Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.63
      1 /*	$NetBSD: if_tap.c,v 1.63 2010/01/19 22:08:01 pooka Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.63 2010/01/19 22:08:01 pooka Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/device.h>
     50 #include <sys/file.h>
     51 #include <sys/filedesc.h>
     52 #include <sys/ksyms.h>
     53 #include <sys/poll.h>
     54 #include <sys/proc.h>
     55 #include <sys/select.h>
     56 #include <sys/sockio.h>
     57 #if defined(COMPAT_40) || defined(MODULAR)
     58 #include <sys/sysctl.h>
     59 #endif
     60 #include <sys/kauth.h>
     61 #include <sys/mutex.h>
     62 #include <sys/simplelock.h>
     63 #include <sys/intr.h>
     64 #include <sys/stat.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #include <net/bpf.h>
     72 
     73 #include <compat/sys/sockio.h>
     74 
     75 #if defined(COMPAT_40) || defined(MODULAR)
     76 /*
     77  * sysctl node management
     78  *
     79  * It's not really possible to use a SYSCTL_SETUP block with
     80  * current module implementation, so it is easier to just define
     81  * our own function.
     82  *
     83  * The handler function is a "helper" in Andrew Brown's sysctl
     84  * framework terminology.  It is used as a gateway for sysctl
     85  * requests over the nodes.
     86  *
     87  * tap_log allows the module to log creations of nodes and
     88  * destroy them all at once using sysctl_teardown.
     89  */
     90 static int tap_node;
     91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93 #endif
     94 
     95 /*
     96  * Since we're an Ethernet device, we need the 3 following
     97  * components: a leading struct device, a struct ethercom,
     98  * and also a struct ifmedia since we don't attach a PHY to
     99  * ourselves. We could emulate one, but there's no real
    100  * point.
    101  */
    102 
    103 struct tap_softc {
    104 	device_t	sc_dev;
    105 	struct ifmedia	sc_im;
    106 	struct ethercom	sc_ec;
    107 	int		sc_flags;
    108 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    109 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    110 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    111 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    112 	struct selinfo	sc_rsel;
    113 	pid_t		sc_pgid; /* For async. IO */
    114 	kmutex_t	sc_rdlock;
    115 	struct simplelock	sc_kqlock;
    116 	void		*sc_sih;
    117 	struct timespec sc_atime;
    118 	struct timespec sc_mtime;
    119 	struct timespec sc_btime;
    120 };
    121 
    122 /* autoconf(9) glue */
    123 
    124 void	tapattach(int);
    125 
    126 static int	tap_match(device_t, cfdata_t, void *);
    127 static void	tap_attach(device_t, device_t, void *);
    128 static int	tap_detach(device_t, int);
    129 
    130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    131     tap_match, tap_attach, tap_detach, NULL);
    132 extern struct cfdriver tap_cd;
    133 
    134 /* Real device access routines */
    135 static int	tap_dev_close(struct tap_softc *);
    136 static int	tap_dev_read(int, struct uio *, int);
    137 static int	tap_dev_write(int, struct uio *, int);
    138 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    139 static int	tap_dev_poll(int, int, struct lwp *);
    140 static int	tap_dev_kqfilter(int, struct knote *);
    141 
    142 /* Fileops access routines */
    143 static int	tap_fops_close(file_t *);
    144 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    145     kauth_cred_t, int);
    146 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    147     kauth_cred_t, int);
    148 static int	tap_fops_ioctl(file_t *, u_long, void *);
    149 static int	tap_fops_poll(file_t *, int);
    150 static int	tap_fops_stat(file_t *, struct stat *);
    151 static int	tap_fops_kqfilter(file_t *, struct knote *);
    152 
    153 static const struct fileops tap_fileops = {
    154 	.fo_read = tap_fops_read,
    155 	.fo_write = tap_fops_write,
    156 	.fo_ioctl = tap_fops_ioctl,
    157 	.fo_fcntl = fnullop_fcntl,
    158 	.fo_poll = tap_fops_poll,
    159 	.fo_stat = tap_fops_stat,
    160 	.fo_close = tap_fops_close,
    161 	.fo_kqfilter = tap_fops_kqfilter,
    162 	.fo_restart = fnullop_restart,
    163 };
    164 
    165 /* Helper for cloning open() */
    166 static int	tap_dev_cloner(struct lwp *);
    167 
    168 /* Character device routines */
    169 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    170 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    171 static int	tap_cdev_read(dev_t, struct uio *, int);
    172 static int	tap_cdev_write(dev_t, struct uio *, int);
    173 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    174 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    175 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    176 
    177 const struct cdevsw tap_cdevsw = {
    178 	tap_cdev_open, tap_cdev_close,
    179 	tap_cdev_read, tap_cdev_write,
    180 	tap_cdev_ioctl, nostop, notty,
    181 	tap_cdev_poll, nommap,
    182 	tap_cdev_kqfilter,
    183 	D_OTHER,
    184 };
    185 
    186 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    187 
    188 /* kqueue-related routines */
    189 static void	tap_kqdetach(struct knote *);
    190 static int	tap_kqread(struct knote *, long);
    191 
    192 /*
    193  * Those are needed by the if_media interface.
    194  */
    195 
    196 static int	tap_mediachange(struct ifnet *);
    197 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    198 
    199 /*
    200  * Those are needed by the ifnet interface, and would typically be
    201  * there for any network interface driver.
    202  * Some other routines are optional: watchdog and drain.
    203  */
    204 
    205 static void	tap_start(struct ifnet *);
    206 static void	tap_stop(struct ifnet *, int);
    207 static int	tap_init(struct ifnet *);
    208 static int	tap_ioctl(struct ifnet *, u_long, void *);
    209 
    210 /* Internal functions */
    211 #if defined(COMPAT_40) || defined(MODULAR)
    212 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    213 #endif
    214 static void	tap_softintr(void *);
    215 
    216 /*
    217  * tap is a clonable interface, although it is highly unrealistic for
    218  * an Ethernet device.
    219  *
    220  * Here are the bits needed for a clonable interface.
    221  */
    222 static int	tap_clone_create(struct if_clone *, int);
    223 static int	tap_clone_destroy(struct ifnet *);
    224 
    225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    226 					tap_clone_create,
    227 					tap_clone_destroy);
    228 
    229 /* Helper functionis shared by the two cloning code paths */
    230 static struct tap_softc *	tap_clone_creator(int);
    231 int	tap_clone_destroyer(device_t);
    232 
    233 void
    234 tapattach(int n)
    235 {
    236 	int error;
    237 
    238 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    239 	if (error) {
    240 		aprint_error("%s: unable to register cfattach\n",
    241 		    tap_cd.cd_name);
    242 		(void)config_cfdriver_detach(&tap_cd);
    243 		return;
    244 	}
    245 
    246 	if_clone_attach(&tap_cloners);
    247 }
    248 
    249 /* Pretty much useless for a pseudo-device */
    250 static int
    251 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    252 {
    253 
    254 	return (1);
    255 }
    256 
    257 void
    258 tap_attach(device_t parent, device_t self, void *aux)
    259 {
    260 	struct tap_softc *sc = device_private(self);
    261 	struct ifnet *ifp;
    262 #if defined(COMPAT_40) || defined(MODULAR)
    263 	const struct sysctlnode *node;
    264 	int error;
    265 #endif
    266 	uint8_t enaddr[ETHER_ADDR_LEN] =
    267 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    268 	char enaddrstr[3 * ETHER_ADDR_LEN];
    269 	struct timeval tv;
    270 	uint32_t ui;
    271 
    272 	sc->sc_dev = self;
    273 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
    274 	getnanotime(&sc->sc_btime);
    275 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    276 
    277 	if (!pmf_device_register(self, NULL, NULL))
    278 		aprint_error_dev(self, "couldn't establish power handler\n");
    279 
    280 	/*
    281 	 * In order to obtain unique initial Ethernet address on a host,
    282 	 * do some randomisation using the current uptime.  It's not meant
    283 	 * for anything but avoiding hard-coding an address.
    284 	 */
    285 	getmicrouptime(&tv);
    286 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    287 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
    288 
    289 	aprint_verbose_dev(self, "Ethernet address %s\n",
    290 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    291 
    292 	/*
    293 	 * Why 1000baseT? Why not? You can add more.
    294 	 *
    295 	 * Note that there are 3 steps: init, one or several additions to
    296 	 * list of supported media, and in the end, the selection of one
    297 	 * of them.
    298 	 */
    299 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    300 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    301 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    302 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    303 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    304 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    305 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    306 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    307 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    308 
    309 	/*
    310 	 * One should note that an interface must do multicast in order
    311 	 * to support IPv6.
    312 	 */
    313 	ifp = &sc->sc_ec.ec_if;
    314 	strcpy(ifp->if_xname, device_xname(self));
    315 	ifp->if_softc	= sc;
    316 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    317 	ifp->if_ioctl	= tap_ioctl;
    318 	ifp->if_start	= tap_start;
    319 	ifp->if_stop	= tap_stop;
    320 	ifp->if_init	= tap_init;
    321 	IFQ_SET_READY(&ifp->if_snd);
    322 
    323 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    324 
    325 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    326 	 * being common to all network interface drivers. */
    327 	if_attach(ifp);
    328 	ether_ifattach(ifp, enaddr);
    329 
    330 	sc->sc_flags = 0;
    331 
    332 #if defined(COMPAT_40) || defined(MODULAR)
    333 	/*
    334 	 * Add a sysctl node for that interface.
    335 	 *
    336 	 * The pointer transmitted is not a string, but instead a pointer to
    337 	 * the softc structure, which we can use to build the string value on
    338 	 * the fly in the helper function of the node.  See the comments for
    339 	 * tap_sysctl_handler for details.
    340 	 *
    341 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    342 	 * component.  However, we can allocate a number ourselves, as we are
    343 	 * the only consumer of the net.link.<iface> node.  In this case, the
    344 	 * unit number is conveniently used to number the node.  CTL_CREATE
    345 	 * would just work, too.
    346 	 */
    347 	if ((error = sysctl_createv(NULL, 0, NULL,
    348 	    &node, CTLFLAG_READWRITE,
    349 	    CTLTYPE_STRING, device_xname(self), NULL,
    350 	    tap_sysctl_handler, 0, sc, 18,
    351 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    352 	    CTL_EOL)) != 0)
    353 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    354 		    error);
    355 #endif
    356 
    357 	/*
    358 	 * Initialize the two locks for the device.
    359 	 *
    360 	 * We need a lock here because even though the tap device can be
    361 	 * opened only once, the file descriptor might be passed to another
    362 	 * process, say a fork(2)ed child.
    363 	 *
    364 	 * The Giant saves us from most of the hassle, but since the read
    365 	 * operation can sleep, we don't want two processes to wake up at
    366 	 * the same moment and both try and dequeue a single packet.
    367 	 *
    368 	 * The queue for event listeners (used by kqueue(9), see below) has
    369 	 * to be protected, too, but we don't need the same level of
    370 	 * complexity for that lock, so a simple spinning lock is fine.
    371 	 */
    372 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    373 	simple_lock_init(&sc->sc_kqlock);
    374 
    375 	selinit(&sc->sc_rsel);
    376 }
    377 
    378 /*
    379  * When detaching, we do the inverse of what is done in the attach
    380  * routine, in reversed order.
    381  */
    382 static int
    383 tap_detach(device_t self, int flags)
    384 {
    385 	struct tap_softc *sc = device_private(self);
    386 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    387 #if defined(COMPAT_40) || defined(MODULAR)
    388 	int error;
    389 #endif
    390 	int s;
    391 
    392 	sc->sc_flags |= TAP_GOING;
    393 	s = splnet();
    394 	tap_stop(ifp, 1);
    395 	if_down(ifp);
    396 	splx(s);
    397 
    398 	softint_disestablish(sc->sc_sih);
    399 
    400 #if defined(COMPAT_40) || defined(MODULAR)
    401 	/*
    402 	 * Destroying a single leaf is a very straightforward operation using
    403 	 * sysctl_destroyv.  One should be sure to always end the path with
    404 	 * CTL_EOL.
    405 	 */
    406 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    407 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    408 		aprint_error_dev(self,
    409 		    "sysctl_destroyv returned %d, ignoring\n", error);
    410 #endif
    411 	ether_ifdetach(ifp);
    412 	if_detach(ifp);
    413 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    414 	seldestroy(&sc->sc_rsel);
    415 	mutex_destroy(&sc->sc_rdlock);
    416 
    417 	pmf_device_deregister(self);
    418 
    419 	return (0);
    420 }
    421 
    422 /*
    423  * This function is called by the ifmedia layer to notify the driver
    424  * that the user requested a media change.  A real driver would
    425  * reconfigure the hardware.
    426  */
    427 static int
    428 tap_mediachange(struct ifnet *ifp)
    429 {
    430 	return (0);
    431 }
    432 
    433 /*
    434  * Here the user asks for the currently used media.
    435  */
    436 static void
    437 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    438 {
    439 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    440 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    441 }
    442 
    443 /*
    444  * This is the function where we SEND packets.
    445  *
    446  * There is no 'receive' equivalent.  A typical driver will get
    447  * interrupts from the hardware, and from there will inject new packets
    448  * into the network stack.
    449  *
    450  * Once handled, a packet must be freed.  A real driver might not be able
    451  * to fit all the pending packets into the hardware, and is allowed to
    452  * return before having sent all the packets.  It should then use the
    453  * if_flags flag IFF_OACTIVE to notify the upper layer.
    454  *
    455  * There are also other flags one should check, such as IFF_PAUSE.
    456  *
    457  * It is our duty to make packets available to BPF listeners.
    458  *
    459  * You should be aware that this function is called by the Ethernet layer
    460  * at splnet().
    461  *
    462  * When the device is opened, we have to pass the packet(s) to the
    463  * userland.  For that we stay in OACTIVE mode while the userland gets
    464  * the packets, and we send a signal to the processes waiting to read.
    465  *
    466  * wakeup(sc) is the counterpart to the tsleep call in
    467  * tap_dev_read, while selnotify() is used for kevent(2) and
    468  * poll(2) (which includes select(2)) listeners.
    469  */
    470 static void
    471 tap_start(struct ifnet *ifp)
    472 {
    473 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    474 	struct mbuf *m0;
    475 
    476 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    477 		/* Simply drop packets */
    478 		for(;;) {
    479 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    480 			if (m0 == NULL)
    481 				return;
    482 
    483 			ifp->if_opackets++;
    484 			if (ifp->if_bpf)
    485 				bpf_ops->bpf_mtap(ifp->if_bpf, m0);
    486 
    487 			m_freem(m0);
    488 		}
    489 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    490 		ifp->if_flags |= IFF_OACTIVE;
    491 		wakeup(sc);
    492 		selnotify(&sc->sc_rsel, 0, 1);
    493 		if (sc->sc_flags & TAP_ASYNCIO)
    494 			softint_schedule(sc->sc_sih);
    495 	}
    496 }
    497 
    498 static void
    499 tap_softintr(void *cookie)
    500 {
    501 	struct tap_softc *sc;
    502 	struct ifnet *ifp;
    503 	int a, b;
    504 
    505 	sc = cookie;
    506 
    507 	if (sc->sc_flags & TAP_ASYNCIO) {
    508 		ifp = &sc->sc_ec.ec_if;
    509 		if (ifp->if_flags & IFF_RUNNING) {
    510 			a = POLL_IN;
    511 			b = POLLIN|POLLRDNORM;
    512 		} else {
    513 			a = POLL_HUP;
    514 			b = 0;
    515 		}
    516 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    517 	}
    518 }
    519 
    520 /*
    521  * A typical driver will only contain the following handlers for
    522  * ioctl calls, except SIOCSIFPHYADDR.
    523  * The latter is a hack I used to set the Ethernet address of the
    524  * faked device.
    525  *
    526  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    527  * called under splnet().
    528  */
    529 static int
    530 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    531 {
    532 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    533 	struct ifreq *ifr = (struct ifreq *)data;
    534 	int s, error;
    535 
    536 	s = splnet();
    537 
    538 	switch (cmd) {
    539 #ifdef OSIOCSIFMEDIA
    540 	case OSIOCSIFMEDIA:
    541 #endif
    542 	case SIOCSIFMEDIA:
    543 	case SIOCGIFMEDIA:
    544 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    545 		break;
    546 #if defined(COMPAT_40) || defined(MODULAR)
    547 	case SIOCSIFPHYADDR:
    548 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    549 		break;
    550 #endif
    551 	default:
    552 		error = ether_ioctl(ifp, cmd, data);
    553 		if (error == ENETRESET)
    554 			error = 0;
    555 		break;
    556 	}
    557 
    558 	splx(s);
    559 
    560 	return (error);
    561 }
    562 
    563 #if defined(COMPAT_40) || defined(MODULAR)
    564 /*
    565  * Helper function to set Ethernet address.  This has been replaced by
    566  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    567  */
    568 static int
    569 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    570 {
    571 	const struct sockaddr *sa = &ifra->ifra_addr;
    572 
    573 	if (sa->sa_family != AF_LINK)
    574 		return (EINVAL);
    575 
    576 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    577 
    578 	return (0);
    579 }
    580 #endif
    581 
    582 /*
    583  * _init() would typically be called when an interface goes up,
    584  * meaning it should configure itself into the state in which it
    585  * can send packets.
    586  */
    587 static int
    588 tap_init(struct ifnet *ifp)
    589 {
    590 	ifp->if_flags |= IFF_RUNNING;
    591 
    592 	tap_start(ifp);
    593 
    594 	return (0);
    595 }
    596 
    597 /*
    598  * _stop() is called when an interface goes down.  It is our
    599  * responsability to validate that state by clearing the
    600  * IFF_RUNNING flag.
    601  *
    602  * We have to wake up all the sleeping processes to have the pending
    603  * read requests cancelled.
    604  */
    605 static void
    606 tap_stop(struct ifnet *ifp, int disable)
    607 {
    608 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    609 
    610 	ifp->if_flags &= ~IFF_RUNNING;
    611 	wakeup(sc);
    612 	selnotify(&sc->sc_rsel, 0, 1);
    613 	if (sc->sc_flags & TAP_ASYNCIO)
    614 		softint_schedule(sc->sc_sih);
    615 }
    616 
    617 /*
    618  * The 'create' command of ifconfig can be used to create
    619  * any numbered instance of a given device.  Thus we have to
    620  * make sure we have enough room in cd_devs to create the
    621  * user-specified instance.  config_attach_pseudo will do this
    622  * for us.
    623  */
    624 static int
    625 tap_clone_create(struct if_clone *ifc, int unit)
    626 {
    627 	if (tap_clone_creator(unit) == NULL) {
    628 		aprint_error("%s%d: unable to attach an instance\n",
    629                     tap_cd.cd_name, unit);
    630 		return (ENXIO);
    631 	}
    632 
    633 	return (0);
    634 }
    635 
    636 /*
    637  * tap(4) can be cloned by two ways:
    638  *   using 'ifconfig tap0 create', which will use the network
    639  *     interface cloning API, and call tap_clone_create above.
    640  *   opening the cloning device node, whose minor number is TAP_CLONER.
    641  *     See below for an explanation on how this part work.
    642  */
    643 static struct tap_softc *
    644 tap_clone_creator(int unit)
    645 {
    646 	struct cfdata *cf;
    647 
    648 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    649 	cf->cf_name = tap_cd.cd_name;
    650 	cf->cf_atname = tap_ca.ca_name;
    651 	if (unit == -1) {
    652 		/* let autoconf find the first free one */
    653 		cf->cf_unit = 0;
    654 		cf->cf_fstate = FSTATE_STAR;
    655 	} else {
    656 		cf->cf_unit = unit;
    657 		cf->cf_fstate = FSTATE_NOTFOUND;
    658 	}
    659 
    660 	return device_private(config_attach_pseudo(cf));
    661 }
    662 
    663 /*
    664  * The clean design of if_clone and autoconf(9) makes that part
    665  * really straightforward.  The second argument of config_detach
    666  * means neither QUIET nor FORCED.
    667  */
    668 static int
    669 tap_clone_destroy(struct ifnet *ifp)
    670 {
    671 	struct tap_softc *sc = ifp->if_softc;
    672 
    673 	return tap_clone_destroyer(sc->sc_dev);
    674 }
    675 
    676 int
    677 tap_clone_destroyer(device_t dev)
    678 {
    679 	cfdata_t cf = device_cfdata(dev);
    680 	int error;
    681 
    682 	if ((error = config_detach(dev, 0)) != 0)
    683 		aprint_error_dev(dev, "unable to detach instance\n");
    684 	free(cf, M_DEVBUF);
    685 
    686 	return (error);
    687 }
    688 
    689 /*
    690  * tap(4) is a bit of an hybrid device.  It can be used in two different
    691  * ways:
    692  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    693  *  2. open /dev/tap, get a new interface created and read/write off it.
    694  *     That interface is destroyed when the process that had it created exits.
    695  *
    696  * The first way is managed by the cdevsw structure, and you access interfaces
    697  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    698  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    699  *
    700  * The second way is the so-called "cloning" device.  It's a special minor
    701  * number (chosen as the maximal number, to allow as much tap devices as
    702  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    703  * call ends in tap_cdev_open.  The actual place where it is handled is
    704  * tap_dev_cloner.
    705  *
    706  * An tap device cannot be opened more than once at a time, so the cdevsw
    707  * part of open() does nothing but noting that the interface is being used and
    708  * hence ready to actually handle packets.
    709  */
    710 
    711 static int
    712 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    713 {
    714 	struct tap_softc *sc;
    715 
    716 	if (minor(dev) == TAP_CLONER)
    717 		return tap_dev_cloner(l);
    718 
    719 	sc = device_lookup_private(&tap_cd, minor(dev));
    720 	if (sc == NULL)
    721 		return (ENXIO);
    722 
    723 	/* The device can only be opened once */
    724 	if (sc->sc_flags & TAP_INUSE)
    725 		return (EBUSY);
    726 	sc->sc_flags |= TAP_INUSE;
    727 	return (0);
    728 }
    729 
    730 /*
    731  * There are several kinds of cloning devices, and the most simple is the one
    732  * tap(4) uses.  What it does is change the file descriptor with a new one,
    733  * with its own fileops structure (which maps to the various read, write,
    734  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    735  * then actually creates the new tap devices.
    736  *
    737  * Once those two steps are successful, we can re-wire the existing file
    738  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    739  * structure as needed (notably f_data gets filled with the fifth parameter
    740  * passed, the unit of the tap device which will allows us identifying the
    741  * device later), and returns EMOVEFD.
    742  *
    743  * That magic value is interpreted by sys_open() which then replaces the
    744  * current file descriptor by the new one (through a magic member of struct
    745  * lwp, l_dupfd).
    746  *
    747  * The tap device is flagged as being busy since it otherwise could be
    748  * externally accessed through the corresponding device node with the cdevsw
    749  * interface.
    750  */
    751 
    752 static int
    753 tap_dev_cloner(struct lwp *l)
    754 {
    755 	struct tap_softc *sc;
    756 	file_t *fp;
    757 	int error, fd;
    758 
    759 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    760 		return (error);
    761 
    762 	if ((sc = tap_clone_creator(-1)) == NULL) {
    763 		fd_abort(curproc, fp, fd);
    764 		return (ENXIO);
    765 	}
    766 
    767 	sc->sc_flags |= TAP_INUSE;
    768 
    769 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    770 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    771 }
    772 
    773 /*
    774  * While all other operations (read, write, ioctl, poll and kqfilter) are
    775  * really the same whether we are in cdevsw or fileops mode, the close()
    776  * function is slightly different in the two cases.
    777  *
    778  * As for the other, the core of it is shared in tap_dev_close.  What
    779  * it does is sufficient for the cdevsw interface, but the cloning interface
    780  * needs another thing:  the interface is destroyed when the processes that
    781  * created it closes it.
    782  */
    783 static int
    784 tap_cdev_close(dev_t dev, int flags, int fmt,
    785     struct lwp *l)
    786 {
    787 	struct tap_softc *sc =
    788 	    device_lookup_private(&tap_cd, minor(dev));
    789 
    790 	if (sc == NULL)
    791 		return (ENXIO);
    792 
    793 	return tap_dev_close(sc);
    794 }
    795 
    796 /*
    797  * It might happen that the administrator used ifconfig to externally destroy
    798  * the interface.  In that case, tap_fops_close will be called while
    799  * tap_detach is already happening.  If we called it again from here, we
    800  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    801  */
    802 static int
    803 tap_fops_close(file_t *fp)
    804 {
    805 	int unit = (intptr_t)fp->f_data;
    806 	struct tap_softc *sc;
    807 	int error;
    808 
    809 	sc = device_lookup_private(&tap_cd, unit);
    810 	if (sc == NULL)
    811 		return (ENXIO);
    812 
    813 	/* tap_dev_close currently always succeeds, but it might not
    814 	 * always be the case. */
    815 	KERNEL_LOCK(1, NULL);
    816 	if ((error = tap_dev_close(sc)) != 0) {
    817 		KERNEL_UNLOCK_ONE(NULL);
    818 		return (error);
    819 	}
    820 
    821 	/* Destroy the device now that it is no longer useful,
    822 	 * unless it's already being destroyed. */
    823 	if ((sc->sc_flags & TAP_GOING) != 0) {
    824 		KERNEL_UNLOCK_ONE(NULL);
    825 		return (0);
    826 	}
    827 
    828 	error = tap_clone_destroyer(sc->sc_dev);
    829 	KERNEL_UNLOCK_ONE(NULL);
    830 	return error;
    831 }
    832 
    833 static int
    834 tap_dev_close(struct tap_softc *sc)
    835 {
    836 	struct ifnet *ifp;
    837 	int s;
    838 
    839 	s = splnet();
    840 	/* Let tap_start handle packets again */
    841 	ifp = &sc->sc_ec.ec_if;
    842 	ifp->if_flags &= ~IFF_OACTIVE;
    843 
    844 	/* Purge output queue */
    845 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    846 		struct mbuf *m;
    847 
    848 		for (;;) {
    849 			IFQ_DEQUEUE(&ifp->if_snd, m);
    850 			if (m == NULL)
    851 				break;
    852 
    853 			ifp->if_opackets++;
    854 			if (ifp->if_bpf)
    855 				bpf_ops->bpf_mtap(ifp->if_bpf, m);
    856 			m_freem(m);
    857 		}
    858 	}
    859 	splx(s);
    860 
    861 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    862 
    863 	return (0);
    864 }
    865 
    866 static int
    867 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    868 {
    869 	return tap_dev_read(minor(dev), uio, flags);
    870 }
    871 
    872 static int
    873 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    874     kauth_cred_t cred, int flags)
    875 {
    876 	int error;
    877 
    878 	KERNEL_LOCK(1, NULL);
    879 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
    880 	KERNEL_UNLOCK_ONE(NULL);
    881 	return error;
    882 }
    883 
    884 static int
    885 tap_dev_read(int unit, struct uio *uio, int flags)
    886 {
    887 	struct tap_softc *sc =
    888 	    device_lookup_private(&tap_cd, unit);
    889 	struct ifnet *ifp;
    890 	struct mbuf *m, *n;
    891 	int error = 0, s;
    892 
    893 	if (sc == NULL)
    894 		return (ENXIO);
    895 
    896 	getnanotime(&sc->sc_atime);
    897 
    898 	ifp = &sc->sc_ec.ec_if;
    899 	if ((ifp->if_flags & IFF_UP) == 0)
    900 		return (EHOSTDOWN);
    901 
    902 	/*
    903 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    904 	 */
    905 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    906 		if (!mutex_tryenter(&sc->sc_rdlock))
    907 			return (EWOULDBLOCK);
    908 	} else {
    909 		mutex_enter(&sc->sc_rdlock);
    910 	}
    911 
    912 	s = splnet();
    913 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    914 		ifp->if_flags &= ~IFF_OACTIVE;
    915 		/*
    916 		 * We must release the lock before sleeping, and re-acquire it
    917 		 * after.
    918 		 */
    919 		mutex_exit(&sc->sc_rdlock);
    920 		if (sc->sc_flags & TAP_NBIO)
    921 			error = EWOULDBLOCK;
    922 		else
    923 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    924 		splx(s);
    925 
    926 		if (error != 0)
    927 			return (error);
    928 		/* The device might have been downed */
    929 		if ((ifp->if_flags & IFF_UP) == 0)
    930 			return (EHOSTDOWN);
    931 		if ((sc->sc_flags & TAP_NBIO)) {
    932 			if (!mutex_tryenter(&sc->sc_rdlock))
    933 				return (EWOULDBLOCK);
    934 		} else {
    935 			mutex_enter(&sc->sc_rdlock);
    936 		}
    937 		s = splnet();
    938 	}
    939 
    940 	IFQ_DEQUEUE(&ifp->if_snd, m);
    941 	ifp->if_flags &= ~IFF_OACTIVE;
    942 	splx(s);
    943 	if (m == NULL) {
    944 		error = 0;
    945 		goto out;
    946 	}
    947 
    948 	ifp->if_opackets++;
    949 	if (ifp->if_bpf)
    950 		bpf_ops->bpf_mtap(ifp->if_bpf, m);
    951 
    952 	/*
    953 	 * One read is one packet.
    954 	 */
    955 	do {
    956 		error = uiomove(mtod(m, void *),
    957 		    min(m->m_len, uio->uio_resid), uio);
    958 		MFREE(m, n);
    959 		m = n;
    960 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    961 
    962 	if (m != NULL)
    963 		m_freem(m);
    964 
    965 out:
    966 	mutex_exit(&sc->sc_rdlock);
    967 	return (error);
    968 }
    969 
    970 static int
    971 tap_fops_stat(file_t *fp, struct stat *st)
    972 {
    973 	int error = 0;
    974 	struct tap_softc *sc;
    975 	int unit = (uintptr_t)fp->f_data;
    976 
    977 	(void)memset(st, 0, sizeof(*st));
    978 
    979 	KERNEL_LOCK(1, NULL);
    980 	sc = device_lookup_private(&tap_cd, unit);
    981 	if (sc == NULL) {
    982 		error = ENXIO;
    983 		goto out;
    984 	}
    985 
    986 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    987 	st->st_atimespec = sc->sc_atime;
    988 	st->st_mtimespec = sc->sc_mtime;
    989 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    990 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    991 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    992 out:
    993 	KERNEL_UNLOCK_ONE(NULL);
    994 	return error;
    995 }
    996 
    997 static int
    998 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    999 {
   1000 	return tap_dev_write(minor(dev), uio, flags);
   1001 }
   1002 
   1003 static int
   1004 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1005     kauth_cred_t cred, int flags)
   1006 {
   1007 	int error;
   1008 
   1009 	KERNEL_LOCK(1, NULL);
   1010 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
   1011 	KERNEL_UNLOCK_ONE(NULL);
   1012 	return error;
   1013 }
   1014 
   1015 static int
   1016 tap_dev_write(int unit, struct uio *uio, int flags)
   1017 {
   1018 	struct tap_softc *sc =
   1019 	    device_lookup_private(&tap_cd, unit);
   1020 	struct ifnet *ifp;
   1021 	struct mbuf *m, **mp;
   1022 	int error = 0;
   1023 	int s;
   1024 
   1025 	if (sc == NULL)
   1026 		return (ENXIO);
   1027 
   1028 	getnanotime(&sc->sc_mtime);
   1029 	ifp = &sc->sc_ec.ec_if;
   1030 
   1031 	/* One write, one packet, that's the rule */
   1032 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1033 	if (m == NULL) {
   1034 		ifp->if_ierrors++;
   1035 		return (ENOBUFS);
   1036 	}
   1037 	m->m_pkthdr.len = uio->uio_resid;
   1038 
   1039 	mp = &m;
   1040 	while (error == 0 && uio->uio_resid > 0) {
   1041 		if (*mp != m) {
   1042 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1043 			if (*mp == NULL) {
   1044 				error = ENOBUFS;
   1045 				break;
   1046 			}
   1047 		}
   1048 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1049 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1050 		mp = &(*mp)->m_next;
   1051 	}
   1052 	if (error) {
   1053 		ifp->if_ierrors++;
   1054 		m_freem(m);
   1055 		return (error);
   1056 	}
   1057 
   1058 	ifp->if_ipackets++;
   1059 	m->m_pkthdr.rcvif = ifp;
   1060 
   1061 	if (ifp->if_bpf)
   1062 		bpf_ops->bpf_mtap(ifp->if_bpf, m);
   1063 	s =splnet();
   1064 	(*ifp->if_input)(ifp, m);
   1065 	splx(s);
   1066 
   1067 	return (0);
   1068 }
   1069 
   1070 static int
   1071 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1072     struct lwp *l)
   1073 {
   1074 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1075 }
   1076 
   1077 static int
   1078 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1079 {
   1080 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
   1081 }
   1082 
   1083 static int
   1084 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1085 {
   1086 	struct tap_softc *sc =
   1087 	    device_lookup_private(&tap_cd, unit);
   1088 	int error = 0;
   1089 
   1090 	if (sc == NULL)
   1091 		return (ENXIO);
   1092 
   1093 	switch (cmd) {
   1094 	case FIONREAD:
   1095 		{
   1096 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1097 			struct mbuf *m;
   1098 			int s;
   1099 
   1100 			s = splnet();
   1101 			IFQ_POLL(&ifp->if_snd, m);
   1102 
   1103 			if (m == NULL)
   1104 				*(int *)data = 0;
   1105 			else
   1106 				*(int *)data = m->m_pkthdr.len;
   1107 			splx(s);
   1108 		} break;
   1109 	case TIOCSPGRP:
   1110 	case FIOSETOWN:
   1111 		error = fsetown(&sc->sc_pgid, cmd, data);
   1112 		break;
   1113 	case TIOCGPGRP:
   1114 	case FIOGETOWN:
   1115 		error = fgetown(sc->sc_pgid, cmd, data);
   1116 		break;
   1117 	case FIOASYNC:
   1118 		if (*(int *)data)
   1119 			sc->sc_flags |= TAP_ASYNCIO;
   1120 		else
   1121 			sc->sc_flags &= ~TAP_ASYNCIO;
   1122 		break;
   1123 	case FIONBIO:
   1124 		if (*(int *)data)
   1125 			sc->sc_flags |= TAP_NBIO;
   1126 		else
   1127 			sc->sc_flags &= ~TAP_NBIO;
   1128 		break;
   1129 #ifdef OTAPGIFNAME
   1130 	case OTAPGIFNAME:
   1131 #endif
   1132 	case TAPGIFNAME:
   1133 		{
   1134 			struct ifreq *ifr = (struct ifreq *)data;
   1135 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1136 
   1137 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1138 		} break;
   1139 	default:
   1140 		error = ENOTTY;
   1141 		break;
   1142 	}
   1143 
   1144 	return (0);
   1145 }
   1146 
   1147 static int
   1148 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1149 {
   1150 	return tap_dev_poll(minor(dev), events, l);
   1151 }
   1152 
   1153 static int
   1154 tap_fops_poll(file_t *fp, int events)
   1155 {
   1156 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1157 }
   1158 
   1159 static int
   1160 tap_dev_poll(int unit, int events, struct lwp *l)
   1161 {
   1162 	struct tap_softc *sc =
   1163 	    device_lookup_private(&tap_cd, unit);
   1164 	int revents = 0;
   1165 
   1166 	if (sc == NULL)
   1167 		return POLLERR;
   1168 
   1169 	if (events & (POLLIN|POLLRDNORM)) {
   1170 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1171 		struct mbuf *m;
   1172 		int s;
   1173 
   1174 		s = splnet();
   1175 		IFQ_POLL(&ifp->if_snd, m);
   1176 		splx(s);
   1177 
   1178 		if (m != NULL)
   1179 			revents |= events & (POLLIN|POLLRDNORM);
   1180 		else {
   1181 			simple_lock(&sc->sc_kqlock);
   1182 			selrecord(l, &sc->sc_rsel);
   1183 			simple_unlock(&sc->sc_kqlock);
   1184 		}
   1185 	}
   1186 	revents |= events & (POLLOUT|POLLWRNORM);
   1187 
   1188 	return (revents);
   1189 }
   1190 
   1191 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1192 	tap_kqread };
   1193 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1194 	filt_seltrue };
   1195 
   1196 static int
   1197 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1198 {
   1199 	return tap_dev_kqfilter(minor(dev), kn);
   1200 }
   1201 
   1202 static int
   1203 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1204 {
   1205 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1206 }
   1207 
   1208 static int
   1209 tap_dev_kqfilter(int unit, struct knote *kn)
   1210 {
   1211 	struct tap_softc *sc =
   1212 	    device_lookup_private(&tap_cd, unit);
   1213 
   1214 	if (sc == NULL)
   1215 		return (ENXIO);
   1216 
   1217 	KERNEL_LOCK(1, NULL);
   1218 	switch(kn->kn_filter) {
   1219 	case EVFILT_READ:
   1220 		kn->kn_fop = &tap_read_filterops;
   1221 		break;
   1222 	case EVFILT_WRITE:
   1223 		kn->kn_fop = &tap_seltrue_filterops;
   1224 		break;
   1225 	default:
   1226 		KERNEL_UNLOCK_ONE(NULL);
   1227 		return (EINVAL);
   1228 	}
   1229 
   1230 	kn->kn_hook = sc;
   1231 	simple_lock(&sc->sc_kqlock);
   1232 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1233 	simple_unlock(&sc->sc_kqlock);
   1234 	KERNEL_UNLOCK_ONE(NULL);
   1235 	return (0);
   1236 }
   1237 
   1238 static void
   1239 tap_kqdetach(struct knote *kn)
   1240 {
   1241 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1242 
   1243 	KERNEL_LOCK(1, NULL);
   1244 	simple_lock(&sc->sc_kqlock);
   1245 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1246 	simple_unlock(&sc->sc_kqlock);
   1247 	KERNEL_UNLOCK_ONE(NULL);
   1248 }
   1249 
   1250 static int
   1251 tap_kqread(struct knote *kn, long hint)
   1252 {
   1253 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1254 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1255 	struct mbuf *m;
   1256 	int s, rv;
   1257 
   1258 	KERNEL_LOCK(1, NULL);
   1259 	s = splnet();
   1260 	IFQ_POLL(&ifp->if_snd, m);
   1261 
   1262 	if (m == NULL)
   1263 		kn->kn_data = 0;
   1264 	else
   1265 		kn->kn_data = m->m_pkthdr.len;
   1266 	splx(s);
   1267 	rv = (kn->kn_data != 0 ? 1 : 0);
   1268 	KERNEL_UNLOCK_ONE(NULL);
   1269 	return rv;
   1270 }
   1271 
   1272 #if defined(COMPAT_40) || defined(MODULAR)
   1273 /*
   1274  * sysctl management routines
   1275  * You can set the address of an interface through:
   1276  * net.link.tap.tap<number>
   1277  *
   1278  * Note the consistent use of tap_log in order to use
   1279  * sysctl_teardown at unload time.
   1280  *
   1281  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1282  * blocks register a function in a special section of the kernel
   1283  * (called a link set) which is used at init_sysctl() time to cycle
   1284  * through all those functions to create the kernel's sysctl tree.
   1285  *
   1286  * It is not possible to use link sets in a module, so the
   1287  * easiest is to simply call our own setup routine at load time.
   1288  *
   1289  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1290  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1291  * whole kernel sysctl tree is built, it is not possible to add any
   1292  * permanent node.
   1293  *
   1294  * It should be noted that we're not saving the sysctlnode pointer
   1295  * we are returned when creating the "tap" node.  That structure
   1296  * cannot be trusted once out of the calling function, as it might
   1297  * get reused.  So we just save the MIB number, and always give the
   1298  * full path starting from the root for later calls to sysctl_createv
   1299  * and sysctl_destroyv.
   1300  */
   1301 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1302 {
   1303 	const struct sysctlnode *node;
   1304 	int error = 0;
   1305 
   1306 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1307 	    CTLFLAG_PERMANENT,
   1308 	    CTLTYPE_NODE, "net", NULL,
   1309 	    NULL, 0, NULL, 0,
   1310 	    CTL_NET, CTL_EOL)) != 0)
   1311 		return;
   1312 
   1313 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1314 	    CTLFLAG_PERMANENT,
   1315 	    CTLTYPE_NODE, "link", NULL,
   1316 	    NULL, 0, NULL, 0,
   1317 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1318 		return;
   1319 
   1320 	/*
   1321 	 * The first four parameters of sysctl_createv are for management.
   1322 	 *
   1323 	 * The four that follows, here starting with a '0' for the flags,
   1324 	 * describe the node.
   1325 	 *
   1326 	 * The next series of four set its value, through various possible
   1327 	 * means.
   1328 	 *
   1329 	 * Last but not least, the path to the node is described.  That path
   1330 	 * is relative to the given root (third argument).  Here we're
   1331 	 * starting from the root.
   1332 	 */
   1333 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1334 	    CTLFLAG_PERMANENT,
   1335 	    CTLTYPE_NODE, "tap", NULL,
   1336 	    NULL, 0, NULL, 0,
   1337 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1338 		return;
   1339 	tap_node = node->sysctl_num;
   1340 }
   1341 
   1342 /*
   1343  * The helper functions make Andrew Brown's interface really
   1344  * shine.  It makes possible to create value on the fly whether
   1345  * the sysctl value is read or written.
   1346  *
   1347  * As shown as an example in the man page, the first step is to
   1348  * create a copy of the node to have sysctl_lookup work on it.
   1349  *
   1350  * Here, we have more work to do than just a copy, since we have
   1351  * to create the string.  The first step is to collect the actual
   1352  * value of the node, which is a convenient pointer to the softc
   1353  * of the interface.  From there we create the string and use it
   1354  * as the value, but only for the *copy* of the node.
   1355  *
   1356  * Then we let sysctl_lookup do the magic, which consists in
   1357  * setting oldp and newp as required by the operation.  When the
   1358  * value is read, that means that the string will be copied to
   1359  * the user, and when it is written, the new value will be copied
   1360  * over in the addr array.
   1361  *
   1362  * If newp is NULL, the user was reading the value, so we don't
   1363  * have anything else to do.  If a new value was written, we
   1364  * have to check it.
   1365  *
   1366  * If it is incorrect, we can return an error and leave 'node' as
   1367  * it is:  since it is a copy of the actual node, the change will
   1368  * be forgotten.
   1369  *
   1370  * Upon a correct input, we commit the change to the ifnet
   1371  * structure of our interface.
   1372  */
   1373 static int
   1374 tap_sysctl_handler(SYSCTLFN_ARGS)
   1375 {
   1376 	struct sysctlnode node;
   1377 	struct tap_softc *sc;
   1378 	struct ifnet *ifp;
   1379 	int error;
   1380 	size_t len;
   1381 	char addr[3 * ETHER_ADDR_LEN];
   1382 	uint8_t enaddr[ETHER_ADDR_LEN];
   1383 
   1384 	node = *rnode;
   1385 	sc = node.sysctl_data;
   1386 	ifp = &sc->sc_ec.ec_if;
   1387 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1388 	node.sysctl_data = addr;
   1389 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1390 	if (error || newp == NULL)
   1391 		return (error);
   1392 
   1393 	len = strlen(addr);
   1394 	if (len < 11 || len > 17)
   1395 		return (EINVAL);
   1396 
   1397 	/* Commit change */
   1398 	if (ether_nonstatic_aton(enaddr, addr) != 0)
   1399 		return (EINVAL);
   1400 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1401 	return (error);
   1402 }
   1403 #endif
   1404