Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.60
      1 /*	$NetBSD: if_tap.c,v 1.60 2009/11/29 10:44:23 plunky Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.60 2009/11/29 10:44:23 plunky Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 #include "bpfilter.h"
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/device.h>
     50 #include <sys/file.h>
     51 #include <sys/filedesc.h>
     52 #include <sys/ksyms.h>
     53 #include <sys/poll.h>
     54 #include <sys/proc.h>
     55 #include <sys/select.h>
     56 #include <sys/sockio.h>
     57 #if defined(COMPAT_40) || defined(MODULAR)
     58 #include <sys/sysctl.h>
     59 #endif
     60 #include <sys/kauth.h>
     61 #include <sys/mutex.h>
     62 #include <sys/simplelock.h>
     63 #include <sys/intr.h>
     64 #include <sys/stat.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #if NBPFILTER > 0
     72 #include <net/bpf.h>
     73 #endif
     74 
     75 #include <compat/sys/sockio.h>
     76 
     77 #if defined(COMPAT_40) || defined(MODULAR)
     78 /*
     79  * sysctl node management
     80  *
     81  * It's not really possible to use a SYSCTL_SETUP block with
     82  * current module implementation, so it is easier to just define
     83  * our own function.
     84  *
     85  * The handler function is a "helper" in Andrew Brown's sysctl
     86  * framework terminology.  It is used as a gateway for sysctl
     87  * requests over the nodes.
     88  *
     89  * tap_log allows the module to log creations of nodes and
     90  * destroy them all at once using sysctl_teardown.
     91  */
     92 static int tap_node;
     93 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     94 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     95 #endif
     96 
     97 /*
     98  * Since we're an Ethernet device, we need the 3 following
     99  * components: a leading struct device, a struct ethercom,
    100  * and also a struct ifmedia since we don't attach a PHY to
    101  * ourselves. We could emulate one, but there's no real
    102  * point.
    103  */
    104 
    105 struct tap_softc {
    106 	device_t	sc_dev;
    107 	struct ifmedia	sc_im;
    108 	struct ethercom	sc_ec;
    109 	int		sc_flags;
    110 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    111 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    112 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    113 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    114 	struct selinfo	sc_rsel;
    115 	pid_t		sc_pgid; /* For async. IO */
    116 	kmutex_t	sc_rdlock;
    117 	struct simplelock	sc_kqlock;
    118 	void		*sc_sih;
    119 	struct timespec sc_atime;
    120 	struct timespec sc_mtime;
    121 	struct timespec sc_btime;
    122 };
    123 
    124 /* autoconf(9) glue */
    125 
    126 void	tapattach(int);
    127 
    128 static int	tap_match(device_t, cfdata_t, void *);
    129 static void	tap_attach(device_t, device_t, void *);
    130 static int	tap_detach(device_t, int);
    131 
    132 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    133     tap_match, tap_attach, tap_detach, NULL);
    134 extern struct cfdriver tap_cd;
    135 
    136 /* Real device access routines */
    137 static int	tap_dev_close(struct tap_softc *);
    138 static int	tap_dev_read(int, struct uio *, int);
    139 static int	tap_dev_write(int, struct uio *, int);
    140 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    141 static int	tap_dev_poll(int, int, struct lwp *);
    142 static int	tap_dev_kqfilter(int, struct knote *);
    143 
    144 /* Fileops access routines */
    145 static int	tap_fops_close(file_t *);
    146 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    147     kauth_cred_t, int);
    148 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    149     kauth_cred_t, int);
    150 static int	tap_fops_ioctl(file_t *, u_long, void *);
    151 static int	tap_fops_poll(file_t *, int);
    152 static int	tap_fops_stat(file_t *, struct stat *);
    153 static int	tap_fops_kqfilter(file_t *, struct knote *);
    154 
    155 static const struct fileops tap_fileops = {
    156 	.fo_read = tap_fops_read,
    157 	.fo_write = tap_fops_write,
    158 	.fo_ioctl = tap_fops_ioctl,
    159 	.fo_fcntl = fnullop_fcntl,
    160 	.fo_poll = tap_fops_poll,
    161 	.fo_stat = tap_fops_stat,
    162 	.fo_close = tap_fops_close,
    163 	.fo_kqfilter = tap_fops_kqfilter,
    164 	.fo_drain = fnullop_drain,
    165 };
    166 
    167 /* Helper for cloning open() */
    168 static int	tap_dev_cloner(struct lwp *);
    169 
    170 /* Character device routines */
    171 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    172 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    173 static int	tap_cdev_read(dev_t, struct uio *, int);
    174 static int	tap_cdev_write(dev_t, struct uio *, int);
    175 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    176 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    177 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    178 
    179 const struct cdevsw tap_cdevsw = {
    180 	tap_cdev_open, tap_cdev_close,
    181 	tap_cdev_read, tap_cdev_write,
    182 	tap_cdev_ioctl, nostop, notty,
    183 	tap_cdev_poll, nommap,
    184 	tap_cdev_kqfilter,
    185 	D_OTHER,
    186 };
    187 
    188 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    189 
    190 /* kqueue-related routines */
    191 static void	tap_kqdetach(struct knote *);
    192 static int	tap_kqread(struct knote *, long);
    193 
    194 /*
    195  * Those are needed by the if_media interface.
    196  */
    197 
    198 static int	tap_mediachange(struct ifnet *);
    199 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    200 
    201 /*
    202  * Those are needed by the ifnet interface, and would typically be
    203  * there for any network interface driver.
    204  * Some other routines are optional: watchdog and drain.
    205  */
    206 
    207 static void	tap_start(struct ifnet *);
    208 static void	tap_stop(struct ifnet *, int);
    209 static int	tap_init(struct ifnet *);
    210 static int	tap_ioctl(struct ifnet *, u_long, void *);
    211 
    212 /* Internal functions */
    213 #if defined(COMPAT_40) || defined(MODULAR)
    214 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    215 #endif
    216 static void	tap_softintr(void *);
    217 
    218 /*
    219  * tap is a clonable interface, although it is highly unrealistic for
    220  * an Ethernet device.
    221  *
    222  * Here are the bits needed for a clonable interface.
    223  */
    224 static int	tap_clone_create(struct if_clone *, int);
    225 static int	tap_clone_destroy(struct ifnet *);
    226 
    227 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    228 					tap_clone_create,
    229 					tap_clone_destroy);
    230 
    231 /* Helper functionis shared by the two cloning code paths */
    232 static struct tap_softc *	tap_clone_creator(int);
    233 int	tap_clone_destroyer(device_t);
    234 
    235 void
    236 tapattach(int n)
    237 {
    238 	int error;
    239 
    240 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    241 	if (error) {
    242 		aprint_error("%s: unable to register cfattach\n",
    243 		    tap_cd.cd_name);
    244 		(void)config_cfdriver_detach(&tap_cd);
    245 		return;
    246 	}
    247 
    248 	if_clone_attach(&tap_cloners);
    249 }
    250 
    251 /* Pretty much useless for a pseudo-device */
    252 static int
    253 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    254 {
    255 
    256 	return (1);
    257 }
    258 
    259 void
    260 tap_attach(device_t parent, device_t self, void *aux)
    261 {
    262 	struct tap_softc *sc = device_private(self);
    263 	struct ifnet *ifp;
    264 #if defined(COMPAT_40) || defined(MODULAR)
    265 	const struct sysctlnode *node;
    266 	int error;
    267 #endif
    268 	uint8_t enaddr[ETHER_ADDR_LEN] =
    269 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    270 	char enaddrstr[3 * ETHER_ADDR_LEN];
    271 	struct timeval tv;
    272 	uint32_t ui;
    273 
    274 	sc->sc_dev = self;
    275 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
    276 	getnanotime(&sc->sc_btime);
    277 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    278 
    279 	if (!pmf_device_register(self, NULL, NULL))
    280 		aprint_error_dev(self, "couldn't establish power handler\n");
    281 
    282 	/*
    283 	 * In order to obtain unique initial Ethernet address on a host,
    284 	 * do some randomisation using the current uptime.  It's not meant
    285 	 * for anything but avoiding hard-coding an address.
    286 	 */
    287 	getmicrouptime(&tv);
    288 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    289 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
    290 
    291 	aprint_verbose_dev(self, "Ethernet address %s\n",
    292 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    293 
    294 	/*
    295 	 * Why 1000baseT? Why not? You can add more.
    296 	 *
    297 	 * Note that there are 3 steps: init, one or several additions to
    298 	 * list of supported media, and in the end, the selection of one
    299 	 * of them.
    300 	 */
    301 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    302 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    303 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    304 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    305 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    306 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    307 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    308 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    309 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    310 
    311 	/*
    312 	 * One should note that an interface must do multicast in order
    313 	 * to support IPv6.
    314 	 */
    315 	ifp = &sc->sc_ec.ec_if;
    316 	strcpy(ifp->if_xname, device_xname(self));
    317 	ifp->if_softc	= sc;
    318 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    319 	ifp->if_ioctl	= tap_ioctl;
    320 	ifp->if_start	= tap_start;
    321 	ifp->if_stop	= tap_stop;
    322 	ifp->if_init	= tap_init;
    323 	IFQ_SET_READY(&ifp->if_snd);
    324 
    325 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    326 
    327 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    328 	 * being common to all network interface drivers. */
    329 	if_attach(ifp);
    330 	ether_ifattach(ifp, enaddr);
    331 
    332 	sc->sc_flags = 0;
    333 
    334 #if defined(COMPAT_40) || defined(MODULAR)
    335 	/*
    336 	 * Add a sysctl node for that interface.
    337 	 *
    338 	 * The pointer transmitted is not a string, but instead a pointer to
    339 	 * the softc structure, which we can use to build the string value on
    340 	 * the fly in the helper function of the node.  See the comments for
    341 	 * tap_sysctl_handler for details.
    342 	 *
    343 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    344 	 * component.  However, we can allocate a number ourselves, as we are
    345 	 * the only consumer of the net.link.<iface> node.  In this case, the
    346 	 * unit number is conveniently used to number the node.  CTL_CREATE
    347 	 * would just work, too.
    348 	 */
    349 	if ((error = sysctl_createv(NULL, 0, NULL,
    350 	    &node, CTLFLAG_READWRITE,
    351 	    CTLTYPE_STRING, device_xname(self), NULL,
    352 	    tap_sysctl_handler, 0, sc, 18,
    353 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    354 	    CTL_EOL)) != 0)
    355 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    356 		    error);
    357 #endif
    358 
    359 	/*
    360 	 * Initialize the two locks for the device.
    361 	 *
    362 	 * We need a lock here because even though the tap device can be
    363 	 * opened only once, the file descriptor might be passed to another
    364 	 * process, say a fork(2)ed child.
    365 	 *
    366 	 * The Giant saves us from most of the hassle, but since the read
    367 	 * operation can sleep, we don't want two processes to wake up at
    368 	 * the same moment and both try and dequeue a single packet.
    369 	 *
    370 	 * The queue for event listeners (used by kqueue(9), see below) has
    371 	 * to be protected, too, but we don't need the same level of
    372 	 * complexity for that lock, so a simple spinning lock is fine.
    373 	 */
    374 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    375 	simple_lock_init(&sc->sc_kqlock);
    376 
    377 	selinit(&sc->sc_rsel);
    378 }
    379 
    380 /*
    381  * When detaching, we do the inverse of what is done in the attach
    382  * routine, in reversed order.
    383  */
    384 static int
    385 tap_detach(device_t self, int flags)
    386 {
    387 	struct tap_softc *sc = device_private(self);
    388 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    389 #if defined(COMPAT_40) || defined(MODULAR)
    390 	int error;
    391 #endif
    392 	int s;
    393 
    394 	sc->sc_flags |= TAP_GOING;
    395 	s = splnet();
    396 	tap_stop(ifp, 1);
    397 	if_down(ifp);
    398 	splx(s);
    399 
    400 	softint_disestablish(sc->sc_sih);
    401 
    402 #if defined(COMPAT_40) || defined(MODULAR)
    403 	/*
    404 	 * Destroying a single leaf is a very straightforward operation using
    405 	 * sysctl_destroyv.  One should be sure to always end the path with
    406 	 * CTL_EOL.
    407 	 */
    408 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    409 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    410 		aprint_error_dev(self,
    411 		    "sysctl_destroyv returned %d, ignoring\n", error);
    412 #endif
    413 	ether_ifdetach(ifp);
    414 	if_detach(ifp);
    415 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    416 	seldestroy(&sc->sc_rsel);
    417 	mutex_destroy(&sc->sc_rdlock);
    418 
    419 	pmf_device_deregister(self);
    420 
    421 	return (0);
    422 }
    423 
    424 /*
    425  * This function is called by the ifmedia layer to notify the driver
    426  * that the user requested a media change.  A real driver would
    427  * reconfigure the hardware.
    428  */
    429 static int
    430 tap_mediachange(struct ifnet *ifp)
    431 {
    432 	return (0);
    433 }
    434 
    435 /*
    436  * Here the user asks for the currently used media.
    437  */
    438 static void
    439 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    440 {
    441 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    442 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    443 }
    444 
    445 /*
    446  * This is the function where we SEND packets.
    447  *
    448  * There is no 'receive' equivalent.  A typical driver will get
    449  * interrupts from the hardware, and from there will inject new packets
    450  * into the network stack.
    451  *
    452  * Once handled, a packet must be freed.  A real driver might not be able
    453  * to fit all the pending packets into the hardware, and is allowed to
    454  * return before having sent all the packets.  It should then use the
    455  * if_flags flag IFF_OACTIVE to notify the upper layer.
    456  *
    457  * There are also other flags one should check, such as IFF_PAUSE.
    458  *
    459  * It is our duty to make packets available to BPF listeners.
    460  *
    461  * You should be aware that this function is called by the Ethernet layer
    462  * at splnet().
    463  *
    464  * When the device is opened, we have to pass the packet(s) to the
    465  * userland.  For that we stay in OACTIVE mode while the userland gets
    466  * the packets, and we send a signal to the processes waiting to read.
    467  *
    468  * wakeup(sc) is the counterpart to the tsleep call in
    469  * tap_dev_read, while selnotify() is used for kevent(2) and
    470  * poll(2) (which includes select(2)) listeners.
    471  */
    472 static void
    473 tap_start(struct ifnet *ifp)
    474 {
    475 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    476 	struct mbuf *m0;
    477 
    478 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    479 		/* Simply drop packets */
    480 		for(;;) {
    481 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    482 			if (m0 == NULL)
    483 				return;
    484 
    485 			ifp->if_opackets++;
    486 #if NBPFILTER > 0
    487 			if (ifp->if_bpf)
    488 				bpf_mtap(ifp->if_bpf, m0);
    489 #endif
    490 
    491 			m_freem(m0);
    492 		}
    493 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    494 		ifp->if_flags |= IFF_OACTIVE;
    495 		wakeup(sc);
    496 		selnotify(&sc->sc_rsel, 0, 1);
    497 		if (sc->sc_flags & TAP_ASYNCIO)
    498 			softint_schedule(sc->sc_sih);
    499 	}
    500 }
    501 
    502 static void
    503 tap_softintr(void *cookie)
    504 {
    505 	struct tap_softc *sc;
    506 	struct ifnet *ifp;
    507 	int a, b;
    508 
    509 	sc = cookie;
    510 
    511 	if (sc->sc_flags & TAP_ASYNCIO) {
    512 		ifp = &sc->sc_ec.ec_if;
    513 		if (ifp->if_flags & IFF_RUNNING) {
    514 			a = POLL_IN;
    515 			b = POLLIN|POLLRDNORM;
    516 		} else {
    517 			a = POLL_HUP;
    518 			b = 0;
    519 		}
    520 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    521 	}
    522 }
    523 
    524 /*
    525  * A typical driver will only contain the following handlers for
    526  * ioctl calls, except SIOCSIFPHYADDR.
    527  * The latter is a hack I used to set the Ethernet address of the
    528  * faked device.
    529  *
    530  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    531  * called under splnet().
    532  */
    533 static int
    534 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    535 {
    536 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    537 	struct ifreq *ifr = (struct ifreq *)data;
    538 	int s, error;
    539 
    540 	s = splnet();
    541 
    542 	switch (cmd) {
    543 #ifdef OSIOCSIFMEDIA
    544 	case OSIOCSIFMEDIA:
    545 #endif
    546 	case SIOCSIFMEDIA:
    547 	case SIOCGIFMEDIA:
    548 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    549 		break;
    550 #if defined(COMPAT_40) || defined(MODULAR)
    551 	case SIOCSIFPHYADDR:
    552 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    553 		break;
    554 #endif
    555 	default:
    556 		error = ether_ioctl(ifp, cmd, data);
    557 		if (error == ENETRESET)
    558 			error = 0;
    559 		break;
    560 	}
    561 
    562 	splx(s);
    563 
    564 	return (error);
    565 }
    566 
    567 #if defined(COMPAT_40) || defined(MODULAR)
    568 /*
    569  * Helper function to set Ethernet address.  This has been replaced by
    570  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    571  */
    572 static int
    573 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    574 {
    575 	const struct sockaddr *sa = &ifra->ifra_addr;
    576 
    577 	if (sa->sa_family != AF_LINK)
    578 		return (EINVAL);
    579 
    580 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    581 
    582 	return (0);
    583 }
    584 #endif
    585 
    586 /*
    587  * _init() would typically be called when an interface goes up,
    588  * meaning it should configure itself into the state in which it
    589  * can send packets.
    590  */
    591 static int
    592 tap_init(struct ifnet *ifp)
    593 {
    594 	ifp->if_flags |= IFF_RUNNING;
    595 
    596 	tap_start(ifp);
    597 
    598 	return (0);
    599 }
    600 
    601 /*
    602  * _stop() is called when an interface goes down.  It is our
    603  * responsability to validate that state by clearing the
    604  * IFF_RUNNING flag.
    605  *
    606  * We have to wake up all the sleeping processes to have the pending
    607  * read requests cancelled.
    608  */
    609 static void
    610 tap_stop(struct ifnet *ifp, int disable)
    611 {
    612 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    613 
    614 	ifp->if_flags &= ~IFF_RUNNING;
    615 	wakeup(sc);
    616 	selnotify(&sc->sc_rsel, 0, 1);
    617 	if (sc->sc_flags & TAP_ASYNCIO)
    618 		softint_schedule(sc->sc_sih);
    619 }
    620 
    621 /*
    622  * The 'create' command of ifconfig can be used to create
    623  * any numbered instance of a given device.  Thus we have to
    624  * make sure we have enough room in cd_devs to create the
    625  * user-specified instance.  config_attach_pseudo will do this
    626  * for us.
    627  */
    628 static int
    629 tap_clone_create(struct if_clone *ifc, int unit)
    630 {
    631 	if (tap_clone_creator(unit) == NULL) {
    632 		aprint_error("%s%d: unable to attach an instance\n",
    633                     tap_cd.cd_name, unit);
    634 		return (ENXIO);
    635 	}
    636 
    637 	return (0);
    638 }
    639 
    640 /*
    641  * tap(4) can be cloned by two ways:
    642  *   using 'ifconfig tap0 create', which will use the network
    643  *     interface cloning API, and call tap_clone_create above.
    644  *   opening the cloning device node, whose minor number is TAP_CLONER.
    645  *     See below for an explanation on how this part work.
    646  */
    647 static struct tap_softc *
    648 tap_clone_creator(int unit)
    649 {
    650 	struct cfdata *cf;
    651 
    652 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    653 	cf->cf_name = tap_cd.cd_name;
    654 	cf->cf_atname = tap_ca.ca_name;
    655 	if (unit == -1) {
    656 		/* let autoconf find the first free one */
    657 		cf->cf_unit = 0;
    658 		cf->cf_fstate = FSTATE_STAR;
    659 	} else {
    660 		cf->cf_unit = unit;
    661 		cf->cf_fstate = FSTATE_NOTFOUND;
    662 	}
    663 
    664 	return device_private(config_attach_pseudo(cf));
    665 }
    666 
    667 /*
    668  * The clean design of if_clone and autoconf(9) makes that part
    669  * really straightforward.  The second argument of config_detach
    670  * means neither QUIET nor FORCED.
    671  */
    672 static int
    673 tap_clone_destroy(struct ifnet *ifp)
    674 {
    675 	struct tap_softc *sc = ifp->if_softc;
    676 
    677 	return tap_clone_destroyer(sc->sc_dev);
    678 }
    679 
    680 int
    681 tap_clone_destroyer(device_t dev)
    682 {
    683 	cfdata_t cf = device_cfdata(dev);
    684 	int error;
    685 
    686 	if ((error = config_detach(dev, 0)) != 0)
    687 		aprint_error_dev(dev, "unable to detach instance\n");
    688 	free(cf, M_DEVBUF);
    689 
    690 	return (error);
    691 }
    692 
    693 /*
    694  * tap(4) is a bit of an hybrid device.  It can be used in two different
    695  * ways:
    696  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    697  *  2. open /dev/tap, get a new interface created and read/write off it.
    698  *     That interface is destroyed when the process that had it created exits.
    699  *
    700  * The first way is managed by the cdevsw structure, and you access interfaces
    701  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    702  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    703  *
    704  * The second way is the so-called "cloning" device.  It's a special minor
    705  * number (chosen as the maximal number, to allow as much tap devices as
    706  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    707  * call ends in tap_cdev_open.  The actual place where it is handled is
    708  * tap_dev_cloner.
    709  *
    710  * An tap device cannot be opened more than once at a time, so the cdevsw
    711  * part of open() does nothing but noting that the interface is being used and
    712  * hence ready to actually handle packets.
    713  */
    714 
    715 static int
    716 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    717 {
    718 	struct tap_softc *sc;
    719 
    720 	if (minor(dev) == TAP_CLONER)
    721 		return tap_dev_cloner(l);
    722 
    723 	sc = device_lookup_private(&tap_cd, minor(dev));
    724 	if (sc == NULL)
    725 		return (ENXIO);
    726 
    727 	/* The device can only be opened once */
    728 	if (sc->sc_flags & TAP_INUSE)
    729 		return (EBUSY);
    730 	sc->sc_flags |= TAP_INUSE;
    731 	return (0);
    732 }
    733 
    734 /*
    735  * There are several kinds of cloning devices, and the most simple is the one
    736  * tap(4) uses.  What it does is change the file descriptor with a new one,
    737  * with its own fileops structure (which maps to the various read, write,
    738  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    739  * then actually creates the new tap devices.
    740  *
    741  * Once those two steps are successful, we can re-wire the existing file
    742  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    743  * structure as needed (notably f_data gets filled with the fifth parameter
    744  * passed, the unit of the tap device which will allows us identifying the
    745  * device later), and returns EMOVEFD.
    746  *
    747  * That magic value is interpreted by sys_open() which then replaces the
    748  * current file descriptor by the new one (through a magic member of struct
    749  * lwp, l_dupfd).
    750  *
    751  * The tap device is flagged as being busy since it otherwise could be
    752  * externally accessed through the corresponding device node with the cdevsw
    753  * interface.
    754  */
    755 
    756 static int
    757 tap_dev_cloner(struct lwp *l)
    758 {
    759 	struct tap_softc *sc;
    760 	file_t *fp;
    761 	int error, fd;
    762 
    763 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    764 		return (error);
    765 
    766 	if ((sc = tap_clone_creator(-1)) == NULL) {
    767 		fd_abort(curproc, fp, fd);
    768 		return (ENXIO);
    769 	}
    770 
    771 	sc->sc_flags |= TAP_INUSE;
    772 
    773 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    774 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    775 }
    776 
    777 /*
    778  * While all other operations (read, write, ioctl, poll and kqfilter) are
    779  * really the same whether we are in cdevsw or fileops mode, the close()
    780  * function is slightly different in the two cases.
    781  *
    782  * As for the other, the core of it is shared in tap_dev_close.  What
    783  * it does is sufficient for the cdevsw interface, but the cloning interface
    784  * needs another thing:  the interface is destroyed when the processes that
    785  * created it closes it.
    786  */
    787 static int
    788 tap_cdev_close(dev_t dev, int flags, int fmt,
    789     struct lwp *l)
    790 {
    791 	struct tap_softc *sc =
    792 	    device_lookup_private(&tap_cd, minor(dev));
    793 
    794 	if (sc == NULL)
    795 		return (ENXIO);
    796 
    797 	return tap_dev_close(sc);
    798 }
    799 
    800 /*
    801  * It might happen that the administrator used ifconfig to externally destroy
    802  * the interface.  In that case, tap_fops_close will be called while
    803  * tap_detach is already happening.  If we called it again from here, we
    804  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    805  */
    806 static int
    807 tap_fops_close(file_t *fp)
    808 {
    809 	int unit = (intptr_t)fp->f_data;
    810 	struct tap_softc *sc;
    811 	int error;
    812 
    813 	sc = device_lookup_private(&tap_cd, unit);
    814 	if (sc == NULL)
    815 		return (ENXIO);
    816 
    817 	/* tap_dev_close currently always succeeds, but it might not
    818 	 * always be the case. */
    819 	KERNEL_LOCK(1, NULL);
    820 	if ((error = tap_dev_close(sc)) != 0) {
    821 		KERNEL_UNLOCK_ONE(NULL);
    822 		return (error);
    823 	}
    824 
    825 	/* Destroy the device now that it is no longer useful,
    826 	 * unless it's already being destroyed. */
    827 	if ((sc->sc_flags & TAP_GOING) != 0) {
    828 		KERNEL_UNLOCK_ONE(NULL);
    829 		return (0);
    830 	}
    831 
    832 	error = tap_clone_destroyer(sc->sc_dev);
    833 	KERNEL_UNLOCK_ONE(NULL);
    834 	return error;
    835 }
    836 
    837 static int
    838 tap_dev_close(struct tap_softc *sc)
    839 {
    840 	struct ifnet *ifp;
    841 	int s;
    842 
    843 	s = splnet();
    844 	/* Let tap_start handle packets again */
    845 	ifp = &sc->sc_ec.ec_if;
    846 	ifp->if_flags &= ~IFF_OACTIVE;
    847 
    848 	/* Purge output queue */
    849 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    850 		struct mbuf *m;
    851 
    852 		for (;;) {
    853 			IFQ_DEQUEUE(&ifp->if_snd, m);
    854 			if (m == NULL)
    855 				break;
    856 
    857 			ifp->if_opackets++;
    858 #if NBPFILTER > 0
    859 			if (ifp->if_bpf)
    860 				bpf_mtap(ifp->if_bpf, m);
    861 #endif
    862 			m_freem(m);
    863 		}
    864 	}
    865 	splx(s);
    866 
    867 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    868 
    869 	return (0);
    870 }
    871 
    872 static int
    873 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    874 {
    875 	return tap_dev_read(minor(dev), uio, flags);
    876 }
    877 
    878 static int
    879 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    880     kauth_cred_t cred, int flags)
    881 {
    882 	int error;
    883 
    884 	KERNEL_LOCK(1, NULL);
    885 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
    886 	KERNEL_UNLOCK_ONE(NULL);
    887 	return error;
    888 }
    889 
    890 static int
    891 tap_dev_read(int unit, struct uio *uio, int flags)
    892 {
    893 	struct tap_softc *sc =
    894 	    device_lookup_private(&tap_cd, unit);
    895 	struct ifnet *ifp;
    896 	struct mbuf *m, *n;
    897 	int error = 0, s;
    898 
    899 	if (sc == NULL)
    900 		return (ENXIO);
    901 
    902 	getnanotime(&sc->sc_atime);
    903 
    904 	ifp = &sc->sc_ec.ec_if;
    905 	if ((ifp->if_flags & IFF_UP) == 0)
    906 		return (EHOSTDOWN);
    907 
    908 	/*
    909 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    910 	 */
    911 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    912 		if (!mutex_tryenter(&sc->sc_rdlock))
    913 			return (EWOULDBLOCK);
    914 	} else {
    915 		mutex_enter(&sc->sc_rdlock);
    916 	}
    917 
    918 	s = splnet();
    919 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    920 		ifp->if_flags &= ~IFF_OACTIVE;
    921 		/*
    922 		 * We must release the lock before sleeping, and re-acquire it
    923 		 * after.
    924 		 */
    925 		mutex_exit(&sc->sc_rdlock);
    926 		if (sc->sc_flags & TAP_NBIO)
    927 			error = EWOULDBLOCK;
    928 		else
    929 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    930 		splx(s);
    931 
    932 		if (error != 0)
    933 			return (error);
    934 		/* The device might have been downed */
    935 		if ((ifp->if_flags & IFF_UP) == 0)
    936 			return (EHOSTDOWN);
    937 		if ((sc->sc_flags & TAP_NBIO)) {
    938 			if (!mutex_tryenter(&sc->sc_rdlock))
    939 				return (EWOULDBLOCK);
    940 		} else {
    941 			mutex_enter(&sc->sc_rdlock);
    942 		}
    943 		s = splnet();
    944 	}
    945 
    946 	IFQ_DEQUEUE(&ifp->if_snd, m);
    947 	ifp->if_flags &= ~IFF_OACTIVE;
    948 	splx(s);
    949 	if (m == NULL) {
    950 		error = 0;
    951 		goto out;
    952 	}
    953 
    954 	ifp->if_opackets++;
    955 #if NBPFILTER > 0
    956 	if (ifp->if_bpf)
    957 		bpf_mtap(ifp->if_bpf, m);
    958 #endif
    959 
    960 	/*
    961 	 * One read is one packet.
    962 	 */
    963 	do {
    964 		error = uiomove(mtod(m, void *),
    965 		    min(m->m_len, uio->uio_resid), uio);
    966 		MFREE(m, n);
    967 		m = n;
    968 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    969 
    970 	if (m != NULL)
    971 		m_freem(m);
    972 
    973 out:
    974 	mutex_exit(&sc->sc_rdlock);
    975 	return (error);
    976 }
    977 
    978 static int
    979 tap_fops_stat(file_t *fp, struct stat *st)
    980 {
    981 	int error = 0;
    982 	struct tap_softc *sc;
    983 	int unit = (uintptr_t)fp->f_data;
    984 
    985 	(void)memset(st, 0, sizeof(*st));
    986 
    987 	KERNEL_LOCK(1, NULL);
    988 	sc = device_lookup_private(&tap_cd, unit);
    989 	if (sc == NULL) {
    990 		error = ENXIO;
    991 		goto out;
    992 	}
    993 
    994 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    995 	st->st_atimespec = sc->sc_atime;
    996 	st->st_mtimespec = sc->sc_mtime;
    997 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    998 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    999 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1000 out:
   1001 	KERNEL_UNLOCK_ONE(NULL);
   1002 	return error;
   1003 }
   1004 
   1005 static int
   1006 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1007 {
   1008 	return tap_dev_write(minor(dev), uio, flags);
   1009 }
   1010 
   1011 static int
   1012 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1013     kauth_cred_t cred, int flags)
   1014 {
   1015 	int error;
   1016 
   1017 	KERNEL_LOCK(1, NULL);
   1018 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
   1019 	KERNEL_UNLOCK_ONE(NULL);
   1020 	return error;
   1021 }
   1022 
   1023 static int
   1024 tap_dev_write(int unit, struct uio *uio, int flags)
   1025 {
   1026 	struct tap_softc *sc =
   1027 	    device_lookup_private(&tap_cd, unit);
   1028 	struct ifnet *ifp;
   1029 	struct mbuf *m, **mp;
   1030 	int error = 0;
   1031 	int s;
   1032 
   1033 	if (sc == NULL)
   1034 		return (ENXIO);
   1035 
   1036 	getnanotime(&sc->sc_mtime);
   1037 	ifp = &sc->sc_ec.ec_if;
   1038 
   1039 	/* One write, one packet, that's the rule */
   1040 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1041 	if (m == NULL) {
   1042 		ifp->if_ierrors++;
   1043 		return (ENOBUFS);
   1044 	}
   1045 	m->m_pkthdr.len = uio->uio_resid;
   1046 
   1047 	mp = &m;
   1048 	while (error == 0 && uio->uio_resid > 0) {
   1049 		if (*mp != m) {
   1050 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1051 			if (*mp == NULL) {
   1052 				error = ENOBUFS;
   1053 				break;
   1054 			}
   1055 		}
   1056 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1057 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1058 		mp = &(*mp)->m_next;
   1059 	}
   1060 	if (error) {
   1061 		ifp->if_ierrors++;
   1062 		m_freem(m);
   1063 		return (error);
   1064 	}
   1065 
   1066 	ifp->if_ipackets++;
   1067 	m->m_pkthdr.rcvif = ifp;
   1068 
   1069 #if NBPFILTER > 0
   1070 	if (ifp->if_bpf)
   1071 		bpf_mtap(ifp->if_bpf, m);
   1072 #endif
   1073 	s =splnet();
   1074 	(*ifp->if_input)(ifp, m);
   1075 	splx(s);
   1076 
   1077 	return (0);
   1078 }
   1079 
   1080 static int
   1081 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1082     struct lwp *l)
   1083 {
   1084 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1085 }
   1086 
   1087 static int
   1088 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1089 {
   1090 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
   1091 }
   1092 
   1093 static int
   1094 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1095 {
   1096 	struct tap_softc *sc =
   1097 	    device_lookup_private(&tap_cd, unit);
   1098 	int error = 0;
   1099 
   1100 	if (sc == NULL)
   1101 		return (ENXIO);
   1102 
   1103 	switch (cmd) {
   1104 	case FIONREAD:
   1105 		{
   1106 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1107 			struct mbuf *m;
   1108 			int s;
   1109 
   1110 			s = splnet();
   1111 			IFQ_POLL(&ifp->if_snd, m);
   1112 
   1113 			if (m == NULL)
   1114 				*(int *)data = 0;
   1115 			else
   1116 				*(int *)data = m->m_pkthdr.len;
   1117 			splx(s);
   1118 		} break;
   1119 	case TIOCSPGRP:
   1120 	case FIOSETOWN:
   1121 		error = fsetown(&sc->sc_pgid, cmd, data);
   1122 		break;
   1123 	case TIOCGPGRP:
   1124 	case FIOGETOWN:
   1125 		error = fgetown(sc->sc_pgid, cmd, data);
   1126 		break;
   1127 	case FIOASYNC:
   1128 		if (*(int *)data)
   1129 			sc->sc_flags |= TAP_ASYNCIO;
   1130 		else
   1131 			sc->sc_flags &= ~TAP_ASYNCIO;
   1132 		break;
   1133 	case FIONBIO:
   1134 		if (*(int *)data)
   1135 			sc->sc_flags |= TAP_NBIO;
   1136 		else
   1137 			sc->sc_flags &= ~TAP_NBIO;
   1138 		break;
   1139 #ifdef OTAPGIFNAME
   1140 	case OTAPGIFNAME:
   1141 #endif
   1142 	case TAPGIFNAME:
   1143 		{
   1144 			struct ifreq *ifr = (struct ifreq *)data;
   1145 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1146 
   1147 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1148 		} break;
   1149 	default:
   1150 		error = ENOTTY;
   1151 		break;
   1152 	}
   1153 
   1154 	return (0);
   1155 }
   1156 
   1157 static int
   1158 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1159 {
   1160 	return tap_dev_poll(minor(dev), events, l);
   1161 }
   1162 
   1163 static int
   1164 tap_fops_poll(file_t *fp, int events)
   1165 {
   1166 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1167 }
   1168 
   1169 static int
   1170 tap_dev_poll(int unit, int events, struct lwp *l)
   1171 {
   1172 	struct tap_softc *sc =
   1173 	    device_lookup_private(&tap_cd, unit);
   1174 	int revents = 0;
   1175 
   1176 	if (sc == NULL)
   1177 		return POLLERR;
   1178 
   1179 	if (events & (POLLIN|POLLRDNORM)) {
   1180 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1181 		struct mbuf *m;
   1182 		int s;
   1183 
   1184 		s = splnet();
   1185 		IFQ_POLL(&ifp->if_snd, m);
   1186 		splx(s);
   1187 
   1188 		if (m != NULL)
   1189 			revents |= events & (POLLIN|POLLRDNORM);
   1190 		else {
   1191 			simple_lock(&sc->sc_kqlock);
   1192 			selrecord(l, &sc->sc_rsel);
   1193 			simple_unlock(&sc->sc_kqlock);
   1194 		}
   1195 	}
   1196 	revents |= events & (POLLOUT|POLLWRNORM);
   1197 
   1198 	return (revents);
   1199 }
   1200 
   1201 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1202 	tap_kqread };
   1203 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1204 	filt_seltrue };
   1205 
   1206 static int
   1207 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1208 {
   1209 	return tap_dev_kqfilter(minor(dev), kn);
   1210 }
   1211 
   1212 static int
   1213 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1214 {
   1215 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1216 }
   1217 
   1218 static int
   1219 tap_dev_kqfilter(int unit, struct knote *kn)
   1220 {
   1221 	struct tap_softc *sc =
   1222 	    device_lookup_private(&tap_cd, unit);
   1223 
   1224 	if (sc == NULL)
   1225 		return (ENXIO);
   1226 
   1227 	KERNEL_LOCK(1, NULL);
   1228 	switch(kn->kn_filter) {
   1229 	case EVFILT_READ:
   1230 		kn->kn_fop = &tap_read_filterops;
   1231 		break;
   1232 	case EVFILT_WRITE:
   1233 		kn->kn_fop = &tap_seltrue_filterops;
   1234 		break;
   1235 	default:
   1236 		KERNEL_UNLOCK_ONE(NULL);
   1237 		return (EINVAL);
   1238 	}
   1239 
   1240 	kn->kn_hook = sc;
   1241 	simple_lock(&sc->sc_kqlock);
   1242 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1243 	simple_unlock(&sc->sc_kqlock);
   1244 	KERNEL_UNLOCK_ONE(NULL);
   1245 	return (0);
   1246 }
   1247 
   1248 static void
   1249 tap_kqdetach(struct knote *kn)
   1250 {
   1251 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1252 
   1253 	KERNEL_LOCK(1, NULL);
   1254 	simple_lock(&sc->sc_kqlock);
   1255 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1256 	simple_unlock(&sc->sc_kqlock);
   1257 	KERNEL_UNLOCK_ONE(NULL);
   1258 }
   1259 
   1260 static int
   1261 tap_kqread(struct knote *kn, long hint)
   1262 {
   1263 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1264 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1265 	struct mbuf *m;
   1266 	int s, rv;
   1267 
   1268 	KERNEL_LOCK(1, NULL);
   1269 	s = splnet();
   1270 	IFQ_POLL(&ifp->if_snd, m);
   1271 
   1272 	if (m == NULL)
   1273 		kn->kn_data = 0;
   1274 	else
   1275 		kn->kn_data = m->m_pkthdr.len;
   1276 	splx(s);
   1277 	rv = (kn->kn_data != 0 ? 1 : 0);
   1278 	KERNEL_UNLOCK_ONE(NULL);
   1279 	return rv;
   1280 }
   1281 
   1282 #if defined(COMPAT_40) || defined(MODULAR)
   1283 /*
   1284  * sysctl management routines
   1285  * You can set the address of an interface through:
   1286  * net.link.tap.tap<number>
   1287  *
   1288  * Note the consistent use of tap_log in order to use
   1289  * sysctl_teardown at unload time.
   1290  *
   1291  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1292  * blocks register a function in a special section of the kernel
   1293  * (called a link set) which is used at init_sysctl() time to cycle
   1294  * through all those functions to create the kernel's sysctl tree.
   1295  *
   1296  * It is not possible to use link sets in a module, so the
   1297  * easiest is to simply call our own setup routine at load time.
   1298  *
   1299  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1300  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1301  * whole kernel sysctl tree is built, it is not possible to add any
   1302  * permanent node.
   1303  *
   1304  * It should be noted that we're not saving the sysctlnode pointer
   1305  * we are returned when creating the "tap" node.  That structure
   1306  * cannot be trusted once out of the calling function, as it might
   1307  * get reused.  So we just save the MIB number, and always give the
   1308  * full path starting from the root for later calls to sysctl_createv
   1309  * and sysctl_destroyv.
   1310  */
   1311 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1312 {
   1313 	const struct sysctlnode *node;
   1314 	int error = 0;
   1315 
   1316 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1317 	    CTLFLAG_PERMANENT,
   1318 	    CTLTYPE_NODE, "net", NULL,
   1319 	    NULL, 0, NULL, 0,
   1320 	    CTL_NET, CTL_EOL)) != 0)
   1321 		return;
   1322 
   1323 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1324 	    CTLFLAG_PERMANENT,
   1325 	    CTLTYPE_NODE, "link", NULL,
   1326 	    NULL, 0, NULL, 0,
   1327 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1328 		return;
   1329 
   1330 	/*
   1331 	 * The first four parameters of sysctl_createv are for management.
   1332 	 *
   1333 	 * The four that follows, here starting with a '0' for the flags,
   1334 	 * describe the node.
   1335 	 *
   1336 	 * The next series of four set its value, through various possible
   1337 	 * means.
   1338 	 *
   1339 	 * Last but not least, the path to the node is described.  That path
   1340 	 * is relative to the given root (third argument).  Here we're
   1341 	 * starting from the root.
   1342 	 */
   1343 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1344 	    CTLFLAG_PERMANENT,
   1345 	    CTLTYPE_NODE, "tap", NULL,
   1346 	    NULL, 0, NULL, 0,
   1347 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1348 		return;
   1349 	tap_node = node->sysctl_num;
   1350 }
   1351 
   1352 /*
   1353  * The helper functions make Andrew Brown's interface really
   1354  * shine.  It makes possible to create value on the fly whether
   1355  * the sysctl value is read or written.
   1356  *
   1357  * As shown as an example in the man page, the first step is to
   1358  * create a copy of the node to have sysctl_lookup work on it.
   1359  *
   1360  * Here, we have more work to do than just a copy, since we have
   1361  * to create the string.  The first step is to collect the actual
   1362  * value of the node, which is a convenient pointer to the softc
   1363  * of the interface.  From there we create the string and use it
   1364  * as the value, but only for the *copy* of the node.
   1365  *
   1366  * Then we let sysctl_lookup do the magic, which consists in
   1367  * setting oldp and newp as required by the operation.  When the
   1368  * value is read, that means that the string will be copied to
   1369  * the user, and when it is written, the new value will be copied
   1370  * over in the addr array.
   1371  *
   1372  * If newp is NULL, the user was reading the value, so we don't
   1373  * have anything else to do.  If a new value was written, we
   1374  * have to check it.
   1375  *
   1376  * If it is incorrect, we can return an error and leave 'node' as
   1377  * it is:  since it is a copy of the actual node, the change will
   1378  * be forgotten.
   1379  *
   1380  * Upon a correct input, we commit the change to the ifnet
   1381  * structure of our interface.
   1382  */
   1383 static int
   1384 tap_sysctl_handler(SYSCTLFN_ARGS)
   1385 {
   1386 	struct sysctlnode node;
   1387 	struct tap_softc *sc;
   1388 	struct ifnet *ifp;
   1389 	int error;
   1390 	size_t len;
   1391 	char addr[3 * ETHER_ADDR_LEN];
   1392 	uint8_t enaddr[ETHER_ADDR_LEN];
   1393 
   1394 	node = *rnode;
   1395 	sc = node.sysctl_data;
   1396 	ifp = &sc->sc_ec.ec_if;
   1397 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1398 	node.sysctl_data = addr;
   1399 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1400 	if (error || newp == NULL)
   1401 		return (error);
   1402 
   1403 	len = strlen(addr);
   1404 	if (len < 11 || len > 17)
   1405 		return (EINVAL);
   1406 
   1407 	/* Commit change */
   1408 	if (ether_nonstatic_aton(enaddr, addr) != 0)
   1409 		return (EINVAL);
   1410 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1411 	return (error);
   1412 }
   1413 #endif
   1414