if_tap.c revision 1.68 1 /* $NetBSD: if_tap.c,v 1.68 2012/10/27 17:18:39 chs Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.68 2012/10/27 17:18:39 chs Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/device.h>
50 #include <sys/file.h>
51 #include <sys/filedesc.h>
52 #include <sys/ksyms.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/simplelock.h>
63 #include <sys/intr.h>
64 #include <sys/stat.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72
73 #include <compat/sys/sockio.h>
74
75 #if defined(COMPAT_40) || defined(MODULAR)
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current module implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93 #endif
94
95 /*
96 * Since we're an Ethernet device, we need the 2 following
97 * components: a struct ethercom and a struct ifmedia
98 * since we don't attach a PHY to ourselves.
99 * We could emulate one, but there's no real point.
100 */
101
102 struct tap_softc {
103 device_t sc_dev;
104 struct ifmedia sc_im;
105 struct ethercom sc_ec;
106 int sc_flags;
107 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 struct selinfo sc_rsel;
112 pid_t sc_pgid; /* For async. IO */
113 kmutex_t sc_rdlock;
114 struct simplelock sc_kqlock;
115 void *sc_sih;
116 struct timespec sc_atime;
117 struct timespec sc_mtime;
118 struct timespec sc_btime;
119 };
120
121 /* autoconf(9) glue */
122
123 void tapattach(int);
124
125 static int tap_match(device_t, cfdata_t, void *);
126 static void tap_attach(device_t, device_t, void *);
127 static int tap_detach(device_t, int);
128
129 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
130 tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132
133 /* Real device access routines */
134 static int tap_dev_close(struct tap_softc *);
135 static int tap_dev_read(int, struct uio *, int);
136 static int tap_dev_write(int, struct uio *, int);
137 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
138 static int tap_dev_poll(int, int, struct lwp *);
139 static int tap_dev_kqfilter(int, struct knote *);
140
141 /* Fileops access routines */
142 static int tap_fops_close(file_t *);
143 static int tap_fops_read(file_t *, off_t *, struct uio *,
144 kauth_cred_t, int);
145 static int tap_fops_write(file_t *, off_t *, struct uio *,
146 kauth_cred_t, int);
147 static int tap_fops_ioctl(file_t *, u_long, void *);
148 static int tap_fops_poll(file_t *, int);
149 static int tap_fops_stat(file_t *, struct stat *);
150 static int tap_fops_kqfilter(file_t *, struct knote *);
151
152 static const struct fileops tap_fileops = {
153 .fo_read = tap_fops_read,
154 .fo_write = tap_fops_write,
155 .fo_ioctl = tap_fops_ioctl,
156 .fo_fcntl = fnullop_fcntl,
157 .fo_poll = tap_fops_poll,
158 .fo_stat = tap_fops_stat,
159 .fo_close = tap_fops_close,
160 .fo_kqfilter = tap_fops_kqfilter,
161 .fo_restart = fnullop_restart,
162 };
163
164 /* Helper for cloning open() */
165 static int tap_dev_cloner(struct lwp *);
166
167 /* Character device routines */
168 static int tap_cdev_open(dev_t, int, int, struct lwp *);
169 static int tap_cdev_close(dev_t, int, int, struct lwp *);
170 static int tap_cdev_read(dev_t, struct uio *, int);
171 static int tap_cdev_write(dev_t, struct uio *, int);
172 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
173 static int tap_cdev_poll(dev_t, int, struct lwp *);
174 static int tap_cdev_kqfilter(dev_t, struct knote *);
175
176 const struct cdevsw tap_cdevsw = {
177 tap_cdev_open, tap_cdev_close,
178 tap_cdev_read, tap_cdev_write,
179 tap_cdev_ioctl, nostop, notty,
180 tap_cdev_poll, nommap,
181 tap_cdev_kqfilter,
182 D_OTHER,
183 };
184
185 #define TAP_CLONER 0xfffff /* Maximal minor value */
186
187 /* kqueue-related routines */
188 static void tap_kqdetach(struct knote *);
189 static int tap_kqread(struct knote *, long);
190
191 /*
192 * Those are needed by the if_media interface.
193 */
194
195 static int tap_mediachange(struct ifnet *);
196 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
197
198 /*
199 * Those are needed by the ifnet interface, and would typically be
200 * there for any network interface driver.
201 * Some other routines are optional: watchdog and drain.
202 */
203
204 static void tap_start(struct ifnet *);
205 static void tap_stop(struct ifnet *, int);
206 static int tap_init(struct ifnet *);
207 static int tap_ioctl(struct ifnet *, u_long, void *);
208
209 /* Internal functions */
210 #if defined(COMPAT_40) || defined(MODULAR)
211 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
212 #endif
213 static void tap_softintr(void *);
214
215 /*
216 * tap is a clonable interface, although it is highly unrealistic for
217 * an Ethernet device.
218 *
219 * Here are the bits needed for a clonable interface.
220 */
221 static int tap_clone_create(struct if_clone *, int);
222 static int tap_clone_destroy(struct ifnet *);
223
224 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
225 tap_clone_create,
226 tap_clone_destroy);
227
228 /* Helper functionis shared by the two cloning code paths */
229 static struct tap_softc * tap_clone_creator(int);
230 int tap_clone_destroyer(device_t);
231
232 void
233 tapattach(int n)
234 {
235 int error;
236
237 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
238 if (error) {
239 aprint_error("%s: unable to register cfattach\n",
240 tap_cd.cd_name);
241 (void)config_cfdriver_detach(&tap_cd);
242 return;
243 }
244
245 if_clone_attach(&tap_cloners);
246 }
247
248 /* Pretty much useless for a pseudo-device */
249 static int
250 tap_match(device_t parent, cfdata_t cfdata, void *arg)
251 {
252
253 return (1);
254 }
255
256 void
257 tap_attach(device_t parent, device_t self, void *aux)
258 {
259 struct tap_softc *sc = device_private(self);
260 struct ifnet *ifp;
261 #if defined(COMPAT_40) || defined(MODULAR)
262 const struct sysctlnode *node;
263 int error;
264 #endif
265 uint8_t enaddr[ETHER_ADDR_LEN] =
266 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
267 char enaddrstr[3 * ETHER_ADDR_LEN];
268 struct timeval tv;
269 uint32_t ui;
270
271 sc->sc_dev = self;
272 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
273 getnanotime(&sc->sc_btime);
274 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
275
276 if (!pmf_device_register(self, NULL, NULL))
277 aprint_error_dev(self, "couldn't establish power handler\n");
278
279 /*
280 * In order to obtain unique initial Ethernet address on a host,
281 * do some randomisation using the current uptime. It's not meant
282 * for anything but avoiding hard-coding an address.
283 */
284 getmicrouptime(&tv);
285 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
286 memcpy(enaddr+3, (uint8_t *)&ui, 3);
287
288 aprint_verbose_dev(self, "Ethernet address %s\n",
289 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
290
291 /*
292 * Why 1000baseT? Why not? You can add more.
293 *
294 * Note that there are 3 steps: init, one or several additions to
295 * list of supported media, and in the end, the selection of one
296 * of them.
297 */
298 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
299 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
300 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
303 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
304 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
305 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
306 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
307
308 /*
309 * One should note that an interface must do multicast in order
310 * to support IPv6.
311 */
312 ifp = &sc->sc_ec.ec_if;
313 strcpy(ifp->if_xname, device_xname(self));
314 ifp->if_softc = sc;
315 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
316 ifp->if_ioctl = tap_ioctl;
317 ifp->if_start = tap_start;
318 ifp->if_stop = tap_stop;
319 ifp->if_init = tap_init;
320 IFQ_SET_READY(&ifp->if_snd);
321
322 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
323
324 /* Those steps are mandatory for an Ethernet driver, the fisrt call
325 * being common to all network interface drivers. */
326 if_attach(ifp);
327 ether_ifattach(ifp, enaddr);
328
329 sc->sc_flags = 0;
330
331 #if defined(COMPAT_40) || defined(MODULAR)
332 /*
333 * Add a sysctl node for that interface.
334 *
335 * The pointer transmitted is not a string, but instead a pointer to
336 * the softc structure, which we can use to build the string value on
337 * the fly in the helper function of the node. See the comments for
338 * tap_sysctl_handler for details.
339 *
340 * Usually sysctl_createv is called with CTL_CREATE as the before-last
341 * component. However, we can allocate a number ourselves, as we are
342 * the only consumer of the net.link.<iface> node. In this case, the
343 * unit number is conveniently used to number the node. CTL_CREATE
344 * would just work, too.
345 */
346 if ((error = sysctl_createv(NULL, 0, NULL,
347 &node, CTLFLAG_READWRITE,
348 CTLTYPE_STRING, device_xname(self), NULL,
349 tap_sysctl_handler, 0, (void *)sc, 18,
350 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
351 CTL_EOL)) != 0)
352 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
353 error);
354 #endif
355
356 /*
357 * Initialize the two locks for the device.
358 *
359 * We need a lock here because even though the tap device can be
360 * opened only once, the file descriptor might be passed to another
361 * process, say a fork(2)ed child.
362 *
363 * The Giant saves us from most of the hassle, but since the read
364 * operation can sleep, we don't want two processes to wake up at
365 * the same moment and both try and dequeue a single packet.
366 *
367 * The queue for event listeners (used by kqueue(9), see below) has
368 * to be protected, too, but we don't need the same level of
369 * complexity for that lock, so a simple spinning lock is fine.
370 */
371 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
372 simple_lock_init(&sc->sc_kqlock);
373
374 selinit(&sc->sc_rsel);
375 }
376
377 /*
378 * When detaching, we do the inverse of what is done in the attach
379 * routine, in reversed order.
380 */
381 static int
382 tap_detach(device_t self, int flags)
383 {
384 struct tap_softc *sc = device_private(self);
385 struct ifnet *ifp = &sc->sc_ec.ec_if;
386 #if defined(COMPAT_40) || defined(MODULAR)
387 int error;
388 #endif
389 int s;
390
391 sc->sc_flags |= TAP_GOING;
392 s = splnet();
393 tap_stop(ifp, 1);
394 if_down(ifp);
395 splx(s);
396
397 softint_disestablish(sc->sc_sih);
398
399 #if defined(COMPAT_40) || defined(MODULAR)
400 /*
401 * Destroying a single leaf is a very straightforward operation using
402 * sysctl_destroyv. One should be sure to always end the path with
403 * CTL_EOL.
404 */
405 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
406 device_unit(sc->sc_dev), CTL_EOL)) != 0)
407 aprint_error_dev(self,
408 "sysctl_destroyv returned %d, ignoring\n", error);
409 #endif
410 ether_ifdetach(ifp);
411 if_detach(ifp);
412 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
413 seldestroy(&sc->sc_rsel);
414 mutex_destroy(&sc->sc_rdlock);
415
416 pmf_device_deregister(self);
417
418 return (0);
419 }
420
421 /*
422 * This function is called by the ifmedia layer to notify the driver
423 * that the user requested a media change. A real driver would
424 * reconfigure the hardware.
425 */
426 static int
427 tap_mediachange(struct ifnet *ifp)
428 {
429 return (0);
430 }
431
432 /*
433 * Here the user asks for the currently used media.
434 */
435 static void
436 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
437 {
438 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
439 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
440 }
441
442 /*
443 * This is the function where we SEND packets.
444 *
445 * There is no 'receive' equivalent. A typical driver will get
446 * interrupts from the hardware, and from there will inject new packets
447 * into the network stack.
448 *
449 * Once handled, a packet must be freed. A real driver might not be able
450 * to fit all the pending packets into the hardware, and is allowed to
451 * return before having sent all the packets. It should then use the
452 * if_flags flag IFF_OACTIVE to notify the upper layer.
453 *
454 * There are also other flags one should check, such as IFF_PAUSE.
455 *
456 * It is our duty to make packets available to BPF listeners.
457 *
458 * You should be aware that this function is called by the Ethernet layer
459 * at splnet().
460 *
461 * When the device is opened, we have to pass the packet(s) to the
462 * userland. For that we stay in OACTIVE mode while the userland gets
463 * the packets, and we send a signal to the processes waiting to read.
464 *
465 * wakeup(sc) is the counterpart to the tsleep call in
466 * tap_dev_read, while selnotify() is used for kevent(2) and
467 * poll(2) (which includes select(2)) listeners.
468 */
469 static void
470 tap_start(struct ifnet *ifp)
471 {
472 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
473 struct mbuf *m0;
474
475 if ((sc->sc_flags & TAP_INUSE) == 0) {
476 /* Simply drop packets */
477 for(;;) {
478 IFQ_DEQUEUE(&ifp->if_snd, m0);
479 if (m0 == NULL)
480 return;
481
482 ifp->if_opackets++;
483 bpf_mtap(ifp, m0);
484
485 m_freem(m0);
486 }
487 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
488 ifp->if_flags |= IFF_OACTIVE;
489 wakeup(sc);
490 selnotify(&sc->sc_rsel, 0, 1);
491 if (sc->sc_flags & TAP_ASYNCIO)
492 softint_schedule(sc->sc_sih);
493 }
494 }
495
496 static void
497 tap_softintr(void *cookie)
498 {
499 struct tap_softc *sc;
500 struct ifnet *ifp;
501 int a, b;
502
503 sc = cookie;
504
505 if (sc->sc_flags & TAP_ASYNCIO) {
506 ifp = &sc->sc_ec.ec_if;
507 if (ifp->if_flags & IFF_RUNNING) {
508 a = POLL_IN;
509 b = POLLIN|POLLRDNORM;
510 } else {
511 a = POLL_HUP;
512 b = 0;
513 }
514 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
515 }
516 }
517
518 /*
519 * A typical driver will only contain the following handlers for
520 * ioctl calls, except SIOCSIFPHYADDR.
521 * The latter is a hack I used to set the Ethernet address of the
522 * faked device.
523 *
524 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
525 * called under splnet().
526 */
527 static int
528 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
529 {
530 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
531 struct ifreq *ifr = (struct ifreq *)data;
532 int s, error;
533
534 s = splnet();
535
536 switch (cmd) {
537 #ifdef OSIOCSIFMEDIA
538 case OSIOCSIFMEDIA:
539 #endif
540 case SIOCSIFMEDIA:
541 case SIOCGIFMEDIA:
542 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
543 break;
544 #if defined(COMPAT_40) || defined(MODULAR)
545 case SIOCSIFPHYADDR:
546 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
547 break;
548 #endif
549 default:
550 error = ether_ioctl(ifp, cmd, data);
551 if (error == ENETRESET)
552 error = 0;
553 break;
554 }
555
556 splx(s);
557
558 return (error);
559 }
560
561 #if defined(COMPAT_40) || defined(MODULAR)
562 /*
563 * Helper function to set Ethernet address. This has been replaced by
564 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
565 */
566 static int
567 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
568 {
569 const struct sockaddr *sa = &ifra->ifra_addr;
570
571 if (sa->sa_family != AF_LINK)
572 return (EINVAL);
573
574 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
575
576 return (0);
577 }
578 #endif
579
580 /*
581 * _init() would typically be called when an interface goes up,
582 * meaning it should configure itself into the state in which it
583 * can send packets.
584 */
585 static int
586 tap_init(struct ifnet *ifp)
587 {
588 ifp->if_flags |= IFF_RUNNING;
589
590 tap_start(ifp);
591
592 return (0);
593 }
594
595 /*
596 * _stop() is called when an interface goes down. It is our
597 * responsability to validate that state by clearing the
598 * IFF_RUNNING flag.
599 *
600 * We have to wake up all the sleeping processes to have the pending
601 * read requests cancelled.
602 */
603 static void
604 tap_stop(struct ifnet *ifp, int disable)
605 {
606 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
607
608 ifp->if_flags &= ~IFF_RUNNING;
609 wakeup(sc);
610 selnotify(&sc->sc_rsel, 0, 1);
611 if (sc->sc_flags & TAP_ASYNCIO)
612 softint_schedule(sc->sc_sih);
613 }
614
615 /*
616 * The 'create' command of ifconfig can be used to create
617 * any numbered instance of a given device. Thus we have to
618 * make sure we have enough room in cd_devs to create the
619 * user-specified instance. config_attach_pseudo will do this
620 * for us.
621 */
622 static int
623 tap_clone_create(struct if_clone *ifc, int unit)
624 {
625 if (tap_clone_creator(unit) == NULL) {
626 aprint_error("%s%d: unable to attach an instance\n",
627 tap_cd.cd_name, unit);
628 return (ENXIO);
629 }
630
631 return (0);
632 }
633
634 /*
635 * tap(4) can be cloned by two ways:
636 * using 'ifconfig tap0 create', which will use the network
637 * interface cloning API, and call tap_clone_create above.
638 * opening the cloning device node, whose minor number is TAP_CLONER.
639 * See below for an explanation on how this part work.
640 */
641 static struct tap_softc *
642 tap_clone_creator(int unit)
643 {
644 struct cfdata *cf;
645
646 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
647 cf->cf_name = tap_cd.cd_name;
648 cf->cf_atname = tap_ca.ca_name;
649 if (unit == -1) {
650 /* let autoconf find the first free one */
651 cf->cf_unit = 0;
652 cf->cf_fstate = FSTATE_STAR;
653 } else {
654 cf->cf_unit = unit;
655 cf->cf_fstate = FSTATE_NOTFOUND;
656 }
657
658 return device_private(config_attach_pseudo(cf));
659 }
660
661 /*
662 * The clean design of if_clone and autoconf(9) makes that part
663 * really straightforward. The second argument of config_detach
664 * means neither QUIET nor FORCED.
665 */
666 static int
667 tap_clone_destroy(struct ifnet *ifp)
668 {
669 struct tap_softc *sc = ifp->if_softc;
670
671 return tap_clone_destroyer(sc->sc_dev);
672 }
673
674 int
675 tap_clone_destroyer(device_t dev)
676 {
677 cfdata_t cf = device_cfdata(dev);
678 int error;
679
680 if ((error = config_detach(dev, 0)) != 0)
681 aprint_error_dev(dev, "unable to detach instance\n");
682 free(cf, M_DEVBUF);
683
684 return (error);
685 }
686
687 /*
688 * tap(4) is a bit of an hybrid device. It can be used in two different
689 * ways:
690 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
691 * 2. open /dev/tap, get a new interface created and read/write off it.
692 * That interface is destroyed when the process that had it created exits.
693 *
694 * The first way is managed by the cdevsw structure, and you access interfaces
695 * through a (major, minor) mapping: tap4 is obtained by the minor number
696 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
697 *
698 * The second way is the so-called "cloning" device. It's a special minor
699 * number (chosen as the maximal number, to allow as much tap devices as
700 * possible). The user first opens the cloner (e.g., /dev/tap), and that
701 * call ends in tap_cdev_open. The actual place where it is handled is
702 * tap_dev_cloner.
703 *
704 * An tap device cannot be opened more than once at a time, so the cdevsw
705 * part of open() does nothing but noting that the interface is being used and
706 * hence ready to actually handle packets.
707 */
708
709 static int
710 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
711 {
712 struct tap_softc *sc;
713
714 if (minor(dev) == TAP_CLONER)
715 return tap_dev_cloner(l);
716
717 sc = device_lookup_private(&tap_cd, minor(dev));
718 if (sc == NULL)
719 return (ENXIO);
720
721 /* The device can only be opened once */
722 if (sc->sc_flags & TAP_INUSE)
723 return (EBUSY);
724 sc->sc_flags |= TAP_INUSE;
725 return (0);
726 }
727
728 /*
729 * There are several kinds of cloning devices, and the most simple is the one
730 * tap(4) uses. What it does is change the file descriptor with a new one,
731 * with its own fileops structure (which maps to the various read, write,
732 * ioctl functions). It starts allocating a new file descriptor with falloc,
733 * then actually creates the new tap devices.
734 *
735 * Once those two steps are successful, we can re-wire the existing file
736 * descriptor to its new self. This is done with fdclone(): it fills the fp
737 * structure as needed (notably f_data gets filled with the fifth parameter
738 * passed, the unit of the tap device which will allows us identifying the
739 * device later), and returns EMOVEFD.
740 *
741 * That magic value is interpreted by sys_open() which then replaces the
742 * current file descriptor by the new one (through a magic member of struct
743 * lwp, l_dupfd).
744 *
745 * The tap device is flagged as being busy since it otherwise could be
746 * externally accessed through the corresponding device node with the cdevsw
747 * interface.
748 */
749
750 static int
751 tap_dev_cloner(struct lwp *l)
752 {
753 struct tap_softc *sc;
754 file_t *fp;
755 int error, fd;
756
757 if ((error = fd_allocfile(&fp, &fd)) != 0)
758 return (error);
759
760 if ((sc = tap_clone_creator(-1)) == NULL) {
761 fd_abort(curproc, fp, fd);
762 return (ENXIO);
763 }
764
765 sc->sc_flags |= TAP_INUSE;
766
767 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
768 (void *)(intptr_t)device_unit(sc->sc_dev));
769 }
770
771 /*
772 * While all other operations (read, write, ioctl, poll and kqfilter) are
773 * really the same whether we are in cdevsw or fileops mode, the close()
774 * function is slightly different in the two cases.
775 *
776 * As for the other, the core of it is shared in tap_dev_close. What
777 * it does is sufficient for the cdevsw interface, but the cloning interface
778 * needs another thing: the interface is destroyed when the processes that
779 * created it closes it.
780 */
781 static int
782 tap_cdev_close(dev_t dev, int flags, int fmt,
783 struct lwp *l)
784 {
785 struct tap_softc *sc =
786 device_lookup_private(&tap_cd, minor(dev));
787
788 if (sc == NULL)
789 return (ENXIO);
790
791 return tap_dev_close(sc);
792 }
793
794 /*
795 * It might happen that the administrator used ifconfig to externally destroy
796 * the interface. In that case, tap_fops_close will be called while
797 * tap_detach is already happening. If we called it again from here, we
798 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
799 */
800 static int
801 tap_fops_close(file_t *fp)
802 {
803 int unit = (intptr_t)fp->f_data;
804 struct tap_softc *sc;
805 int error;
806
807 sc = device_lookup_private(&tap_cd, unit);
808 if (sc == NULL)
809 return (ENXIO);
810
811 /* tap_dev_close currently always succeeds, but it might not
812 * always be the case. */
813 KERNEL_LOCK(1, NULL);
814 if ((error = tap_dev_close(sc)) != 0) {
815 KERNEL_UNLOCK_ONE(NULL);
816 return (error);
817 }
818
819 /* Destroy the device now that it is no longer useful,
820 * unless it's already being destroyed. */
821 if ((sc->sc_flags & TAP_GOING) != 0) {
822 KERNEL_UNLOCK_ONE(NULL);
823 return (0);
824 }
825
826 error = tap_clone_destroyer(sc->sc_dev);
827 KERNEL_UNLOCK_ONE(NULL);
828 return error;
829 }
830
831 static int
832 tap_dev_close(struct tap_softc *sc)
833 {
834 struct ifnet *ifp;
835 int s;
836
837 s = splnet();
838 /* Let tap_start handle packets again */
839 ifp = &sc->sc_ec.ec_if;
840 ifp->if_flags &= ~IFF_OACTIVE;
841
842 /* Purge output queue */
843 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
844 struct mbuf *m;
845
846 for (;;) {
847 IFQ_DEQUEUE(&ifp->if_snd, m);
848 if (m == NULL)
849 break;
850
851 ifp->if_opackets++;
852 bpf_mtap(ifp, m);
853 m_freem(m);
854 }
855 }
856 splx(s);
857
858 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
859
860 return (0);
861 }
862
863 static int
864 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
865 {
866 return tap_dev_read(minor(dev), uio, flags);
867 }
868
869 static int
870 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
871 kauth_cred_t cred, int flags)
872 {
873 int error;
874
875 KERNEL_LOCK(1, NULL);
876 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
877 KERNEL_UNLOCK_ONE(NULL);
878 return error;
879 }
880
881 static int
882 tap_dev_read(int unit, struct uio *uio, int flags)
883 {
884 struct tap_softc *sc =
885 device_lookup_private(&tap_cd, unit);
886 struct ifnet *ifp;
887 struct mbuf *m, *n;
888 int error = 0, s;
889
890 if (sc == NULL)
891 return (ENXIO);
892
893 getnanotime(&sc->sc_atime);
894
895 ifp = &sc->sc_ec.ec_if;
896 if ((ifp->if_flags & IFF_UP) == 0)
897 return (EHOSTDOWN);
898
899 /*
900 * In the TAP_NBIO case, we have to make sure we won't be sleeping
901 */
902 if ((sc->sc_flags & TAP_NBIO) != 0) {
903 if (!mutex_tryenter(&sc->sc_rdlock))
904 return (EWOULDBLOCK);
905 } else {
906 mutex_enter(&sc->sc_rdlock);
907 }
908
909 s = splnet();
910 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
911 ifp->if_flags &= ~IFF_OACTIVE;
912 /*
913 * We must release the lock before sleeping, and re-acquire it
914 * after.
915 */
916 mutex_exit(&sc->sc_rdlock);
917 if (sc->sc_flags & TAP_NBIO)
918 error = EWOULDBLOCK;
919 else
920 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
921 splx(s);
922
923 if (error != 0)
924 return (error);
925 /* The device might have been downed */
926 if ((ifp->if_flags & IFF_UP) == 0)
927 return (EHOSTDOWN);
928 if ((sc->sc_flags & TAP_NBIO)) {
929 if (!mutex_tryenter(&sc->sc_rdlock))
930 return (EWOULDBLOCK);
931 } else {
932 mutex_enter(&sc->sc_rdlock);
933 }
934 s = splnet();
935 }
936
937 IFQ_DEQUEUE(&ifp->if_snd, m);
938 ifp->if_flags &= ~IFF_OACTIVE;
939 splx(s);
940 if (m == NULL) {
941 error = 0;
942 goto out;
943 }
944
945 ifp->if_opackets++;
946 bpf_mtap(ifp, m);
947
948 /*
949 * One read is one packet.
950 */
951 do {
952 error = uiomove(mtod(m, void *),
953 min(m->m_len, uio->uio_resid), uio);
954 MFREE(m, n);
955 m = n;
956 } while (m != NULL && uio->uio_resid > 0 && error == 0);
957
958 if (m != NULL)
959 m_freem(m);
960
961 out:
962 mutex_exit(&sc->sc_rdlock);
963 return (error);
964 }
965
966 static int
967 tap_fops_stat(file_t *fp, struct stat *st)
968 {
969 int error = 0;
970 struct tap_softc *sc;
971 int unit = (uintptr_t)fp->f_data;
972
973 (void)memset(st, 0, sizeof(*st));
974
975 KERNEL_LOCK(1, NULL);
976 sc = device_lookup_private(&tap_cd, unit);
977 if (sc == NULL) {
978 error = ENXIO;
979 goto out;
980 }
981
982 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
983 st->st_atimespec = sc->sc_atime;
984 st->st_mtimespec = sc->sc_mtime;
985 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
986 st->st_uid = kauth_cred_geteuid(fp->f_cred);
987 st->st_gid = kauth_cred_getegid(fp->f_cred);
988 out:
989 KERNEL_UNLOCK_ONE(NULL);
990 return error;
991 }
992
993 static int
994 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
995 {
996 return tap_dev_write(minor(dev), uio, flags);
997 }
998
999 static int
1000 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1001 kauth_cred_t cred, int flags)
1002 {
1003 int error;
1004
1005 KERNEL_LOCK(1, NULL);
1006 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1007 KERNEL_UNLOCK_ONE(NULL);
1008 return error;
1009 }
1010
1011 static int
1012 tap_dev_write(int unit, struct uio *uio, int flags)
1013 {
1014 struct tap_softc *sc =
1015 device_lookup_private(&tap_cd, unit);
1016 struct ifnet *ifp;
1017 struct mbuf *m, **mp;
1018 int error = 0;
1019 int s;
1020
1021 if (sc == NULL)
1022 return (ENXIO);
1023
1024 getnanotime(&sc->sc_mtime);
1025 ifp = &sc->sc_ec.ec_if;
1026
1027 /* One write, one packet, that's the rule */
1028 MGETHDR(m, M_DONTWAIT, MT_DATA);
1029 if (m == NULL) {
1030 ifp->if_ierrors++;
1031 return (ENOBUFS);
1032 }
1033 m->m_pkthdr.len = uio->uio_resid;
1034
1035 mp = &m;
1036 while (error == 0 && uio->uio_resid > 0) {
1037 if (*mp != m) {
1038 MGET(*mp, M_DONTWAIT, MT_DATA);
1039 if (*mp == NULL) {
1040 error = ENOBUFS;
1041 break;
1042 }
1043 }
1044 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1045 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1046 mp = &(*mp)->m_next;
1047 }
1048 if (error) {
1049 ifp->if_ierrors++;
1050 m_freem(m);
1051 return (error);
1052 }
1053
1054 ifp->if_ipackets++;
1055 m->m_pkthdr.rcvif = ifp;
1056
1057 bpf_mtap(ifp, m);
1058 s =splnet();
1059 (*ifp->if_input)(ifp, m);
1060 splx(s);
1061
1062 return (0);
1063 }
1064
1065 static int
1066 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1067 struct lwp *l)
1068 {
1069 return tap_dev_ioctl(minor(dev), cmd, data, l);
1070 }
1071
1072 static int
1073 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1074 {
1075 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1076 }
1077
1078 static int
1079 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1080 {
1081 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1082
1083 if (sc == NULL)
1084 return ENXIO;
1085
1086 switch (cmd) {
1087 case FIONREAD:
1088 {
1089 struct ifnet *ifp = &sc->sc_ec.ec_if;
1090 struct mbuf *m;
1091 int s;
1092
1093 s = splnet();
1094 IFQ_POLL(&ifp->if_snd, m);
1095
1096 if (m == NULL)
1097 *(int *)data = 0;
1098 else
1099 *(int *)data = m->m_pkthdr.len;
1100 splx(s);
1101 return 0;
1102 }
1103 case TIOCSPGRP:
1104 case FIOSETOWN:
1105 return fsetown(&sc->sc_pgid, cmd, data);
1106 case TIOCGPGRP:
1107 case FIOGETOWN:
1108 return fgetown(sc->sc_pgid, cmd, data);
1109 case FIOASYNC:
1110 if (*(int *)data)
1111 sc->sc_flags |= TAP_ASYNCIO;
1112 else
1113 sc->sc_flags &= ~TAP_ASYNCIO;
1114 return 0;
1115 case FIONBIO:
1116 if (*(int *)data)
1117 sc->sc_flags |= TAP_NBIO;
1118 else
1119 sc->sc_flags &= ~TAP_NBIO;
1120 return 0;
1121 #ifdef OTAPGIFNAME
1122 case OTAPGIFNAME:
1123 #endif
1124 case TAPGIFNAME:
1125 {
1126 struct ifreq *ifr = (struct ifreq *)data;
1127 struct ifnet *ifp = &sc->sc_ec.ec_if;
1128
1129 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1130 return 0;
1131 }
1132 default:
1133 return ENOTTY;
1134 }
1135 }
1136
1137 static int
1138 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1139 {
1140 return tap_dev_poll(minor(dev), events, l);
1141 }
1142
1143 static int
1144 tap_fops_poll(file_t *fp, int events)
1145 {
1146 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1147 }
1148
1149 static int
1150 tap_dev_poll(int unit, int events, struct lwp *l)
1151 {
1152 struct tap_softc *sc =
1153 device_lookup_private(&tap_cd, unit);
1154 int revents = 0;
1155
1156 if (sc == NULL)
1157 return POLLERR;
1158
1159 if (events & (POLLIN|POLLRDNORM)) {
1160 struct ifnet *ifp = &sc->sc_ec.ec_if;
1161 struct mbuf *m;
1162 int s;
1163
1164 s = splnet();
1165 IFQ_POLL(&ifp->if_snd, m);
1166 splx(s);
1167
1168 if (m != NULL)
1169 revents |= events & (POLLIN|POLLRDNORM);
1170 else {
1171 simple_lock(&sc->sc_kqlock);
1172 selrecord(l, &sc->sc_rsel);
1173 simple_unlock(&sc->sc_kqlock);
1174 }
1175 }
1176 revents |= events & (POLLOUT|POLLWRNORM);
1177
1178 return (revents);
1179 }
1180
1181 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1182 tap_kqread };
1183 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1184 filt_seltrue };
1185
1186 static int
1187 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1188 {
1189 return tap_dev_kqfilter(minor(dev), kn);
1190 }
1191
1192 static int
1193 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1194 {
1195 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1196 }
1197
1198 static int
1199 tap_dev_kqfilter(int unit, struct knote *kn)
1200 {
1201 struct tap_softc *sc =
1202 device_lookup_private(&tap_cd, unit);
1203
1204 if (sc == NULL)
1205 return (ENXIO);
1206
1207 KERNEL_LOCK(1, NULL);
1208 switch(kn->kn_filter) {
1209 case EVFILT_READ:
1210 kn->kn_fop = &tap_read_filterops;
1211 break;
1212 case EVFILT_WRITE:
1213 kn->kn_fop = &tap_seltrue_filterops;
1214 break;
1215 default:
1216 KERNEL_UNLOCK_ONE(NULL);
1217 return (EINVAL);
1218 }
1219
1220 kn->kn_hook = sc;
1221 simple_lock(&sc->sc_kqlock);
1222 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1223 simple_unlock(&sc->sc_kqlock);
1224 KERNEL_UNLOCK_ONE(NULL);
1225 return (0);
1226 }
1227
1228 static void
1229 tap_kqdetach(struct knote *kn)
1230 {
1231 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1232
1233 KERNEL_LOCK(1, NULL);
1234 simple_lock(&sc->sc_kqlock);
1235 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1236 simple_unlock(&sc->sc_kqlock);
1237 KERNEL_UNLOCK_ONE(NULL);
1238 }
1239
1240 static int
1241 tap_kqread(struct knote *kn, long hint)
1242 {
1243 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1244 struct ifnet *ifp = &sc->sc_ec.ec_if;
1245 struct mbuf *m;
1246 int s, rv;
1247
1248 KERNEL_LOCK(1, NULL);
1249 s = splnet();
1250 IFQ_POLL(&ifp->if_snd, m);
1251
1252 if (m == NULL)
1253 kn->kn_data = 0;
1254 else
1255 kn->kn_data = m->m_pkthdr.len;
1256 splx(s);
1257 rv = (kn->kn_data != 0 ? 1 : 0);
1258 KERNEL_UNLOCK_ONE(NULL);
1259 return rv;
1260 }
1261
1262 #if defined(COMPAT_40) || defined(MODULAR)
1263 /*
1264 * sysctl management routines
1265 * You can set the address of an interface through:
1266 * net.link.tap.tap<number>
1267 *
1268 * Note the consistent use of tap_log in order to use
1269 * sysctl_teardown at unload time.
1270 *
1271 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1272 * blocks register a function in a special section of the kernel
1273 * (called a link set) which is used at init_sysctl() time to cycle
1274 * through all those functions to create the kernel's sysctl tree.
1275 *
1276 * It is not possible to use link sets in a module, so the
1277 * easiest is to simply call our own setup routine at load time.
1278 *
1279 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1280 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1281 * whole kernel sysctl tree is built, it is not possible to add any
1282 * permanent node.
1283 *
1284 * It should be noted that we're not saving the sysctlnode pointer
1285 * we are returned when creating the "tap" node. That structure
1286 * cannot be trusted once out of the calling function, as it might
1287 * get reused. So we just save the MIB number, and always give the
1288 * full path starting from the root for later calls to sysctl_createv
1289 * and sysctl_destroyv.
1290 */
1291 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1292 {
1293 const struct sysctlnode *node;
1294 int error = 0;
1295
1296 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1297 CTLFLAG_PERMANENT,
1298 CTLTYPE_NODE, "net", NULL,
1299 NULL, 0, NULL, 0,
1300 CTL_NET, CTL_EOL)) != 0)
1301 return;
1302
1303 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1304 CTLFLAG_PERMANENT,
1305 CTLTYPE_NODE, "link", NULL,
1306 NULL, 0, NULL, 0,
1307 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1308 return;
1309
1310 /*
1311 * The first four parameters of sysctl_createv are for management.
1312 *
1313 * The four that follows, here starting with a '0' for the flags,
1314 * describe the node.
1315 *
1316 * The next series of four set its value, through various possible
1317 * means.
1318 *
1319 * Last but not least, the path to the node is described. That path
1320 * is relative to the given root (third argument). Here we're
1321 * starting from the root.
1322 */
1323 if ((error = sysctl_createv(clog, 0, NULL, &node,
1324 CTLFLAG_PERMANENT,
1325 CTLTYPE_NODE, "tap", NULL,
1326 NULL, 0, NULL, 0,
1327 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1328 return;
1329 tap_node = node->sysctl_num;
1330 }
1331
1332 /*
1333 * The helper functions make Andrew Brown's interface really
1334 * shine. It makes possible to create value on the fly whether
1335 * the sysctl value is read or written.
1336 *
1337 * As shown as an example in the man page, the first step is to
1338 * create a copy of the node to have sysctl_lookup work on it.
1339 *
1340 * Here, we have more work to do than just a copy, since we have
1341 * to create the string. The first step is to collect the actual
1342 * value of the node, which is a convenient pointer to the softc
1343 * of the interface. From there we create the string and use it
1344 * as the value, but only for the *copy* of the node.
1345 *
1346 * Then we let sysctl_lookup do the magic, which consists in
1347 * setting oldp and newp as required by the operation. When the
1348 * value is read, that means that the string will be copied to
1349 * the user, and when it is written, the new value will be copied
1350 * over in the addr array.
1351 *
1352 * If newp is NULL, the user was reading the value, so we don't
1353 * have anything else to do. If a new value was written, we
1354 * have to check it.
1355 *
1356 * If it is incorrect, we can return an error and leave 'node' as
1357 * it is: since it is a copy of the actual node, the change will
1358 * be forgotten.
1359 *
1360 * Upon a correct input, we commit the change to the ifnet
1361 * structure of our interface.
1362 */
1363 static int
1364 tap_sysctl_handler(SYSCTLFN_ARGS)
1365 {
1366 struct sysctlnode node;
1367 struct tap_softc *sc;
1368 struct ifnet *ifp;
1369 int error;
1370 size_t len;
1371 char addr[3 * ETHER_ADDR_LEN];
1372 uint8_t enaddr[ETHER_ADDR_LEN];
1373
1374 node = *rnode;
1375 sc = node.sysctl_data;
1376 ifp = &sc->sc_ec.ec_if;
1377 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1378 node.sysctl_data = addr;
1379 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1380 if (error || newp == NULL)
1381 return (error);
1382
1383 len = strlen(addr);
1384 if (len < 11 || len > 17)
1385 return (EINVAL);
1386
1387 /* Commit change */
1388 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1389 return (EINVAL);
1390 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1391 return (error);
1392 }
1393 #endif
1394