if_tap.c revision 1.63 1 /* $NetBSD: if_tap.c,v 1.63 2010/01/19 22:08:01 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.63 2010/01/19 22:08:01 pooka Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/device.h>
50 #include <sys/file.h>
51 #include <sys/filedesc.h>
52 #include <sys/ksyms.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/simplelock.h>
63 #include <sys/intr.h>
64 #include <sys/stat.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72
73 #include <compat/sys/sockio.h>
74
75 #if defined(COMPAT_40) || defined(MODULAR)
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current module implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93 #endif
94
95 /*
96 * Since we're an Ethernet device, we need the 3 following
97 * components: a leading struct device, a struct ethercom,
98 * and also a struct ifmedia since we don't attach a PHY to
99 * ourselves. We could emulate one, but there's no real
100 * point.
101 */
102
103 struct tap_softc {
104 device_t sc_dev;
105 struct ifmedia sc_im;
106 struct ethercom sc_ec;
107 int sc_flags;
108 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
109 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
110 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
111 #define TAP_GOING 0x00000008 /* interface is being destroyed */
112 struct selinfo sc_rsel;
113 pid_t sc_pgid; /* For async. IO */
114 kmutex_t sc_rdlock;
115 struct simplelock sc_kqlock;
116 void *sc_sih;
117 struct timespec sc_atime;
118 struct timespec sc_mtime;
119 struct timespec sc_btime;
120 };
121
122 /* autoconf(9) glue */
123
124 void tapattach(int);
125
126 static int tap_match(device_t, cfdata_t, void *);
127 static void tap_attach(device_t, device_t, void *);
128 static int tap_detach(device_t, int);
129
130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
131 tap_match, tap_attach, tap_detach, NULL);
132 extern struct cfdriver tap_cd;
133
134 /* Real device access routines */
135 static int tap_dev_close(struct tap_softc *);
136 static int tap_dev_read(int, struct uio *, int);
137 static int tap_dev_write(int, struct uio *, int);
138 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
139 static int tap_dev_poll(int, int, struct lwp *);
140 static int tap_dev_kqfilter(int, struct knote *);
141
142 /* Fileops access routines */
143 static int tap_fops_close(file_t *);
144 static int tap_fops_read(file_t *, off_t *, struct uio *,
145 kauth_cred_t, int);
146 static int tap_fops_write(file_t *, off_t *, struct uio *,
147 kauth_cred_t, int);
148 static int tap_fops_ioctl(file_t *, u_long, void *);
149 static int tap_fops_poll(file_t *, int);
150 static int tap_fops_stat(file_t *, struct stat *);
151 static int tap_fops_kqfilter(file_t *, struct knote *);
152
153 static const struct fileops tap_fileops = {
154 .fo_read = tap_fops_read,
155 .fo_write = tap_fops_write,
156 .fo_ioctl = tap_fops_ioctl,
157 .fo_fcntl = fnullop_fcntl,
158 .fo_poll = tap_fops_poll,
159 .fo_stat = tap_fops_stat,
160 .fo_close = tap_fops_close,
161 .fo_kqfilter = tap_fops_kqfilter,
162 .fo_restart = fnullop_restart,
163 };
164
165 /* Helper for cloning open() */
166 static int tap_dev_cloner(struct lwp *);
167
168 /* Character device routines */
169 static int tap_cdev_open(dev_t, int, int, struct lwp *);
170 static int tap_cdev_close(dev_t, int, int, struct lwp *);
171 static int tap_cdev_read(dev_t, struct uio *, int);
172 static int tap_cdev_write(dev_t, struct uio *, int);
173 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
174 static int tap_cdev_poll(dev_t, int, struct lwp *);
175 static int tap_cdev_kqfilter(dev_t, struct knote *);
176
177 const struct cdevsw tap_cdevsw = {
178 tap_cdev_open, tap_cdev_close,
179 tap_cdev_read, tap_cdev_write,
180 tap_cdev_ioctl, nostop, notty,
181 tap_cdev_poll, nommap,
182 tap_cdev_kqfilter,
183 D_OTHER,
184 };
185
186 #define TAP_CLONER 0xfffff /* Maximal minor value */
187
188 /* kqueue-related routines */
189 static void tap_kqdetach(struct knote *);
190 static int tap_kqread(struct knote *, long);
191
192 /*
193 * Those are needed by the if_media interface.
194 */
195
196 static int tap_mediachange(struct ifnet *);
197 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
198
199 /*
200 * Those are needed by the ifnet interface, and would typically be
201 * there for any network interface driver.
202 * Some other routines are optional: watchdog and drain.
203 */
204
205 static void tap_start(struct ifnet *);
206 static void tap_stop(struct ifnet *, int);
207 static int tap_init(struct ifnet *);
208 static int tap_ioctl(struct ifnet *, u_long, void *);
209
210 /* Internal functions */
211 #if defined(COMPAT_40) || defined(MODULAR)
212 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
213 #endif
214 static void tap_softintr(void *);
215
216 /*
217 * tap is a clonable interface, although it is highly unrealistic for
218 * an Ethernet device.
219 *
220 * Here are the bits needed for a clonable interface.
221 */
222 static int tap_clone_create(struct if_clone *, int);
223 static int tap_clone_destroy(struct ifnet *);
224
225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226 tap_clone_create,
227 tap_clone_destroy);
228
229 /* Helper functionis shared by the two cloning code paths */
230 static struct tap_softc * tap_clone_creator(int);
231 int tap_clone_destroyer(device_t);
232
233 void
234 tapattach(int n)
235 {
236 int error;
237
238 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
239 if (error) {
240 aprint_error("%s: unable to register cfattach\n",
241 tap_cd.cd_name);
242 (void)config_cfdriver_detach(&tap_cd);
243 return;
244 }
245
246 if_clone_attach(&tap_cloners);
247 }
248
249 /* Pretty much useless for a pseudo-device */
250 static int
251 tap_match(device_t parent, cfdata_t cfdata, void *arg)
252 {
253
254 return (1);
255 }
256
257 void
258 tap_attach(device_t parent, device_t self, void *aux)
259 {
260 struct tap_softc *sc = device_private(self);
261 struct ifnet *ifp;
262 #if defined(COMPAT_40) || defined(MODULAR)
263 const struct sysctlnode *node;
264 int error;
265 #endif
266 uint8_t enaddr[ETHER_ADDR_LEN] =
267 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
268 char enaddrstr[3 * ETHER_ADDR_LEN];
269 struct timeval tv;
270 uint32_t ui;
271
272 sc->sc_dev = self;
273 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
274 getnanotime(&sc->sc_btime);
275 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
276
277 if (!pmf_device_register(self, NULL, NULL))
278 aprint_error_dev(self, "couldn't establish power handler\n");
279
280 /*
281 * In order to obtain unique initial Ethernet address on a host,
282 * do some randomisation using the current uptime. It's not meant
283 * for anything but avoiding hard-coding an address.
284 */
285 getmicrouptime(&tv);
286 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
287 memcpy(enaddr+3, (uint8_t *)&ui, 3);
288
289 aprint_verbose_dev(self, "Ethernet address %s\n",
290 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
291
292 /*
293 * Why 1000baseT? Why not? You can add more.
294 *
295 * Note that there are 3 steps: init, one or several additions to
296 * list of supported media, and in the end, the selection of one
297 * of them.
298 */
299 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
300 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
303 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
304 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
305 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
306 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
307 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
308
309 /*
310 * One should note that an interface must do multicast in order
311 * to support IPv6.
312 */
313 ifp = &sc->sc_ec.ec_if;
314 strcpy(ifp->if_xname, device_xname(self));
315 ifp->if_softc = sc;
316 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
317 ifp->if_ioctl = tap_ioctl;
318 ifp->if_start = tap_start;
319 ifp->if_stop = tap_stop;
320 ifp->if_init = tap_init;
321 IFQ_SET_READY(&ifp->if_snd);
322
323 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
324
325 /* Those steps are mandatory for an Ethernet driver, the fisrt call
326 * being common to all network interface drivers. */
327 if_attach(ifp);
328 ether_ifattach(ifp, enaddr);
329
330 sc->sc_flags = 0;
331
332 #if defined(COMPAT_40) || defined(MODULAR)
333 /*
334 * Add a sysctl node for that interface.
335 *
336 * The pointer transmitted is not a string, but instead a pointer to
337 * the softc structure, which we can use to build the string value on
338 * the fly in the helper function of the node. See the comments for
339 * tap_sysctl_handler for details.
340 *
341 * Usually sysctl_createv is called with CTL_CREATE as the before-last
342 * component. However, we can allocate a number ourselves, as we are
343 * the only consumer of the net.link.<iface> node. In this case, the
344 * unit number is conveniently used to number the node. CTL_CREATE
345 * would just work, too.
346 */
347 if ((error = sysctl_createv(NULL, 0, NULL,
348 &node, CTLFLAG_READWRITE,
349 CTLTYPE_STRING, device_xname(self), NULL,
350 tap_sysctl_handler, 0, sc, 18,
351 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
352 CTL_EOL)) != 0)
353 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
354 error);
355 #endif
356
357 /*
358 * Initialize the two locks for the device.
359 *
360 * We need a lock here because even though the tap device can be
361 * opened only once, the file descriptor might be passed to another
362 * process, say a fork(2)ed child.
363 *
364 * The Giant saves us from most of the hassle, but since the read
365 * operation can sleep, we don't want two processes to wake up at
366 * the same moment and both try and dequeue a single packet.
367 *
368 * The queue for event listeners (used by kqueue(9), see below) has
369 * to be protected, too, but we don't need the same level of
370 * complexity for that lock, so a simple spinning lock is fine.
371 */
372 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
373 simple_lock_init(&sc->sc_kqlock);
374
375 selinit(&sc->sc_rsel);
376 }
377
378 /*
379 * When detaching, we do the inverse of what is done in the attach
380 * routine, in reversed order.
381 */
382 static int
383 tap_detach(device_t self, int flags)
384 {
385 struct tap_softc *sc = device_private(self);
386 struct ifnet *ifp = &sc->sc_ec.ec_if;
387 #if defined(COMPAT_40) || defined(MODULAR)
388 int error;
389 #endif
390 int s;
391
392 sc->sc_flags |= TAP_GOING;
393 s = splnet();
394 tap_stop(ifp, 1);
395 if_down(ifp);
396 splx(s);
397
398 softint_disestablish(sc->sc_sih);
399
400 #if defined(COMPAT_40) || defined(MODULAR)
401 /*
402 * Destroying a single leaf is a very straightforward operation using
403 * sysctl_destroyv. One should be sure to always end the path with
404 * CTL_EOL.
405 */
406 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
407 device_unit(sc->sc_dev), CTL_EOL)) != 0)
408 aprint_error_dev(self,
409 "sysctl_destroyv returned %d, ignoring\n", error);
410 #endif
411 ether_ifdetach(ifp);
412 if_detach(ifp);
413 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
414 seldestroy(&sc->sc_rsel);
415 mutex_destroy(&sc->sc_rdlock);
416
417 pmf_device_deregister(self);
418
419 return (0);
420 }
421
422 /*
423 * This function is called by the ifmedia layer to notify the driver
424 * that the user requested a media change. A real driver would
425 * reconfigure the hardware.
426 */
427 static int
428 tap_mediachange(struct ifnet *ifp)
429 {
430 return (0);
431 }
432
433 /*
434 * Here the user asks for the currently used media.
435 */
436 static void
437 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
438 {
439 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
440 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
441 }
442
443 /*
444 * This is the function where we SEND packets.
445 *
446 * There is no 'receive' equivalent. A typical driver will get
447 * interrupts from the hardware, and from there will inject new packets
448 * into the network stack.
449 *
450 * Once handled, a packet must be freed. A real driver might not be able
451 * to fit all the pending packets into the hardware, and is allowed to
452 * return before having sent all the packets. It should then use the
453 * if_flags flag IFF_OACTIVE to notify the upper layer.
454 *
455 * There are also other flags one should check, such as IFF_PAUSE.
456 *
457 * It is our duty to make packets available to BPF listeners.
458 *
459 * You should be aware that this function is called by the Ethernet layer
460 * at splnet().
461 *
462 * When the device is opened, we have to pass the packet(s) to the
463 * userland. For that we stay in OACTIVE mode while the userland gets
464 * the packets, and we send a signal to the processes waiting to read.
465 *
466 * wakeup(sc) is the counterpart to the tsleep call in
467 * tap_dev_read, while selnotify() is used for kevent(2) and
468 * poll(2) (which includes select(2)) listeners.
469 */
470 static void
471 tap_start(struct ifnet *ifp)
472 {
473 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
474 struct mbuf *m0;
475
476 if ((sc->sc_flags & TAP_INUSE) == 0) {
477 /* Simply drop packets */
478 for(;;) {
479 IFQ_DEQUEUE(&ifp->if_snd, m0);
480 if (m0 == NULL)
481 return;
482
483 ifp->if_opackets++;
484 if (ifp->if_bpf)
485 bpf_ops->bpf_mtap(ifp->if_bpf, m0);
486
487 m_freem(m0);
488 }
489 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
490 ifp->if_flags |= IFF_OACTIVE;
491 wakeup(sc);
492 selnotify(&sc->sc_rsel, 0, 1);
493 if (sc->sc_flags & TAP_ASYNCIO)
494 softint_schedule(sc->sc_sih);
495 }
496 }
497
498 static void
499 tap_softintr(void *cookie)
500 {
501 struct tap_softc *sc;
502 struct ifnet *ifp;
503 int a, b;
504
505 sc = cookie;
506
507 if (sc->sc_flags & TAP_ASYNCIO) {
508 ifp = &sc->sc_ec.ec_if;
509 if (ifp->if_flags & IFF_RUNNING) {
510 a = POLL_IN;
511 b = POLLIN|POLLRDNORM;
512 } else {
513 a = POLL_HUP;
514 b = 0;
515 }
516 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
517 }
518 }
519
520 /*
521 * A typical driver will only contain the following handlers for
522 * ioctl calls, except SIOCSIFPHYADDR.
523 * The latter is a hack I used to set the Ethernet address of the
524 * faked device.
525 *
526 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
527 * called under splnet().
528 */
529 static int
530 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
531 {
532 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
533 struct ifreq *ifr = (struct ifreq *)data;
534 int s, error;
535
536 s = splnet();
537
538 switch (cmd) {
539 #ifdef OSIOCSIFMEDIA
540 case OSIOCSIFMEDIA:
541 #endif
542 case SIOCSIFMEDIA:
543 case SIOCGIFMEDIA:
544 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
545 break;
546 #if defined(COMPAT_40) || defined(MODULAR)
547 case SIOCSIFPHYADDR:
548 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
549 break;
550 #endif
551 default:
552 error = ether_ioctl(ifp, cmd, data);
553 if (error == ENETRESET)
554 error = 0;
555 break;
556 }
557
558 splx(s);
559
560 return (error);
561 }
562
563 #if defined(COMPAT_40) || defined(MODULAR)
564 /*
565 * Helper function to set Ethernet address. This has been replaced by
566 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
567 */
568 static int
569 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
570 {
571 const struct sockaddr *sa = &ifra->ifra_addr;
572
573 if (sa->sa_family != AF_LINK)
574 return (EINVAL);
575
576 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
577
578 return (0);
579 }
580 #endif
581
582 /*
583 * _init() would typically be called when an interface goes up,
584 * meaning it should configure itself into the state in which it
585 * can send packets.
586 */
587 static int
588 tap_init(struct ifnet *ifp)
589 {
590 ifp->if_flags |= IFF_RUNNING;
591
592 tap_start(ifp);
593
594 return (0);
595 }
596
597 /*
598 * _stop() is called when an interface goes down. It is our
599 * responsability to validate that state by clearing the
600 * IFF_RUNNING flag.
601 *
602 * We have to wake up all the sleeping processes to have the pending
603 * read requests cancelled.
604 */
605 static void
606 tap_stop(struct ifnet *ifp, int disable)
607 {
608 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
609
610 ifp->if_flags &= ~IFF_RUNNING;
611 wakeup(sc);
612 selnotify(&sc->sc_rsel, 0, 1);
613 if (sc->sc_flags & TAP_ASYNCIO)
614 softint_schedule(sc->sc_sih);
615 }
616
617 /*
618 * The 'create' command of ifconfig can be used to create
619 * any numbered instance of a given device. Thus we have to
620 * make sure we have enough room in cd_devs to create the
621 * user-specified instance. config_attach_pseudo will do this
622 * for us.
623 */
624 static int
625 tap_clone_create(struct if_clone *ifc, int unit)
626 {
627 if (tap_clone_creator(unit) == NULL) {
628 aprint_error("%s%d: unable to attach an instance\n",
629 tap_cd.cd_name, unit);
630 return (ENXIO);
631 }
632
633 return (0);
634 }
635
636 /*
637 * tap(4) can be cloned by two ways:
638 * using 'ifconfig tap0 create', which will use the network
639 * interface cloning API, and call tap_clone_create above.
640 * opening the cloning device node, whose minor number is TAP_CLONER.
641 * See below for an explanation on how this part work.
642 */
643 static struct tap_softc *
644 tap_clone_creator(int unit)
645 {
646 struct cfdata *cf;
647
648 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
649 cf->cf_name = tap_cd.cd_name;
650 cf->cf_atname = tap_ca.ca_name;
651 if (unit == -1) {
652 /* let autoconf find the first free one */
653 cf->cf_unit = 0;
654 cf->cf_fstate = FSTATE_STAR;
655 } else {
656 cf->cf_unit = unit;
657 cf->cf_fstate = FSTATE_NOTFOUND;
658 }
659
660 return device_private(config_attach_pseudo(cf));
661 }
662
663 /*
664 * The clean design of if_clone and autoconf(9) makes that part
665 * really straightforward. The second argument of config_detach
666 * means neither QUIET nor FORCED.
667 */
668 static int
669 tap_clone_destroy(struct ifnet *ifp)
670 {
671 struct tap_softc *sc = ifp->if_softc;
672
673 return tap_clone_destroyer(sc->sc_dev);
674 }
675
676 int
677 tap_clone_destroyer(device_t dev)
678 {
679 cfdata_t cf = device_cfdata(dev);
680 int error;
681
682 if ((error = config_detach(dev, 0)) != 0)
683 aprint_error_dev(dev, "unable to detach instance\n");
684 free(cf, M_DEVBUF);
685
686 return (error);
687 }
688
689 /*
690 * tap(4) is a bit of an hybrid device. It can be used in two different
691 * ways:
692 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
693 * 2. open /dev/tap, get a new interface created and read/write off it.
694 * That interface is destroyed when the process that had it created exits.
695 *
696 * The first way is managed by the cdevsw structure, and you access interfaces
697 * through a (major, minor) mapping: tap4 is obtained by the minor number
698 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
699 *
700 * The second way is the so-called "cloning" device. It's a special minor
701 * number (chosen as the maximal number, to allow as much tap devices as
702 * possible). The user first opens the cloner (e.g., /dev/tap), and that
703 * call ends in tap_cdev_open. The actual place where it is handled is
704 * tap_dev_cloner.
705 *
706 * An tap device cannot be opened more than once at a time, so the cdevsw
707 * part of open() does nothing but noting that the interface is being used and
708 * hence ready to actually handle packets.
709 */
710
711 static int
712 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
713 {
714 struct tap_softc *sc;
715
716 if (minor(dev) == TAP_CLONER)
717 return tap_dev_cloner(l);
718
719 sc = device_lookup_private(&tap_cd, minor(dev));
720 if (sc == NULL)
721 return (ENXIO);
722
723 /* The device can only be opened once */
724 if (sc->sc_flags & TAP_INUSE)
725 return (EBUSY);
726 sc->sc_flags |= TAP_INUSE;
727 return (0);
728 }
729
730 /*
731 * There are several kinds of cloning devices, and the most simple is the one
732 * tap(4) uses. What it does is change the file descriptor with a new one,
733 * with its own fileops structure (which maps to the various read, write,
734 * ioctl functions). It starts allocating a new file descriptor with falloc,
735 * then actually creates the new tap devices.
736 *
737 * Once those two steps are successful, we can re-wire the existing file
738 * descriptor to its new self. This is done with fdclone(): it fills the fp
739 * structure as needed (notably f_data gets filled with the fifth parameter
740 * passed, the unit of the tap device which will allows us identifying the
741 * device later), and returns EMOVEFD.
742 *
743 * That magic value is interpreted by sys_open() which then replaces the
744 * current file descriptor by the new one (through a magic member of struct
745 * lwp, l_dupfd).
746 *
747 * The tap device is flagged as being busy since it otherwise could be
748 * externally accessed through the corresponding device node with the cdevsw
749 * interface.
750 */
751
752 static int
753 tap_dev_cloner(struct lwp *l)
754 {
755 struct tap_softc *sc;
756 file_t *fp;
757 int error, fd;
758
759 if ((error = fd_allocfile(&fp, &fd)) != 0)
760 return (error);
761
762 if ((sc = tap_clone_creator(-1)) == NULL) {
763 fd_abort(curproc, fp, fd);
764 return (ENXIO);
765 }
766
767 sc->sc_flags |= TAP_INUSE;
768
769 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
770 (void *)(intptr_t)device_unit(sc->sc_dev));
771 }
772
773 /*
774 * While all other operations (read, write, ioctl, poll and kqfilter) are
775 * really the same whether we are in cdevsw or fileops mode, the close()
776 * function is slightly different in the two cases.
777 *
778 * As for the other, the core of it is shared in tap_dev_close. What
779 * it does is sufficient for the cdevsw interface, but the cloning interface
780 * needs another thing: the interface is destroyed when the processes that
781 * created it closes it.
782 */
783 static int
784 tap_cdev_close(dev_t dev, int flags, int fmt,
785 struct lwp *l)
786 {
787 struct tap_softc *sc =
788 device_lookup_private(&tap_cd, minor(dev));
789
790 if (sc == NULL)
791 return (ENXIO);
792
793 return tap_dev_close(sc);
794 }
795
796 /*
797 * It might happen that the administrator used ifconfig to externally destroy
798 * the interface. In that case, tap_fops_close will be called while
799 * tap_detach is already happening. If we called it again from here, we
800 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
801 */
802 static int
803 tap_fops_close(file_t *fp)
804 {
805 int unit = (intptr_t)fp->f_data;
806 struct tap_softc *sc;
807 int error;
808
809 sc = device_lookup_private(&tap_cd, unit);
810 if (sc == NULL)
811 return (ENXIO);
812
813 /* tap_dev_close currently always succeeds, but it might not
814 * always be the case. */
815 KERNEL_LOCK(1, NULL);
816 if ((error = tap_dev_close(sc)) != 0) {
817 KERNEL_UNLOCK_ONE(NULL);
818 return (error);
819 }
820
821 /* Destroy the device now that it is no longer useful,
822 * unless it's already being destroyed. */
823 if ((sc->sc_flags & TAP_GOING) != 0) {
824 KERNEL_UNLOCK_ONE(NULL);
825 return (0);
826 }
827
828 error = tap_clone_destroyer(sc->sc_dev);
829 KERNEL_UNLOCK_ONE(NULL);
830 return error;
831 }
832
833 static int
834 tap_dev_close(struct tap_softc *sc)
835 {
836 struct ifnet *ifp;
837 int s;
838
839 s = splnet();
840 /* Let tap_start handle packets again */
841 ifp = &sc->sc_ec.ec_if;
842 ifp->if_flags &= ~IFF_OACTIVE;
843
844 /* Purge output queue */
845 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
846 struct mbuf *m;
847
848 for (;;) {
849 IFQ_DEQUEUE(&ifp->if_snd, m);
850 if (m == NULL)
851 break;
852
853 ifp->if_opackets++;
854 if (ifp->if_bpf)
855 bpf_ops->bpf_mtap(ifp->if_bpf, m);
856 m_freem(m);
857 }
858 }
859 splx(s);
860
861 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
862
863 return (0);
864 }
865
866 static int
867 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
868 {
869 return tap_dev_read(minor(dev), uio, flags);
870 }
871
872 static int
873 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
874 kauth_cred_t cred, int flags)
875 {
876 int error;
877
878 KERNEL_LOCK(1, NULL);
879 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
880 KERNEL_UNLOCK_ONE(NULL);
881 return error;
882 }
883
884 static int
885 tap_dev_read(int unit, struct uio *uio, int flags)
886 {
887 struct tap_softc *sc =
888 device_lookup_private(&tap_cd, unit);
889 struct ifnet *ifp;
890 struct mbuf *m, *n;
891 int error = 0, s;
892
893 if (sc == NULL)
894 return (ENXIO);
895
896 getnanotime(&sc->sc_atime);
897
898 ifp = &sc->sc_ec.ec_if;
899 if ((ifp->if_flags & IFF_UP) == 0)
900 return (EHOSTDOWN);
901
902 /*
903 * In the TAP_NBIO case, we have to make sure we won't be sleeping
904 */
905 if ((sc->sc_flags & TAP_NBIO) != 0) {
906 if (!mutex_tryenter(&sc->sc_rdlock))
907 return (EWOULDBLOCK);
908 } else {
909 mutex_enter(&sc->sc_rdlock);
910 }
911
912 s = splnet();
913 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
914 ifp->if_flags &= ~IFF_OACTIVE;
915 /*
916 * We must release the lock before sleeping, and re-acquire it
917 * after.
918 */
919 mutex_exit(&sc->sc_rdlock);
920 if (sc->sc_flags & TAP_NBIO)
921 error = EWOULDBLOCK;
922 else
923 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
924 splx(s);
925
926 if (error != 0)
927 return (error);
928 /* The device might have been downed */
929 if ((ifp->if_flags & IFF_UP) == 0)
930 return (EHOSTDOWN);
931 if ((sc->sc_flags & TAP_NBIO)) {
932 if (!mutex_tryenter(&sc->sc_rdlock))
933 return (EWOULDBLOCK);
934 } else {
935 mutex_enter(&sc->sc_rdlock);
936 }
937 s = splnet();
938 }
939
940 IFQ_DEQUEUE(&ifp->if_snd, m);
941 ifp->if_flags &= ~IFF_OACTIVE;
942 splx(s);
943 if (m == NULL) {
944 error = 0;
945 goto out;
946 }
947
948 ifp->if_opackets++;
949 if (ifp->if_bpf)
950 bpf_ops->bpf_mtap(ifp->if_bpf, m);
951
952 /*
953 * One read is one packet.
954 */
955 do {
956 error = uiomove(mtod(m, void *),
957 min(m->m_len, uio->uio_resid), uio);
958 MFREE(m, n);
959 m = n;
960 } while (m != NULL && uio->uio_resid > 0 && error == 0);
961
962 if (m != NULL)
963 m_freem(m);
964
965 out:
966 mutex_exit(&sc->sc_rdlock);
967 return (error);
968 }
969
970 static int
971 tap_fops_stat(file_t *fp, struct stat *st)
972 {
973 int error = 0;
974 struct tap_softc *sc;
975 int unit = (uintptr_t)fp->f_data;
976
977 (void)memset(st, 0, sizeof(*st));
978
979 KERNEL_LOCK(1, NULL);
980 sc = device_lookup_private(&tap_cd, unit);
981 if (sc == NULL) {
982 error = ENXIO;
983 goto out;
984 }
985
986 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
987 st->st_atimespec = sc->sc_atime;
988 st->st_mtimespec = sc->sc_mtime;
989 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
990 st->st_uid = kauth_cred_geteuid(fp->f_cred);
991 st->st_gid = kauth_cred_getegid(fp->f_cred);
992 out:
993 KERNEL_UNLOCK_ONE(NULL);
994 return error;
995 }
996
997 static int
998 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
999 {
1000 return tap_dev_write(minor(dev), uio, flags);
1001 }
1002
1003 static int
1004 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1005 kauth_cred_t cred, int flags)
1006 {
1007 int error;
1008
1009 KERNEL_LOCK(1, NULL);
1010 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1011 KERNEL_UNLOCK_ONE(NULL);
1012 return error;
1013 }
1014
1015 static int
1016 tap_dev_write(int unit, struct uio *uio, int flags)
1017 {
1018 struct tap_softc *sc =
1019 device_lookup_private(&tap_cd, unit);
1020 struct ifnet *ifp;
1021 struct mbuf *m, **mp;
1022 int error = 0;
1023 int s;
1024
1025 if (sc == NULL)
1026 return (ENXIO);
1027
1028 getnanotime(&sc->sc_mtime);
1029 ifp = &sc->sc_ec.ec_if;
1030
1031 /* One write, one packet, that's the rule */
1032 MGETHDR(m, M_DONTWAIT, MT_DATA);
1033 if (m == NULL) {
1034 ifp->if_ierrors++;
1035 return (ENOBUFS);
1036 }
1037 m->m_pkthdr.len = uio->uio_resid;
1038
1039 mp = &m;
1040 while (error == 0 && uio->uio_resid > 0) {
1041 if (*mp != m) {
1042 MGET(*mp, M_DONTWAIT, MT_DATA);
1043 if (*mp == NULL) {
1044 error = ENOBUFS;
1045 break;
1046 }
1047 }
1048 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1049 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1050 mp = &(*mp)->m_next;
1051 }
1052 if (error) {
1053 ifp->if_ierrors++;
1054 m_freem(m);
1055 return (error);
1056 }
1057
1058 ifp->if_ipackets++;
1059 m->m_pkthdr.rcvif = ifp;
1060
1061 if (ifp->if_bpf)
1062 bpf_ops->bpf_mtap(ifp->if_bpf, m);
1063 s =splnet();
1064 (*ifp->if_input)(ifp, m);
1065 splx(s);
1066
1067 return (0);
1068 }
1069
1070 static int
1071 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1072 struct lwp *l)
1073 {
1074 return tap_dev_ioctl(minor(dev), cmd, data, l);
1075 }
1076
1077 static int
1078 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1079 {
1080 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1081 }
1082
1083 static int
1084 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1085 {
1086 struct tap_softc *sc =
1087 device_lookup_private(&tap_cd, unit);
1088 int error = 0;
1089
1090 if (sc == NULL)
1091 return (ENXIO);
1092
1093 switch (cmd) {
1094 case FIONREAD:
1095 {
1096 struct ifnet *ifp = &sc->sc_ec.ec_if;
1097 struct mbuf *m;
1098 int s;
1099
1100 s = splnet();
1101 IFQ_POLL(&ifp->if_snd, m);
1102
1103 if (m == NULL)
1104 *(int *)data = 0;
1105 else
1106 *(int *)data = m->m_pkthdr.len;
1107 splx(s);
1108 } break;
1109 case TIOCSPGRP:
1110 case FIOSETOWN:
1111 error = fsetown(&sc->sc_pgid, cmd, data);
1112 break;
1113 case TIOCGPGRP:
1114 case FIOGETOWN:
1115 error = fgetown(sc->sc_pgid, cmd, data);
1116 break;
1117 case FIOASYNC:
1118 if (*(int *)data)
1119 sc->sc_flags |= TAP_ASYNCIO;
1120 else
1121 sc->sc_flags &= ~TAP_ASYNCIO;
1122 break;
1123 case FIONBIO:
1124 if (*(int *)data)
1125 sc->sc_flags |= TAP_NBIO;
1126 else
1127 sc->sc_flags &= ~TAP_NBIO;
1128 break;
1129 #ifdef OTAPGIFNAME
1130 case OTAPGIFNAME:
1131 #endif
1132 case TAPGIFNAME:
1133 {
1134 struct ifreq *ifr = (struct ifreq *)data;
1135 struct ifnet *ifp = &sc->sc_ec.ec_if;
1136
1137 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1138 } break;
1139 default:
1140 error = ENOTTY;
1141 break;
1142 }
1143
1144 return (0);
1145 }
1146
1147 static int
1148 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1149 {
1150 return tap_dev_poll(minor(dev), events, l);
1151 }
1152
1153 static int
1154 tap_fops_poll(file_t *fp, int events)
1155 {
1156 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1157 }
1158
1159 static int
1160 tap_dev_poll(int unit, int events, struct lwp *l)
1161 {
1162 struct tap_softc *sc =
1163 device_lookup_private(&tap_cd, unit);
1164 int revents = 0;
1165
1166 if (sc == NULL)
1167 return POLLERR;
1168
1169 if (events & (POLLIN|POLLRDNORM)) {
1170 struct ifnet *ifp = &sc->sc_ec.ec_if;
1171 struct mbuf *m;
1172 int s;
1173
1174 s = splnet();
1175 IFQ_POLL(&ifp->if_snd, m);
1176 splx(s);
1177
1178 if (m != NULL)
1179 revents |= events & (POLLIN|POLLRDNORM);
1180 else {
1181 simple_lock(&sc->sc_kqlock);
1182 selrecord(l, &sc->sc_rsel);
1183 simple_unlock(&sc->sc_kqlock);
1184 }
1185 }
1186 revents |= events & (POLLOUT|POLLWRNORM);
1187
1188 return (revents);
1189 }
1190
1191 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1192 tap_kqread };
1193 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1194 filt_seltrue };
1195
1196 static int
1197 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1198 {
1199 return tap_dev_kqfilter(minor(dev), kn);
1200 }
1201
1202 static int
1203 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1204 {
1205 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1206 }
1207
1208 static int
1209 tap_dev_kqfilter(int unit, struct knote *kn)
1210 {
1211 struct tap_softc *sc =
1212 device_lookup_private(&tap_cd, unit);
1213
1214 if (sc == NULL)
1215 return (ENXIO);
1216
1217 KERNEL_LOCK(1, NULL);
1218 switch(kn->kn_filter) {
1219 case EVFILT_READ:
1220 kn->kn_fop = &tap_read_filterops;
1221 break;
1222 case EVFILT_WRITE:
1223 kn->kn_fop = &tap_seltrue_filterops;
1224 break;
1225 default:
1226 KERNEL_UNLOCK_ONE(NULL);
1227 return (EINVAL);
1228 }
1229
1230 kn->kn_hook = sc;
1231 simple_lock(&sc->sc_kqlock);
1232 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1233 simple_unlock(&sc->sc_kqlock);
1234 KERNEL_UNLOCK_ONE(NULL);
1235 return (0);
1236 }
1237
1238 static void
1239 tap_kqdetach(struct knote *kn)
1240 {
1241 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1242
1243 KERNEL_LOCK(1, NULL);
1244 simple_lock(&sc->sc_kqlock);
1245 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1246 simple_unlock(&sc->sc_kqlock);
1247 KERNEL_UNLOCK_ONE(NULL);
1248 }
1249
1250 static int
1251 tap_kqread(struct knote *kn, long hint)
1252 {
1253 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1254 struct ifnet *ifp = &sc->sc_ec.ec_if;
1255 struct mbuf *m;
1256 int s, rv;
1257
1258 KERNEL_LOCK(1, NULL);
1259 s = splnet();
1260 IFQ_POLL(&ifp->if_snd, m);
1261
1262 if (m == NULL)
1263 kn->kn_data = 0;
1264 else
1265 kn->kn_data = m->m_pkthdr.len;
1266 splx(s);
1267 rv = (kn->kn_data != 0 ? 1 : 0);
1268 KERNEL_UNLOCK_ONE(NULL);
1269 return rv;
1270 }
1271
1272 #if defined(COMPAT_40) || defined(MODULAR)
1273 /*
1274 * sysctl management routines
1275 * You can set the address of an interface through:
1276 * net.link.tap.tap<number>
1277 *
1278 * Note the consistent use of tap_log in order to use
1279 * sysctl_teardown at unload time.
1280 *
1281 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1282 * blocks register a function in a special section of the kernel
1283 * (called a link set) which is used at init_sysctl() time to cycle
1284 * through all those functions to create the kernel's sysctl tree.
1285 *
1286 * It is not possible to use link sets in a module, so the
1287 * easiest is to simply call our own setup routine at load time.
1288 *
1289 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1290 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1291 * whole kernel sysctl tree is built, it is not possible to add any
1292 * permanent node.
1293 *
1294 * It should be noted that we're not saving the sysctlnode pointer
1295 * we are returned when creating the "tap" node. That structure
1296 * cannot be trusted once out of the calling function, as it might
1297 * get reused. So we just save the MIB number, and always give the
1298 * full path starting from the root for later calls to sysctl_createv
1299 * and sysctl_destroyv.
1300 */
1301 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1302 {
1303 const struct sysctlnode *node;
1304 int error = 0;
1305
1306 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1307 CTLFLAG_PERMANENT,
1308 CTLTYPE_NODE, "net", NULL,
1309 NULL, 0, NULL, 0,
1310 CTL_NET, CTL_EOL)) != 0)
1311 return;
1312
1313 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1314 CTLFLAG_PERMANENT,
1315 CTLTYPE_NODE, "link", NULL,
1316 NULL, 0, NULL, 0,
1317 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1318 return;
1319
1320 /*
1321 * The first four parameters of sysctl_createv are for management.
1322 *
1323 * The four that follows, here starting with a '0' for the flags,
1324 * describe the node.
1325 *
1326 * The next series of four set its value, through various possible
1327 * means.
1328 *
1329 * Last but not least, the path to the node is described. That path
1330 * is relative to the given root (third argument). Here we're
1331 * starting from the root.
1332 */
1333 if ((error = sysctl_createv(clog, 0, NULL, &node,
1334 CTLFLAG_PERMANENT,
1335 CTLTYPE_NODE, "tap", NULL,
1336 NULL, 0, NULL, 0,
1337 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1338 return;
1339 tap_node = node->sysctl_num;
1340 }
1341
1342 /*
1343 * The helper functions make Andrew Brown's interface really
1344 * shine. It makes possible to create value on the fly whether
1345 * the sysctl value is read or written.
1346 *
1347 * As shown as an example in the man page, the first step is to
1348 * create a copy of the node to have sysctl_lookup work on it.
1349 *
1350 * Here, we have more work to do than just a copy, since we have
1351 * to create the string. The first step is to collect the actual
1352 * value of the node, which is a convenient pointer to the softc
1353 * of the interface. From there we create the string and use it
1354 * as the value, but only for the *copy* of the node.
1355 *
1356 * Then we let sysctl_lookup do the magic, which consists in
1357 * setting oldp and newp as required by the operation. When the
1358 * value is read, that means that the string will be copied to
1359 * the user, and when it is written, the new value will be copied
1360 * over in the addr array.
1361 *
1362 * If newp is NULL, the user was reading the value, so we don't
1363 * have anything else to do. If a new value was written, we
1364 * have to check it.
1365 *
1366 * If it is incorrect, we can return an error and leave 'node' as
1367 * it is: since it is a copy of the actual node, the change will
1368 * be forgotten.
1369 *
1370 * Upon a correct input, we commit the change to the ifnet
1371 * structure of our interface.
1372 */
1373 static int
1374 tap_sysctl_handler(SYSCTLFN_ARGS)
1375 {
1376 struct sysctlnode node;
1377 struct tap_softc *sc;
1378 struct ifnet *ifp;
1379 int error;
1380 size_t len;
1381 char addr[3 * ETHER_ADDR_LEN];
1382 uint8_t enaddr[ETHER_ADDR_LEN];
1383
1384 node = *rnode;
1385 sc = node.sysctl_data;
1386 ifp = &sc->sc_ec.ec_if;
1387 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1388 node.sysctl_data = addr;
1389 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1390 if (error || newp == NULL)
1391 return (error);
1392
1393 len = strlen(addr);
1394 if (len < 11 || len > 17)
1395 return (EINVAL);
1396
1397 /* Commit change */
1398 if (ether_nonstatic_aton(enaddr, addr) != 0)
1399 return (EINVAL);
1400 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1401 return (error);
1402 }
1403 #endif
1404