Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.65
      1 /*	$NetBSD: if_tap.c,v 1.65 2010/05/19 20:41:59 christos Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.65 2010/05/19 20:41:59 christos Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/device.h>
     50 #include <sys/file.h>
     51 #include <sys/filedesc.h>
     52 #include <sys/ksyms.h>
     53 #include <sys/poll.h>
     54 #include <sys/proc.h>
     55 #include <sys/select.h>
     56 #include <sys/sockio.h>
     57 #if defined(COMPAT_40) || defined(MODULAR)
     58 #include <sys/sysctl.h>
     59 #endif
     60 #include <sys/kauth.h>
     61 #include <sys/mutex.h>
     62 #include <sys/simplelock.h>
     63 #include <sys/intr.h>
     64 #include <sys/stat.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #include <net/bpf.h>
     72 
     73 #include <compat/sys/sockio.h>
     74 
     75 #if defined(COMPAT_40) || defined(MODULAR)
     76 /*
     77  * sysctl node management
     78  *
     79  * It's not really possible to use a SYSCTL_SETUP block with
     80  * current module implementation, so it is easier to just define
     81  * our own function.
     82  *
     83  * The handler function is a "helper" in Andrew Brown's sysctl
     84  * framework terminology.  It is used as a gateway for sysctl
     85  * requests over the nodes.
     86  *
     87  * tap_log allows the module to log creations of nodes and
     88  * destroy them all at once using sysctl_teardown.
     89  */
     90 static int tap_node;
     91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93 #endif
     94 
     95 /*
     96  * Since we're an Ethernet device, we need the 3 following
     97  * components: a leading struct device, a struct ethercom,
     98  * and also a struct ifmedia since we don't attach a PHY to
     99  * ourselves. We could emulate one, but there's no real
    100  * point.
    101  */
    102 
    103 struct tap_softc {
    104 	device_t	sc_dev;
    105 	struct ifmedia	sc_im;
    106 	struct ethercom	sc_ec;
    107 	int		sc_flags;
    108 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    109 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    110 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    111 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    112 	struct selinfo	sc_rsel;
    113 	pid_t		sc_pgid; /* For async. IO */
    114 	kmutex_t	sc_rdlock;
    115 	struct simplelock	sc_kqlock;
    116 	void		*sc_sih;
    117 	struct timespec sc_atime;
    118 	struct timespec sc_mtime;
    119 	struct timespec sc_btime;
    120 };
    121 
    122 /* autoconf(9) glue */
    123 
    124 void	tapattach(int);
    125 
    126 static int	tap_match(device_t, cfdata_t, void *);
    127 static void	tap_attach(device_t, device_t, void *);
    128 static int	tap_detach(device_t, int);
    129 
    130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    131     tap_match, tap_attach, tap_detach, NULL);
    132 extern struct cfdriver tap_cd;
    133 
    134 /* Real device access routines */
    135 static int	tap_dev_close(struct tap_softc *);
    136 static int	tap_dev_read(int, struct uio *, int);
    137 static int	tap_dev_write(int, struct uio *, int);
    138 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    139 static int	tap_dev_poll(int, int, struct lwp *);
    140 static int	tap_dev_kqfilter(int, struct knote *);
    141 
    142 /* Fileops access routines */
    143 static int	tap_fops_close(file_t *);
    144 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    145     kauth_cred_t, int);
    146 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    147     kauth_cred_t, int);
    148 static int	tap_fops_ioctl(file_t *, u_long, void *);
    149 static int	tap_fops_poll(file_t *, int);
    150 static int	tap_fops_stat(file_t *, struct stat *);
    151 static int	tap_fops_kqfilter(file_t *, struct knote *);
    152 
    153 static const struct fileops tap_fileops = {
    154 	.fo_read = tap_fops_read,
    155 	.fo_write = tap_fops_write,
    156 	.fo_ioctl = tap_fops_ioctl,
    157 	.fo_fcntl = fnullop_fcntl,
    158 	.fo_poll = tap_fops_poll,
    159 	.fo_stat = tap_fops_stat,
    160 	.fo_close = tap_fops_close,
    161 	.fo_kqfilter = tap_fops_kqfilter,
    162 	.fo_restart = fnullop_restart,
    163 };
    164 
    165 /* Helper for cloning open() */
    166 static int	tap_dev_cloner(struct lwp *);
    167 
    168 /* Character device routines */
    169 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    170 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    171 static int	tap_cdev_read(dev_t, struct uio *, int);
    172 static int	tap_cdev_write(dev_t, struct uio *, int);
    173 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    174 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    175 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    176 
    177 const struct cdevsw tap_cdevsw = {
    178 	tap_cdev_open, tap_cdev_close,
    179 	tap_cdev_read, tap_cdev_write,
    180 	tap_cdev_ioctl, nostop, notty,
    181 	tap_cdev_poll, nommap,
    182 	tap_cdev_kqfilter,
    183 	D_OTHER,
    184 };
    185 
    186 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    187 
    188 /* kqueue-related routines */
    189 static void	tap_kqdetach(struct knote *);
    190 static int	tap_kqread(struct knote *, long);
    191 
    192 /*
    193  * Those are needed by the if_media interface.
    194  */
    195 
    196 static int	tap_mediachange(struct ifnet *);
    197 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    198 
    199 /*
    200  * Those are needed by the ifnet interface, and would typically be
    201  * there for any network interface driver.
    202  * Some other routines are optional: watchdog and drain.
    203  */
    204 
    205 static void	tap_start(struct ifnet *);
    206 static void	tap_stop(struct ifnet *, int);
    207 static int	tap_init(struct ifnet *);
    208 static int	tap_ioctl(struct ifnet *, u_long, void *);
    209 
    210 /* Internal functions */
    211 #if defined(COMPAT_40) || defined(MODULAR)
    212 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    213 #endif
    214 static void	tap_softintr(void *);
    215 
    216 /*
    217  * tap is a clonable interface, although it is highly unrealistic for
    218  * an Ethernet device.
    219  *
    220  * Here are the bits needed for a clonable interface.
    221  */
    222 static int	tap_clone_create(struct if_clone *, int);
    223 static int	tap_clone_destroy(struct ifnet *);
    224 
    225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    226 					tap_clone_create,
    227 					tap_clone_destroy);
    228 
    229 /* Helper functionis shared by the two cloning code paths */
    230 static struct tap_softc *	tap_clone_creator(int);
    231 int	tap_clone_destroyer(device_t);
    232 
    233 void
    234 tapattach(int n)
    235 {
    236 	int error;
    237 
    238 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    239 	if (error) {
    240 		aprint_error("%s: unable to register cfattach\n",
    241 		    tap_cd.cd_name);
    242 		(void)config_cfdriver_detach(&tap_cd);
    243 		return;
    244 	}
    245 
    246 	if_clone_attach(&tap_cloners);
    247 }
    248 
    249 /* Pretty much useless for a pseudo-device */
    250 static int
    251 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    252 {
    253 
    254 	return (1);
    255 }
    256 
    257 void
    258 tap_attach(device_t parent, device_t self, void *aux)
    259 {
    260 	struct tap_softc *sc = device_private(self);
    261 	struct ifnet *ifp;
    262 #if defined(COMPAT_40) || defined(MODULAR)
    263 	const struct sysctlnode *node;
    264 	int error;
    265 #endif
    266 	uint8_t enaddr[ETHER_ADDR_LEN] =
    267 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    268 	char enaddrstr[3 * ETHER_ADDR_LEN];
    269 	struct timeval tv;
    270 	uint32_t ui;
    271 
    272 	sc->sc_dev = self;
    273 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
    274 	getnanotime(&sc->sc_btime);
    275 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    276 
    277 	if (!pmf_device_register(self, NULL, NULL))
    278 		aprint_error_dev(self, "couldn't establish power handler\n");
    279 
    280 	/*
    281 	 * In order to obtain unique initial Ethernet address on a host,
    282 	 * do some randomisation using the current uptime.  It's not meant
    283 	 * for anything but avoiding hard-coding an address.
    284 	 */
    285 	getmicrouptime(&tv);
    286 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    287 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
    288 
    289 	aprint_verbose_dev(self, "Ethernet address %s\n",
    290 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    291 
    292 	/*
    293 	 * Why 1000baseT? Why not? You can add more.
    294 	 *
    295 	 * Note that there are 3 steps: init, one or several additions to
    296 	 * list of supported media, and in the end, the selection of one
    297 	 * of them.
    298 	 */
    299 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    300 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    301 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    302 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    303 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    304 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    305 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    306 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    307 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    308 
    309 	/*
    310 	 * One should note that an interface must do multicast in order
    311 	 * to support IPv6.
    312 	 */
    313 	ifp = &sc->sc_ec.ec_if;
    314 	strcpy(ifp->if_xname, device_xname(self));
    315 	ifp->if_softc	= sc;
    316 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    317 	ifp->if_ioctl	= tap_ioctl;
    318 	ifp->if_start	= tap_start;
    319 	ifp->if_stop	= tap_stop;
    320 	ifp->if_init	= tap_init;
    321 	IFQ_SET_READY(&ifp->if_snd);
    322 
    323 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    324 
    325 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    326 	 * being common to all network interface drivers. */
    327 	if_attach(ifp);
    328 	ether_ifattach(ifp, enaddr);
    329 
    330 	sc->sc_flags = 0;
    331 
    332 #if defined(COMPAT_40) || defined(MODULAR)
    333 	/*
    334 	 * Add a sysctl node for that interface.
    335 	 *
    336 	 * The pointer transmitted is not a string, but instead a pointer to
    337 	 * the softc structure, which we can use to build the string value on
    338 	 * the fly in the helper function of the node.  See the comments for
    339 	 * tap_sysctl_handler for details.
    340 	 *
    341 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    342 	 * component.  However, we can allocate a number ourselves, as we are
    343 	 * the only consumer of the net.link.<iface> node.  In this case, the
    344 	 * unit number is conveniently used to number the node.  CTL_CREATE
    345 	 * would just work, too.
    346 	 */
    347 	if ((error = sysctl_createv(NULL, 0, NULL,
    348 	    &node, CTLFLAG_READWRITE,
    349 	    CTLTYPE_STRING, device_xname(self), NULL,
    350 	    tap_sysctl_handler, 0, sc, 18,
    351 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    352 	    CTL_EOL)) != 0)
    353 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    354 		    error);
    355 #endif
    356 
    357 	/*
    358 	 * Initialize the two locks for the device.
    359 	 *
    360 	 * We need a lock here because even though the tap device can be
    361 	 * opened only once, the file descriptor might be passed to another
    362 	 * process, say a fork(2)ed child.
    363 	 *
    364 	 * The Giant saves us from most of the hassle, but since the read
    365 	 * operation can sleep, we don't want two processes to wake up at
    366 	 * the same moment and both try and dequeue a single packet.
    367 	 *
    368 	 * The queue for event listeners (used by kqueue(9), see below) has
    369 	 * to be protected, too, but we don't need the same level of
    370 	 * complexity for that lock, so a simple spinning lock is fine.
    371 	 */
    372 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    373 	simple_lock_init(&sc->sc_kqlock);
    374 
    375 	selinit(&sc->sc_rsel);
    376 }
    377 
    378 /*
    379  * When detaching, we do the inverse of what is done in the attach
    380  * routine, in reversed order.
    381  */
    382 static int
    383 tap_detach(device_t self, int flags)
    384 {
    385 	struct tap_softc *sc = device_private(self);
    386 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    387 #if defined(COMPAT_40) || defined(MODULAR)
    388 	int error;
    389 #endif
    390 	int s;
    391 
    392 	sc->sc_flags |= TAP_GOING;
    393 	s = splnet();
    394 	tap_stop(ifp, 1);
    395 	if_down(ifp);
    396 	splx(s);
    397 
    398 	softint_disestablish(sc->sc_sih);
    399 
    400 #if defined(COMPAT_40) || defined(MODULAR)
    401 	/*
    402 	 * Destroying a single leaf is a very straightforward operation using
    403 	 * sysctl_destroyv.  One should be sure to always end the path with
    404 	 * CTL_EOL.
    405 	 */
    406 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    407 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    408 		aprint_error_dev(self,
    409 		    "sysctl_destroyv returned %d, ignoring\n", error);
    410 #endif
    411 	ether_ifdetach(ifp);
    412 	if_detach(ifp);
    413 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    414 	seldestroy(&sc->sc_rsel);
    415 	mutex_destroy(&sc->sc_rdlock);
    416 
    417 	pmf_device_deregister(self);
    418 
    419 	return (0);
    420 }
    421 
    422 /*
    423  * This function is called by the ifmedia layer to notify the driver
    424  * that the user requested a media change.  A real driver would
    425  * reconfigure the hardware.
    426  */
    427 static int
    428 tap_mediachange(struct ifnet *ifp)
    429 {
    430 	return (0);
    431 }
    432 
    433 /*
    434  * Here the user asks for the currently used media.
    435  */
    436 static void
    437 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    438 {
    439 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    440 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    441 }
    442 
    443 /*
    444  * This is the function where we SEND packets.
    445  *
    446  * There is no 'receive' equivalent.  A typical driver will get
    447  * interrupts from the hardware, and from there will inject new packets
    448  * into the network stack.
    449  *
    450  * Once handled, a packet must be freed.  A real driver might not be able
    451  * to fit all the pending packets into the hardware, and is allowed to
    452  * return before having sent all the packets.  It should then use the
    453  * if_flags flag IFF_OACTIVE to notify the upper layer.
    454  *
    455  * There are also other flags one should check, such as IFF_PAUSE.
    456  *
    457  * It is our duty to make packets available to BPF listeners.
    458  *
    459  * You should be aware that this function is called by the Ethernet layer
    460  * at splnet().
    461  *
    462  * When the device is opened, we have to pass the packet(s) to the
    463  * userland.  For that we stay in OACTIVE mode while the userland gets
    464  * the packets, and we send a signal to the processes waiting to read.
    465  *
    466  * wakeup(sc) is the counterpart to the tsleep call in
    467  * tap_dev_read, while selnotify() is used for kevent(2) and
    468  * poll(2) (which includes select(2)) listeners.
    469  */
    470 static void
    471 tap_start(struct ifnet *ifp)
    472 {
    473 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    474 	struct mbuf *m0;
    475 
    476 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    477 		/* Simply drop packets */
    478 		for(;;) {
    479 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    480 			if (m0 == NULL)
    481 				return;
    482 
    483 			ifp->if_opackets++;
    484 			bpf_mtap(ifp, m0);
    485 
    486 			m_freem(m0);
    487 		}
    488 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    489 		ifp->if_flags |= IFF_OACTIVE;
    490 		wakeup(sc);
    491 		selnotify(&sc->sc_rsel, 0, 1);
    492 		if (sc->sc_flags & TAP_ASYNCIO)
    493 			softint_schedule(sc->sc_sih);
    494 	}
    495 }
    496 
    497 static void
    498 tap_softintr(void *cookie)
    499 {
    500 	struct tap_softc *sc;
    501 	struct ifnet *ifp;
    502 	int a, b;
    503 
    504 	sc = cookie;
    505 
    506 	if (sc->sc_flags & TAP_ASYNCIO) {
    507 		ifp = &sc->sc_ec.ec_if;
    508 		if (ifp->if_flags & IFF_RUNNING) {
    509 			a = POLL_IN;
    510 			b = POLLIN|POLLRDNORM;
    511 		} else {
    512 			a = POLL_HUP;
    513 			b = 0;
    514 		}
    515 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    516 	}
    517 }
    518 
    519 /*
    520  * A typical driver will only contain the following handlers for
    521  * ioctl calls, except SIOCSIFPHYADDR.
    522  * The latter is a hack I used to set the Ethernet address of the
    523  * faked device.
    524  *
    525  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    526  * called under splnet().
    527  */
    528 static int
    529 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    530 {
    531 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    532 	struct ifreq *ifr = (struct ifreq *)data;
    533 	int s, error;
    534 
    535 	s = splnet();
    536 
    537 	switch (cmd) {
    538 #ifdef OSIOCSIFMEDIA
    539 	case OSIOCSIFMEDIA:
    540 #endif
    541 	case SIOCSIFMEDIA:
    542 	case SIOCGIFMEDIA:
    543 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    544 		break;
    545 #if defined(COMPAT_40) || defined(MODULAR)
    546 	case SIOCSIFPHYADDR:
    547 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    548 		break;
    549 #endif
    550 	default:
    551 		error = ether_ioctl(ifp, cmd, data);
    552 		if (error == ENETRESET)
    553 			error = 0;
    554 		break;
    555 	}
    556 
    557 	splx(s);
    558 
    559 	return (error);
    560 }
    561 
    562 #if defined(COMPAT_40) || defined(MODULAR)
    563 /*
    564  * Helper function to set Ethernet address.  This has been replaced by
    565  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    566  */
    567 static int
    568 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    569 {
    570 	const struct sockaddr *sa = &ifra->ifra_addr;
    571 
    572 	if (sa->sa_family != AF_LINK)
    573 		return (EINVAL);
    574 
    575 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    576 
    577 	return (0);
    578 }
    579 #endif
    580 
    581 /*
    582  * _init() would typically be called when an interface goes up,
    583  * meaning it should configure itself into the state in which it
    584  * can send packets.
    585  */
    586 static int
    587 tap_init(struct ifnet *ifp)
    588 {
    589 	ifp->if_flags |= IFF_RUNNING;
    590 
    591 	tap_start(ifp);
    592 
    593 	return (0);
    594 }
    595 
    596 /*
    597  * _stop() is called when an interface goes down.  It is our
    598  * responsability to validate that state by clearing the
    599  * IFF_RUNNING flag.
    600  *
    601  * We have to wake up all the sleeping processes to have the pending
    602  * read requests cancelled.
    603  */
    604 static void
    605 tap_stop(struct ifnet *ifp, int disable)
    606 {
    607 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    608 
    609 	ifp->if_flags &= ~IFF_RUNNING;
    610 	wakeup(sc);
    611 	selnotify(&sc->sc_rsel, 0, 1);
    612 	if (sc->sc_flags & TAP_ASYNCIO)
    613 		softint_schedule(sc->sc_sih);
    614 }
    615 
    616 /*
    617  * The 'create' command of ifconfig can be used to create
    618  * any numbered instance of a given device.  Thus we have to
    619  * make sure we have enough room in cd_devs to create the
    620  * user-specified instance.  config_attach_pseudo will do this
    621  * for us.
    622  */
    623 static int
    624 tap_clone_create(struct if_clone *ifc, int unit)
    625 {
    626 	if (tap_clone_creator(unit) == NULL) {
    627 		aprint_error("%s%d: unable to attach an instance\n",
    628                     tap_cd.cd_name, unit);
    629 		return (ENXIO);
    630 	}
    631 
    632 	return (0);
    633 }
    634 
    635 /*
    636  * tap(4) can be cloned by two ways:
    637  *   using 'ifconfig tap0 create', which will use the network
    638  *     interface cloning API, and call tap_clone_create above.
    639  *   opening the cloning device node, whose minor number is TAP_CLONER.
    640  *     See below for an explanation on how this part work.
    641  */
    642 static struct tap_softc *
    643 tap_clone_creator(int unit)
    644 {
    645 	struct cfdata *cf;
    646 
    647 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    648 	cf->cf_name = tap_cd.cd_name;
    649 	cf->cf_atname = tap_ca.ca_name;
    650 	if (unit == -1) {
    651 		/* let autoconf find the first free one */
    652 		cf->cf_unit = 0;
    653 		cf->cf_fstate = FSTATE_STAR;
    654 	} else {
    655 		cf->cf_unit = unit;
    656 		cf->cf_fstate = FSTATE_NOTFOUND;
    657 	}
    658 
    659 	return device_private(config_attach_pseudo(cf));
    660 }
    661 
    662 /*
    663  * The clean design of if_clone and autoconf(9) makes that part
    664  * really straightforward.  The second argument of config_detach
    665  * means neither QUIET nor FORCED.
    666  */
    667 static int
    668 tap_clone_destroy(struct ifnet *ifp)
    669 {
    670 	struct tap_softc *sc = ifp->if_softc;
    671 
    672 	return tap_clone_destroyer(sc->sc_dev);
    673 }
    674 
    675 int
    676 tap_clone_destroyer(device_t dev)
    677 {
    678 	cfdata_t cf = device_cfdata(dev);
    679 	int error;
    680 
    681 	if ((error = config_detach(dev, 0)) != 0)
    682 		aprint_error_dev(dev, "unable to detach instance\n");
    683 	free(cf, M_DEVBUF);
    684 
    685 	return (error);
    686 }
    687 
    688 /*
    689  * tap(4) is a bit of an hybrid device.  It can be used in two different
    690  * ways:
    691  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    692  *  2. open /dev/tap, get a new interface created and read/write off it.
    693  *     That interface is destroyed when the process that had it created exits.
    694  *
    695  * The first way is managed by the cdevsw structure, and you access interfaces
    696  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    697  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    698  *
    699  * The second way is the so-called "cloning" device.  It's a special minor
    700  * number (chosen as the maximal number, to allow as much tap devices as
    701  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    702  * call ends in tap_cdev_open.  The actual place where it is handled is
    703  * tap_dev_cloner.
    704  *
    705  * An tap device cannot be opened more than once at a time, so the cdevsw
    706  * part of open() does nothing but noting that the interface is being used and
    707  * hence ready to actually handle packets.
    708  */
    709 
    710 static int
    711 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    712 {
    713 	struct tap_softc *sc;
    714 
    715 	if (minor(dev) == TAP_CLONER)
    716 		return tap_dev_cloner(l);
    717 
    718 	sc = device_lookup_private(&tap_cd, minor(dev));
    719 	if (sc == NULL)
    720 		return (ENXIO);
    721 
    722 	/* The device can only be opened once */
    723 	if (sc->sc_flags & TAP_INUSE)
    724 		return (EBUSY);
    725 	sc->sc_flags |= TAP_INUSE;
    726 	return (0);
    727 }
    728 
    729 /*
    730  * There are several kinds of cloning devices, and the most simple is the one
    731  * tap(4) uses.  What it does is change the file descriptor with a new one,
    732  * with its own fileops structure (which maps to the various read, write,
    733  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    734  * then actually creates the new tap devices.
    735  *
    736  * Once those two steps are successful, we can re-wire the existing file
    737  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    738  * structure as needed (notably f_data gets filled with the fifth parameter
    739  * passed, the unit of the tap device which will allows us identifying the
    740  * device later), and returns EMOVEFD.
    741  *
    742  * That magic value is interpreted by sys_open() which then replaces the
    743  * current file descriptor by the new one (through a magic member of struct
    744  * lwp, l_dupfd).
    745  *
    746  * The tap device is flagged as being busy since it otherwise could be
    747  * externally accessed through the corresponding device node with the cdevsw
    748  * interface.
    749  */
    750 
    751 static int
    752 tap_dev_cloner(struct lwp *l)
    753 {
    754 	struct tap_softc *sc;
    755 	file_t *fp;
    756 	int error, fd;
    757 
    758 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    759 		return (error);
    760 
    761 	if ((sc = tap_clone_creator(-1)) == NULL) {
    762 		fd_abort(curproc, fp, fd);
    763 		return (ENXIO);
    764 	}
    765 
    766 	sc->sc_flags |= TAP_INUSE;
    767 
    768 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    769 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    770 }
    771 
    772 /*
    773  * While all other operations (read, write, ioctl, poll and kqfilter) are
    774  * really the same whether we are in cdevsw or fileops mode, the close()
    775  * function is slightly different in the two cases.
    776  *
    777  * As for the other, the core of it is shared in tap_dev_close.  What
    778  * it does is sufficient for the cdevsw interface, but the cloning interface
    779  * needs another thing:  the interface is destroyed when the processes that
    780  * created it closes it.
    781  */
    782 static int
    783 tap_cdev_close(dev_t dev, int flags, int fmt,
    784     struct lwp *l)
    785 {
    786 	struct tap_softc *sc =
    787 	    device_lookup_private(&tap_cd, minor(dev));
    788 
    789 	if (sc == NULL)
    790 		return (ENXIO);
    791 
    792 	return tap_dev_close(sc);
    793 }
    794 
    795 /*
    796  * It might happen that the administrator used ifconfig to externally destroy
    797  * the interface.  In that case, tap_fops_close will be called while
    798  * tap_detach is already happening.  If we called it again from here, we
    799  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    800  */
    801 static int
    802 tap_fops_close(file_t *fp)
    803 {
    804 	int unit = (intptr_t)fp->f_data;
    805 	struct tap_softc *sc;
    806 	int error;
    807 
    808 	sc = device_lookup_private(&tap_cd, unit);
    809 	if (sc == NULL)
    810 		return (ENXIO);
    811 
    812 	/* tap_dev_close currently always succeeds, but it might not
    813 	 * always be the case. */
    814 	KERNEL_LOCK(1, NULL);
    815 	if ((error = tap_dev_close(sc)) != 0) {
    816 		KERNEL_UNLOCK_ONE(NULL);
    817 		return (error);
    818 	}
    819 
    820 	/* Destroy the device now that it is no longer useful,
    821 	 * unless it's already being destroyed. */
    822 	if ((sc->sc_flags & TAP_GOING) != 0) {
    823 		KERNEL_UNLOCK_ONE(NULL);
    824 		return (0);
    825 	}
    826 
    827 	error = tap_clone_destroyer(sc->sc_dev);
    828 	KERNEL_UNLOCK_ONE(NULL);
    829 	return error;
    830 }
    831 
    832 static int
    833 tap_dev_close(struct tap_softc *sc)
    834 {
    835 	struct ifnet *ifp;
    836 	int s;
    837 
    838 	s = splnet();
    839 	/* Let tap_start handle packets again */
    840 	ifp = &sc->sc_ec.ec_if;
    841 	ifp->if_flags &= ~IFF_OACTIVE;
    842 
    843 	/* Purge output queue */
    844 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    845 		struct mbuf *m;
    846 
    847 		for (;;) {
    848 			IFQ_DEQUEUE(&ifp->if_snd, m);
    849 			if (m == NULL)
    850 				break;
    851 
    852 			ifp->if_opackets++;
    853 			bpf_mtap(ifp, m);
    854 			m_freem(m);
    855 		}
    856 	}
    857 	splx(s);
    858 
    859 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    860 
    861 	return (0);
    862 }
    863 
    864 static int
    865 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    866 {
    867 	return tap_dev_read(minor(dev), uio, flags);
    868 }
    869 
    870 static int
    871 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    872     kauth_cred_t cred, int flags)
    873 {
    874 	int error;
    875 
    876 	KERNEL_LOCK(1, NULL);
    877 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
    878 	KERNEL_UNLOCK_ONE(NULL);
    879 	return error;
    880 }
    881 
    882 static int
    883 tap_dev_read(int unit, struct uio *uio, int flags)
    884 {
    885 	struct tap_softc *sc =
    886 	    device_lookup_private(&tap_cd, unit);
    887 	struct ifnet *ifp;
    888 	struct mbuf *m, *n;
    889 	int error = 0, s;
    890 
    891 	if (sc == NULL)
    892 		return (ENXIO);
    893 
    894 	getnanotime(&sc->sc_atime);
    895 
    896 	ifp = &sc->sc_ec.ec_if;
    897 	if ((ifp->if_flags & IFF_UP) == 0)
    898 		return (EHOSTDOWN);
    899 
    900 	/*
    901 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    902 	 */
    903 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    904 		if (!mutex_tryenter(&sc->sc_rdlock))
    905 			return (EWOULDBLOCK);
    906 	} else {
    907 		mutex_enter(&sc->sc_rdlock);
    908 	}
    909 
    910 	s = splnet();
    911 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    912 		ifp->if_flags &= ~IFF_OACTIVE;
    913 		/*
    914 		 * We must release the lock before sleeping, and re-acquire it
    915 		 * after.
    916 		 */
    917 		mutex_exit(&sc->sc_rdlock);
    918 		if (sc->sc_flags & TAP_NBIO)
    919 			error = EWOULDBLOCK;
    920 		else
    921 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    922 		splx(s);
    923 
    924 		if (error != 0)
    925 			return (error);
    926 		/* The device might have been downed */
    927 		if ((ifp->if_flags & IFF_UP) == 0)
    928 			return (EHOSTDOWN);
    929 		if ((sc->sc_flags & TAP_NBIO)) {
    930 			if (!mutex_tryenter(&sc->sc_rdlock))
    931 				return (EWOULDBLOCK);
    932 		} else {
    933 			mutex_enter(&sc->sc_rdlock);
    934 		}
    935 		s = splnet();
    936 	}
    937 
    938 	IFQ_DEQUEUE(&ifp->if_snd, m);
    939 	ifp->if_flags &= ~IFF_OACTIVE;
    940 	splx(s);
    941 	if (m == NULL) {
    942 		error = 0;
    943 		goto out;
    944 	}
    945 
    946 	ifp->if_opackets++;
    947 	bpf_mtap(ifp, m);
    948 
    949 	/*
    950 	 * One read is one packet.
    951 	 */
    952 	do {
    953 		error = uiomove(mtod(m, void *),
    954 		    min(m->m_len, uio->uio_resid), uio);
    955 		MFREE(m, n);
    956 		m = n;
    957 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    958 
    959 	if (m != NULL)
    960 		m_freem(m);
    961 
    962 out:
    963 	mutex_exit(&sc->sc_rdlock);
    964 	return (error);
    965 }
    966 
    967 static int
    968 tap_fops_stat(file_t *fp, struct stat *st)
    969 {
    970 	int error = 0;
    971 	struct tap_softc *sc;
    972 	int unit = (uintptr_t)fp->f_data;
    973 
    974 	(void)memset(st, 0, sizeof(*st));
    975 
    976 	KERNEL_LOCK(1, NULL);
    977 	sc = device_lookup_private(&tap_cd, unit);
    978 	if (sc == NULL) {
    979 		error = ENXIO;
    980 		goto out;
    981 	}
    982 
    983 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    984 	st->st_atimespec = sc->sc_atime;
    985 	st->st_mtimespec = sc->sc_mtime;
    986 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    987 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    988 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    989 out:
    990 	KERNEL_UNLOCK_ONE(NULL);
    991 	return error;
    992 }
    993 
    994 static int
    995 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    996 {
    997 	return tap_dev_write(minor(dev), uio, flags);
    998 }
    999 
   1000 static int
   1001 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1002     kauth_cred_t cred, int flags)
   1003 {
   1004 	int error;
   1005 
   1006 	KERNEL_LOCK(1, NULL);
   1007 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
   1008 	KERNEL_UNLOCK_ONE(NULL);
   1009 	return error;
   1010 }
   1011 
   1012 static int
   1013 tap_dev_write(int unit, struct uio *uio, int flags)
   1014 {
   1015 	struct tap_softc *sc =
   1016 	    device_lookup_private(&tap_cd, unit);
   1017 	struct ifnet *ifp;
   1018 	struct mbuf *m, **mp;
   1019 	int error = 0;
   1020 	int s;
   1021 
   1022 	if (sc == NULL)
   1023 		return (ENXIO);
   1024 
   1025 	getnanotime(&sc->sc_mtime);
   1026 	ifp = &sc->sc_ec.ec_if;
   1027 
   1028 	/* One write, one packet, that's the rule */
   1029 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1030 	if (m == NULL) {
   1031 		ifp->if_ierrors++;
   1032 		return (ENOBUFS);
   1033 	}
   1034 	m->m_pkthdr.len = uio->uio_resid;
   1035 
   1036 	mp = &m;
   1037 	while (error == 0 && uio->uio_resid > 0) {
   1038 		if (*mp != m) {
   1039 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1040 			if (*mp == NULL) {
   1041 				error = ENOBUFS;
   1042 				break;
   1043 			}
   1044 		}
   1045 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1046 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1047 		mp = &(*mp)->m_next;
   1048 	}
   1049 	if (error) {
   1050 		ifp->if_ierrors++;
   1051 		m_freem(m);
   1052 		return (error);
   1053 	}
   1054 
   1055 	ifp->if_ipackets++;
   1056 	m->m_pkthdr.rcvif = ifp;
   1057 
   1058 	bpf_mtap(ifp, m);
   1059 	s =splnet();
   1060 	(*ifp->if_input)(ifp, m);
   1061 	splx(s);
   1062 
   1063 	return (0);
   1064 }
   1065 
   1066 static int
   1067 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1068     struct lwp *l)
   1069 {
   1070 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1071 }
   1072 
   1073 static int
   1074 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1075 {
   1076 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
   1077 }
   1078 
   1079 static int
   1080 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1081 {
   1082 	struct tap_softc *sc =
   1083 	    device_lookup_private(&tap_cd, unit);
   1084 	int error = 0;
   1085 
   1086 	if (sc == NULL)
   1087 		return (ENXIO);
   1088 
   1089 	switch (cmd) {
   1090 	case FIONREAD:
   1091 		{
   1092 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1093 			struct mbuf *m;
   1094 			int s;
   1095 
   1096 			s = splnet();
   1097 			IFQ_POLL(&ifp->if_snd, m);
   1098 
   1099 			if (m == NULL)
   1100 				*(int *)data = 0;
   1101 			else
   1102 				*(int *)data = m->m_pkthdr.len;
   1103 			splx(s);
   1104 		} break;
   1105 	case TIOCSPGRP:
   1106 	case FIOSETOWN:
   1107 		error = fsetown(&sc->sc_pgid, cmd, data);
   1108 		break;
   1109 	case TIOCGPGRP:
   1110 	case FIOGETOWN:
   1111 		error = fgetown(sc->sc_pgid, cmd, data);
   1112 		break;
   1113 	case FIOASYNC:
   1114 		if (*(int *)data)
   1115 			sc->sc_flags |= TAP_ASYNCIO;
   1116 		else
   1117 			sc->sc_flags &= ~TAP_ASYNCIO;
   1118 		break;
   1119 	case FIONBIO:
   1120 		if (*(int *)data)
   1121 			sc->sc_flags |= TAP_NBIO;
   1122 		else
   1123 			sc->sc_flags &= ~TAP_NBIO;
   1124 		break;
   1125 #ifdef OTAPGIFNAME
   1126 	case OTAPGIFNAME:
   1127 #endif
   1128 	case TAPGIFNAME:
   1129 		{
   1130 			struct ifreq *ifr = (struct ifreq *)data;
   1131 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1132 
   1133 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1134 		} break;
   1135 	default:
   1136 		error = ENOTTY;
   1137 		break;
   1138 	}
   1139 
   1140 	return (0);
   1141 }
   1142 
   1143 static int
   1144 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1145 {
   1146 	return tap_dev_poll(minor(dev), events, l);
   1147 }
   1148 
   1149 static int
   1150 tap_fops_poll(file_t *fp, int events)
   1151 {
   1152 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1153 }
   1154 
   1155 static int
   1156 tap_dev_poll(int unit, int events, struct lwp *l)
   1157 {
   1158 	struct tap_softc *sc =
   1159 	    device_lookup_private(&tap_cd, unit);
   1160 	int revents = 0;
   1161 
   1162 	if (sc == NULL)
   1163 		return POLLERR;
   1164 
   1165 	if (events & (POLLIN|POLLRDNORM)) {
   1166 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1167 		struct mbuf *m;
   1168 		int s;
   1169 
   1170 		s = splnet();
   1171 		IFQ_POLL(&ifp->if_snd, m);
   1172 		splx(s);
   1173 
   1174 		if (m != NULL)
   1175 			revents |= events & (POLLIN|POLLRDNORM);
   1176 		else {
   1177 			simple_lock(&sc->sc_kqlock);
   1178 			selrecord(l, &sc->sc_rsel);
   1179 			simple_unlock(&sc->sc_kqlock);
   1180 		}
   1181 	}
   1182 	revents |= events & (POLLOUT|POLLWRNORM);
   1183 
   1184 	return (revents);
   1185 }
   1186 
   1187 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1188 	tap_kqread };
   1189 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1190 	filt_seltrue };
   1191 
   1192 static int
   1193 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1194 {
   1195 	return tap_dev_kqfilter(minor(dev), kn);
   1196 }
   1197 
   1198 static int
   1199 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1200 {
   1201 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1202 }
   1203 
   1204 static int
   1205 tap_dev_kqfilter(int unit, struct knote *kn)
   1206 {
   1207 	struct tap_softc *sc =
   1208 	    device_lookup_private(&tap_cd, unit);
   1209 
   1210 	if (sc == NULL)
   1211 		return (ENXIO);
   1212 
   1213 	KERNEL_LOCK(1, NULL);
   1214 	switch(kn->kn_filter) {
   1215 	case EVFILT_READ:
   1216 		kn->kn_fop = &tap_read_filterops;
   1217 		break;
   1218 	case EVFILT_WRITE:
   1219 		kn->kn_fop = &tap_seltrue_filterops;
   1220 		break;
   1221 	default:
   1222 		KERNEL_UNLOCK_ONE(NULL);
   1223 		return (EINVAL);
   1224 	}
   1225 
   1226 	kn->kn_hook = sc;
   1227 	simple_lock(&sc->sc_kqlock);
   1228 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1229 	simple_unlock(&sc->sc_kqlock);
   1230 	KERNEL_UNLOCK_ONE(NULL);
   1231 	return (0);
   1232 }
   1233 
   1234 static void
   1235 tap_kqdetach(struct knote *kn)
   1236 {
   1237 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1238 
   1239 	KERNEL_LOCK(1, NULL);
   1240 	simple_lock(&sc->sc_kqlock);
   1241 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1242 	simple_unlock(&sc->sc_kqlock);
   1243 	KERNEL_UNLOCK_ONE(NULL);
   1244 }
   1245 
   1246 static int
   1247 tap_kqread(struct knote *kn, long hint)
   1248 {
   1249 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1250 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1251 	struct mbuf *m;
   1252 	int s, rv;
   1253 
   1254 	KERNEL_LOCK(1, NULL);
   1255 	s = splnet();
   1256 	IFQ_POLL(&ifp->if_snd, m);
   1257 
   1258 	if (m == NULL)
   1259 		kn->kn_data = 0;
   1260 	else
   1261 		kn->kn_data = m->m_pkthdr.len;
   1262 	splx(s);
   1263 	rv = (kn->kn_data != 0 ? 1 : 0);
   1264 	KERNEL_UNLOCK_ONE(NULL);
   1265 	return rv;
   1266 }
   1267 
   1268 #if defined(COMPAT_40) || defined(MODULAR)
   1269 /*
   1270  * sysctl management routines
   1271  * You can set the address of an interface through:
   1272  * net.link.tap.tap<number>
   1273  *
   1274  * Note the consistent use of tap_log in order to use
   1275  * sysctl_teardown at unload time.
   1276  *
   1277  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1278  * blocks register a function in a special section of the kernel
   1279  * (called a link set) which is used at init_sysctl() time to cycle
   1280  * through all those functions to create the kernel's sysctl tree.
   1281  *
   1282  * It is not possible to use link sets in a module, so the
   1283  * easiest is to simply call our own setup routine at load time.
   1284  *
   1285  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1286  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1287  * whole kernel sysctl tree is built, it is not possible to add any
   1288  * permanent node.
   1289  *
   1290  * It should be noted that we're not saving the sysctlnode pointer
   1291  * we are returned when creating the "tap" node.  That structure
   1292  * cannot be trusted once out of the calling function, as it might
   1293  * get reused.  So we just save the MIB number, and always give the
   1294  * full path starting from the root for later calls to sysctl_createv
   1295  * and sysctl_destroyv.
   1296  */
   1297 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1298 {
   1299 	const struct sysctlnode *node;
   1300 	int error = 0;
   1301 
   1302 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1303 	    CTLFLAG_PERMANENT,
   1304 	    CTLTYPE_NODE, "net", NULL,
   1305 	    NULL, 0, NULL, 0,
   1306 	    CTL_NET, CTL_EOL)) != 0)
   1307 		return;
   1308 
   1309 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1310 	    CTLFLAG_PERMANENT,
   1311 	    CTLTYPE_NODE, "link", NULL,
   1312 	    NULL, 0, NULL, 0,
   1313 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1314 		return;
   1315 
   1316 	/*
   1317 	 * The first four parameters of sysctl_createv are for management.
   1318 	 *
   1319 	 * The four that follows, here starting with a '0' for the flags,
   1320 	 * describe the node.
   1321 	 *
   1322 	 * The next series of four set its value, through various possible
   1323 	 * means.
   1324 	 *
   1325 	 * Last but not least, the path to the node is described.  That path
   1326 	 * is relative to the given root (third argument).  Here we're
   1327 	 * starting from the root.
   1328 	 */
   1329 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1330 	    CTLFLAG_PERMANENT,
   1331 	    CTLTYPE_NODE, "tap", NULL,
   1332 	    NULL, 0, NULL, 0,
   1333 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1334 		return;
   1335 	tap_node = node->sysctl_num;
   1336 }
   1337 
   1338 /*
   1339  * The helper functions make Andrew Brown's interface really
   1340  * shine.  It makes possible to create value on the fly whether
   1341  * the sysctl value is read or written.
   1342  *
   1343  * As shown as an example in the man page, the first step is to
   1344  * create a copy of the node to have sysctl_lookup work on it.
   1345  *
   1346  * Here, we have more work to do than just a copy, since we have
   1347  * to create the string.  The first step is to collect the actual
   1348  * value of the node, which is a convenient pointer to the softc
   1349  * of the interface.  From there we create the string and use it
   1350  * as the value, but only for the *copy* of the node.
   1351  *
   1352  * Then we let sysctl_lookup do the magic, which consists in
   1353  * setting oldp and newp as required by the operation.  When the
   1354  * value is read, that means that the string will be copied to
   1355  * the user, and when it is written, the new value will be copied
   1356  * over in the addr array.
   1357  *
   1358  * If newp is NULL, the user was reading the value, so we don't
   1359  * have anything else to do.  If a new value was written, we
   1360  * have to check it.
   1361  *
   1362  * If it is incorrect, we can return an error and leave 'node' as
   1363  * it is:  since it is a copy of the actual node, the change will
   1364  * be forgotten.
   1365  *
   1366  * Upon a correct input, we commit the change to the ifnet
   1367  * structure of our interface.
   1368  */
   1369 static int
   1370 tap_sysctl_handler(SYSCTLFN_ARGS)
   1371 {
   1372 	struct sysctlnode node;
   1373 	struct tap_softc *sc;
   1374 	struct ifnet *ifp;
   1375 	int error;
   1376 	size_t len;
   1377 	char addr[3 * ETHER_ADDR_LEN];
   1378 	uint8_t enaddr[ETHER_ADDR_LEN];
   1379 
   1380 	node = *rnode;
   1381 	sc = node.sysctl_data;
   1382 	ifp = &sc->sc_ec.ec_if;
   1383 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1384 	node.sysctl_data = addr;
   1385 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1386 	if (error || newp == NULL)
   1387 		return (error);
   1388 
   1389 	len = strlen(addr);
   1390 	if (len < 11 || len > 17)
   1391 		return (EINVAL);
   1392 
   1393 	/* Commit change */
   1394 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1395 		return (EINVAL);
   1396 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1397 	return (error);
   1398 }
   1399 #endif
   1400