if_tap.c revision 1.65 1 /* $NetBSD: if_tap.c,v 1.65 2010/05/19 20:41:59 christos Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.65 2010/05/19 20:41:59 christos Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/device.h>
50 #include <sys/file.h>
51 #include <sys/filedesc.h>
52 #include <sys/ksyms.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/simplelock.h>
63 #include <sys/intr.h>
64 #include <sys/stat.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72
73 #include <compat/sys/sockio.h>
74
75 #if defined(COMPAT_40) || defined(MODULAR)
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current module implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93 #endif
94
95 /*
96 * Since we're an Ethernet device, we need the 3 following
97 * components: a leading struct device, a struct ethercom,
98 * and also a struct ifmedia since we don't attach a PHY to
99 * ourselves. We could emulate one, but there's no real
100 * point.
101 */
102
103 struct tap_softc {
104 device_t sc_dev;
105 struct ifmedia sc_im;
106 struct ethercom sc_ec;
107 int sc_flags;
108 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
109 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
110 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
111 #define TAP_GOING 0x00000008 /* interface is being destroyed */
112 struct selinfo sc_rsel;
113 pid_t sc_pgid; /* For async. IO */
114 kmutex_t sc_rdlock;
115 struct simplelock sc_kqlock;
116 void *sc_sih;
117 struct timespec sc_atime;
118 struct timespec sc_mtime;
119 struct timespec sc_btime;
120 };
121
122 /* autoconf(9) glue */
123
124 void tapattach(int);
125
126 static int tap_match(device_t, cfdata_t, void *);
127 static void tap_attach(device_t, device_t, void *);
128 static int tap_detach(device_t, int);
129
130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
131 tap_match, tap_attach, tap_detach, NULL);
132 extern struct cfdriver tap_cd;
133
134 /* Real device access routines */
135 static int tap_dev_close(struct tap_softc *);
136 static int tap_dev_read(int, struct uio *, int);
137 static int tap_dev_write(int, struct uio *, int);
138 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
139 static int tap_dev_poll(int, int, struct lwp *);
140 static int tap_dev_kqfilter(int, struct knote *);
141
142 /* Fileops access routines */
143 static int tap_fops_close(file_t *);
144 static int tap_fops_read(file_t *, off_t *, struct uio *,
145 kauth_cred_t, int);
146 static int tap_fops_write(file_t *, off_t *, struct uio *,
147 kauth_cred_t, int);
148 static int tap_fops_ioctl(file_t *, u_long, void *);
149 static int tap_fops_poll(file_t *, int);
150 static int tap_fops_stat(file_t *, struct stat *);
151 static int tap_fops_kqfilter(file_t *, struct knote *);
152
153 static const struct fileops tap_fileops = {
154 .fo_read = tap_fops_read,
155 .fo_write = tap_fops_write,
156 .fo_ioctl = tap_fops_ioctl,
157 .fo_fcntl = fnullop_fcntl,
158 .fo_poll = tap_fops_poll,
159 .fo_stat = tap_fops_stat,
160 .fo_close = tap_fops_close,
161 .fo_kqfilter = tap_fops_kqfilter,
162 .fo_restart = fnullop_restart,
163 };
164
165 /* Helper for cloning open() */
166 static int tap_dev_cloner(struct lwp *);
167
168 /* Character device routines */
169 static int tap_cdev_open(dev_t, int, int, struct lwp *);
170 static int tap_cdev_close(dev_t, int, int, struct lwp *);
171 static int tap_cdev_read(dev_t, struct uio *, int);
172 static int tap_cdev_write(dev_t, struct uio *, int);
173 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
174 static int tap_cdev_poll(dev_t, int, struct lwp *);
175 static int tap_cdev_kqfilter(dev_t, struct knote *);
176
177 const struct cdevsw tap_cdevsw = {
178 tap_cdev_open, tap_cdev_close,
179 tap_cdev_read, tap_cdev_write,
180 tap_cdev_ioctl, nostop, notty,
181 tap_cdev_poll, nommap,
182 tap_cdev_kqfilter,
183 D_OTHER,
184 };
185
186 #define TAP_CLONER 0xfffff /* Maximal minor value */
187
188 /* kqueue-related routines */
189 static void tap_kqdetach(struct knote *);
190 static int tap_kqread(struct knote *, long);
191
192 /*
193 * Those are needed by the if_media interface.
194 */
195
196 static int tap_mediachange(struct ifnet *);
197 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
198
199 /*
200 * Those are needed by the ifnet interface, and would typically be
201 * there for any network interface driver.
202 * Some other routines are optional: watchdog and drain.
203 */
204
205 static void tap_start(struct ifnet *);
206 static void tap_stop(struct ifnet *, int);
207 static int tap_init(struct ifnet *);
208 static int tap_ioctl(struct ifnet *, u_long, void *);
209
210 /* Internal functions */
211 #if defined(COMPAT_40) || defined(MODULAR)
212 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
213 #endif
214 static void tap_softintr(void *);
215
216 /*
217 * tap is a clonable interface, although it is highly unrealistic for
218 * an Ethernet device.
219 *
220 * Here are the bits needed for a clonable interface.
221 */
222 static int tap_clone_create(struct if_clone *, int);
223 static int tap_clone_destroy(struct ifnet *);
224
225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226 tap_clone_create,
227 tap_clone_destroy);
228
229 /* Helper functionis shared by the two cloning code paths */
230 static struct tap_softc * tap_clone_creator(int);
231 int tap_clone_destroyer(device_t);
232
233 void
234 tapattach(int n)
235 {
236 int error;
237
238 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
239 if (error) {
240 aprint_error("%s: unable to register cfattach\n",
241 tap_cd.cd_name);
242 (void)config_cfdriver_detach(&tap_cd);
243 return;
244 }
245
246 if_clone_attach(&tap_cloners);
247 }
248
249 /* Pretty much useless for a pseudo-device */
250 static int
251 tap_match(device_t parent, cfdata_t cfdata, void *arg)
252 {
253
254 return (1);
255 }
256
257 void
258 tap_attach(device_t parent, device_t self, void *aux)
259 {
260 struct tap_softc *sc = device_private(self);
261 struct ifnet *ifp;
262 #if defined(COMPAT_40) || defined(MODULAR)
263 const struct sysctlnode *node;
264 int error;
265 #endif
266 uint8_t enaddr[ETHER_ADDR_LEN] =
267 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
268 char enaddrstr[3 * ETHER_ADDR_LEN];
269 struct timeval tv;
270 uint32_t ui;
271
272 sc->sc_dev = self;
273 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
274 getnanotime(&sc->sc_btime);
275 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
276
277 if (!pmf_device_register(self, NULL, NULL))
278 aprint_error_dev(self, "couldn't establish power handler\n");
279
280 /*
281 * In order to obtain unique initial Ethernet address on a host,
282 * do some randomisation using the current uptime. It's not meant
283 * for anything but avoiding hard-coding an address.
284 */
285 getmicrouptime(&tv);
286 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
287 memcpy(enaddr+3, (uint8_t *)&ui, 3);
288
289 aprint_verbose_dev(self, "Ethernet address %s\n",
290 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
291
292 /*
293 * Why 1000baseT? Why not? You can add more.
294 *
295 * Note that there are 3 steps: init, one or several additions to
296 * list of supported media, and in the end, the selection of one
297 * of them.
298 */
299 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
300 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
303 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
304 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
305 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
306 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
307 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
308
309 /*
310 * One should note that an interface must do multicast in order
311 * to support IPv6.
312 */
313 ifp = &sc->sc_ec.ec_if;
314 strcpy(ifp->if_xname, device_xname(self));
315 ifp->if_softc = sc;
316 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
317 ifp->if_ioctl = tap_ioctl;
318 ifp->if_start = tap_start;
319 ifp->if_stop = tap_stop;
320 ifp->if_init = tap_init;
321 IFQ_SET_READY(&ifp->if_snd);
322
323 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
324
325 /* Those steps are mandatory for an Ethernet driver, the fisrt call
326 * being common to all network interface drivers. */
327 if_attach(ifp);
328 ether_ifattach(ifp, enaddr);
329
330 sc->sc_flags = 0;
331
332 #if defined(COMPAT_40) || defined(MODULAR)
333 /*
334 * Add a sysctl node for that interface.
335 *
336 * The pointer transmitted is not a string, but instead a pointer to
337 * the softc structure, which we can use to build the string value on
338 * the fly in the helper function of the node. See the comments for
339 * tap_sysctl_handler for details.
340 *
341 * Usually sysctl_createv is called with CTL_CREATE as the before-last
342 * component. However, we can allocate a number ourselves, as we are
343 * the only consumer of the net.link.<iface> node. In this case, the
344 * unit number is conveniently used to number the node. CTL_CREATE
345 * would just work, too.
346 */
347 if ((error = sysctl_createv(NULL, 0, NULL,
348 &node, CTLFLAG_READWRITE,
349 CTLTYPE_STRING, device_xname(self), NULL,
350 tap_sysctl_handler, 0, sc, 18,
351 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
352 CTL_EOL)) != 0)
353 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
354 error);
355 #endif
356
357 /*
358 * Initialize the two locks for the device.
359 *
360 * We need a lock here because even though the tap device can be
361 * opened only once, the file descriptor might be passed to another
362 * process, say a fork(2)ed child.
363 *
364 * The Giant saves us from most of the hassle, but since the read
365 * operation can sleep, we don't want two processes to wake up at
366 * the same moment and both try and dequeue a single packet.
367 *
368 * The queue for event listeners (used by kqueue(9), see below) has
369 * to be protected, too, but we don't need the same level of
370 * complexity for that lock, so a simple spinning lock is fine.
371 */
372 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
373 simple_lock_init(&sc->sc_kqlock);
374
375 selinit(&sc->sc_rsel);
376 }
377
378 /*
379 * When detaching, we do the inverse of what is done in the attach
380 * routine, in reversed order.
381 */
382 static int
383 tap_detach(device_t self, int flags)
384 {
385 struct tap_softc *sc = device_private(self);
386 struct ifnet *ifp = &sc->sc_ec.ec_if;
387 #if defined(COMPAT_40) || defined(MODULAR)
388 int error;
389 #endif
390 int s;
391
392 sc->sc_flags |= TAP_GOING;
393 s = splnet();
394 tap_stop(ifp, 1);
395 if_down(ifp);
396 splx(s);
397
398 softint_disestablish(sc->sc_sih);
399
400 #if defined(COMPAT_40) || defined(MODULAR)
401 /*
402 * Destroying a single leaf is a very straightforward operation using
403 * sysctl_destroyv. One should be sure to always end the path with
404 * CTL_EOL.
405 */
406 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
407 device_unit(sc->sc_dev), CTL_EOL)) != 0)
408 aprint_error_dev(self,
409 "sysctl_destroyv returned %d, ignoring\n", error);
410 #endif
411 ether_ifdetach(ifp);
412 if_detach(ifp);
413 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
414 seldestroy(&sc->sc_rsel);
415 mutex_destroy(&sc->sc_rdlock);
416
417 pmf_device_deregister(self);
418
419 return (0);
420 }
421
422 /*
423 * This function is called by the ifmedia layer to notify the driver
424 * that the user requested a media change. A real driver would
425 * reconfigure the hardware.
426 */
427 static int
428 tap_mediachange(struct ifnet *ifp)
429 {
430 return (0);
431 }
432
433 /*
434 * Here the user asks for the currently used media.
435 */
436 static void
437 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
438 {
439 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
440 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
441 }
442
443 /*
444 * This is the function where we SEND packets.
445 *
446 * There is no 'receive' equivalent. A typical driver will get
447 * interrupts from the hardware, and from there will inject new packets
448 * into the network stack.
449 *
450 * Once handled, a packet must be freed. A real driver might not be able
451 * to fit all the pending packets into the hardware, and is allowed to
452 * return before having sent all the packets. It should then use the
453 * if_flags flag IFF_OACTIVE to notify the upper layer.
454 *
455 * There are also other flags one should check, such as IFF_PAUSE.
456 *
457 * It is our duty to make packets available to BPF listeners.
458 *
459 * You should be aware that this function is called by the Ethernet layer
460 * at splnet().
461 *
462 * When the device is opened, we have to pass the packet(s) to the
463 * userland. For that we stay in OACTIVE mode while the userland gets
464 * the packets, and we send a signal to the processes waiting to read.
465 *
466 * wakeup(sc) is the counterpart to the tsleep call in
467 * tap_dev_read, while selnotify() is used for kevent(2) and
468 * poll(2) (which includes select(2)) listeners.
469 */
470 static void
471 tap_start(struct ifnet *ifp)
472 {
473 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
474 struct mbuf *m0;
475
476 if ((sc->sc_flags & TAP_INUSE) == 0) {
477 /* Simply drop packets */
478 for(;;) {
479 IFQ_DEQUEUE(&ifp->if_snd, m0);
480 if (m0 == NULL)
481 return;
482
483 ifp->if_opackets++;
484 bpf_mtap(ifp, m0);
485
486 m_freem(m0);
487 }
488 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
489 ifp->if_flags |= IFF_OACTIVE;
490 wakeup(sc);
491 selnotify(&sc->sc_rsel, 0, 1);
492 if (sc->sc_flags & TAP_ASYNCIO)
493 softint_schedule(sc->sc_sih);
494 }
495 }
496
497 static void
498 tap_softintr(void *cookie)
499 {
500 struct tap_softc *sc;
501 struct ifnet *ifp;
502 int a, b;
503
504 sc = cookie;
505
506 if (sc->sc_flags & TAP_ASYNCIO) {
507 ifp = &sc->sc_ec.ec_if;
508 if (ifp->if_flags & IFF_RUNNING) {
509 a = POLL_IN;
510 b = POLLIN|POLLRDNORM;
511 } else {
512 a = POLL_HUP;
513 b = 0;
514 }
515 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
516 }
517 }
518
519 /*
520 * A typical driver will only contain the following handlers for
521 * ioctl calls, except SIOCSIFPHYADDR.
522 * The latter is a hack I used to set the Ethernet address of the
523 * faked device.
524 *
525 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
526 * called under splnet().
527 */
528 static int
529 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
530 {
531 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
532 struct ifreq *ifr = (struct ifreq *)data;
533 int s, error;
534
535 s = splnet();
536
537 switch (cmd) {
538 #ifdef OSIOCSIFMEDIA
539 case OSIOCSIFMEDIA:
540 #endif
541 case SIOCSIFMEDIA:
542 case SIOCGIFMEDIA:
543 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
544 break;
545 #if defined(COMPAT_40) || defined(MODULAR)
546 case SIOCSIFPHYADDR:
547 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
548 break;
549 #endif
550 default:
551 error = ether_ioctl(ifp, cmd, data);
552 if (error == ENETRESET)
553 error = 0;
554 break;
555 }
556
557 splx(s);
558
559 return (error);
560 }
561
562 #if defined(COMPAT_40) || defined(MODULAR)
563 /*
564 * Helper function to set Ethernet address. This has been replaced by
565 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
566 */
567 static int
568 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
569 {
570 const struct sockaddr *sa = &ifra->ifra_addr;
571
572 if (sa->sa_family != AF_LINK)
573 return (EINVAL);
574
575 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
576
577 return (0);
578 }
579 #endif
580
581 /*
582 * _init() would typically be called when an interface goes up,
583 * meaning it should configure itself into the state in which it
584 * can send packets.
585 */
586 static int
587 tap_init(struct ifnet *ifp)
588 {
589 ifp->if_flags |= IFF_RUNNING;
590
591 tap_start(ifp);
592
593 return (0);
594 }
595
596 /*
597 * _stop() is called when an interface goes down. It is our
598 * responsability to validate that state by clearing the
599 * IFF_RUNNING flag.
600 *
601 * We have to wake up all the sleeping processes to have the pending
602 * read requests cancelled.
603 */
604 static void
605 tap_stop(struct ifnet *ifp, int disable)
606 {
607 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
608
609 ifp->if_flags &= ~IFF_RUNNING;
610 wakeup(sc);
611 selnotify(&sc->sc_rsel, 0, 1);
612 if (sc->sc_flags & TAP_ASYNCIO)
613 softint_schedule(sc->sc_sih);
614 }
615
616 /*
617 * The 'create' command of ifconfig can be used to create
618 * any numbered instance of a given device. Thus we have to
619 * make sure we have enough room in cd_devs to create the
620 * user-specified instance. config_attach_pseudo will do this
621 * for us.
622 */
623 static int
624 tap_clone_create(struct if_clone *ifc, int unit)
625 {
626 if (tap_clone_creator(unit) == NULL) {
627 aprint_error("%s%d: unable to attach an instance\n",
628 tap_cd.cd_name, unit);
629 return (ENXIO);
630 }
631
632 return (0);
633 }
634
635 /*
636 * tap(4) can be cloned by two ways:
637 * using 'ifconfig tap0 create', which will use the network
638 * interface cloning API, and call tap_clone_create above.
639 * opening the cloning device node, whose minor number is TAP_CLONER.
640 * See below for an explanation on how this part work.
641 */
642 static struct tap_softc *
643 tap_clone_creator(int unit)
644 {
645 struct cfdata *cf;
646
647 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
648 cf->cf_name = tap_cd.cd_name;
649 cf->cf_atname = tap_ca.ca_name;
650 if (unit == -1) {
651 /* let autoconf find the first free one */
652 cf->cf_unit = 0;
653 cf->cf_fstate = FSTATE_STAR;
654 } else {
655 cf->cf_unit = unit;
656 cf->cf_fstate = FSTATE_NOTFOUND;
657 }
658
659 return device_private(config_attach_pseudo(cf));
660 }
661
662 /*
663 * The clean design of if_clone and autoconf(9) makes that part
664 * really straightforward. The second argument of config_detach
665 * means neither QUIET nor FORCED.
666 */
667 static int
668 tap_clone_destroy(struct ifnet *ifp)
669 {
670 struct tap_softc *sc = ifp->if_softc;
671
672 return tap_clone_destroyer(sc->sc_dev);
673 }
674
675 int
676 tap_clone_destroyer(device_t dev)
677 {
678 cfdata_t cf = device_cfdata(dev);
679 int error;
680
681 if ((error = config_detach(dev, 0)) != 0)
682 aprint_error_dev(dev, "unable to detach instance\n");
683 free(cf, M_DEVBUF);
684
685 return (error);
686 }
687
688 /*
689 * tap(4) is a bit of an hybrid device. It can be used in two different
690 * ways:
691 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
692 * 2. open /dev/tap, get a new interface created and read/write off it.
693 * That interface is destroyed when the process that had it created exits.
694 *
695 * The first way is managed by the cdevsw structure, and you access interfaces
696 * through a (major, minor) mapping: tap4 is obtained by the minor number
697 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
698 *
699 * The second way is the so-called "cloning" device. It's a special minor
700 * number (chosen as the maximal number, to allow as much tap devices as
701 * possible). The user first opens the cloner (e.g., /dev/tap), and that
702 * call ends in tap_cdev_open. The actual place where it is handled is
703 * tap_dev_cloner.
704 *
705 * An tap device cannot be opened more than once at a time, so the cdevsw
706 * part of open() does nothing but noting that the interface is being used and
707 * hence ready to actually handle packets.
708 */
709
710 static int
711 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
712 {
713 struct tap_softc *sc;
714
715 if (minor(dev) == TAP_CLONER)
716 return tap_dev_cloner(l);
717
718 sc = device_lookup_private(&tap_cd, minor(dev));
719 if (sc == NULL)
720 return (ENXIO);
721
722 /* The device can only be opened once */
723 if (sc->sc_flags & TAP_INUSE)
724 return (EBUSY);
725 sc->sc_flags |= TAP_INUSE;
726 return (0);
727 }
728
729 /*
730 * There are several kinds of cloning devices, and the most simple is the one
731 * tap(4) uses. What it does is change the file descriptor with a new one,
732 * with its own fileops structure (which maps to the various read, write,
733 * ioctl functions). It starts allocating a new file descriptor with falloc,
734 * then actually creates the new tap devices.
735 *
736 * Once those two steps are successful, we can re-wire the existing file
737 * descriptor to its new self. This is done with fdclone(): it fills the fp
738 * structure as needed (notably f_data gets filled with the fifth parameter
739 * passed, the unit of the tap device which will allows us identifying the
740 * device later), and returns EMOVEFD.
741 *
742 * That magic value is interpreted by sys_open() which then replaces the
743 * current file descriptor by the new one (through a magic member of struct
744 * lwp, l_dupfd).
745 *
746 * The tap device is flagged as being busy since it otherwise could be
747 * externally accessed through the corresponding device node with the cdevsw
748 * interface.
749 */
750
751 static int
752 tap_dev_cloner(struct lwp *l)
753 {
754 struct tap_softc *sc;
755 file_t *fp;
756 int error, fd;
757
758 if ((error = fd_allocfile(&fp, &fd)) != 0)
759 return (error);
760
761 if ((sc = tap_clone_creator(-1)) == NULL) {
762 fd_abort(curproc, fp, fd);
763 return (ENXIO);
764 }
765
766 sc->sc_flags |= TAP_INUSE;
767
768 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
769 (void *)(intptr_t)device_unit(sc->sc_dev));
770 }
771
772 /*
773 * While all other operations (read, write, ioctl, poll and kqfilter) are
774 * really the same whether we are in cdevsw or fileops mode, the close()
775 * function is slightly different in the two cases.
776 *
777 * As for the other, the core of it is shared in tap_dev_close. What
778 * it does is sufficient for the cdevsw interface, but the cloning interface
779 * needs another thing: the interface is destroyed when the processes that
780 * created it closes it.
781 */
782 static int
783 tap_cdev_close(dev_t dev, int flags, int fmt,
784 struct lwp *l)
785 {
786 struct tap_softc *sc =
787 device_lookup_private(&tap_cd, minor(dev));
788
789 if (sc == NULL)
790 return (ENXIO);
791
792 return tap_dev_close(sc);
793 }
794
795 /*
796 * It might happen that the administrator used ifconfig to externally destroy
797 * the interface. In that case, tap_fops_close will be called while
798 * tap_detach is already happening. If we called it again from here, we
799 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
800 */
801 static int
802 tap_fops_close(file_t *fp)
803 {
804 int unit = (intptr_t)fp->f_data;
805 struct tap_softc *sc;
806 int error;
807
808 sc = device_lookup_private(&tap_cd, unit);
809 if (sc == NULL)
810 return (ENXIO);
811
812 /* tap_dev_close currently always succeeds, but it might not
813 * always be the case. */
814 KERNEL_LOCK(1, NULL);
815 if ((error = tap_dev_close(sc)) != 0) {
816 KERNEL_UNLOCK_ONE(NULL);
817 return (error);
818 }
819
820 /* Destroy the device now that it is no longer useful,
821 * unless it's already being destroyed. */
822 if ((sc->sc_flags & TAP_GOING) != 0) {
823 KERNEL_UNLOCK_ONE(NULL);
824 return (0);
825 }
826
827 error = tap_clone_destroyer(sc->sc_dev);
828 KERNEL_UNLOCK_ONE(NULL);
829 return error;
830 }
831
832 static int
833 tap_dev_close(struct tap_softc *sc)
834 {
835 struct ifnet *ifp;
836 int s;
837
838 s = splnet();
839 /* Let tap_start handle packets again */
840 ifp = &sc->sc_ec.ec_if;
841 ifp->if_flags &= ~IFF_OACTIVE;
842
843 /* Purge output queue */
844 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
845 struct mbuf *m;
846
847 for (;;) {
848 IFQ_DEQUEUE(&ifp->if_snd, m);
849 if (m == NULL)
850 break;
851
852 ifp->if_opackets++;
853 bpf_mtap(ifp, m);
854 m_freem(m);
855 }
856 }
857 splx(s);
858
859 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
860
861 return (0);
862 }
863
864 static int
865 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
866 {
867 return tap_dev_read(minor(dev), uio, flags);
868 }
869
870 static int
871 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
872 kauth_cred_t cred, int flags)
873 {
874 int error;
875
876 KERNEL_LOCK(1, NULL);
877 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
878 KERNEL_UNLOCK_ONE(NULL);
879 return error;
880 }
881
882 static int
883 tap_dev_read(int unit, struct uio *uio, int flags)
884 {
885 struct tap_softc *sc =
886 device_lookup_private(&tap_cd, unit);
887 struct ifnet *ifp;
888 struct mbuf *m, *n;
889 int error = 0, s;
890
891 if (sc == NULL)
892 return (ENXIO);
893
894 getnanotime(&sc->sc_atime);
895
896 ifp = &sc->sc_ec.ec_if;
897 if ((ifp->if_flags & IFF_UP) == 0)
898 return (EHOSTDOWN);
899
900 /*
901 * In the TAP_NBIO case, we have to make sure we won't be sleeping
902 */
903 if ((sc->sc_flags & TAP_NBIO) != 0) {
904 if (!mutex_tryenter(&sc->sc_rdlock))
905 return (EWOULDBLOCK);
906 } else {
907 mutex_enter(&sc->sc_rdlock);
908 }
909
910 s = splnet();
911 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
912 ifp->if_flags &= ~IFF_OACTIVE;
913 /*
914 * We must release the lock before sleeping, and re-acquire it
915 * after.
916 */
917 mutex_exit(&sc->sc_rdlock);
918 if (sc->sc_flags & TAP_NBIO)
919 error = EWOULDBLOCK;
920 else
921 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
922 splx(s);
923
924 if (error != 0)
925 return (error);
926 /* The device might have been downed */
927 if ((ifp->if_flags & IFF_UP) == 0)
928 return (EHOSTDOWN);
929 if ((sc->sc_flags & TAP_NBIO)) {
930 if (!mutex_tryenter(&sc->sc_rdlock))
931 return (EWOULDBLOCK);
932 } else {
933 mutex_enter(&sc->sc_rdlock);
934 }
935 s = splnet();
936 }
937
938 IFQ_DEQUEUE(&ifp->if_snd, m);
939 ifp->if_flags &= ~IFF_OACTIVE;
940 splx(s);
941 if (m == NULL) {
942 error = 0;
943 goto out;
944 }
945
946 ifp->if_opackets++;
947 bpf_mtap(ifp, m);
948
949 /*
950 * One read is one packet.
951 */
952 do {
953 error = uiomove(mtod(m, void *),
954 min(m->m_len, uio->uio_resid), uio);
955 MFREE(m, n);
956 m = n;
957 } while (m != NULL && uio->uio_resid > 0 && error == 0);
958
959 if (m != NULL)
960 m_freem(m);
961
962 out:
963 mutex_exit(&sc->sc_rdlock);
964 return (error);
965 }
966
967 static int
968 tap_fops_stat(file_t *fp, struct stat *st)
969 {
970 int error = 0;
971 struct tap_softc *sc;
972 int unit = (uintptr_t)fp->f_data;
973
974 (void)memset(st, 0, sizeof(*st));
975
976 KERNEL_LOCK(1, NULL);
977 sc = device_lookup_private(&tap_cd, unit);
978 if (sc == NULL) {
979 error = ENXIO;
980 goto out;
981 }
982
983 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
984 st->st_atimespec = sc->sc_atime;
985 st->st_mtimespec = sc->sc_mtime;
986 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
987 st->st_uid = kauth_cred_geteuid(fp->f_cred);
988 st->st_gid = kauth_cred_getegid(fp->f_cred);
989 out:
990 KERNEL_UNLOCK_ONE(NULL);
991 return error;
992 }
993
994 static int
995 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
996 {
997 return tap_dev_write(minor(dev), uio, flags);
998 }
999
1000 static int
1001 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1002 kauth_cred_t cred, int flags)
1003 {
1004 int error;
1005
1006 KERNEL_LOCK(1, NULL);
1007 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1008 KERNEL_UNLOCK_ONE(NULL);
1009 return error;
1010 }
1011
1012 static int
1013 tap_dev_write(int unit, struct uio *uio, int flags)
1014 {
1015 struct tap_softc *sc =
1016 device_lookup_private(&tap_cd, unit);
1017 struct ifnet *ifp;
1018 struct mbuf *m, **mp;
1019 int error = 0;
1020 int s;
1021
1022 if (sc == NULL)
1023 return (ENXIO);
1024
1025 getnanotime(&sc->sc_mtime);
1026 ifp = &sc->sc_ec.ec_if;
1027
1028 /* One write, one packet, that's the rule */
1029 MGETHDR(m, M_DONTWAIT, MT_DATA);
1030 if (m == NULL) {
1031 ifp->if_ierrors++;
1032 return (ENOBUFS);
1033 }
1034 m->m_pkthdr.len = uio->uio_resid;
1035
1036 mp = &m;
1037 while (error == 0 && uio->uio_resid > 0) {
1038 if (*mp != m) {
1039 MGET(*mp, M_DONTWAIT, MT_DATA);
1040 if (*mp == NULL) {
1041 error = ENOBUFS;
1042 break;
1043 }
1044 }
1045 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1046 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1047 mp = &(*mp)->m_next;
1048 }
1049 if (error) {
1050 ifp->if_ierrors++;
1051 m_freem(m);
1052 return (error);
1053 }
1054
1055 ifp->if_ipackets++;
1056 m->m_pkthdr.rcvif = ifp;
1057
1058 bpf_mtap(ifp, m);
1059 s =splnet();
1060 (*ifp->if_input)(ifp, m);
1061 splx(s);
1062
1063 return (0);
1064 }
1065
1066 static int
1067 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1068 struct lwp *l)
1069 {
1070 return tap_dev_ioctl(minor(dev), cmd, data, l);
1071 }
1072
1073 static int
1074 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1075 {
1076 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1077 }
1078
1079 static int
1080 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1081 {
1082 struct tap_softc *sc =
1083 device_lookup_private(&tap_cd, unit);
1084 int error = 0;
1085
1086 if (sc == NULL)
1087 return (ENXIO);
1088
1089 switch (cmd) {
1090 case FIONREAD:
1091 {
1092 struct ifnet *ifp = &sc->sc_ec.ec_if;
1093 struct mbuf *m;
1094 int s;
1095
1096 s = splnet();
1097 IFQ_POLL(&ifp->if_snd, m);
1098
1099 if (m == NULL)
1100 *(int *)data = 0;
1101 else
1102 *(int *)data = m->m_pkthdr.len;
1103 splx(s);
1104 } break;
1105 case TIOCSPGRP:
1106 case FIOSETOWN:
1107 error = fsetown(&sc->sc_pgid, cmd, data);
1108 break;
1109 case TIOCGPGRP:
1110 case FIOGETOWN:
1111 error = fgetown(sc->sc_pgid, cmd, data);
1112 break;
1113 case FIOASYNC:
1114 if (*(int *)data)
1115 sc->sc_flags |= TAP_ASYNCIO;
1116 else
1117 sc->sc_flags &= ~TAP_ASYNCIO;
1118 break;
1119 case FIONBIO:
1120 if (*(int *)data)
1121 sc->sc_flags |= TAP_NBIO;
1122 else
1123 sc->sc_flags &= ~TAP_NBIO;
1124 break;
1125 #ifdef OTAPGIFNAME
1126 case OTAPGIFNAME:
1127 #endif
1128 case TAPGIFNAME:
1129 {
1130 struct ifreq *ifr = (struct ifreq *)data;
1131 struct ifnet *ifp = &sc->sc_ec.ec_if;
1132
1133 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1134 } break;
1135 default:
1136 error = ENOTTY;
1137 break;
1138 }
1139
1140 return (0);
1141 }
1142
1143 static int
1144 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1145 {
1146 return tap_dev_poll(minor(dev), events, l);
1147 }
1148
1149 static int
1150 tap_fops_poll(file_t *fp, int events)
1151 {
1152 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1153 }
1154
1155 static int
1156 tap_dev_poll(int unit, int events, struct lwp *l)
1157 {
1158 struct tap_softc *sc =
1159 device_lookup_private(&tap_cd, unit);
1160 int revents = 0;
1161
1162 if (sc == NULL)
1163 return POLLERR;
1164
1165 if (events & (POLLIN|POLLRDNORM)) {
1166 struct ifnet *ifp = &sc->sc_ec.ec_if;
1167 struct mbuf *m;
1168 int s;
1169
1170 s = splnet();
1171 IFQ_POLL(&ifp->if_snd, m);
1172 splx(s);
1173
1174 if (m != NULL)
1175 revents |= events & (POLLIN|POLLRDNORM);
1176 else {
1177 simple_lock(&sc->sc_kqlock);
1178 selrecord(l, &sc->sc_rsel);
1179 simple_unlock(&sc->sc_kqlock);
1180 }
1181 }
1182 revents |= events & (POLLOUT|POLLWRNORM);
1183
1184 return (revents);
1185 }
1186
1187 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1188 tap_kqread };
1189 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1190 filt_seltrue };
1191
1192 static int
1193 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1194 {
1195 return tap_dev_kqfilter(minor(dev), kn);
1196 }
1197
1198 static int
1199 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1200 {
1201 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1202 }
1203
1204 static int
1205 tap_dev_kqfilter(int unit, struct knote *kn)
1206 {
1207 struct tap_softc *sc =
1208 device_lookup_private(&tap_cd, unit);
1209
1210 if (sc == NULL)
1211 return (ENXIO);
1212
1213 KERNEL_LOCK(1, NULL);
1214 switch(kn->kn_filter) {
1215 case EVFILT_READ:
1216 kn->kn_fop = &tap_read_filterops;
1217 break;
1218 case EVFILT_WRITE:
1219 kn->kn_fop = &tap_seltrue_filterops;
1220 break;
1221 default:
1222 KERNEL_UNLOCK_ONE(NULL);
1223 return (EINVAL);
1224 }
1225
1226 kn->kn_hook = sc;
1227 simple_lock(&sc->sc_kqlock);
1228 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1229 simple_unlock(&sc->sc_kqlock);
1230 KERNEL_UNLOCK_ONE(NULL);
1231 return (0);
1232 }
1233
1234 static void
1235 tap_kqdetach(struct knote *kn)
1236 {
1237 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1238
1239 KERNEL_LOCK(1, NULL);
1240 simple_lock(&sc->sc_kqlock);
1241 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1242 simple_unlock(&sc->sc_kqlock);
1243 KERNEL_UNLOCK_ONE(NULL);
1244 }
1245
1246 static int
1247 tap_kqread(struct knote *kn, long hint)
1248 {
1249 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1250 struct ifnet *ifp = &sc->sc_ec.ec_if;
1251 struct mbuf *m;
1252 int s, rv;
1253
1254 KERNEL_LOCK(1, NULL);
1255 s = splnet();
1256 IFQ_POLL(&ifp->if_snd, m);
1257
1258 if (m == NULL)
1259 kn->kn_data = 0;
1260 else
1261 kn->kn_data = m->m_pkthdr.len;
1262 splx(s);
1263 rv = (kn->kn_data != 0 ? 1 : 0);
1264 KERNEL_UNLOCK_ONE(NULL);
1265 return rv;
1266 }
1267
1268 #if defined(COMPAT_40) || defined(MODULAR)
1269 /*
1270 * sysctl management routines
1271 * You can set the address of an interface through:
1272 * net.link.tap.tap<number>
1273 *
1274 * Note the consistent use of tap_log in order to use
1275 * sysctl_teardown at unload time.
1276 *
1277 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1278 * blocks register a function in a special section of the kernel
1279 * (called a link set) which is used at init_sysctl() time to cycle
1280 * through all those functions to create the kernel's sysctl tree.
1281 *
1282 * It is not possible to use link sets in a module, so the
1283 * easiest is to simply call our own setup routine at load time.
1284 *
1285 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1286 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1287 * whole kernel sysctl tree is built, it is not possible to add any
1288 * permanent node.
1289 *
1290 * It should be noted that we're not saving the sysctlnode pointer
1291 * we are returned when creating the "tap" node. That structure
1292 * cannot be trusted once out of the calling function, as it might
1293 * get reused. So we just save the MIB number, and always give the
1294 * full path starting from the root for later calls to sysctl_createv
1295 * and sysctl_destroyv.
1296 */
1297 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1298 {
1299 const struct sysctlnode *node;
1300 int error = 0;
1301
1302 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1303 CTLFLAG_PERMANENT,
1304 CTLTYPE_NODE, "net", NULL,
1305 NULL, 0, NULL, 0,
1306 CTL_NET, CTL_EOL)) != 0)
1307 return;
1308
1309 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1310 CTLFLAG_PERMANENT,
1311 CTLTYPE_NODE, "link", NULL,
1312 NULL, 0, NULL, 0,
1313 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1314 return;
1315
1316 /*
1317 * The first four parameters of sysctl_createv are for management.
1318 *
1319 * The four that follows, here starting with a '0' for the flags,
1320 * describe the node.
1321 *
1322 * The next series of four set its value, through various possible
1323 * means.
1324 *
1325 * Last but not least, the path to the node is described. That path
1326 * is relative to the given root (third argument). Here we're
1327 * starting from the root.
1328 */
1329 if ((error = sysctl_createv(clog, 0, NULL, &node,
1330 CTLFLAG_PERMANENT,
1331 CTLTYPE_NODE, "tap", NULL,
1332 NULL, 0, NULL, 0,
1333 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1334 return;
1335 tap_node = node->sysctl_num;
1336 }
1337
1338 /*
1339 * The helper functions make Andrew Brown's interface really
1340 * shine. It makes possible to create value on the fly whether
1341 * the sysctl value is read or written.
1342 *
1343 * As shown as an example in the man page, the first step is to
1344 * create a copy of the node to have sysctl_lookup work on it.
1345 *
1346 * Here, we have more work to do than just a copy, since we have
1347 * to create the string. The first step is to collect the actual
1348 * value of the node, which is a convenient pointer to the softc
1349 * of the interface. From there we create the string and use it
1350 * as the value, but only for the *copy* of the node.
1351 *
1352 * Then we let sysctl_lookup do the magic, which consists in
1353 * setting oldp and newp as required by the operation. When the
1354 * value is read, that means that the string will be copied to
1355 * the user, and when it is written, the new value will be copied
1356 * over in the addr array.
1357 *
1358 * If newp is NULL, the user was reading the value, so we don't
1359 * have anything else to do. If a new value was written, we
1360 * have to check it.
1361 *
1362 * If it is incorrect, we can return an error and leave 'node' as
1363 * it is: since it is a copy of the actual node, the change will
1364 * be forgotten.
1365 *
1366 * Upon a correct input, we commit the change to the ifnet
1367 * structure of our interface.
1368 */
1369 static int
1370 tap_sysctl_handler(SYSCTLFN_ARGS)
1371 {
1372 struct sysctlnode node;
1373 struct tap_softc *sc;
1374 struct ifnet *ifp;
1375 int error;
1376 size_t len;
1377 char addr[3 * ETHER_ADDR_LEN];
1378 uint8_t enaddr[ETHER_ADDR_LEN];
1379
1380 node = *rnode;
1381 sc = node.sysctl_data;
1382 ifp = &sc->sc_ec.ec_if;
1383 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1384 node.sysctl_data = addr;
1385 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1386 if (error || newp == NULL)
1387 return (error);
1388
1389 len = strlen(addr);
1390 if (len < 11 || len > 17)
1391 return (EINVAL);
1392
1393 /* Commit change */
1394 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1395 return (EINVAL);
1396 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1397 return (error);
1398 }
1399 #endif
1400