_dev_poll(int, int, struct lwp *);
142 static int tap_dev_kqfilter(int, struct knote *);
143
144 /* Fileops access routines */
145 static int tap_fops_close(file_t *);
146 static int tap_fops_read(file_t *, off_t *, struct uio *,
147 kauth_cred_t, int);
148 static int tap_fops_write(file_t *, off_t *, struct uio *,
149 kauth_cred_t, int);
150 static int tap_fops_ioctl(file_t *, u_long, void *);
151 static int tap_fops_poll(file_t *, int);
152 static int tap_fops_stat(file_t *, struct stat *);
153 static int tap_fops_kqfilter(file_t *, struct knote *);
154
155 static const struct fileops tap_fileops = {
156 .fo_read = tap_fops_read,
157 .fo_write = tap_fops_write,
158 .fo_ioctl = tap_fops_ioctl,
159 .fo_fcntl = fnullop_fcntl,
160 .fo_poll = tap_fops_poll,
161 .fo_stat = tap_fops_stat,
162 .fo_close = tap_fops_close,
163 .fo_kqfilter = tap_fops_kqfilter,
164 .fo_drain = fnullop_drain,
165 };
166
167 /* Helper for cloning open() */
168 static int tap_dev_cloner(struct lwp *);
169
170 /* Character device routines */
171 static int tap_cdev_open(dev_t, int, int, struct lwp *);
172 static int tap_cdev_close(dev_t, int, int, struct lwp *);
173 static int tap_cdev_read(dev_t, struct uio *, int);
174 static int tap_cdev_write(dev_t, struct uio *, int);
175 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
176 static int tap_cdev_poll(dev_t, int, struct lwp *);
177 static int tap_cdev_kqfilter(dev_t, struct knote *);
178
179 const struct cdevsw tap_cdevsw = {
180 tap_cdev_open, tap_cdev_close,
181 tap_cdev_read, tap_cdev_write,
182 tap_cdev_ioctl, nostop, notty,
183 tap_cdev_poll, nommap,
184 tap_cdev_kqfilter,
185 D_OTHER,
186 };
187
188 #define TAP_CLONER 0xfffff /* Maximal minor value */
189
190 /* kqueue-related routines */
191 static void tap_kqdetach(struct knote *);
192 static int tap_kqread(struct knote *, long);
193
194 /*
195 * Those are needed by the if_media interface.
196 */
197
198 static int tap_mediachange(struct ifnet *);
199 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
200
201 /*
202 * Those are needed by the ifnet interface, and would typically be
203 * there for any network interface driver.
204 * Some other routines are optional: watchdog and drain.
205 */
206
207 static void tap_start(struct ifnet *);
208 static void tap_stop(struct ifnet *, int);
209 static int tap_init(struct ifnet *);
210 static int tap_ioctl(struct ifnet *, u_long, void *);
211
212 /* Internal functions */
213 #if defined(COMPAT_40) || defined(MODULAR)
214 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
215 #endif
216 static void tap_softintr(void *);
217
218 /*
219 * tap is a clonable interface, although it is highly unrealistic for
220 * an Ethernet device.
221 *
222 * Here are the bits needed for a clonable interface.
223 */
224 static int tap_clone_create(struct if_clone *, int);
225 static int tap_clone_destroy(struct ifnet *);
226
227 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
228 tap_clone_create,
229 tap_clone_destroy);
230
231 /* Helper functionis shared by the two cloning code paths */
232 static struct tap_softc * tap_clone_creator(int);
233 int tap_clone_destroyer(device_t);
234
235 void
236 tapattach(int n)
237 {
238 int error;
239
240 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
241 if (error) {
242 aprint_error("%s: unable to register cfattach\n",
243 tap_cd.cd_name);
244 (void)config_cfdriver_detach(&tap_cd);
245 return;
246 }
247
248 if_clone_attach(&tap_cloners);
249 }
250
251 /* Pretty much useless for a pseudo-device */
252 static int
253 tap_match(device_t parent, cfdata_t cfdata, void *arg)
254 {
255
256 return (1);
257 }
258
259 void
260 tap_attach(device_t parent, device_t self, void *aux)
261 {
262 struct tap_softc *sc = device_private(self);
263 struct ifnet *ifp;
264 #if defined(COMPAT_40) || defined(MODULAR)
265 const struct sysctlnode *node;
266 int error;
267 #endif
268 uint8_t enaddr[ETHER_ADDR_LEN] =
269 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
270 char enaddrstr[3 * ETHER_ADDR_LEN];
271 struct timeval tv;
272 uint32_t ui;
273
274 sc->sc_dev = self;
275 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
276 getnanotime(&sc->sc_btime);
277 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
278
279 if (!pmf_device_register(self, NULL, NULL))
280 aprint_error_dev(self, "couldn't establish power handler\n");
281
282 /*
283 * In order to obtain unique initial Ethernet address on a host,
284 * do some randomisation using the current uptime. It's not meant
285 * for anything but avoiding hard-coding an address.
286 */
287 getmicrouptime(&tv);
288 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
289 memcpy(enaddr+3, (uint8_t *)&ui, 3);
290
291 aprint_verbose_dev(self, "Ethernet address %s\n",
292 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
293
294 /*
295 * Why 1000baseT? Why not? You can add more.
296 *
297 * Note that there are 3 steps: init, one or several additions to
298 * list of supported media, and in the end, the selection of one
299 * of them.
300 */
301 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
303 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
304 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
305 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
306 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
307 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
308 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
309 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
310
311 /*
312 * One should note that an interface must do multicast in order
313 * to support IPv6.
314 */
315 ifp = &sc->sc_ec.ec_if;
316 strcpy(ifp->if_xname, device_xname(self));
317 ifp->if_softc = sc;
318 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
319 ifp->if_ioctl = tap_ioctl;
320 ifp->if_start = tap_start;
321 ifp->if_stop = tap_stop;
322 ifp->if_init = tap_init;
323 IFQ_SET_READY(&ifp->if_snd);
324
325 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
326
327 /* Those steps are mandatory for an Ethernet driver, the fisrt call
328 * being common to all network interface drivers. */
329 if_attach(ifp);
330 ether_ifattach(ifp, enaddr);
331
332 sc->sc_flags = 0;
333
334 #if defined(COMPAT_40) || defined(MODULAR)
335 /*
336 * Add a sysctl node for that interface.
337 *
338 * The pointer transmitted is not a string, but instead a pointer to
339 * the softc structure, which we can use to build the string value on
340 * the fly in the helper function of the node. See the comments for
341 * tap_sysctl_handler for details.
342 *
343 * Usually sysctl_createv is called with CTL_CREATE as the before-last
344 * component. However, we can allocate a number ourselves, as we are
345 * the only consumer of the net.link.<iface> node. In this case, the
346 * unit number is conveniently used to number the node. CTL_CREATE
347 * would just work, too.
348 */
349 if ((error = sysctl_createv(NULL, 0, NULL,
350 &node, CTLFLAG_READWRITE,
351 CTLTYPE_STRING, device_xname(self), NULL,
352 tap_sysctl_handler, 0, sc, 18,
353 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
354 CTL_EOL)) != 0)
355 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
356 error);
357 #endif
358
359 /*
360 * Initialize the two locks for the device.
361 *
362 * We need a lock here because even though the tap device can be
363 * opened only once, the file descriptor might be passed to another
364 * process, say a fork(2)ed child.
365 *
366 * The Giant saves us from most of the hassle, but since the read
367 * operation can sleep, we don't want two processes to wake up at
368 * the same moment and both try and dequeue a single packet.
369 *
370 * The queue for event listeners (used by kqueue(9), see below) has
371 * to be protected, too, but we don't need the same level of
372 * complexity for that lock, so a simple spinning lock is fine.
373 */
374 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
375 simple_lock_init(&sc->sc_kqlock);
376
377 selinit(&sc->sc_rsel);
378 }
379
380 /*
381 * When detaching, we do the inverse of what is done in the attach
382 * routine, in reversed order.
383 */
384 static int
385 tap_detach(device_t self, int flags)
386 {
387 struct tap_softc *sc = device_private(self);
388 struct ifnet *ifp = &sc->sc_ec.ec_if;
389 #if defined(COMPAT_40) || defined(MODULAR)
390 int error;
391 #endif
392 int s;
393
394 sc->sc_flags |= TAP_GOING;
395 s = splnet();
396 tap_stop(ifp, 1);
397 if_down(ifp);
398 splx(s);
399
400 softint_disestablish(sc->sc_sih);
401
402 #if defined(COMPAT_40) || defined(MODULAR)
403 /*
404 * Destroying a single leaf is a very straightforward operation using
405 * sysctl_destroyv. One should be sure to always end the path with
406 * CTL_EOL.
407 */
408 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
409 device_unit(sc->sc_dev), CTL_EOL)) != 0)
410 aprint_error_dev(self,
411 "sysctl_destroyv returned %d, ignoring\n", error);
412 #endif
413 ether_ifdetach(ifp);
414 if_detach(ifp);
415 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
416 seldestroy(&sc->sc_rsel);
417 mutex_destroy(&sc->sc_rdlock);
418
419 pmf_device_deregister(self);
420
421 return (0);
422 }
423
424 /*
425 * This function is called by the ifmedia layer to notify the driver
426 * that the user requested a media change. A real driver would
427 * reconfigure the hardware.
428 */
429 static int
430 tap_mediachange(struct ifnet *ifp)
431 {
432 return (0);
433 }
434
435 /*
436 * Here the user asks for the currently used media.
437 */
438 static void
439 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
440 {
441 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
442 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
443 }
444
445 /*
446 * This is the function where we SEND packets.
447 *
448 * There is no 'receive' equivalent. A typical driver will get
449 * interrupts from the hardware, and from there will inject new packets
450 * into the network stack.
451 *
452 * Once handled, a packet must be freed. A real driver might not be able
453 * to fit all the pending packets into the hardware, and is allowed to
454 * return before having sent all the packets. It should then use the
455 * if_flags flag IFF_OACTIVE to notify the upper layer.
456 *
457 * There are also other flags one should check, such as IFF_PAUSE.
458 *
459 * It is our duty to make packets available to BPF listeners.
460 *
461 * You should be aware that this function is called by the Ethernet layer
462 * at splnet().
463 *
464 * When the device is opened, we have to pass the packet(s) to the
465 * userland. For that we stay in OACTIVE mode while the userland gets
466 * the packets, and we send a signal to the processes waiting to read.
467 *
468 * wakeup(sc) is the counterpart to the tsleep call in
469 * tap_dev_read, while selnotify() is used for kevent(2) and
470 * poll(2) (which includes select(2)) listeners.
471 */
472 static void
473 tap_start(struct ifnet *ifp)
474 {
475 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
476 struct mbuf *m0;
477
478 if ((sc->sc_flags & TAP_INUSE) == 0) {
479 /* Simply drop packets */
480 for(;;) {
481 IFQ_DEQUEUE(&ifp->if_snd, m0);
482 if (m0 == NULL)
483 return;
484
485 ifp->if_opackets++;
486 #if NBPFILTER > 0
487 if (ifp->if_bpf)
488 bpf_mtap(ifp->if_bpf, m0);
489 #endif
490
491 m_freem(m0);
492 }
493 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
494 ifp->if_flags |= IFF_OACTIVE;
495 wakeup(sc);
496 selnotify(&sc->sc_rsel, 0, 1);
497 if (sc->sc_flags & TAP_ASYNCIO)
498 softint_schedule(sc->sc_sih);
499 }
500 }
501
502 static void
503 tap_softintr(void *cookie)
504 {
505 struct tap_softc *sc;
506 struct ifnet *ifp;
507 int a, b;
508
509 sc = cookie;
510
511 if (sc->sc_flags & TAP_ASYNCIO) {
512 ifp = &sc->sc_ec.ec_if;
513 if (ifp->if_flags & IFF_RUNNING) {
514 a = POLL_IN;
515 b = POLLIN|POLLRDNORM;
516 } else {
517 a = POLL_HUP;
518 b = 0;
519 }
520 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
521 }
522 }
523
524 /*
525 * A typical driver will only contain the following handlers for
526 * ioctl calls, except SIOCSIFPHYADDR.
527 * The latter is a hack I used to set the Ethernet address of the
528 * faked device.
529 *
530 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
531 * called under splnet().
532 */
533 static int
534 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
535 {
536 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
537 struct ifreq *ifr = (struct ifreq *)data;
538 int s, error;
539
540 s = splnet();
541
542 switch (cmd) {
543 #ifdef OSIOCSIFMEDIA
544 case OSIOCSIFMEDIA:
545 #endif
546 case SIOCSIFMEDIA:
547 case SIOCGIFMEDIA:
548 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
549 break;
550 #if defined(COMPAT_40) || defined(MODULAR)
551 case SIOCSIFPHYADDR:
552 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
553 break;
554 #endif
555 default:
556 error = ether_ioctl(ifp, cmd, data);
557 if (error == ENETRESET)
558 error = 0;
559 break;
560 }
561
562 splx(s);
563
564 return (error);
565 }
566
567 #if defined(COMPAT_40) || defined(MODULAR)
568 /*
569 * Helper function to set Ethernet address. This has been replaced by
570 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
571 */
572 static int
573 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
574 {
575 const struct sockaddr *sa = &ifra->ifra_addr;
576
577 if (sa->sa_family != AF_LINK)
578 return (EINVAL);
579
580 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
581
582 return (0);
583 }
584 #endif
585
586 /*
587 * _init() would typically be called when an interface goes up,
588 * meaning it should configure itself into the state in which it
589 * can send packets.
590 */
591 static int
592 tap_init(struct ifnet *ifp)
593 {
594 ifp->if_flags |= IFF_RUNNING;
595
596 tap_start(ifp);
597
598 return (0);
599 }
600
601 /*
602 * _stop() is called when an interface goes down. It is our
603 * responsability to validate that state by clearing the
604 * IFF_RUNNING flag.
605 *
606 * We have to wake up all the sleeping processes to have the pending
607 * read requests cancelled.
608 */
609 static void
610 tap_stop(struct ifnet *ifp, int disable)
611 {
612 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
613
614 ifp->if_flags &= ~IFF_RUNNING;
615 wakeup(sc);
616 selnotify(&sc->sc_rsel, 0, 1);
617 if (sc->sc_flags & TAP_ASYNCIO)
618 softint_schedule(sc->sc_sih);
619 }
620
621 /*
622 * The 'create' command of ifconfig can be used to create
623 * any numbered instance of a given device. Thus we have to
624 * make sure we have enough room in cd_devs to create the
625 * user-specified instance. config_attach_pseudo will do this
626 * for us.
627 */
628 static int
629 tap_clone_create(struct if_clone *ifc, int unit)
630 {
631 if (tap_clone_creator(unit) == NULL) {
632 aprint_error("%s%d: unable to attach an instance\n",
633 tap_cd.cd_name, unit);
634 return (ENXIO);
635 }
636
637 return (0);
638 }
639
640 /*
641 * tap(4) can be cloned by two ways:
642 * using 'ifconfig tap0 create', which will use the network
643 * interface cloning API, and call tap_clone_create above.
644 * opening the cloning device node, whose minor number is TAP_CLONER.
645 * See below for an explanation on how this part work.
646 */
647 static struct tap_softc *
648 tap_clone_creator(int unit)
649 {
650 struct cfdata *cf;
651
652 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
653 cf->cf_name = tap_cd.cd_name;
654 cf->cf_atname = tap_ca.ca_name;
655 if (unit == -1) {
656 /* let autoconf find the first free one */
657 cf->cf_unit = 0;
658 cf->cf_fstate = FSTATE_STAR;
659 } else {
660 cf->cf_unit = unit;
661 cf->cf_fstate = FSTATE_FOUND;
662 }
663
664 return device_private(config_attach_pseudo(cf));
665 }
666
667 /*
668 * The clean design of if_clone and autoconf(9) makes that part
669 * really straightforward. The second argument of config_detach
670 * means neither QUIET nor FORCED.
671 */
672 static int
673 tap_clone_destroy(struct ifnet *ifp)
674 {
675 struct tap_softc *sc = ifp->if_softc;
676
677 return tap_clone_destroyer(sc->sc_dev);
678 }
679
680 int
681 tap_clone_destroyer(device_t dev)
682 {
683 cfdata_t cf = device_cfdata(dev);
684 int error;
685
686 if ((error = config_detach(dev, 0)) != 0)
687 aprint_error_dev(dev, "unable to detach instance\n");
688 free(cf, M_DEVBUF);
689
690 return (error);
691 }
692
693 /*
694 * tap(4) is a bit of an hybrid device. It can be used in two different
695 * ways:
696 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
697 * 2. open /dev/tap, get a new interface created and read/write off it.
698 * That interface is destroyed when the process that had it created exits.
699 *
700 * The first way is managed by the cdevsw structure, and you access interfaces
701 * through a (major, minor) mapping: tap4 is obtained by the minor number
702 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
703 *
704 * The second way is the so-called "cloning" device. It's a special minor
705 * number (chosen as the maximal number, to allow as much tap devices as
706 * possible). The user first opens the cloner (e.g., /dev/tap), and that
707 * call ends in tap_cdev_open. The actual place where it is handled is
708 * tap_dev_cloner.
709 *
710 * An tap device cannot be opened more than once at a time, so the cdevsw
711 * part of open() does nothing but noting that the interface is being used and
712 * hence ready to actually handle packets.
713 */
714
715 static int
716 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
717 {
718 struct tap_softc *sc;
719
720 if (minor(dev) == TAP_CLONER)
721 return tap_dev_cloner(l);
722
723 sc = device_lookup_private(&tap_cd, minor(dev));
724 if (sc == NULL)
725 return (ENXIO);
726
727 /* The device can only be opened once */
728 if (sc->sc_flags & TAP_INUSE)
729 return (EBUSY);
730 sc->sc_flags |= TAP_INUSE;
731 return (0);
732 }
733
734 /*
735 * There are several kinds of cloning devices, and the most simple is the one
736 * tap(4) uses. What it does is change the file descriptor with a new one,
737 * with its own fileops structure (which maps to the various read, write,
738 * ioctl functions). It starts allocating a new file descriptor with falloc,
739 * then actually creates the new tap devices.
740 *
741 * Once those two steps are successful, we can re-wire the existing file
742 * descriptor to its new self. This is done with fdclone(): it fills the fp
743 * structure as needed (notably f_data gets filled with the fifth parameter
744 * passed, the unit of the tap device which will allows us identifying the
745 * device later), and returns EMOVEFD.
746 *
747 * That magic value is interpreted by sys_open() which then replaces the
748 * current file descriptor by the new one (through a magic member of struct
749 * lwp, l_dupfd).
750 *
751 * The tap device is flagged as being busy since it otherwise could be
752 * externally accessed through the corresponding device node with the cdevsw
753 * interface.
754 */
755
756 static int
757 tap_dev_cloner(struct lwp *l)
758 {
759 struct tap_softc *sc;
760 file_t *fp;
761 int error, fd;
762
763 if ((error = fd_allocfile(&fp, &fd)) != 0)
764 return (error);
765
766 if ((sc = tap_clone_creator(-1)) == NULL) {
767 fd_abort(curproc, fp, fd);
768 return (ENXIO);
769 }
770
771 sc->sc_flags |= TAP_INUSE;
772
773 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
774 (void *)(intptr_t)device_unit(sc->sc_dev));
775 }
776
777 /*
778 * While all other operations (read, write, ioctl, poll and kqfilter) are
779 * really the same whether we are in cdevsw or fileops mode, the close()
780 * function is slightly different in the two cases.
781 *
782 * As for the other, the core of it is shared in tap_dev_close. What
783 * it does is sufficient for the cdevsw interface, but the cloning interface
784 * needs another thing: the interface is destroyed when the processes that
785 * created it closes it.
786 */
787 static int
788 tap_cdev_close(dev_t dev, int flags, int fmt,
789 struct lwp *l)
790 {
791 struct tap_softc *sc =
792 device_lookup_private(&tap_cd, minor(dev));
793
794 if (sc == NULL)
795 return (ENXIO);
796
797 return tap_dev_close(sc);
798 }
799
800 /*
801 * It might happen that the administrator used ifconfig to externally destroy
802 * the interface. In that case, tap_fops_close will be called while
803 * tap_detach is already happening. If we called it again from here, we
804 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
805 */
806 static int
807 tap_fops_close(file_t *fp)
808 {
809 int unit = (intptr_t)fp->f_data;
810 struct tap_softc *sc;
811 int error;
812
813 sc = device_lookup_private(&tap_cd, unit);
814 if (sc == NULL)
815 return (ENXIO);
816
817 /* tap_dev_close currently always succeeds, but it might not
818 * always be the case. */
819 KERNEL_LOCK(1, NULL);
820 if ((error = tap_dev_close(sc)) != 0) {
821 KERNEL_UNLOCK_ONE(NULL);
822 return (error);
823 }
824
825 /* Destroy the device now that it is no longer useful,
826 * unless it's already being destroyed. */
827 if ((sc->sc_flags & TAP_GOING) != 0) {
828 KERNEL_UNLOCK_ONE(NULL);
829 return (0);
830 }
831
832 error = tap_clone_destroyer(sc->sc_dev);
833 KERNEL_UNLOCK_ONE(NULL);
834 return error;
835 }
836
837 static int
838 tap_dev_close(struct tap_softc *sc)
839 {
840 struct ifnet *ifp;
841 int s;
842
843 s = splnet();
844 /* Let tap_start handle packets again */
845 ifp = &sc->sc_ec.ec_if;
846 ifp->if_flags &= ~IFF_OACTIVE;
847
848 /* Purge output queue */
849 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
850 struct mbuf *m;
851
852 for (;;) {
853 IFQ_DEQUEUE(&ifp->if_snd, m);
854 if (m == NULL)
855 break;
856
857 ifp->if_opackets++;
858 #if NBPFILTER > 0
859 if (ifp->if_bpf)
860 bpf_mtap(ifp->if_bpf, m);
861 #endif
862 }
863 }
864 splx(s);
865
866 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
867
868 return (0);
869 }
870
871 static int
872 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
873 {
874 return tap_dev_read(minor(dev), uio, flags);
875 }
876
877 static int
878 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
879 kauth_cred_t cred, int flags)
880 {
881 int error;
882
883 KERNEL_LOCK(1, NULL);
884 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
885 KERNEL_UNLOCK_ONE(NULL);
886 return error;
887 }
888
889 static int
890 tap_dev_read(int unit, struct uio *uio, int flags)
891 {
892 struct tap_softc *sc =
893 device_lookup_private(&tap_cd, unit);
894 struct ifnet *ifp;
895 struct mbuf *m, *n;
896 int error = 0, s;
897
898 if (sc == NULL)
899 return (ENXIO);
900
901 getnanotime(&sc->sc_atime);
902
903 ifp = &sc->sc_ec.ec_if;
904 if ((ifp->if_flags & IFF_UP) == 0)
905 return (EHOSTDOWN);
906
907 /*
908 * In the TAP_NBIO case, we have to make sure we won't be sleeping
909 */
910 if ((sc->sc_flags & TAP_NBIO) != 0) {
911 if (!mutex_tryenter(&sc->sc_rdlock))
912 return (EWOULDBLOCK);
913 } else {
914 mutex_enter(&sc->sc_rdlock);
915 }
916
917 s = splnet();
918 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
919 ifp->if_flags &= ~IFF_OACTIVE;
920 /*
921 * We must release the lock before sleeping, and re-acquire it
922 * after.
923 */
924 mutex_exit(&sc->sc_rdlock);
925 if (sc->sc_flags & TAP_NBIO)
926 error = EWOULDBLOCK;
927 else
928 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
929 splx(s);
930
931 if (error != 0)
932 return (error);
933 /* The device might have been downed */
934 if ((ifp->if_flags & IFF_UP) == 0)
935 return (EHOSTDOWN);
936 if ((sc->sc_flags & TAP_NBIO)) {
937 if (!mutex_tryenter(&sc->sc_rdlock))
938 return (EWOULDBLOCK);
939 } else {
940 mutex_enter(&sc->sc_rdlock);
941 }
942 s = splnet();
943 }
944
945 IFQ_DEQUEUE(&ifp->if_snd, m);
946 ifp->if_flags &= ~IFF_OACTIVE;
947 splx(s);
948 if (m == NULL) {
949 error = 0;
950 goto out;
951 }
952
953 ifp->if_opackets++;
954 #if NBPFILTER > 0
955 if (ifp->if_bpf)
956 bpf_mtap(ifp->if_bpf, m);
957 #endif
958
959 /*
960 * One read is one packet.
961 */
962 do {
963 error = uiomove(mtod(m, void *),
964 min(m->m_len, uio->uio_resid), uio);
965 MFREE(m, n);
966 m = n;
967 } while (m != NULL && uio->uio_resid > 0 && error == 0);
968
969 if (m != NULL)
970 m_freem(m);
971
972 out:
973 mutex_exit(&sc->sc_rdlock);
974 return (error);
975 }
976
977 static int
978 tap_fops_stat(file_t *fp, struct stat *st)
979 {
980 int error;
981 struct tap_softc *sc;
982 int unit = (uintptr_t)fp->f_data;
983
984 (void)memset(st, 0, sizeof(*st));
985
986 KERNEL_LOCK(1, NULL);
987 sc = device_lookup_private(&tap_cd, unit);
988 if (sc == NULL) {
989 error = ENXIO;
990 goto out;
991 }
992
993 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
994 st->st_atimespec = sc->sc_atime;
995 st->st_mtimespec = sc->sc_mtime;
996 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
997 st->st_uid = kauth_cred_geteuid(fp->f_cred);
998 st->st_gid = kauth_cred_getegid(fp->f_cred);
999 out:
1000 KERNEL_UNLOCK_ONE(NULL);
1001 return error;
1002 }
1003
1004 static int
1005 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1006 {
1007 return tap_dev_write(minor(dev), uio, flags);
1008 }
1009
1010 static int
1011 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1012 kauth_cred_t cred, int flags)
1013 {
1014 int error;
1015
1016 KERNEL_LOCK(1, NULL);
1017 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1018 KERNEL_UNLOCK_ONE(NULL);
1019 return error;
1020 }
1021
1022 static int
1023 tap_dev_write(int unit, struct uio *uio, int flags)
1024 {
1025 struct tap_softc *sc =
1026 device_lookup_private(&tap_cd, unit);
1027 struct ifnet *ifp;
1028 struct mbuf *m, **mp;
1029 int error = 0;
1030 int s;
1031
1032 if (sc == NULL)
1033 return (ENXIO);
1034
1035 getnanotime(&sc->sc_mtime);
1036 ifp = &sc->sc_ec.ec_if;
1037
1038 /* One write, one packet, that's the rule */
1039 MGETHDR(m, M_DONTWAIT, MT_DATA);
1040 if (m == NULL) {
1041 ifp->if_ierrors++;
1042 return (ENOBUFS);
1043 }
1044 m->m_pkthdr.len = uio->uio_resid;
1045
1046 mp = &m;
1047 while (error == 0 && uio->uio_resid > 0) {
1048 if (*mp != m) {
1049 MGET(*mp, M_DONTWAIT, MT_DATA);
1050 if (*mp == NULL) {
1051 error = ENOBUFS;
1052 break;
1053 }
1054 }
1055 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1056 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1057 mp = &(*mp)->m_next;
1058 }
1059 if (error) {
1060 ifp->if_ierrors++;
1061 m_freem(m);
1062 return (error);
1063 }
1064
1065 ifp->if_ipackets++;
1066 m->m_pkthdr.rcvif = ifp;
1067
1068 #if NBPFILTER > 0
1069 if (ifp->if_bpf)
1070 bpf_mtap(ifp->if_bpf, m);
1071 #endif
1072 s =splnet();
1073 (*ifp->if_input)(ifp, m);
1074 splx(s);
1075
1076 return (0);
1077 }
1078
1079 static int
1080 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1081 struct lwp *l)
1082 {
1083 return tap_dev_ioctl(minor(dev), cmd, data, l);
1084 }
1085
1086 static int
1087 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1088 {
1089 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1090 }
1091
1092 static int
1093 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1094 {
1095 struct tap_softc *sc =
1096 device_lookup_private(&tap_cd, unit);
1097 int error = 0;
1098
1099 if (sc == NULL)
1100 return (ENXIO);
1101
1102 switch (cmd) {
1103 case FIONREAD:
1104 {
1105 struct ifnet *ifp = &sc->sc_ec.ec_if;
1106 struct mbuf *m;
1107 int s;
1108
1109 s = splnet();
1110 IFQ_POLL(&ifp->if_snd, m);
1111
1112 if (m == NULL)
1113 *(int *)data = 0;
1114 else
1115 *(int *)data = m->m_pkthdr.len;
1116 splx(s);
1117 } break;
1118 case TIOCSPGRP:
1119 case FIOSETOWN:
1120 error = fsetown(&sc->sc_pgid, cmd, data);
1121 break;
1122 case TIOCGPGRP:
1123 case FIOGETOWN:
1124 error = fgetown(sc->sc_pgid, cmd, data);
1125 break;
1126 case FIOASYNC:
1127 if (*(int *)data)
1128 sc->sc_flags |= TAP_ASYNCIO;
1129 else
1130 sc->sc_flags &= ~TAP_ASYNCIO;
1131 break;
1132 case FIONBIO:
1133 if (*(int *)data)
1134 sc->sc_flags |= TAP_NBIO;
1135 else
1136 sc->sc_flags &= ~TAP_NBIO;
1137 break;
1138 #ifdef OTAPGIFNAME
1139 case OTAPGIFNAME:
1140 #endif
1141 case TAPGIFNAME:
1142 {
1143 struct ifreq *ifr = (struct ifreq *)data;
1144 struct ifnet *ifp = &sc->sc_ec.ec_if;
1145
1146 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1147 } break;
1148 default:
1149 error = ENOTTY;
1150 break;
1151 }
1152
1153 return (0);
1154 }
1155
1156 static int
1157 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1158 {
1159 return tap_dev_poll(minor(dev), events, l);
1160 }
1161
1162 static int
1163 tap_fops_poll(file_t *fp, int events)
1164 {
1165 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1166 }
1167
1168 static int
1169 tap_dev_poll(int unit, int events, struct lwp *l)
1170 {
1171 struct tap_softc *sc =
1172 device_lookup_private(&tap_cd, unit);
1173 int revents = 0;
1174
1175 if (sc == NULL)
1176 return POLLERR;
1177
1178 if (events & (POLLIN|POLLRDNORM)) {
1179 struct ifnet *ifp = &sc->sc_ec.ec_if;
1180 struct mbuf *m;
1181 int s;
1182
1183 s = splnet();
1184 IFQ_POLL(&ifp->if_snd, m);
1185 splx(s);
1186
1187 if (m != NULL)
1188 revents |= events & (POLLIN|POLLRDNORM);
1189 else {
1190 simple_lock(&sc->sc_kqlock);
1191 selrecord(l, &sc->sc_rsel);
1192 simple_unlock(&sc->sc_kqlock);
1193 }
1194 }
1195 revents |= events & (POLLOUT|POLLWRNORM);
1196
1197 return (revents);
1198 }
1199
1200 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1201 tap_kqread };
1202 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1203 filt_seltrue };
1204
1205 static int
1206 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1207 {
1208 return tap_dev_kqfilter(minor(dev), kn);
1209 }
1210
1211 static int
1212 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1213 {
1214 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1215 }
1216
1217 static int
1218 tap_dev_kqfilter(int unit, struct knote *kn)
1219 {
1220 struct tap_softc *sc =
1221 device_lookup_private(&tap_cd, unit);
1222
1223 if (sc == NULL)
1224 return (ENXIO);
1225
1226 KERNEL_LOCK(1, NULL);
1227 switch(kn->kn_filter) {
1228 case EVFILT_READ:
1229 kn->kn_fop = &tap_read_filterops;
1230 break;
1231 case EVFILT_WRITE:
1232 kn->kn_fop = &tap_seltrue_filterops;
1233 break;
1234 default:
1235 KERNEL_UNLOCK_ONE(NULL);
1236 return (EINVAL);
1237 }
1238
1239 kn->kn_hook = sc;
1240 simple_lock(&sc->sc_kqlock);
1241 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1242 simple_unlock(&sc->sc_kqlock);
1243 KERNEL_UNLOCK_ONE(NULL);
1244 return (0);
1245 }
1246
1247 static void
1248 tap_kqdetach(struct knote *kn)
1249 {
1250 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1251
1252 KERNEL_LOCK(1, NULL);
1253 simple_lock(&sc->sc_kqlock);
1254 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1255 simple_unlock(&sc->sc_kqlock);
1256 KERNEL_UNLOCK_ONE(NULL);
1257 }
1258
1259 static int
1260 tap_kqread(struct knote *kn, long hint)
1261 {
1262 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1263 struct ifnet *ifp = &sc->sc_ec.ec_if;
1264 struct mbuf *m;
1265 int s, rv;
1266
1267 KERNEL_LOCK(1, NULL);
1268 s = splnet();
1269 IFQ_POLL(&ifp->if_snd, m);
1270
1271 if (m == NULL)
1272 kn->kn_data = 0;
1273 else
1274 kn->kn_data = m->m_pkthdr.len;
1275 splx(s);
1276 rv = (kn->kn_data != 0 ? 1 : 0);
1277 KERNEL_UNLOCK_ONE(NULL);
1278 return rv;
1279 }
1280
1281 #if defined(COMPAT_40) || defined(MODULAR)
1282 /*
1283 * sysctl management routines
1284 * You can set the address of an interface through:
1285 * net.link.tap.tap<number>
1286 *
1287 * Note the consistent use of tap_log in order to use
1288 * sysctl_teardown at unload time.
1289 *
1290 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1291 * blocks register a function in a special section of the kernel
1292 * (called a link set) which is used at init_sysctl() time to cycle
1293 * through all those functions to create the kernel's sysctl tree.
1294 *
1295 * It is not possible to use link sets in a module, so the
1296 * easiest is to simply call our own setup routine at load time.
1297 *
1298 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1299 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1300 * whole kernel sysctl tree is built, it is not possible to add any
1301 * permanent node.
1302 *
1303 * It should be noted that we're not saving the sysctlnode pointer
1304 * we are returned when creating the "tap" node. That structure
1305 * cannot be trusted once out of the calling function, as it might
1306 * get reused. So we just save the MIB number, and always give the
1307 * full path starting from the root for later calls to sysctl_createv
1308 * and sysctl_destroyv.
1309 */
1310 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1311 {
1312 const struct sysctlnode *node;
1313 int error = 0;
1314
1315 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1316 CTLFLAG_PERMANENT,
1317 CTLTYPE_NODE, "net", NULL,
1318 NULL, 0, NULL, 0,
1319 CTL_NET, CTL_EOL)) != 0)
1320 return;
1321
1322 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1323 CTLFLAG_PERMANENT,
1324 CTLTYPE_NODE, "link", NULL,
1325 NULL, 0, NULL, 0,
1326 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1327 return;
1328
1329 /*
1330 * The first four parameters of sysctl_createv are for management.
1331 *
1332 * The four that follows, here starting with a '0' for the flags,
1333 * describe the node.
1334 *
1335 * The next series of four set its value, through various possible
1336 * means.
1337 *
1338 * Last but not least, the path to the node is described. That path
1339 * is relative to the given root (third argument). Here we're
1340 * starting from the root.
1341 */
1342 if ((error = sysctl_createv(clog, 0, NULL, &node,
1343 CTLFLAG_PERMANENT,
1344 CTLTYPE_NODE, "tap", NULL,
1345 NULL, 0, NULL, 0,
1346 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1347 return;
1348 tap_node = node->sysctl_num;
1349 }
1350
1351 /*
1352 * The helper functions make Andrew Brown's interface really
1353 * shine. It makes possible to create value on the fly whether
1354 * the sysctl value is read or written.
1355 *
1356 * As shown as an example in the man page, the first step is to
1357 * create a copy of the node to have sysctl_lookup work on it.
1358 *
1359 * Here, we have more work to do than just a copy, since we have
1360 * to create the string. The first step is to collect the actual
1361 * value of the node, which is a convenient pointer to the softc
1362 * of the interface. From there we create the string and use it
1363 * as the value, but only for the *copy* of the node.
1364 *
1365 * Then we let sysctl_lookup do the magic, which consists in
1366 * setting oldp and newp as required by the operation. When the
1367 * value is read, that means that the string will be copied to
1368 * the user, and when it is written, the new value will be copied
1369 * over in the addr array.
1370 *
1371 * If newp is NULL, the user was reading the value, so we don't
1372 * have anything else to do. If a new value was written, we
1373 * have to check it.
1374 *
1375 * If it is incorrect, we can return an error and leave 'node' as
1376 * it is: since it is a copy of the actual node, the change will
1377 * be forgotten.
1378 *
1379 * Upon a correct input, we commit the change to the ifnet
1380 * structure of our interface.
1381 */
1382 static int
1383 tap_sysctl_handler(SYSCTLFN_ARGS)
1384 {
1385 struct sysctlnode node;
1386 struct tap_softc *sc;
1387 struct ifnet *ifp;
1388 int error;
1389 size_t len;
1390 char addr[3 * ETHER_ADDR_LEN];
1391 uint8_t enaddr[ETHER_ADDR_LEN];
1392
1393 node = *rnode;
1394 sc = node.sysctl_data;
1395 ifp = &sc->sc_ec.ec_if;
1396 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1397 node.sysctl_data = addr;
1398 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1399 if (error || newp == NULL)
1400 return (error);
1401
1402 len = strlen(addr);
1403 if (len < 11 || len > 17)
1404 return (EINVAL);
1405
1406 /* Commit change */
1407 if (ether_nonstatic_aton(enaddr, addr) != 0)
1408 return (EINVAL);
1409 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1410 return (error);
1411 }
1412 #endif
1413