if_tap.c revision 1.70 1 /* $NetBSD: if_tap.c,v 1.70 2013/01/28 15:05:03 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.70 2013/01/28 15:05:03 yamt Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/ksyms.h>
54 #include <sys/poll.h>
55 #include <sys/proc.h>
56 #include <sys/select.h>
57 #include <sys/sockio.h>
58 #if defined(COMPAT_40) || defined(MODULAR)
59 #include <sys/sysctl.h>
60 #endif
61 #include <sys/kauth.h>
62 #include <sys/mutex.h>
63 #include <sys/simplelock.h>
64 #include <sys/intr.h>
65 #include <sys/stat.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #include <net/bpf.h>
73
74 #include <compat/sys/sockio.h>
75
76 #if defined(COMPAT_40) || defined(MODULAR)
77 /*
78 * sysctl node management
79 *
80 * It's not really possible to use a SYSCTL_SETUP block with
81 * current module implementation, so it is easier to just define
82 * our own function.
83 *
84 * The handler function is a "helper" in Andrew Brown's sysctl
85 * framework terminology. It is used as a gateway for sysctl
86 * requests over the nodes.
87 *
88 * tap_log allows the module to log creations of nodes and
89 * destroy them all at once using sysctl_teardown.
90 */
91 static int tap_node;
92 static int tap_sysctl_handler(SYSCTLFN_PROTO);
93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
94 #endif
95
96 /*
97 * Since we're an Ethernet device, we need the 2 following
98 * components: a struct ethercom and a struct ifmedia
99 * since we don't attach a PHY to ourselves.
100 * We could emulate one, but there's no real point.
101 */
102
103 struct tap_softc {
104 device_t sc_dev;
105 struct ifmedia sc_im;
106 struct ethercom sc_ec;
107 int sc_flags;
108 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
109 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
110 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
111 #define TAP_GOING 0x00000008 /* interface is being destroyed */
112 struct selinfo sc_rsel;
113 pid_t sc_pgid; /* For async. IO */
114 kmutex_t sc_rdlock;
115 struct simplelock sc_kqlock;
116 void *sc_sih;
117 struct timespec sc_atime;
118 struct timespec sc_mtime;
119 struct timespec sc_btime;
120 };
121
122 /* autoconf(9) glue */
123
124 void tapattach(int);
125
126 static int tap_match(device_t, cfdata_t, void *);
127 static void tap_attach(device_t, device_t, void *);
128 static int tap_detach(device_t, int);
129
130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
131 tap_match, tap_attach, tap_detach, NULL);
132 extern struct cfdriver tap_cd;
133
134 /* Real device access routines */
135 static int tap_dev_close(struct tap_softc *);
136 static int tap_dev_read(int, struct uio *, int);
137 static int tap_dev_write(int, struct uio *, int);
138 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
139 static int tap_dev_poll(int, int, struct lwp *);
140 static int tap_dev_kqfilter(int, struct knote *);
141
142 /* Fileops access routines */
143 static int tap_fops_close(file_t *);
144 static int tap_fops_read(file_t *, off_t *, struct uio *,
145 kauth_cred_t, int);
146 static int tap_fops_write(file_t *, off_t *, struct uio *,
147 kauth_cred_t, int);
148 static int tap_fops_ioctl(file_t *, u_long, void *);
149 static int tap_fops_poll(file_t *, int);
150 static int tap_fops_stat(file_t *, struct stat *);
151 static int tap_fops_kqfilter(file_t *, struct knote *);
152
153 static const struct fileops tap_fileops = {
154 .fo_read = tap_fops_read,
155 .fo_write = tap_fops_write,
156 .fo_ioctl = tap_fops_ioctl,
157 .fo_fcntl = fnullop_fcntl,
158 .fo_poll = tap_fops_poll,
159 .fo_stat = tap_fops_stat,
160 .fo_close = tap_fops_close,
161 .fo_kqfilter = tap_fops_kqfilter,
162 .fo_restart = fnullop_restart,
163 };
164
165 /* Helper for cloning open() */
166 static int tap_dev_cloner(struct lwp *);
167
168 /* Character device routines */
169 static int tap_cdev_open(dev_t, int, int, struct lwp *);
170 static int tap_cdev_close(dev_t, int, int, struct lwp *);
171 static int tap_cdev_read(dev_t, struct uio *, int);
172 static int tap_cdev_write(dev_t, struct uio *, int);
173 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
174 static int tap_cdev_poll(dev_t, int, struct lwp *);
175 static int tap_cdev_kqfilter(dev_t, struct knote *);
176
177 const struct cdevsw tap_cdevsw = {
178 tap_cdev_open, tap_cdev_close,
179 tap_cdev_read, tap_cdev_write,
180 tap_cdev_ioctl, nostop, notty,
181 tap_cdev_poll, nommap,
182 tap_cdev_kqfilter,
183 D_OTHER,
184 };
185
186 #define TAP_CLONER 0xfffff /* Maximal minor value */
187
188 /* kqueue-related routines */
189 static void tap_kqdetach(struct knote *);
190 static int tap_kqread(struct knote *, long);
191
192 /*
193 * Those are needed by the if_media interface.
194 */
195
196 static int tap_mediachange(struct ifnet *);
197 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
198
199 /*
200 * Those are needed by the ifnet interface, and would typically be
201 * there for any network interface driver.
202 * Some other routines are optional: watchdog and drain.
203 */
204
205 static void tap_start(struct ifnet *);
206 static void tap_stop(struct ifnet *, int);
207 static int tap_init(struct ifnet *);
208 static int tap_ioctl(struct ifnet *, u_long, void *);
209
210 /* Internal functions */
211 #if defined(COMPAT_40) || defined(MODULAR)
212 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
213 #endif
214 static void tap_softintr(void *);
215
216 /*
217 * tap is a clonable interface, although it is highly unrealistic for
218 * an Ethernet device.
219 *
220 * Here are the bits needed for a clonable interface.
221 */
222 static int tap_clone_create(struct if_clone *, int);
223 static int tap_clone_destroy(struct ifnet *);
224
225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226 tap_clone_create,
227 tap_clone_destroy);
228
229 /* Helper functionis shared by the two cloning code paths */
230 static struct tap_softc * tap_clone_creator(int);
231 int tap_clone_destroyer(device_t);
232
233 void
234 tapattach(int n)
235 {
236 int error;
237
238 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
239 if (error) {
240 aprint_error("%s: unable to register cfattach\n",
241 tap_cd.cd_name);
242 (void)config_cfdriver_detach(&tap_cd);
243 return;
244 }
245
246 if_clone_attach(&tap_cloners);
247 }
248
249 /* Pretty much useless for a pseudo-device */
250 static int
251 tap_match(device_t parent, cfdata_t cfdata, void *arg)
252 {
253
254 return (1);
255 }
256
257 void
258 tap_attach(device_t parent, device_t self, void *aux)
259 {
260 struct tap_softc *sc = device_private(self);
261 struct ifnet *ifp;
262 #if defined(COMPAT_40) || defined(MODULAR)
263 const struct sysctlnode *node;
264 int error;
265 #endif
266 uint8_t enaddr[ETHER_ADDR_LEN] =
267 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
268 char enaddrstr[3 * ETHER_ADDR_LEN];
269
270 sc->sc_dev = self;
271 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
272 getnanotime(&sc->sc_btime);
273 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
274
275 if (!pmf_device_register(self, NULL, NULL))
276 aprint_error_dev(self, "couldn't establish power handler\n");
277
278 /*
279 * In order to obtain unique initial Ethernet address on a host,
280 * do some randomisation. It's not meant for anything but avoiding
281 * hard-coding an address.
282 */
283 cprng_fast(&enaddr[3], 3);
284
285 aprint_verbose_dev(self, "Ethernet address %s\n",
286 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
287
288 /*
289 * Why 1000baseT? Why not? You can add more.
290 *
291 * Note that there are 3 steps: init, one or several additions to
292 * list of supported media, and in the end, the selection of one
293 * of them.
294 */
295 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
296 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
297 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
298 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
299 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
300 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
303 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
304
305 /*
306 * One should note that an interface must do multicast in order
307 * to support IPv6.
308 */
309 ifp = &sc->sc_ec.ec_if;
310 strcpy(ifp->if_xname, device_xname(self));
311 ifp->if_softc = sc;
312 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
313 ifp->if_ioctl = tap_ioctl;
314 ifp->if_start = tap_start;
315 ifp->if_stop = tap_stop;
316 ifp->if_init = tap_init;
317 IFQ_SET_READY(&ifp->if_snd);
318
319 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
320
321 /* Those steps are mandatory for an Ethernet driver, the fisrt call
322 * being common to all network interface drivers. */
323 if_attach(ifp);
324 ether_ifattach(ifp, enaddr);
325
326 sc->sc_flags = 0;
327
328 #if defined(COMPAT_40) || defined(MODULAR)
329 /*
330 * Add a sysctl node for that interface.
331 *
332 * The pointer transmitted is not a string, but instead a pointer to
333 * the softc structure, which we can use to build the string value on
334 * the fly in the helper function of the node. See the comments for
335 * tap_sysctl_handler for details.
336 *
337 * Usually sysctl_createv is called with CTL_CREATE as the before-last
338 * component. However, we can allocate a number ourselves, as we are
339 * the only consumer of the net.link.<iface> node. In this case, the
340 * unit number is conveniently used to number the node. CTL_CREATE
341 * would just work, too.
342 */
343 if ((error = sysctl_createv(NULL, 0, NULL,
344 &node, CTLFLAG_READWRITE,
345 CTLTYPE_STRING, device_xname(self), NULL,
346 tap_sysctl_handler, 0, (void *)sc, 18,
347 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
348 CTL_EOL)) != 0)
349 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
350 error);
351 #endif
352
353 /*
354 * Initialize the two locks for the device.
355 *
356 * We need a lock here because even though the tap device can be
357 * opened only once, the file descriptor might be passed to another
358 * process, say a fork(2)ed child.
359 *
360 * The Giant saves us from most of the hassle, but since the read
361 * operation can sleep, we don't want two processes to wake up at
362 * the same moment and both try and dequeue a single packet.
363 *
364 * The queue for event listeners (used by kqueue(9), see below) has
365 * to be protected, too, but we don't need the same level of
366 * complexity for that lock, so a simple spinning lock is fine.
367 */
368 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
369 simple_lock_init(&sc->sc_kqlock);
370
371 selinit(&sc->sc_rsel);
372 }
373
374 /*
375 * When detaching, we do the inverse of what is done in the attach
376 * routine, in reversed order.
377 */
378 static int
379 tap_detach(device_t self, int flags)
380 {
381 struct tap_softc *sc = device_private(self);
382 struct ifnet *ifp = &sc->sc_ec.ec_if;
383 #if defined(COMPAT_40) || defined(MODULAR)
384 int error;
385 #endif
386 int s;
387
388 sc->sc_flags |= TAP_GOING;
389 s = splnet();
390 tap_stop(ifp, 1);
391 if_down(ifp);
392 splx(s);
393
394 softint_disestablish(sc->sc_sih);
395
396 #if defined(COMPAT_40) || defined(MODULAR)
397 /*
398 * Destroying a single leaf is a very straightforward operation using
399 * sysctl_destroyv. One should be sure to always end the path with
400 * CTL_EOL.
401 */
402 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
403 device_unit(sc->sc_dev), CTL_EOL)) != 0)
404 aprint_error_dev(self,
405 "sysctl_destroyv returned %d, ignoring\n", error);
406 #endif
407 ether_ifdetach(ifp);
408 if_detach(ifp);
409 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
410 seldestroy(&sc->sc_rsel);
411 mutex_destroy(&sc->sc_rdlock);
412
413 pmf_device_deregister(self);
414
415 return (0);
416 }
417
418 /*
419 * This function is called by the ifmedia layer to notify the driver
420 * that the user requested a media change. A real driver would
421 * reconfigure the hardware.
422 */
423 static int
424 tap_mediachange(struct ifnet *ifp)
425 {
426 return (0);
427 }
428
429 /*
430 * Here the user asks for the currently used media.
431 */
432 static void
433 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
434 {
435 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
436 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
437 }
438
439 /*
440 * This is the function where we SEND packets.
441 *
442 * There is no 'receive' equivalent. A typical driver will get
443 * interrupts from the hardware, and from there will inject new packets
444 * into the network stack.
445 *
446 * Once handled, a packet must be freed. A real driver might not be able
447 * to fit all the pending packets into the hardware, and is allowed to
448 * return before having sent all the packets. It should then use the
449 * if_flags flag IFF_OACTIVE to notify the upper layer.
450 *
451 * There are also other flags one should check, such as IFF_PAUSE.
452 *
453 * It is our duty to make packets available to BPF listeners.
454 *
455 * You should be aware that this function is called by the Ethernet layer
456 * at splnet().
457 *
458 * When the device is opened, we have to pass the packet(s) to the
459 * userland. For that we stay in OACTIVE mode while the userland gets
460 * the packets, and we send a signal to the processes waiting to read.
461 *
462 * wakeup(sc) is the counterpart to the tsleep call in
463 * tap_dev_read, while selnotify() is used for kevent(2) and
464 * poll(2) (which includes select(2)) listeners.
465 */
466 static void
467 tap_start(struct ifnet *ifp)
468 {
469 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
470 struct mbuf *m0;
471
472 if ((sc->sc_flags & TAP_INUSE) == 0) {
473 /* Simply drop packets */
474 for(;;) {
475 IFQ_DEQUEUE(&ifp->if_snd, m0);
476 if (m0 == NULL)
477 return;
478
479 ifp->if_opackets++;
480 bpf_mtap(ifp, m0);
481
482 m_freem(m0);
483 }
484 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
485 ifp->if_flags |= IFF_OACTIVE;
486 wakeup(sc);
487 selnotify(&sc->sc_rsel, 0, 1);
488 if (sc->sc_flags & TAP_ASYNCIO)
489 softint_schedule(sc->sc_sih);
490 }
491 }
492
493 static void
494 tap_softintr(void *cookie)
495 {
496 struct tap_softc *sc;
497 struct ifnet *ifp;
498 int a, b;
499
500 sc = cookie;
501
502 if (sc->sc_flags & TAP_ASYNCIO) {
503 ifp = &sc->sc_ec.ec_if;
504 if (ifp->if_flags & IFF_RUNNING) {
505 a = POLL_IN;
506 b = POLLIN|POLLRDNORM;
507 } else {
508 a = POLL_HUP;
509 b = 0;
510 }
511 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
512 }
513 }
514
515 /*
516 * A typical driver will only contain the following handlers for
517 * ioctl calls, except SIOCSIFPHYADDR.
518 * The latter is a hack I used to set the Ethernet address of the
519 * faked device.
520 *
521 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
522 * called under splnet().
523 */
524 static int
525 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
526 {
527 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
528 struct ifreq *ifr = (struct ifreq *)data;
529 int s, error;
530
531 s = splnet();
532
533 switch (cmd) {
534 #ifdef OSIOCSIFMEDIA
535 case OSIOCSIFMEDIA:
536 #endif
537 case SIOCSIFMEDIA:
538 case SIOCGIFMEDIA:
539 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
540 break;
541 #if defined(COMPAT_40) || defined(MODULAR)
542 case SIOCSIFPHYADDR:
543 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
544 break;
545 #endif
546 default:
547 error = ether_ioctl(ifp, cmd, data);
548 if (error == ENETRESET)
549 error = 0;
550 break;
551 }
552
553 splx(s);
554
555 return (error);
556 }
557
558 #if defined(COMPAT_40) || defined(MODULAR)
559 /*
560 * Helper function to set Ethernet address. This has been replaced by
561 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
562 */
563 static int
564 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
565 {
566 const struct sockaddr *sa = &ifra->ifra_addr;
567
568 if (sa->sa_family != AF_LINK)
569 return (EINVAL);
570
571 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
572
573 return (0);
574 }
575 #endif
576
577 /*
578 * _init() would typically be called when an interface goes up,
579 * meaning it should configure itself into the state in which it
580 * can send packets.
581 */
582 static int
583 tap_init(struct ifnet *ifp)
584 {
585 ifp->if_flags |= IFF_RUNNING;
586
587 tap_start(ifp);
588
589 return (0);
590 }
591
592 /*
593 * _stop() is called when an interface goes down. It is our
594 * responsability to validate that state by clearing the
595 * IFF_RUNNING flag.
596 *
597 * We have to wake up all the sleeping processes to have the pending
598 * read requests cancelled.
599 */
600 static void
601 tap_stop(struct ifnet *ifp, int disable)
602 {
603 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
604
605 ifp->if_flags &= ~IFF_RUNNING;
606 wakeup(sc);
607 selnotify(&sc->sc_rsel, 0, 1);
608 if (sc->sc_flags & TAP_ASYNCIO)
609 softint_schedule(sc->sc_sih);
610 }
611
612 /*
613 * The 'create' command of ifconfig can be used to create
614 * any numbered instance of a given device. Thus we have to
615 * make sure we have enough room in cd_devs to create the
616 * user-specified instance. config_attach_pseudo will do this
617 * for us.
618 */
619 static int
620 tap_clone_create(struct if_clone *ifc, int unit)
621 {
622 if (tap_clone_creator(unit) == NULL) {
623 aprint_error("%s%d: unable to attach an instance\n",
624 tap_cd.cd_name, unit);
625 return (ENXIO);
626 }
627
628 return (0);
629 }
630
631 /*
632 * tap(4) can be cloned by two ways:
633 * using 'ifconfig tap0 create', which will use the network
634 * interface cloning API, and call tap_clone_create above.
635 * opening the cloning device node, whose minor number is TAP_CLONER.
636 * See below for an explanation on how this part work.
637 */
638 static struct tap_softc *
639 tap_clone_creator(int unit)
640 {
641 struct cfdata *cf;
642
643 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
644 cf->cf_name = tap_cd.cd_name;
645 cf->cf_atname = tap_ca.ca_name;
646 if (unit == -1) {
647 /* let autoconf find the first free one */
648 cf->cf_unit = 0;
649 cf->cf_fstate = FSTATE_STAR;
650 } else {
651 cf->cf_unit = unit;
652 cf->cf_fstate = FSTATE_NOTFOUND;
653 }
654
655 return device_private(config_attach_pseudo(cf));
656 }
657
658 /*
659 * The clean design of if_clone and autoconf(9) makes that part
660 * really straightforward. The second argument of config_detach
661 * means neither QUIET nor FORCED.
662 */
663 static int
664 tap_clone_destroy(struct ifnet *ifp)
665 {
666 struct tap_softc *sc = ifp->if_softc;
667
668 return tap_clone_destroyer(sc->sc_dev);
669 }
670
671 int
672 tap_clone_destroyer(device_t dev)
673 {
674 cfdata_t cf = device_cfdata(dev);
675 int error;
676
677 if ((error = config_detach(dev, 0)) != 0)
678 aprint_error_dev(dev, "unable to detach instance\n");
679 free(cf, M_DEVBUF);
680
681 return (error);
682 }
683
684 /*
685 * tap(4) is a bit of an hybrid device. It can be used in two different
686 * ways:
687 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
688 * 2. open /dev/tap, get a new interface created and read/write off it.
689 * That interface is destroyed when the process that had it created exits.
690 *
691 * The first way is managed by the cdevsw structure, and you access interfaces
692 * through a (major, minor) mapping: tap4 is obtained by the minor number
693 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
694 *
695 * The second way is the so-called "cloning" device. It's a special minor
696 * number (chosen as the maximal number, to allow as much tap devices as
697 * possible). The user first opens the cloner (e.g., /dev/tap), and that
698 * call ends in tap_cdev_open. The actual place where it is handled is
699 * tap_dev_cloner.
700 *
701 * An tap device cannot be opened more than once at a time, so the cdevsw
702 * part of open() does nothing but noting that the interface is being used and
703 * hence ready to actually handle packets.
704 */
705
706 static int
707 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
708 {
709 struct tap_softc *sc;
710
711 if (minor(dev) == TAP_CLONER)
712 return tap_dev_cloner(l);
713
714 sc = device_lookup_private(&tap_cd, minor(dev));
715 if (sc == NULL)
716 return (ENXIO);
717
718 /* The device can only be opened once */
719 if (sc->sc_flags & TAP_INUSE)
720 return (EBUSY);
721 sc->sc_flags |= TAP_INUSE;
722 return (0);
723 }
724
725 /*
726 * There are several kinds of cloning devices, and the most simple is the one
727 * tap(4) uses. What it does is change the file descriptor with a new one,
728 * with its own fileops structure (which maps to the various read, write,
729 * ioctl functions). It starts allocating a new file descriptor with falloc,
730 * then actually creates the new tap devices.
731 *
732 * Once those two steps are successful, we can re-wire the existing file
733 * descriptor to its new self. This is done with fdclone(): it fills the fp
734 * structure as needed (notably f_data gets filled with the fifth parameter
735 * passed, the unit of the tap device which will allows us identifying the
736 * device later), and returns EMOVEFD.
737 *
738 * That magic value is interpreted by sys_open() which then replaces the
739 * current file descriptor by the new one (through a magic member of struct
740 * lwp, l_dupfd).
741 *
742 * The tap device is flagged as being busy since it otherwise could be
743 * externally accessed through the corresponding device node with the cdevsw
744 * interface.
745 */
746
747 static int
748 tap_dev_cloner(struct lwp *l)
749 {
750 struct tap_softc *sc;
751 file_t *fp;
752 int error, fd;
753
754 if ((error = fd_allocfile(&fp, &fd)) != 0)
755 return (error);
756
757 if ((sc = tap_clone_creator(-1)) == NULL) {
758 fd_abort(curproc, fp, fd);
759 return (ENXIO);
760 }
761
762 sc->sc_flags |= TAP_INUSE;
763
764 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
765 (void *)(intptr_t)device_unit(sc->sc_dev));
766 }
767
768 /*
769 * While all other operations (read, write, ioctl, poll and kqfilter) are
770 * really the same whether we are in cdevsw or fileops mode, the close()
771 * function is slightly different in the two cases.
772 *
773 * As for the other, the core of it is shared in tap_dev_close. What
774 * it does is sufficient for the cdevsw interface, but the cloning interface
775 * needs another thing: the interface is destroyed when the processes that
776 * created it closes it.
777 */
778 static int
779 tap_cdev_close(dev_t dev, int flags, int fmt,
780 struct lwp *l)
781 {
782 struct tap_softc *sc =
783 device_lookup_private(&tap_cd, minor(dev));
784
785 if (sc == NULL)
786 return (ENXIO);
787
788 return tap_dev_close(sc);
789 }
790
791 /*
792 * It might happen that the administrator used ifconfig to externally destroy
793 * the interface. In that case, tap_fops_close will be called while
794 * tap_detach is already happening. If we called it again from here, we
795 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
796 */
797 static int
798 tap_fops_close(file_t *fp)
799 {
800 int unit = (intptr_t)fp->f_data;
801 struct tap_softc *sc;
802 int error;
803
804 sc = device_lookup_private(&tap_cd, unit);
805 if (sc == NULL)
806 return (ENXIO);
807
808 /* tap_dev_close currently always succeeds, but it might not
809 * always be the case. */
810 KERNEL_LOCK(1, NULL);
811 if ((error = tap_dev_close(sc)) != 0) {
812 KERNEL_UNLOCK_ONE(NULL);
813 return (error);
814 }
815
816 /* Destroy the device now that it is no longer useful,
817 * unless it's already being destroyed. */
818 if ((sc->sc_flags & TAP_GOING) != 0) {
819 KERNEL_UNLOCK_ONE(NULL);
820 return (0);
821 }
822
823 error = tap_clone_destroyer(sc->sc_dev);
824 KERNEL_UNLOCK_ONE(NULL);
825 return error;
826 }
827
828 static int
829 tap_dev_close(struct tap_softc *sc)
830 {
831 struct ifnet *ifp;
832 int s;
833
834 s = splnet();
835 /* Let tap_start handle packets again */
836 ifp = &sc->sc_ec.ec_if;
837 ifp->if_flags &= ~IFF_OACTIVE;
838
839 /* Purge output queue */
840 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
841 struct mbuf *m;
842
843 for (;;) {
844 IFQ_DEQUEUE(&ifp->if_snd, m);
845 if (m == NULL)
846 break;
847
848 ifp->if_opackets++;
849 bpf_mtap(ifp, m);
850 m_freem(m);
851 }
852 }
853 splx(s);
854
855 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
856
857 return (0);
858 }
859
860 static int
861 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
862 {
863 return tap_dev_read(minor(dev), uio, flags);
864 }
865
866 static int
867 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
868 kauth_cred_t cred, int flags)
869 {
870 int error;
871
872 KERNEL_LOCK(1, NULL);
873 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
874 KERNEL_UNLOCK_ONE(NULL);
875 return error;
876 }
877
878 static int
879 tap_dev_read(int unit, struct uio *uio, int flags)
880 {
881 struct tap_softc *sc =
882 device_lookup_private(&tap_cd, unit);
883 struct ifnet *ifp;
884 struct mbuf *m, *n;
885 int error = 0, s;
886
887 if (sc == NULL)
888 return (ENXIO);
889
890 getnanotime(&sc->sc_atime);
891
892 ifp = &sc->sc_ec.ec_if;
893 if ((ifp->if_flags & IFF_UP) == 0)
894 return (EHOSTDOWN);
895
896 /*
897 * In the TAP_NBIO case, we have to make sure we won't be sleeping
898 */
899 if ((sc->sc_flags & TAP_NBIO) != 0) {
900 if (!mutex_tryenter(&sc->sc_rdlock))
901 return (EWOULDBLOCK);
902 } else {
903 mutex_enter(&sc->sc_rdlock);
904 }
905
906 s = splnet();
907 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
908 ifp->if_flags &= ~IFF_OACTIVE;
909 /*
910 * We must release the lock before sleeping, and re-acquire it
911 * after.
912 */
913 mutex_exit(&sc->sc_rdlock);
914 if (sc->sc_flags & TAP_NBIO)
915 error = EWOULDBLOCK;
916 else
917 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
918 splx(s);
919
920 if (error != 0)
921 return (error);
922 /* The device might have been downed */
923 if ((ifp->if_flags & IFF_UP) == 0)
924 return (EHOSTDOWN);
925 if ((sc->sc_flags & TAP_NBIO)) {
926 if (!mutex_tryenter(&sc->sc_rdlock))
927 return (EWOULDBLOCK);
928 } else {
929 mutex_enter(&sc->sc_rdlock);
930 }
931 s = splnet();
932 }
933
934 IFQ_DEQUEUE(&ifp->if_snd, m);
935 ifp->if_flags &= ~IFF_OACTIVE;
936 splx(s);
937 if (m == NULL) {
938 error = 0;
939 goto out;
940 }
941
942 ifp->if_opackets++;
943 bpf_mtap(ifp, m);
944
945 /*
946 * One read is one packet.
947 */
948 do {
949 error = uiomove(mtod(m, void *),
950 min(m->m_len, uio->uio_resid), uio);
951 MFREE(m, n);
952 m = n;
953 } while (m != NULL && uio->uio_resid > 0 && error == 0);
954
955 if (m != NULL)
956 m_freem(m);
957
958 out:
959 mutex_exit(&sc->sc_rdlock);
960 return (error);
961 }
962
963 static int
964 tap_fops_stat(file_t *fp, struct stat *st)
965 {
966 int error = 0;
967 struct tap_softc *sc;
968 int unit = (uintptr_t)fp->f_data;
969
970 (void)memset(st, 0, sizeof(*st));
971
972 KERNEL_LOCK(1, NULL);
973 sc = device_lookup_private(&tap_cd, unit);
974 if (sc == NULL) {
975 error = ENXIO;
976 goto out;
977 }
978
979 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
980 st->st_atimespec = sc->sc_atime;
981 st->st_mtimespec = sc->sc_mtime;
982 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
983 st->st_uid = kauth_cred_geteuid(fp->f_cred);
984 st->st_gid = kauth_cred_getegid(fp->f_cred);
985 out:
986 KERNEL_UNLOCK_ONE(NULL);
987 return error;
988 }
989
990 static int
991 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
992 {
993 return tap_dev_write(minor(dev), uio, flags);
994 }
995
996 static int
997 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
998 kauth_cred_t cred, int flags)
999 {
1000 int error;
1001
1002 KERNEL_LOCK(1, NULL);
1003 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1004 KERNEL_UNLOCK_ONE(NULL);
1005 return error;
1006 }
1007
1008 static int
1009 tap_dev_write(int unit, struct uio *uio, int flags)
1010 {
1011 struct tap_softc *sc =
1012 device_lookup_private(&tap_cd, unit);
1013 struct ifnet *ifp;
1014 struct mbuf *m, **mp;
1015 int error = 0;
1016 int s;
1017
1018 if (sc == NULL)
1019 return (ENXIO);
1020
1021 getnanotime(&sc->sc_mtime);
1022 ifp = &sc->sc_ec.ec_if;
1023
1024 /* One write, one packet, that's the rule */
1025 MGETHDR(m, M_DONTWAIT, MT_DATA);
1026 if (m == NULL) {
1027 ifp->if_ierrors++;
1028 return (ENOBUFS);
1029 }
1030 m->m_pkthdr.len = uio->uio_resid;
1031
1032 mp = &m;
1033 while (error == 0 && uio->uio_resid > 0) {
1034 if (*mp != m) {
1035 MGET(*mp, M_DONTWAIT, MT_DATA);
1036 if (*mp == NULL) {
1037 error = ENOBUFS;
1038 break;
1039 }
1040 }
1041 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1042 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1043 mp = &(*mp)->m_next;
1044 }
1045 if (error) {
1046 ifp->if_ierrors++;
1047 m_freem(m);
1048 return (error);
1049 }
1050
1051 ifp->if_ipackets++;
1052 m->m_pkthdr.rcvif = ifp;
1053
1054 bpf_mtap(ifp, m);
1055 s = splnet();
1056 (*ifp->if_input)(ifp, m);
1057 splx(s);
1058
1059 return (0);
1060 }
1061
1062 static int
1063 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1064 struct lwp *l)
1065 {
1066 return tap_dev_ioctl(minor(dev), cmd, data, l);
1067 }
1068
1069 static int
1070 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1071 {
1072 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1073 }
1074
1075 static int
1076 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1077 {
1078 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1079
1080 if (sc == NULL)
1081 return ENXIO;
1082
1083 switch (cmd) {
1084 case FIONREAD:
1085 {
1086 struct ifnet *ifp = &sc->sc_ec.ec_if;
1087 struct mbuf *m;
1088 int s;
1089
1090 s = splnet();
1091 IFQ_POLL(&ifp->if_snd, m);
1092
1093 if (m == NULL)
1094 *(int *)data = 0;
1095 else
1096 *(int *)data = m->m_pkthdr.len;
1097 splx(s);
1098 return 0;
1099 }
1100 case TIOCSPGRP:
1101 case FIOSETOWN:
1102 return fsetown(&sc->sc_pgid, cmd, data);
1103 case TIOCGPGRP:
1104 case FIOGETOWN:
1105 return fgetown(sc->sc_pgid, cmd, data);
1106 case FIOASYNC:
1107 if (*(int *)data)
1108 sc->sc_flags |= TAP_ASYNCIO;
1109 else
1110 sc->sc_flags &= ~TAP_ASYNCIO;
1111 return 0;
1112 case FIONBIO:
1113 if (*(int *)data)
1114 sc->sc_flags |= TAP_NBIO;
1115 else
1116 sc->sc_flags &= ~TAP_NBIO;
1117 return 0;
1118 #ifdef OTAPGIFNAME
1119 case OTAPGIFNAME:
1120 #endif
1121 case TAPGIFNAME:
1122 {
1123 struct ifreq *ifr = (struct ifreq *)data;
1124 struct ifnet *ifp = &sc->sc_ec.ec_if;
1125
1126 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1127 return 0;
1128 }
1129 default:
1130 return ENOTTY;
1131 }
1132 }
1133
1134 static int
1135 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1136 {
1137 return tap_dev_poll(minor(dev), events, l);
1138 }
1139
1140 static int
1141 tap_fops_poll(file_t *fp, int events)
1142 {
1143 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1144 }
1145
1146 static int
1147 tap_dev_poll(int unit, int events, struct lwp *l)
1148 {
1149 struct tap_softc *sc =
1150 device_lookup_private(&tap_cd, unit);
1151 int revents = 0;
1152
1153 if (sc == NULL)
1154 return POLLERR;
1155
1156 if (events & (POLLIN|POLLRDNORM)) {
1157 struct ifnet *ifp = &sc->sc_ec.ec_if;
1158 struct mbuf *m;
1159 int s;
1160
1161 s = splnet();
1162 IFQ_POLL(&ifp->if_snd, m);
1163 splx(s);
1164
1165 if (m != NULL)
1166 revents |= events & (POLLIN|POLLRDNORM);
1167 else {
1168 simple_lock(&sc->sc_kqlock);
1169 selrecord(l, &sc->sc_rsel);
1170 simple_unlock(&sc->sc_kqlock);
1171 }
1172 }
1173 revents |= events & (POLLOUT|POLLWRNORM);
1174
1175 return (revents);
1176 }
1177
1178 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1179 tap_kqread };
1180 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1181 filt_seltrue };
1182
1183 static int
1184 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1185 {
1186 return tap_dev_kqfilter(minor(dev), kn);
1187 }
1188
1189 static int
1190 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1191 {
1192 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1193 }
1194
1195 static int
1196 tap_dev_kqfilter(int unit, struct knote *kn)
1197 {
1198 struct tap_softc *sc =
1199 device_lookup_private(&tap_cd, unit);
1200
1201 if (sc == NULL)
1202 return (ENXIO);
1203
1204 KERNEL_LOCK(1, NULL);
1205 switch(kn->kn_filter) {
1206 case EVFILT_READ:
1207 kn->kn_fop = &tap_read_filterops;
1208 break;
1209 case EVFILT_WRITE:
1210 kn->kn_fop = &tap_seltrue_filterops;
1211 break;
1212 default:
1213 KERNEL_UNLOCK_ONE(NULL);
1214 return (EINVAL);
1215 }
1216
1217 kn->kn_hook = sc;
1218 simple_lock(&sc->sc_kqlock);
1219 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1220 simple_unlock(&sc->sc_kqlock);
1221 KERNEL_UNLOCK_ONE(NULL);
1222 return (0);
1223 }
1224
1225 static void
1226 tap_kqdetach(struct knote *kn)
1227 {
1228 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1229
1230 KERNEL_LOCK(1, NULL);
1231 simple_lock(&sc->sc_kqlock);
1232 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1233 simple_unlock(&sc->sc_kqlock);
1234 KERNEL_UNLOCK_ONE(NULL);
1235 }
1236
1237 static int
1238 tap_kqread(struct knote *kn, long hint)
1239 {
1240 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1241 struct ifnet *ifp = &sc->sc_ec.ec_if;
1242 struct mbuf *m;
1243 int s, rv;
1244
1245 KERNEL_LOCK(1, NULL);
1246 s = splnet();
1247 IFQ_POLL(&ifp->if_snd, m);
1248
1249 if (m == NULL)
1250 kn->kn_data = 0;
1251 else
1252 kn->kn_data = m->m_pkthdr.len;
1253 splx(s);
1254 rv = (kn->kn_data != 0 ? 1 : 0);
1255 KERNEL_UNLOCK_ONE(NULL);
1256 return rv;
1257 }
1258
1259 #if defined(COMPAT_40) || defined(MODULAR)
1260 /*
1261 * sysctl management routines
1262 * You can set the address of an interface through:
1263 * net.link.tap.tap<number>
1264 *
1265 * Note the consistent use of tap_log in order to use
1266 * sysctl_teardown at unload time.
1267 *
1268 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1269 * blocks register a function in a special section of the kernel
1270 * (called a link set) which is used at init_sysctl() time to cycle
1271 * through all those functions to create the kernel's sysctl tree.
1272 *
1273 * It is not possible to use link sets in a module, so the
1274 * easiest is to simply call our own setup routine at load time.
1275 *
1276 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1277 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1278 * whole kernel sysctl tree is built, it is not possible to add any
1279 * permanent node.
1280 *
1281 * It should be noted that we're not saving the sysctlnode pointer
1282 * we are returned when creating the "tap" node. That structure
1283 * cannot be trusted once out of the calling function, as it might
1284 * get reused. So we just save the MIB number, and always give the
1285 * full path starting from the root for later calls to sysctl_createv
1286 * and sysctl_destroyv.
1287 */
1288 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1289 {
1290 const struct sysctlnode *node;
1291 int error = 0;
1292
1293 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1294 CTLFLAG_PERMANENT,
1295 CTLTYPE_NODE, "net", NULL,
1296 NULL, 0, NULL, 0,
1297 CTL_NET, CTL_EOL)) != 0)
1298 return;
1299
1300 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1301 CTLFLAG_PERMANENT,
1302 CTLTYPE_NODE, "link", NULL,
1303 NULL, 0, NULL, 0,
1304 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1305 return;
1306
1307 /*
1308 * The first four parameters of sysctl_createv are for management.
1309 *
1310 * The four that follows, here starting with a '0' for the flags,
1311 * describe the node.
1312 *
1313 * The next series of four set its value, through various possible
1314 * means.
1315 *
1316 * Last but not least, the path to the node is described. That path
1317 * is relative to the given root (third argument). Here we're
1318 * starting from the root.
1319 */
1320 if ((error = sysctl_createv(clog, 0, NULL, &node,
1321 CTLFLAG_PERMANENT,
1322 CTLTYPE_NODE, "tap", NULL,
1323 NULL, 0, NULL, 0,
1324 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1325 return;
1326 tap_node = node->sysctl_num;
1327 }
1328
1329 /*
1330 * The helper functions make Andrew Brown's interface really
1331 * shine. It makes possible to create value on the fly whether
1332 * the sysctl value is read or written.
1333 *
1334 * As shown as an example in the man page, the first step is to
1335 * create a copy of the node to have sysctl_lookup work on it.
1336 *
1337 * Here, we have more work to do than just a copy, since we have
1338 * to create the string. The first step is to collect the actual
1339 * value of the node, which is a convenient pointer to the softc
1340 * of the interface. From there we create the string and use it
1341 * as the value, but only for the *copy* of the node.
1342 *
1343 * Then we let sysctl_lookup do the magic, which consists in
1344 * setting oldp and newp as required by the operation. When the
1345 * value is read, that means that the string will be copied to
1346 * the user, and when it is written, the new value will be copied
1347 * over in the addr array.
1348 *
1349 * If newp is NULL, the user was reading the value, so we don't
1350 * have anything else to do. If a new value was written, we
1351 * have to check it.
1352 *
1353 * If it is incorrect, we can return an error and leave 'node' as
1354 * it is: since it is a copy of the actual node, the change will
1355 * be forgotten.
1356 *
1357 * Upon a correct input, we commit the change to the ifnet
1358 * structure of our interface.
1359 */
1360 static int
1361 tap_sysctl_handler(SYSCTLFN_ARGS)
1362 {
1363 struct sysctlnode node;
1364 struct tap_softc *sc;
1365 struct ifnet *ifp;
1366 int error;
1367 size_t len;
1368 char addr[3 * ETHER_ADDR_LEN];
1369 uint8_t enaddr[ETHER_ADDR_LEN];
1370
1371 node = *rnode;
1372 sc = node.sysctl_data;
1373 ifp = &sc->sc_ec.ec_if;
1374 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1375 node.sysctl_data = addr;
1376 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1377 if (error || newp == NULL)
1378 return (error);
1379
1380 len = strlen(addr);
1381 if (len < 11 || len > 17)
1382 return (EINVAL);
1383
1384 /* Commit change */
1385 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1386 return (EINVAL);
1387 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1388 return (error);
1389 }
1390 #endif
1391