if_tap.c revision 1.70.2.1 1 /* $NetBSD: if_tap.c,v 1.70.2.1 2013/08/28 23:59:36 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.70.2.1 2013/08/28 23:59:36 rmind Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/ksyms.h>
54 #include <sys/poll.h>
55 #include <sys/proc.h>
56 #include <sys/select.h>
57 #include <sys/sockio.h>
58 #if defined(COMPAT_40) || defined(MODULAR)
59 #include <sys/sysctl.h>
60 #endif
61 #include <sys/kauth.h>
62 #include <sys/mutex.h>
63 #include <sys/simplelock.h>
64 #include <sys/intr.h>
65 #include <sys/stat.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #include <net/bpf.h>
73
74 #include <compat/sys/sockio.h>
75
76 #if defined(COMPAT_40) || defined(MODULAR)
77 /*
78 * sysctl node management
79 *
80 * It's not really possible to use a SYSCTL_SETUP block with
81 * current module implementation, so it is easier to just define
82 * our own function.
83 *
84 * The handler function is a "helper" in Andrew Brown's sysctl
85 * framework terminology. It is used as a gateway for sysctl
86 * requests over the nodes.
87 *
88 * tap_log allows the module to log creations of nodes and
89 * destroy them all at once using sysctl_teardown.
90 */
91 static int tap_node;
92 static int tap_sysctl_handler(SYSCTLFN_PROTO);
93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
94 #endif
95
96 /*
97 * Since we're an Ethernet device, we need the 2 following
98 * components: a struct ethercom and a struct ifmedia
99 * since we don't attach a PHY to ourselves.
100 * We could emulate one, but there's no real point.
101 */
102
103 struct tap_softc {
104 device_t sc_dev;
105 struct ifmedia sc_im;
106 struct ethercom sc_ec;
107 int sc_flags;
108 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
109 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
110 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
111 #define TAP_GOING 0x00000008 /* interface is being destroyed */
112 struct selinfo sc_rsel;
113 pid_t sc_pgid; /* For async. IO */
114 kmutex_t sc_rdlock;
115 struct simplelock sc_kqlock;
116 void *sc_sih;
117 struct timespec sc_atime;
118 struct timespec sc_mtime;
119 struct timespec sc_btime;
120 };
121
122 /* autoconf(9) glue */
123
124 void tapattach(int);
125
126 static int tap_match(device_t, cfdata_t, void *);
127 static void tap_attach(device_t, device_t, void *);
128 static int tap_detach(device_t, int);
129
130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
131 tap_match, tap_attach, tap_detach, NULL);
132 extern struct cfdriver tap_cd;
133
134 /* Real device access routines */
135 static int tap_dev_close(struct tap_softc *);
136 static int tap_dev_read(int, struct uio *, int);
137 static int tap_dev_write(int, struct uio *, int);
138 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
139 static int tap_dev_poll(int, int, struct lwp *);
140 static int tap_dev_kqfilter(int, struct knote *);
141
142 /* Fileops access routines */
143 static int tap_fops_close(file_t *);
144 static int tap_fops_read(file_t *, off_t *, struct uio *,
145 kauth_cred_t, int);
146 static int tap_fops_write(file_t *, off_t *, struct uio *,
147 kauth_cred_t, int);
148 static int tap_fops_ioctl(file_t *, u_long, void *);
149 static int tap_fops_poll(file_t *, int);
150 static int tap_fops_stat(file_t *, struct stat *);
151 static int tap_fops_kqfilter(file_t *, struct knote *);
152
153 static const struct fileops tap_fileops = {
154 .fo_read = tap_fops_read,
155 .fo_write = tap_fops_write,
156 .fo_ioctl = tap_fops_ioctl,
157 .fo_fcntl = fnullop_fcntl,
158 .fo_poll = tap_fops_poll,
159 .fo_stat = tap_fops_stat,
160 .fo_close = tap_fops_close,
161 .fo_kqfilter = tap_fops_kqfilter,
162 .fo_restart = fnullop_restart,
163 };
164
165 /* Helper for cloning open() */
166 static int tap_dev_cloner(struct lwp *);
167
168 /* Character device routines */
169 static int tap_cdev_open(dev_t, int, int, struct lwp *);
170 static int tap_cdev_close(dev_t, int, int, struct lwp *);
171 static int tap_cdev_read(dev_t, struct uio *, int);
172 static int tap_cdev_write(dev_t, struct uio *, int);
173 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
174 static int tap_cdev_poll(dev_t, int, struct lwp *);
175 static int tap_cdev_kqfilter(dev_t, struct knote *);
176
177 const struct cdevsw tap_cdevsw = {
178 tap_cdev_open, tap_cdev_close,
179 tap_cdev_read, tap_cdev_write,
180 tap_cdev_ioctl, nostop, notty,
181 tap_cdev_poll, nommap,
182 tap_cdev_kqfilter,
183 D_OTHER,
184 };
185
186 #define TAP_CLONER 0xfffff /* Maximal minor value */
187
188 /* kqueue-related routines */
189 static void tap_kqdetach(struct knote *);
190 static int tap_kqread(struct knote *, long);
191
192 /*
193 * Those are needed by the if_media interface.
194 */
195
196 static int tap_mediachange(struct ifnet *);
197 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
198
199 /*
200 * Those are needed by the ifnet interface, and would typically be
201 * there for any network interface driver.
202 * Some other routines are optional: watchdog and drain.
203 */
204
205 static void tap_start(struct ifnet *);
206 static void tap_stop(struct ifnet *, int);
207 static int tap_init(struct ifnet *);
208 static int tap_ioctl(struct ifnet *, u_long, void *);
209
210 /* Internal functions */
211 #if defined(COMPAT_40) || defined(MODULAR)
212 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
213 #endif
214 static void tap_softintr(void *);
215
216 /*
217 * tap is a clonable interface, although it is highly unrealistic for
218 * an Ethernet device.
219 *
220 * Here are the bits needed for a clonable interface.
221 */
222 static int tap_clone_create(struct if_clone *, int);
223 static int tap_clone_destroy(struct ifnet *);
224
225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226 tap_clone_create,
227 tap_clone_destroy);
228
229 /* Helper functionis shared by the two cloning code paths */
230 static struct tap_softc * tap_clone_creator(int);
231 int tap_clone_destroyer(device_t);
232
233 void
234 tapattach(int n)
235 {
236 int error;
237
238 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
239 if (error) {
240 aprint_error("%s: unable to register cfattach\n",
241 tap_cd.cd_name);
242 (void)config_cfdriver_detach(&tap_cd);
243 return;
244 }
245
246 if_clone_attach(&tap_cloners);
247 }
248
249 /* Pretty much useless for a pseudo-device */
250 static int
251 tap_match(device_t parent, cfdata_t cfdata, void *arg)
252 {
253
254 return (1);
255 }
256
257 void
258 tap_attach(device_t parent, device_t self, void *aux)
259 {
260 struct tap_softc *sc = device_private(self);
261 struct ifnet *ifp;
262 #if defined(COMPAT_40) || defined(MODULAR)
263 const struct sysctlnode *node;
264 int error;
265 #endif
266 uint8_t enaddr[ETHER_ADDR_LEN] =
267 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
268 char enaddrstr[3 * ETHER_ADDR_LEN];
269
270 sc->sc_dev = self;
271 sc->sc_sih = NULL;
272 getnanotime(&sc->sc_btime);
273 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
274
275 if (!pmf_device_register(self, NULL, NULL))
276 aprint_error_dev(self, "couldn't establish power handler\n");
277
278 /*
279 * In order to obtain unique initial Ethernet address on a host,
280 * do some randomisation. It's not meant for anything but avoiding
281 * hard-coding an address.
282 */
283 cprng_fast(&enaddr[3], 3);
284
285 aprint_verbose_dev(self, "Ethernet address %s\n",
286 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
287
288 /*
289 * Why 1000baseT? Why not? You can add more.
290 *
291 * Note that there are 3 steps: init, one or several additions to
292 * list of supported media, and in the end, the selection of one
293 * of them.
294 */
295 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
296 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
297 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
298 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
299 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
300 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
303 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
304
305 /*
306 * One should note that an interface must do multicast in order
307 * to support IPv6.
308 */
309 ifp = &sc->sc_ec.ec_if;
310 strcpy(ifp->if_xname, device_xname(self));
311 ifp->if_softc = sc;
312 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
313 ifp->if_ioctl = tap_ioctl;
314 ifp->if_start = tap_start;
315 ifp->if_stop = tap_stop;
316 ifp->if_init = tap_init;
317 IFQ_SET_READY(&ifp->if_snd);
318
319 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
320
321 /* Those steps are mandatory for an Ethernet driver, the fisrt call
322 * being common to all network interface drivers. */
323 if_attach(ifp);
324 ether_ifattach(ifp, enaddr);
325
326 sc->sc_flags = 0;
327
328 #if defined(COMPAT_40) || defined(MODULAR)
329 /*
330 * Add a sysctl node for that interface.
331 *
332 * The pointer transmitted is not a string, but instead a pointer to
333 * the softc structure, which we can use to build the string value on
334 * the fly in the helper function of the node. See the comments for
335 * tap_sysctl_handler for details.
336 *
337 * Usually sysctl_createv is called with CTL_CREATE as the before-last
338 * component. However, we can allocate a number ourselves, as we are
339 * the only consumer of the net.link.<iface> node. In this case, the
340 * unit number is conveniently used to number the node. CTL_CREATE
341 * would just work, too.
342 */
343 if ((error = sysctl_createv(NULL, 0, NULL,
344 &node, CTLFLAG_READWRITE,
345 CTLTYPE_STRING, device_xname(self), NULL,
346 tap_sysctl_handler, 0, (void *)sc, 18,
347 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
348 CTL_EOL)) != 0)
349 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
350 error);
351 #endif
352
353 /*
354 * Initialize the two locks for the device.
355 *
356 * We need a lock here because even though the tap device can be
357 * opened only once, the file descriptor might be passed to another
358 * process, say a fork(2)ed child.
359 *
360 * The Giant saves us from most of the hassle, but since the read
361 * operation can sleep, we don't want two processes to wake up at
362 * the same moment and both try and dequeue a single packet.
363 *
364 * The queue for event listeners (used by kqueue(9), see below) has
365 * to be protected, too, but we don't need the same level of
366 * complexity for that lock, so a simple spinning lock is fine.
367 */
368 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
369 simple_lock_init(&sc->sc_kqlock);
370
371 selinit(&sc->sc_rsel);
372 }
373
374 /*
375 * When detaching, we do the inverse of what is done in the attach
376 * routine, in reversed order.
377 */
378 static int
379 tap_detach(device_t self, int flags)
380 {
381 struct tap_softc *sc = device_private(self);
382 struct ifnet *ifp = &sc->sc_ec.ec_if;
383 #if defined(COMPAT_40) || defined(MODULAR)
384 int error;
385 #endif
386 int s;
387
388 sc->sc_flags |= TAP_GOING;
389 s = splnet();
390 tap_stop(ifp, 1);
391 if_down(ifp);
392 splx(s);
393
394 if (sc->sc_sih != NULL) {
395 softint_disestablish(sc->sc_sih);
396 sc->sc_sih = NULL;
397 }
398
399 #if defined(COMPAT_40) || defined(MODULAR)
400 /*
401 * Destroying a single leaf is a very straightforward operation using
402 * sysctl_destroyv. One should be sure to always end the path with
403 * CTL_EOL.
404 */
405 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
406 device_unit(sc->sc_dev), CTL_EOL)) != 0)
407 aprint_error_dev(self,
408 "sysctl_destroyv returned %d, ignoring\n", error);
409 #endif
410 ether_ifdetach(ifp);
411 if_detach(ifp);
412 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
413 seldestroy(&sc->sc_rsel);
414 mutex_destroy(&sc->sc_rdlock);
415
416 pmf_device_deregister(self);
417
418 return (0);
419 }
420
421 /*
422 * This function is called by the ifmedia layer to notify the driver
423 * that the user requested a media change. A real driver would
424 * reconfigure the hardware.
425 */
426 static int
427 tap_mediachange(struct ifnet *ifp)
428 {
429 return (0);
430 }
431
432 /*
433 * Here the user asks for the currently used media.
434 */
435 static void
436 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
437 {
438 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
439 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
440 }
441
442 /*
443 * This is the function where we SEND packets.
444 *
445 * There is no 'receive' equivalent. A typical driver will get
446 * interrupts from the hardware, and from there will inject new packets
447 * into the network stack.
448 *
449 * Once handled, a packet must be freed. A real driver might not be able
450 * to fit all the pending packets into the hardware, and is allowed to
451 * return before having sent all the packets. It should then use the
452 * if_flags flag IFF_OACTIVE to notify the upper layer.
453 *
454 * There are also other flags one should check, such as IFF_PAUSE.
455 *
456 * It is our duty to make packets available to BPF listeners.
457 *
458 * You should be aware that this function is called by the Ethernet layer
459 * at splnet().
460 *
461 * When the device is opened, we have to pass the packet(s) to the
462 * userland. For that we stay in OACTIVE mode while the userland gets
463 * the packets, and we send a signal to the processes waiting to read.
464 *
465 * wakeup(sc) is the counterpart to the tsleep call in
466 * tap_dev_read, while selnotify() is used for kevent(2) and
467 * poll(2) (which includes select(2)) listeners.
468 */
469 static void
470 tap_start(struct ifnet *ifp)
471 {
472 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
473 struct mbuf *m0;
474
475 if ((sc->sc_flags & TAP_INUSE) == 0) {
476 /* Simply drop packets */
477 for(;;) {
478 IFQ_DEQUEUE(&ifp->if_snd, m0);
479 if (m0 == NULL)
480 return;
481
482 ifp->if_opackets++;
483 bpf_mtap(ifp, m0);
484
485 m_freem(m0);
486 }
487 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
488 ifp->if_flags |= IFF_OACTIVE;
489 wakeup(sc);
490 selnotify(&sc->sc_rsel, 0, 1);
491 if (sc->sc_flags & TAP_ASYNCIO)
492 softint_schedule(sc->sc_sih);
493 }
494 }
495
496 static void
497 tap_softintr(void *cookie)
498 {
499 struct tap_softc *sc;
500 struct ifnet *ifp;
501 int a, b;
502
503 sc = cookie;
504
505 if (sc->sc_flags & TAP_ASYNCIO) {
506 ifp = &sc->sc_ec.ec_if;
507 if (ifp->if_flags & IFF_RUNNING) {
508 a = POLL_IN;
509 b = POLLIN|POLLRDNORM;
510 } else {
511 a = POLL_HUP;
512 b = 0;
513 }
514 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
515 }
516 }
517
518 /*
519 * A typical driver will only contain the following handlers for
520 * ioctl calls, except SIOCSIFPHYADDR.
521 * The latter is a hack I used to set the Ethernet address of the
522 * faked device.
523 *
524 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
525 * called under splnet().
526 */
527 static int
528 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
529 {
530 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
531 struct ifreq *ifr = (struct ifreq *)data;
532 int s, error;
533
534 s = splnet();
535
536 switch (cmd) {
537 #ifdef OSIOCSIFMEDIA
538 case OSIOCSIFMEDIA:
539 #endif
540 case SIOCSIFMEDIA:
541 case SIOCGIFMEDIA:
542 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
543 break;
544 #if defined(COMPAT_40) || defined(MODULAR)
545 case SIOCSIFPHYADDR:
546 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
547 break;
548 #endif
549 default:
550 error = ether_ioctl(ifp, cmd, data);
551 if (error == ENETRESET)
552 error = 0;
553 break;
554 }
555
556 splx(s);
557
558 return (error);
559 }
560
561 #if defined(COMPAT_40) || defined(MODULAR)
562 /*
563 * Helper function to set Ethernet address. This has been replaced by
564 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
565 */
566 static int
567 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
568 {
569 const struct sockaddr *sa = &ifra->ifra_addr;
570
571 if (sa->sa_family != AF_LINK)
572 return (EINVAL);
573
574 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
575
576 return (0);
577 }
578 #endif
579
580 /*
581 * _init() would typically be called when an interface goes up,
582 * meaning it should configure itself into the state in which it
583 * can send packets.
584 */
585 static int
586 tap_init(struct ifnet *ifp)
587 {
588 ifp->if_flags |= IFF_RUNNING;
589
590 tap_start(ifp);
591
592 return (0);
593 }
594
595 /*
596 * _stop() is called when an interface goes down. It is our
597 * responsability to validate that state by clearing the
598 * IFF_RUNNING flag.
599 *
600 * We have to wake up all the sleeping processes to have the pending
601 * read requests cancelled.
602 */
603 static void
604 tap_stop(struct ifnet *ifp, int disable)
605 {
606 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
607
608 ifp->if_flags &= ~IFF_RUNNING;
609 wakeup(sc);
610 selnotify(&sc->sc_rsel, 0, 1);
611 if (sc->sc_flags & TAP_ASYNCIO)
612 softint_schedule(sc->sc_sih);
613 }
614
615 /*
616 * The 'create' command of ifconfig can be used to create
617 * any numbered instance of a given device. Thus we have to
618 * make sure we have enough room in cd_devs to create the
619 * user-specified instance. config_attach_pseudo will do this
620 * for us.
621 */
622 static int
623 tap_clone_create(struct if_clone *ifc, int unit)
624 {
625 if (tap_clone_creator(unit) == NULL) {
626 aprint_error("%s%d: unable to attach an instance\n",
627 tap_cd.cd_name, unit);
628 return (ENXIO);
629 }
630
631 return (0);
632 }
633
634 /*
635 * tap(4) can be cloned by two ways:
636 * using 'ifconfig tap0 create', which will use the network
637 * interface cloning API, and call tap_clone_create above.
638 * opening the cloning device node, whose minor number is TAP_CLONER.
639 * See below for an explanation on how this part work.
640 */
641 static struct tap_softc *
642 tap_clone_creator(int unit)
643 {
644 struct cfdata *cf;
645
646 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
647 cf->cf_name = tap_cd.cd_name;
648 cf->cf_atname = tap_ca.ca_name;
649 if (unit == -1) {
650 /* let autoconf find the first free one */
651 cf->cf_unit = 0;
652 cf->cf_fstate = FSTATE_STAR;
653 } else {
654 cf->cf_unit = unit;
655 cf->cf_fstate = FSTATE_NOTFOUND;
656 }
657
658 return device_private(config_attach_pseudo(cf));
659 }
660
661 /*
662 * The clean design of if_clone and autoconf(9) makes that part
663 * really straightforward. The second argument of config_detach
664 * means neither QUIET nor FORCED.
665 */
666 static int
667 tap_clone_destroy(struct ifnet *ifp)
668 {
669 struct tap_softc *sc = ifp->if_softc;
670
671 return tap_clone_destroyer(sc->sc_dev);
672 }
673
674 int
675 tap_clone_destroyer(device_t dev)
676 {
677 cfdata_t cf = device_cfdata(dev);
678 int error;
679
680 if ((error = config_detach(dev, 0)) != 0)
681 aprint_error_dev(dev, "unable to detach instance\n");
682 free(cf, M_DEVBUF);
683
684 return (error);
685 }
686
687 /*
688 * tap(4) is a bit of an hybrid device. It can be used in two different
689 * ways:
690 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
691 * 2. open /dev/tap, get a new interface created and read/write off it.
692 * That interface is destroyed when the process that had it created exits.
693 *
694 * The first way is managed by the cdevsw structure, and you access interfaces
695 * through a (major, minor) mapping: tap4 is obtained by the minor number
696 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
697 *
698 * The second way is the so-called "cloning" device. It's a special minor
699 * number (chosen as the maximal number, to allow as much tap devices as
700 * possible). The user first opens the cloner (e.g., /dev/tap), and that
701 * call ends in tap_cdev_open. The actual place where it is handled is
702 * tap_dev_cloner.
703 *
704 * An tap device cannot be opened more than once at a time, so the cdevsw
705 * part of open() does nothing but noting that the interface is being used and
706 * hence ready to actually handle packets.
707 */
708
709 static int
710 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
711 {
712 struct tap_softc *sc;
713
714 if (minor(dev) == TAP_CLONER)
715 return tap_dev_cloner(l);
716
717 sc = device_lookup_private(&tap_cd, minor(dev));
718 if (sc == NULL)
719 return (ENXIO);
720
721 /* The device can only be opened once */
722 if (sc->sc_flags & TAP_INUSE)
723 return (EBUSY);
724 sc->sc_flags |= TAP_INUSE;
725 return (0);
726 }
727
728 /*
729 * There are several kinds of cloning devices, and the most simple is the one
730 * tap(4) uses. What it does is change the file descriptor with a new one,
731 * with its own fileops structure (which maps to the various read, write,
732 * ioctl functions). It starts allocating a new file descriptor with falloc,
733 * then actually creates the new tap devices.
734 *
735 * Once those two steps are successful, we can re-wire the existing file
736 * descriptor to its new self. This is done with fdclone(): it fills the fp
737 * structure as needed (notably f_data gets filled with the fifth parameter
738 * passed, the unit of the tap device which will allows us identifying the
739 * device later), and returns EMOVEFD.
740 *
741 * That magic value is interpreted by sys_open() which then replaces the
742 * current file descriptor by the new one (through a magic member of struct
743 * lwp, l_dupfd).
744 *
745 * The tap device is flagged as being busy since it otherwise could be
746 * externally accessed through the corresponding device node with the cdevsw
747 * interface.
748 */
749
750 static int
751 tap_dev_cloner(struct lwp *l)
752 {
753 struct tap_softc *sc;
754 file_t *fp;
755 int error, fd;
756
757 if ((error = fd_allocfile(&fp, &fd)) != 0)
758 return (error);
759
760 if ((sc = tap_clone_creator(-1)) == NULL) {
761 fd_abort(curproc, fp, fd);
762 return (ENXIO);
763 }
764
765 sc->sc_flags |= TAP_INUSE;
766
767 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
768 (void *)(intptr_t)device_unit(sc->sc_dev));
769 }
770
771 /*
772 * While all other operations (read, write, ioctl, poll and kqfilter) are
773 * really the same whether we are in cdevsw or fileops mode, the close()
774 * function is slightly different in the two cases.
775 *
776 * As for the other, the core of it is shared in tap_dev_close. What
777 * it does is sufficient for the cdevsw interface, but the cloning interface
778 * needs another thing: the interface is destroyed when the processes that
779 * created it closes it.
780 */
781 static int
782 tap_cdev_close(dev_t dev, int flags, int fmt,
783 struct lwp *l)
784 {
785 struct tap_softc *sc =
786 device_lookup_private(&tap_cd, minor(dev));
787
788 if (sc == NULL)
789 return (ENXIO);
790
791 return tap_dev_close(sc);
792 }
793
794 /*
795 * It might happen that the administrator used ifconfig to externally destroy
796 * the interface. In that case, tap_fops_close will be called while
797 * tap_detach is already happening. If we called it again from here, we
798 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
799 */
800 static int
801 tap_fops_close(file_t *fp)
802 {
803 int unit = (intptr_t)fp->f_data;
804 struct tap_softc *sc;
805 int error;
806
807 sc = device_lookup_private(&tap_cd, unit);
808 if (sc == NULL)
809 return (ENXIO);
810
811 /* tap_dev_close currently always succeeds, but it might not
812 * always be the case. */
813 KERNEL_LOCK(1, NULL);
814 if ((error = tap_dev_close(sc)) != 0) {
815 KERNEL_UNLOCK_ONE(NULL);
816 return (error);
817 }
818
819 /* Destroy the device now that it is no longer useful,
820 * unless it's already being destroyed. */
821 if ((sc->sc_flags & TAP_GOING) != 0) {
822 KERNEL_UNLOCK_ONE(NULL);
823 return (0);
824 }
825
826 error = tap_clone_destroyer(sc->sc_dev);
827 KERNEL_UNLOCK_ONE(NULL);
828 return error;
829 }
830
831 static int
832 tap_dev_close(struct tap_softc *sc)
833 {
834 struct ifnet *ifp;
835 int s;
836
837 s = splnet();
838 /* Let tap_start handle packets again */
839 ifp = &sc->sc_ec.ec_if;
840 ifp->if_flags &= ~IFF_OACTIVE;
841
842 /* Purge output queue */
843 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
844 struct mbuf *m;
845
846 for (;;) {
847 IFQ_DEQUEUE(&ifp->if_snd, m);
848 if (m == NULL)
849 break;
850
851 ifp->if_opackets++;
852 bpf_mtap(ifp, m);
853 m_freem(m);
854 }
855 }
856 splx(s);
857
858 if (sc->sc_sih != NULL) {
859 softint_disestablish(sc->sc_sih);
860 sc->sc_sih = NULL;
861 }
862 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
863
864 return (0);
865 }
866
867 static int
868 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
869 {
870 return tap_dev_read(minor(dev), uio, flags);
871 }
872
873 static int
874 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
875 kauth_cred_t cred, int flags)
876 {
877 int error;
878
879 KERNEL_LOCK(1, NULL);
880 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
881 KERNEL_UNLOCK_ONE(NULL);
882 return error;
883 }
884
885 static int
886 tap_dev_read(int unit, struct uio *uio, int flags)
887 {
888 struct tap_softc *sc =
889 device_lookup_private(&tap_cd, unit);
890 struct ifnet *ifp;
891 struct mbuf *m, *n;
892 int error = 0, s;
893
894 if (sc == NULL)
895 return (ENXIO);
896
897 getnanotime(&sc->sc_atime);
898
899 ifp = &sc->sc_ec.ec_if;
900 if ((ifp->if_flags & IFF_UP) == 0)
901 return (EHOSTDOWN);
902
903 /*
904 * In the TAP_NBIO case, we have to make sure we won't be sleeping
905 */
906 if ((sc->sc_flags & TAP_NBIO) != 0) {
907 if (!mutex_tryenter(&sc->sc_rdlock))
908 return (EWOULDBLOCK);
909 } else {
910 mutex_enter(&sc->sc_rdlock);
911 }
912
913 s = splnet();
914 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
915 ifp->if_flags &= ~IFF_OACTIVE;
916 /*
917 * We must release the lock before sleeping, and re-acquire it
918 * after.
919 */
920 mutex_exit(&sc->sc_rdlock);
921 if (sc->sc_flags & TAP_NBIO)
922 error = EWOULDBLOCK;
923 else
924 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
925 splx(s);
926
927 if (error != 0)
928 return (error);
929 /* The device might have been downed */
930 if ((ifp->if_flags & IFF_UP) == 0)
931 return (EHOSTDOWN);
932 if ((sc->sc_flags & TAP_NBIO)) {
933 if (!mutex_tryenter(&sc->sc_rdlock))
934 return (EWOULDBLOCK);
935 } else {
936 mutex_enter(&sc->sc_rdlock);
937 }
938 s = splnet();
939 }
940
941 IFQ_DEQUEUE(&ifp->if_snd, m);
942 ifp->if_flags &= ~IFF_OACTIVE;
943 splx(s);
944 if (m == NULL) {
945 error = 0;
946 goto out;
947 }
948
949 ifp->if_opackets++;
950 bpf_mtap(ifp, m);
951
952 /*
953 * One read is one packet.
954 */
955 do {
956 error = uiomove(mtod(m, void *),
957 min(m->m_len, uio->uio_resid), uio);
958 MFREE(m, n);
959 m = n;
960 } while (m != NULL && uio->uio_resid > 0 && error == 0);
961
962 if (m != NULL)
963 m_freem(m);
964
965 out:
966 mutex_exit(&sc->sc_rdlock);
967 return (error);
968 }
969
970 static int
971 tap_fops_stat(file_t *fp, struct stat *st)
972 {
973 int error = 0;
974 struct tap_softc *sc;
975 int unit = (uintptr_t)fp->f_data;
976
977 (void)memset(st, 0, sizeof(*st));
978
979 KERNEL_LOCK(1, NULL);
980 sc = device_lookup_private(&tap_cd, unit);
981 if (sc == NULL) {
982 error = ENXIO;
983 goto out;
984 }
985
986 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
987 st->st_atimespec = sc->sc_atime;
988 st->st_mtimespec = sc->sc_mtime;
989 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
990 st->st_uid = kauth_cred_geteuid(fp->f_cred);
991 st->st_gid = kauth_cred_getegid(fp->f_cred);
992 out:
993 KERNEL_UNLOCK_ONE(NULL);
994 return error;
995 }
996
997 static int
998 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
999 {
1000 return tap_dev_write(minor(dev), uio, flags);
1001 }
1002
1003 static int
1004 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1005 kauth_cred_t cred, int flags)
1006 {
1007 int error;
1008
1009 KERNEL_LOCK(1, NULL);
1010 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1011 KERNEL_UNLOCK_ONE(NULL);
1012 return error;
1013 }
1014
1015 static int
1016 tap_dev_write(int unit, struct uio *uio, int flags)
1017 {
1018 struct tap_softc *sc =
1019 device_lookup_private(&tap_cd, unit);
1020 struct ifnet *ifp;
1021 struct mbuf *m, **mp;
1022 int error = 0;
1023 int s;
1024
1025 if (sc == NULL)
1026 return (ENXIO);
1027
1028 getnanotime(&sc->sc_mtime);
1029 ifp = &sc->sc_ec.ec_if;
1030
1031 /* One write, one packet, that's the rule */
1032 MGETHDR(m, M_DONTWAIT, MT_DATA);
1033 if (m == NULL) {
1034 ifp->if_ierrors++;
1035 return (ENOBUFS);
1036 }
1037 m->m_pkthdr.len = uio->uio_resid;
1038
1039 mp = &m;
1040 while (error == 0 && uio->uio_resid > 0) {
1041 if (*mp != m) {
1042 MGET(*mp, M_DONTWAIT, MT_DATA);
1043 if (*mp == NULL) {
1044 error = ENOBUFS;
1045 break;
1046 }
1047 }
1048 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1049 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1050 mp = &(*mp)->m_next;
1051 }
1052 if (error) {
1053 ifp->if_ierrors++;
1054 m_freem(m);
1055 return (error);
1056 }
1057
1058 ifp->if_ipackets++;
1059 m->m_pkthdr.rcvif = ifp;
1060
1061 bpf_mtap(ifp, m);
1062 s = splnet();
1063 (*ifp->if_input)(ifp, m);
1064 splx(s);
1065
1066 return (0);
1067 }
1068
1069 static int
1070 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1071 struct lwp *l)
1072 {
1073 return tap_dev_ioctl(minor(dev), cmd, data, l);
1074 }
1075
1076 static int
1077 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1078 {
1079 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1080 }
1081
1082 static int
1083 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1084 {
1085 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1086
1087 if (sc == NULL)
1088 return ENXIO;
1089
1090 switch (cmd) {
1091 case FIONREAD:
1092 {
1093 struct ifnet *ifp = &sc->sc_ec.ec_if;
1094 struct mbuf *m;
1095 int s;
1096
1097 s = splnet();
1098 IFQ_POLL(&ifp->if_snd, m);
1099
1100 if (m == NULL)
1101 *(int *)data = 0;
1102 else
1103 *(int *)data = m->m_pkthdr.len;
1104 splx(s);
1105 return 0;
1106 }
1107 case TIOCSPGRP:
1108 case FIOSETOWN:
1109 return fsetown(&sc->sc_pgid, cmd, data);
1110 case TIOCGPGRP:
1111 case FIOGETOWN:
1112 return fgetown(sc->sc_pgid, cmd, data);
1113 case FIOASYNC:
1114 if (*(int *)data) {
1115 if (sc->sc_sih == NULL) {
1116 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1117 tap_softintr, sc);
1118 if (sc->sc_sih == NULL)
1119 return EBUSY; /* XXX */
1120 }
1121 sc->sc_flags |= TAP_ASYNCIO;
1122 } else {
1123 sc->sc_flags &= ~TAP_ASYNCIO;
1124 if (sc->sc_sih != NULL) {
1125 softint_disestablish(sc->sc_sih);
1126 sc->sc_sih = NULL;
1127 }
1128 }
1129 return 0;
1130 case FIONBIO:
1131 if (*(int *)data)
1132 sc->sc_flags |= TAP_NBIO;
1133 else
1134 sc->sc_flags &= ~TAP_NBIO;
1135 return 0;
1136 #ifdef OTAPGIFNAME
1137 case OTAPGIFNAME:
1138 #endif
1139 case TAPGIFNAME:
1140 {
1141 struct ifreq *ifr = (struct ifreq *)data;
1142 struct ifnet *ifp = &sc->sc_ec.ec_if;
1143
1144 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1145 return 0;
1146 }
1147 default:
1148 return ENOTTY;
1149 }
1150 }
1151
1152 static int
1153 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1154 {
1155 return tap_dev_poll(minor(dev), events, l);
1156 }
1157
1158 static int
1159 tap_fops_poll(file_t *fp, int events)
1160 {
1161 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1162 }
1163
1164 static int
1165 tap_dev_poll(int unit, int events, struct lwp *l)
1166 {
1167 struct tap_softc *sc =
1168 device_lookup_private(&tap_cd, unit);
1169 int revents = 0;
1170
1171 if (sc == NULL)
1172 return POLLERR;
1173
1174 if (events & (POLLIN|POLLRDNORM)) {
1175 struct ifnet *ifp = &sc->sc_ec.ec_if;
1176 struct mbuf *m;
1177 int s;
1178
1179 s = splnet();
1180 IFQ_POLL(&ifp->if_snd, m);
1181 splx(s);
1182
1183 if (m != NULL)
1184 revents |= events & (POLLIN|POLLRDNORM);
1185 else {
1186 simple_lock(&sc->sc_kqlock);
1187 selrecord(l, &sc->sc_rsel);
1188 simple_unlock(&sc->sc_kqlock);
1189 }
1190 }
1191 revents |= events & (POLLOUT|POLLWRNORM);
1192
1193 return (revents);
1194 }
1195
1196 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1197 tap_kqread };
1198 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1199 filt_seltrue };
1200
1201 static int
1202 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1203 {
1204 return tap_dev_kqfilter(minor(dev), kn);
1205 }
1206
1207 static int
1208 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1209 {
1210 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1211 }
1212
1213 static int
1214 tap_dev_kqfilter(int unit, struct knote *kn)
1215 {
1216 struct tap_softc *sc =
1217 device_lookup_private(&tap_cd, unit);
1218
1219 if (sc == NULL)
1220 return (ENXIO);
1221
1222 KERNEL_LOCK(1, NULL);
1223 switch(kn->kn_filter) {
1224 case EVFILT_READ:
1225 kn->kn_fop = &tap_read_filterops;
1226 break;
1227 case EVFILT_WRITE:
1228 kn->kn_fop = &tap_seltrue_filterops;
1229 break;
1230 default:
1231 KERNEL_UNLOCK_ONE(NULL);
1232 return (EINVAL);
1233 }
1234
1235 kn->kn_hook = sc;
1236 simple_lock(&sc->sc_kqlock);
1237 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1238 simple_unlock(&sc->sc_kqlock);
1239 KERNEL_UNLOCK_ONE(NULL);
1240 return (0);
1241 }
1242
1243 static void
1244 tap_kqdetach(struct knote *kn)
1245 {
1246 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1247
1248 KERNEL_LOCK(1, NULL);
1249 simple_lock(&sc->sc_kqlock);
1250 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1251 simple_unlock(&sc->sc_kqlock);
1252 KERNEL_UNLOCK_ONE(NULL);
1253 }
1254
1255 static int
1256 tap_kqread(struct knote *kn, long hint)
1257 {
1258 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1259 struct ifnet *ifp = &sc->sc_ec.ec_if;
1260 struct mbuf *m;
1261 int s, rv;
1262
1263 KERNEL_LOCK(1, NULL);
1264 s = splnet();
1265 IFQ_POLL(&ifp->if_snd, m);
1266
1267 if (m == NULL)
1268 kn->kn_data = 0;
1269 else
1270 kn->kn_data = m->m_pkthdr.len;
1271 splx(s);
1272 rv = (kn->kn_data != 0 ? 1 : 0);
1273 KERNEL_UNLOCK_ONE(NULL);
1274 return rv;
1275 }
1276
1277 #if defined(COMPAT_40) || defined(MODULAR)
1278 /*
1279 * sysctl management routines
1280 * You can set the address of an interface through:
1281 * net.link.tap.tap<number>
1282 *
1283 * Note the consistent use of tap_log in order to use
1284 * sysctl_teardown at unload time.
1285 *
1286 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1287 * blocks register a function in a special section of the kernel
1288 * (called a link set) which is used at init_sysctl() time to cycle
1289 * through all those functions to create the kernel's sysctl tree.
1290 *
1291 * It is not possible to use link sets in a module, so the
1292 * easiest is to simply call our own setup routine at load time.
1293 *
1294 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1295 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1296 * whole kernel sysctl tree is built, it is not possible to add any
1297 * permanent node.
1298 *
1299 * It should be noted that we're not saving the sysctlnode pointer
1300 * we are returned when creating the "tap" node. That structure
1301 * cannot be trusted once out of the calling function, as it might
1302 * get reused. So we just save the MIB number, and always give the
1303 * full path starting from the root for later calls to sysctl_createv
1304 * and sysctl_destroyv.
1305 */
1306 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1307 {
1308 const struct sysctlnode *node;
1309 int error = 0;
1310
1311 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1312 CTLFLAG_PERMANENT,
1313 CTLTYPE_NODE, "net", NULL,
1314 NULL, 0, NULL, 0,
1315 CTL_NET, CTL_EOL)) != 0)
1316 return;
1317
1318 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1319 CTLFLAG_PERMANENT,
1320 CTLTYPE_NODE, "link", NULL,
1321 NULL, 0, NULL, 0,
1322 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1323 return;
1324
1325 /*
1326 * The first four parameters of sysctl_createv are for management.
1327 *
1328 * The four that follows, here starting with a '0' for the flags,
1329 * describe the node.
1330 *
1331 * The next series of four set its value, through various possible
1332 * means.
1333 *
1334 * Last but not least, the path to the node is described. That path
1335 * is relative to the given root (third argument). Here we're
1336 * starting from the root.
1337 */
1338 if ((error = sysctl_createv(clog, 0, NULL, &node,
1339 CTLFLAG_PERMANENT,
1340 CTLTYPE_NODE, "tap", NULL,
1341 NULL, 0, NULL, 0,
1342 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1343 return;
1344 tap_node = node->sysctl_num;
1345 }
1346
1347 /*
1348 * The helper functions make Andrew Brown's interface really
1349 * shine. It makes possible to create value on the fly whether
1350 * the sysctl value is read or written.
1351 *
1352 * As shown as an example in the man page, the first step is to
1353 * create a copy of the node to have sysctl_lookup work on it.
1354 *
1355 * Here, we have more work to do than just a copy, since we have
1356 * to create the string. The first step is to collect the actual
1357 * value of the node, which is a convenient pointer to the softc
1358 * of the interface. From there we create the string and use it
1359 * as the value, but only for the *copy* of the node.
1360 *
1361 * Then we let sysctl_lookup do the magic, which consists in
1362 * setting oldp and newp as required by the operation. When the
1363 * value is read, that means that the string will be copied to
1364 * the user, and when it is written, the new value will be copied
1365 * over in the addr array.
1366 *
1367 * If newp is NULL, the user was reading the value, so we don't
1368 * have anything else to do. If a new value was written, we
1369 * have to check it.
1370 *
1371 * If it is incorrect, we can return an error and leave 'node' as
1372 * it is: since it is a copy of the actual node, the change will
1373 * be forgotten.
1374 *
1375 * Upon a correct input, we commit the change to the ifnet
1376 * structure of our interface.
1377 */
1378 static int
1379 tap_sysctl_handler(SYSCTLFN_ARGS)
1380 {
1381 struct sysctlnode node;
1382 struct tap_softc *sc;
1383 struct ifnet *ifp;
1384 int error;
1385 size_t len;
1386 char addr[3 * ETHER_ADDR_LEN];
1387 uint8_t enaddr[ETHER_ADDR_LEN];
1388
1389 node = *rnode;
1390 sc = node.sysctl_data;
1391 ifp = &sc->sc_ec.ec_if;
1392 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1393 node.sysctl_data = addr;
1394 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1395 if (error || newp == NULL)
1396 return (error);
1397
1398 len = strlen(addr);
1399 if (len < 11 || len > 17)
1400 return (EINVAL);
1401
1402 /* Commit change */
1403 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1404 return (EINVAL);
1405 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1406 return (error);
1407 }
1408 #endif
1409