if_tap.c revision 1.73 1 /* $NetBSD: if_tap.c,v 1.73 2014/03/16 05:20:30 dholland Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.73 2014/03/16 05:20:30 dholland Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/ksyms.h>
54 #include <sys/poll.h>
55 #include <sys/proc.h>
56 #include <sys/select.h>
57 #include <sys/sockio.h>
58 #if defined(COMPAT_40) || defined(MODULAR)
59 #include <sys/sysctl.h>
60 #endif
61 #include <sys/kauth.h>
62 #include <sys/mutex.h>
63 #include <sys/simplelock.h>
64 #include <sys/intr.h>
65 #include <sys/stat.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #include <net/bpf.h>
73
74 #include <compat/sys/sockio.h>
75
76 #if defined(COMPAT_40) || defined(MODULAR)
77 /*
78 * sysctl node management
79 *
80 * It's not really possible to use a SYSCTL_SETUP block with
81 * current module implementation, so it is easier to just define
82 * our own function.
83 *
84 * The handler function is a "helper" in Andrew Brown's sysctl
85 * framework terminology. It is used as a gateway for sysctl
86 * requests over the nodes.
87 *
88 * tap_log allows the module to log creations of nodes and
89 * destroy them all at once using sysctl_teardown.
90 */
91 static int tap_node;
92 static int tap_sysctl_handler(SYSCTLFN_PROTO);
93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
94 #endif
95
96 /*
97 * Since we're an Ethernet device, we need the 2 following
98 * components: a struct ethercom and a struct ifmedia
99 * since we don't attach a PHY to ourselves.
100 * We could emulate one, but there's no real point.
101 */
102
103 struct tap_softc {
104 device_t sc_dev;
105 struct ifmedia sc_im;
106 struct ethercom sc_ec;
107 int sc_flags;
108 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
109 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
110 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
111 #define TAP_GOING 0x00000008 /* interface is being destroyed */
112 struct selinfo sc_rsel;
113 pid_t sc_pgid; /* For async. IO */
114 kmutex_t sc_rdlock;
115 struct simplelock sc_kqlock;
116 void *sc_sih;
117 struct timespec sc_atime;
118 struct timespec sc_mtime;
119 struct timespec sc_btime;
120 };
121
122 /* autoconf(9) glue */
123
124 void tapattach(int);
125
126 static int tap_match(device_t, cfdata_t, void *);
127 static void tap_attach(device_t, device_t, void *);
128 static int tap_detach(device_t, int);
129
130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
131 tap_match, tap_attach, tap_detach, NULL);
132 extern struct cfdriver tap_cd;
133
134 /* Real device access routines */
135 static int tap_dev_close(struct tap_softc *);
136 static int tap_dev_read(int, struct uio *, int);
137 static int tap_dev_write(int, struct uio *, int);
138 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
139 static int tap_dev_poll(int, int, struct lwp *);
140 static int tap_dev_kqfilter(int, struct knote *);
141
142 /* Fileops access routines */
143 static int tap_fops_close(file_t *);
144 static int tap_fops_read(file_t *, off_t *, struct uio *,
145 kauth_cred_t, int);
146 static int tap_fops_write(file_t *, off_t *, struct uio *,
147 kauth_cred_t, int);
148 static int tap_fops_ioctl(file_t *, u_long, void *);
149 static int tap_fops_poll(file_t *, int);
150 static int tap_fops_stat(file_t *, struct stat *);
151 static int tap_fops_kqfilter(file_t *, struct knote *);
152
153 static const struct fileops tap_fileops = {
154 .fo_read = tap_fops_read,
155 .fo_write = tap_fops_write,
156 .fo_ioctl = tap_fops_ioctl,
157 .fo_fcntl = fnullop_fcntl,
158 .fo_poll = tap_fops_poll,
159 .fo_stat = tap_fops_stat,
160 .fo_close = tap_fops_close,
161 .fo_kqfilter = tap_fops_kqfilter,
162 .fo_restart = fnullop_restart,
163 };
164
165 /* Helper for cloning open() */
166 static int tap_dev_cloner(struct lwp *);
167
168 /* Character device routines */
169 static int tap_cdev_open(dev_t, int, int, struct lwp *);
170 static int tap_cdev_close(dev_t, int, int, struct lwp *);
171 static int tap_cdev_read(dev_t, struct uio *, int);
172 static int tap_cdev_write(dev_t, struct uio *, int);
173 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
174 static int tap_cdev_poll(dev_t, int, struct lwp *);
175 static int tap_cdev_kqfilter(dev_t, struct knote *);
176
177 const struct cdevsw tap_cdevsw = {
178 .d_open = tap_cdev_open,
179 .d_close = tap_cdev_close,
180 .d_read = tap_cdev_read,
181 .d_write = tap_cdev_write,
182 .d_ioctl = tap_cdev_ioctl,
183 .d_stop = nostop,
184 .d_tty = notty,
185 .d_poll = tap_cdev_poll,
186 .d_mmap = nommap,
187 .d_kqfilter = tap_cdev_kqfilter,
188 .d_flag = D_OTHER
189 };
190
191 #define TAP_CLONER 0xfffff /* Maximal minor value */
192
193 /* kqueue-related routines */
194 static void tap_kqdetach(struct knote *);
195 static int tap_kqread(struct knote *, long);
196
197 /*
198 * Those are needed by the if_media interface.
199 */
200
201 static int tap_mediachange(struct ifnet *);
202 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
203
204 /*
205 * Those are needed by the ifnet interface, and would typically be
206 * there for any network interface driver.
207 * Some other routines are optional: watchdog and drain.
208 */
209
210 static void tap_start(struct ifnet *);
211 static void tap_stop(struct ifnet *, int);
212 static int tap_init(struct ifnet *);
213 static int tap_ioctl(struct ifnet *, u_long, void *);
214
215 /* Internal functions */
216 #if defined(COMPAT_40) || defined(MODULAR)
217 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
218 #endif
219 static void tap_softintr(void *);
220
221 /*
222 * tap is a clonable interface, although it is highly unrealistic for
223 * an Ethernet device.
224 *
225 * Here are the bits needed for a clonable interface.
226 */
227 static int tap_clone_create(struct if_clone *, int);
228 static int tap_clone_destroy(struct ifnet *);
229
230 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
231 tap_clone_create,
232 tap_clone_destroy);
233
234 /* Helper functionis shared by the two cloning code paths */
235 static struct tap_softc * tap_clone_creator(int);
236 int tap_clone_destroyer(device_t);
237
238 void
239 tapattach(int n)
240 {
241 int error;
242
243 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
244 if (error) {
245 aprint_error("%s: unable to register cfattach\n",
246 tap_cd.cd_name);
247 (void)config_cfdriver_detach(&tap_cd);
248 return;
249 }
250
251 if_clone_attach(&tap_cloners);
252 }
253
254 /* Pretty much useless for a pseudo-device */
255 static int
256 tap_match(device_t parent, cfdata_t cfdata, void *arg)
257 {
258
259 return (1);
260 }
261
262 void
263 tap_attach(device_t parent, device_t self, void *aux)
264 {
265 struct tap_softc *sc = device_private(self);
266 struct ifnet *ifp;
267 #if defined(COMPAT_40) || defined(MODULAR)
268 const struct sysctlnode *node;
269 int error;
270 #endif
271 uint8_t enaddr[ETHER_ADDR_LEN] =
272 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
273 char enaddrstr[3 * ETHER_ADDR_LEN];
274
275 sc->sc_dev = self;
276 sc->sc_sih = NULL;
277 getnanotime(&sc->sc_btime);
278 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
279
280 if (!pmf_device_register(self, NULL, NULL))
281 aprint_error_dev(self, "couldn't establish power handler\n");
282
283 /*
284 * In order to obtain unique initial Ethernet address on a host,
285 * do some randomisation. It's not meant for anything but avoiding
286 * hard-coding an address.
287 */
288 cprng_fast(&enaddr[3], 3);
289
290 aprint_verbose_dev(self, "Ethernet address %s\n",
291 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
292
293 /*
294 * Why 1000baseT? Why not? You can add more.
295 *
296 * Note that there are 3 steps: init, one or several additions to
297 * list of supported media, and in the end, the selection of one
298 * of them.
299 */
300 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
303 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
304 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
305 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
306 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
307 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
308 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
309
310 /*
311 * One should note that an interface must do multicast in order
312 * to support IPv6.
313 */
314 ifp = &sc->sc_ec.ec_if;
315 strcpy(ifp->if_xname, device_xname(self));
316 ifp->if_softc = sc;
317 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
318 ifp->if_ioctl = tap_ioctl;
319 ifp->if_start = tap_start;
320 ifp->if_stop = tap_stop;
321 ifp->if_init = tap_init;
322 IFQ_SET_READY(&ifp->if_snd);
323
324 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
325
326 /* Those steps are mandatory for an Ethernet driver, the fisrt call
327 * being common to all network interface drivers. */
328 if_attach(ifp);
329 ether_ifattach(ifp, enaddr);
330
331 sc->sc_flags = 0;
332
333 #if defined(COMPAT_40) || defined(MODULAR)
334 /*
335 * Add a sysctl node for that interface.
336 *
337 * The pointer transmitted is not a string, but instead a pointer to
338 * the softc structure, which we can use to build the string value on
339 * the fly in the helper function of the node. See the comments for
340 * tap_sysctl_handler for details.
341 *
342 * Usually sysctl_createv is called with CTL_CREATE as the before-last
343 * component. However, we can allocate a number ourselves, as we are
344 * the only consumer of the net.link.<iface> node. In this case, the
345 * unit number is conveniently used to number the node. CTL_CREATE
346 * would just work, too.
347 */
348 if ((error = sysctl_createv(NULL, 0, NULL,
349 &node, CTLFLAG_READWRITE,
350 CTLTYPE_STRING, device_xname(self), NULL,
351 tap_sysctl_handler, 0, (void *)sc, 18,
352 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
353 CTL_EOL)) != 0)
354 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
355 error);
356 #endif
357
358 /*
359 * Initialize the two locks for the device.
360 *
361 * We need a lock here because even though the tap device can be
362 * opened only once, the file descriptor might be passed to another
363 * process, say a fork(2)ed child.
364 *
365 * The Giant saves us from most of the hassle, but since the read
366 * operation can sleep, we don't want two processes to wake up at
367 * the same moment and both try and dequeue a single packet.
368 *
369 * The queue for event listeners (used by kqueue(9), see below) has
370 * to be protected, too, but we don't need the same level of
371 * complexity for that lock, so a simple spinning lock is fine.
372 */
373 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
374 simple_lock_init(&sc->sc_kqlock);
375
376 selinit(&sc->sc_rsel);
377 }
378
379 /*
380 * When detaching, we do the inverse of what is done in the attach
381 * routine, in reversed order.
382 */
383 static int
384 tap_detach(device_t self, int flags)
385 {
386 struct tap_softc *sc = device_private(self);
387 struct ifnet *ifp = &sc->sc_ec.ec_if;
388 #if defined(COMPAT_40) || defined(MODULAR)
389 int error;
390 #endif
391 int s;
392
393 sc->sc_flags |= TAP_GOING;
394 s = splnet();
395 tap_stop(ifp, 1);
396 if_down(ifp);
397 splx(s);
398
399 if (sc->sc_sih != NULL) {
400 softint_disestablish(sc->sc_sih);
401 sc->sc_sih = NULL;
402 }
403
404 #if defined(COMPAT_40) || defined(MODULAR)
405 /*
406 * Destroying a single leaf is a very straightforward operation using
407 * sysctl_destroyv. One should be sure to always end the path with
408 * CTL_EOL.
409 */
410 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
411 device_unit(sc->sc_dev), CTL_EOL)) != 0)
412 aprint_error_dev(self,
413 "sysctl_destroyv returned %d, ignoring\n", error);
414 #endif
415 ether_ifdetach(ifp);
416 if_detach(ifp);
417 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
418 seldestroy(&sc->sc_rsel);
419 mutex_destroy(&sc->sc_rdlock);
420
421 pmf_device_deregister(self);
422
423 return (0);
424 }
425
426 /*
427 * This function is called by the ifmedia layer to notify the driver
428 * that the user requested a media change. A real driver would
429 * reconfigure the hardware.
430 */
431 static int
432 tap_mediachange(struct ifnet *ifp)
433 {
434 return (0);
435 }
436
437 /*
438 * Here the user asks for the currently used media.
439 */
440 static void
441 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
442 {
443 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
444 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
445 }
446
447 /*
448 * This is the function where we SEND packets.
449 *
450 * There is no 'receive' equivalent. A typical driver will get
451 * interrupts from the hardware, and from there will inject new packets
452 * into the network stack.
453 *
454 * Once handled, a packet must be freed. A real driver might not be able
455 * to fit all the pending packets into the hardware, and is allowed to
456 * return before having sent all the packets. It should then use the
457 * if_flags flag IFF_OACTIVE to notify the upper layer.
458 *
459 * There are also other flags one should check, such as IFF_PAUSE.
460 *
461 * It is our duty to make packets available to BPF listeners.
462 *
463 * You should be aware that this function is called by the Ethernet layer
464 * at splnet().
465 *
466 * When the device is opened, we have to pass the packet(s) to the
467 * userland. For that we stay in OACTIVE mode while the userland gets
468 * the packets, and we send a signal to the processes waiting to read.
469 *
470 * wakeup(sc) is the counterpart to the tsleep call in
471 * tap_dev_read, while selnotify() is used for kevent(2) and
472 * poll(2) (which includes select(2)) listeners.
473 */
474 static void
475 tap_start(struct ifnet *ifp)
476 {
477 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
478 struct mbuf *m0;
479
480 if ((sc->sc_flags & TAP_INUSE) == 0) {
481 /* Simply drop packets */
482 for(;;) {
483 IFQ_DEQUEUE(&ifp->if_snd, m0);
484 if (m0 == NULL)
485 return;
486
487 ifp->if_opackets++;
488 bpf_mtap(ifp, m0);
489
490 m_freem(m0);
491 }
492 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
493 ifp->if_flags |= IFF_OACTIVE;
494 wakeup(sc);
495 selnotify(&sc->sc_rsel, 0, 1);
496 if (sc->sc_flags & TAP_ASYNCIO)
497 softint_schedule(sc->sc_sih);
498 }
499 }
500
501 static void
502 tap_softintr(void *cookie)
503 {
504 struct tap_softc *sc;
505 struct ifnet *ifp;
506 int a, b;
507
508 sc = cookie;
509
510 if (sc->sc_flags & TAP_ASYNCIO) {
511 ifp = &sc->sc_ec.ec_if;
512 if (ifp->if_flags & IFF_RUNNING) {
513 a = POLL_IN;
514 b = POLLIN|POLLRDNORM;
515 } else {
516 a = POLL_HUP;
517 b = 0;
518 }
519 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
520 }
521 }
522
523 /*
524 * A typical driver will only contain the following handlers for
525 * ioctl calls, except SIOCSIFPHYADDR.
526 * The latter is a hack I used to set the Ethernet address of the
527 * faked device.
528 *
529 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
530 * called under splnet().
531 */
532 static int
533 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
534 {
535 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
536 struct ifreq *ifr = (struct ifreq *)data;
537 int s, error;
538
539 s = splnet();
540
541 switch (cmd) {
542 #ifdef OSIOCSIFMEDIA
543 case OSIOCSIFMEDIA:
544 #endif
545 case SIOCSIFMEDIA:
546 case SIOCGIFMEDIA:
547 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
548 break;
549 #if defined(COMPAT_40) || defined(MODULAR)
550 case SIOCSIFPHYADDR:
551 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
552 break;
553 #endif
554 default:
555 error = ether_ioctl(ifp, cmd, data);
556 if (error == ENETRESET)
557 error = 0;
558 break;
559 }
560
561 splx(s);
562
563 return (error);
564 }
565
566 #if defined(COMPAT_40) || defined(MODULAR)
567 /*
568 * Helper function to set Ethernet address. This has been replaced by
569 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
570 */
571 static int
572 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
573 {
574 const struct sockaddr *sa = &ifra->ifra_addr;
575
576 if (sa->sa_family != AF_LINK)
577 return (EINVAL);
578
579 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
580
581 return (0);
582 }
583 #endif
584
585 /*
586 * _init() would typically be called when an interface goes up,
587 * meaning it should configure itself into the state in which it
588 * can send packets.
589 */
590 static int
591 tap_init(struct ifnet *ifp)
592 {
593 ifp->if_flags |= IFF_RUNNING;
594
595 tap_start(ifp);
596
597 return (0);
598 }
599
600 /*
601 * _stop() is called when an interface goes down. It is our
602 * responsability to validate that state by clearing the
603 * IFF_RUNNING flag.
604 *
605 * We have to wake up all the sleeping processes to have the pending
606 * read requests cancelled.
607 */
608 static void
609 tap_stop(struct ifnet *ifp, int disable)
610 {
611 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
612
613 ifp->if_flags &= ~IFF_RUNNING;
614 wakeup(sc);
615 selnotify(&sc->sc_rsel, 0, 1);
616 if (sc->sc_flags & TAP_ASYNCIO)
617 softint_schedule(sc->sc_sih);
618 }
619
620 /*
621 * The 'create' command of ifconfig can be used to create
622 * any numbered instance of a given device. Thus we have to
623 * make sure we have enough room in cd_devs to create the
624 * user-specified instance. config_attach_pseudo will do this
625 * for us.
626 */
627 static int
628 tap_clone_create(struct if_clone *ifc, int unit)
629 {
630 if (tap_clone_creator(unit) == NULL) {
631 aprint_error("%s%d: unable to attach an instance\n",
632 tap_cd.cd_name, unit);
633 return (ENXIO);
634 }
635
636 return (0);
637 }
638
639 /*
640 * tap(4) can be cloned by two ways:
641 * using 'ifconfig tap0 create', which will use the network
642 * interface cloning API, and call tap_clone_create above.
643 * opening the cloning device node, whose minor number is TAP_CLONER.
644 * See below for an explanation on how this part work.
645 */
646 static struct tap_softc *
647 tap_clone_creator(int unit)
648 {
649 struct cfdata *cf;
650
651 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
652 cf->cf_name = tap_cd.cd_name;
653 cf->cf_atname = tap_ca.ca_name;
654 if (unit == -1) {
655 /* let autoconf find the first free one */
656 cf->cf_unit = 0;
657 cf->cf_fstate = FSTATE_STAR;
658 } else {
659 cf->cf_unit = unit;
660 cf->cf_fstate = FSTATE_NOTFOUND;
661 }
662
663 return device_private(config_attach_pseudo(cf));
664 }
665
666 /*
667 * The clean design of if_clone and autoconf(9) makes that part
668 * really straightforward. The second argument of config_detach
669 * means neither QUIET nor FORCED.
670 */
671 static int
672 tap_clone_destroy(struct ifnet *ifp)
673 {
674 struct tap_softc *sc = ifp->if_softc;
675
676 return tap_clone_destroyer(sc->sc_dev);
677 }
678
679 int
680 tap_clone_destroyer(device_t dev)
681 {
682 cfdata_t cf = device_cfdata(dev);
683 int error;
684
685 if ((error = config_detach(dev, 0)) != 0)
686 aprint_error_dev(dev, "unable to detach instance\n");
687 free(cf, M_DEVBUF);
688
689 return (error);
690 }
691
692 /*
693 * tap(4) is a bit of an hybrid device. It can be used in two different
694 * ways:
695 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
696 * 2. open /dev/tap, get a new interface created and read/write off it.
697 * That interface is destroyed when the process that had it created exits.
698 *
699 * The first way is managed by the cdevsw structure, and you access interfaces
700 * through a (major, minor) mapping: tap4 is obtained by the minor number
701 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
702 *
703 * The second way is the so-called "cloning" device. It's a special minor
704 * number (chosen as the maximal number, to allow as much tap devices as
705 * possible). The user first opens the cloner (e.g., /dev/tap), and that
706 * call ends in tap_cdev_open. The actual place where it is handled is
707 * tap_dev_cloner.
708 *
709 * An tap device cannot be opened more than once at a time, so the cdevsw
710 * part of open() does nothing but noting that the interface is being used and
711 * hence ready to actually handle packets.
712 */
713
714 static int
715 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
716 {
717 struct tap_softc *sc;
718
719 if (minor(dev) == TAP_CLONER)
720 return tap_dev_cloner(l);
721
722 sc = device_lookup_private(&tap_cd, minor(dev));
723 if (sc == NULL)
724 return (ENXIO);
725
726 /* The device can only be opened once */
727 if (sc->sc_flags & TAP_INUSE)
728 return (EBUSY);
729 sc->sc_flags |= TAP_INUSE;
730 return (0);
731 }
732
733 /*
734 * There are several kinds of cloning devices, and the most simple is the one
735 * tap(4) uses. What it does is change the file descriptor with a new one,
736 * with its own fileops structure (which maps to the various read, write,
737 * ioctl functions). It starts allocating a new file descriptor with falloc,
738 * then actually creates the new tap devices.
739 *
740 * Once those two steps are successful, we can re-wire the existing file
741 * descriptor to its new self. This is done with fdclone(): it fills the fp
742 * structure as needed (notably f_data gets filled with the fifth parameter
743 * passed, the unit of the tap device which will allows us identifying the
744 * device later), and returns EMOVEFD.
745 *
746 * That magic value is interpreted by sys_open() which then replaces the
747 * current file descriptor by the new one (through a magic member of struct
748 * lwp, l_dupfd).
749 *
750 * The tap device is flagged as being busy since it otherwise could be
751 * externally accessed through the corresponding device node with the cdevsw
752 * interface.
753 */
754
755 static int
756 tap_dev_cloner(struct lwp *l)
757 {
758 struct tap_softc *sc;
759 file_t *fp;
760 int error, fd;
761
762 if ((error = fd_allocfile(&fp, &fd)) != 0)
763 return (error);
764
765 if ((sc = tap_clone_creator(-1)) == NULL) {
766 fd_abort(curproc, fp, fd);
767 return (ENXIO);
768 }
769
770 sc->sc_flags |= TAP_INUSE;
771
772 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
773 (void *)(intptr_t)device_unit(sc->sc_dev));
774 }
775
776 /*
777 * While all other operations (read, write, ioctl, poll and kqfilter) are
778 * really the same whether we are in cdevsw or fileops mode, the close()
779 * function is slightly different in the two cases.
780 *
781 * As for the other, the core of it is shared in tap_dev_close. What
782 * it does is sufficient for the cdevsw interface, but the cloning interface
783 * needs another thing: the interface is destroyed when the processes that
784 * created it closes it.
785 */
786 static int
787 tap_cdev_close(dev_t dev, int flags, int fmt,
788 struct lwp *l)
789 {
790 struct tap_softc *sc =
791 device_lookup_private(&tap_cd, minor(dev));
792
793 if (sc == NULL)
794 return (ENXIO);
795
796 return tap_dev_close(sc);
797 }
798
799 /*
800 * It might happen that the administrator used ifconfig to externally destroy
801 * the interface. In that case, tap_fops_close will be called while
802 * tap_detach is already happening. If we called it again from here, we
803 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
804 */
805 static int
806 tap_fops_close(file_t *fp)
807 {
808 int unit = (intptr_t)fp->f_data;
809 struct tap_softc *sc;
810 int error;
811
812 sc = device_lookup_private(&tap_cd, unit);
813 if (sc == NULL)
814 return (ENXIO);
815
816 /* tap_dev_close currently always succeeds, but it might not
817 * always be the case. */
818 KERNEL_LOCK(1, NULL);
819 if ((error = tap_dev_close(sc)) != 0) {
820 KERNEL_UNLOCK_ONE(NULL);
821 return (error);
822 }
823
824 /* Destroy the device now that it is no longer useful,
825 * unless it's already being destroyed. */
826 if ((sc->sc_flags & TAP_GOING) != 0) {
827 KERNEL_UNLOCK_ONE(NULL);
828 return (0);
829 }
830
831 error = tap_clone_destroyer(sc->sc_dev);
832 KERNEL_UNLOCK_ONE(NULL);
833 return error;
834 }
835
836 static int
837 tap_dev_close(struct tap_softc *sc)
838 {
839 struct ifnet *ifp;
840 int s;
841
842 s = splnet();
843 /* Let tap_start handle packets again */
844 ifp = &sc->sc_ec.ec_if;
845 ifp->if_flags &= ~IFF_OACTIVE;
846
847 /* Purge output queue */
848 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
849 struct mbuf *m;
850
851 for (;;) {
852 IFQ_DEQUEUE(&ifp->if_snd, m);
853 if (m == NULL)
854 break;
855
856 ifp->if_opackets++;
857 bpf_mtap(ifp, m);
858 m_freem(m);
859 }
860 }
861 splx(s);
862
863 if (sc->sc_sih != NULL) {
864 softint_disestablish(sc->sc_sih);
865 sc->sc_sih = NULL;
866 }
867 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
868
869 return (0);
870 }
871
872 static int
873 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
874 {
875 return tap_dev_read(minor(dev), uio, flags);
876 }
877
878 static int
879 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
880 kauth_cred_t cred, int flags)
881 {
882 int error;
883
884 KERNEL_LOCK(1, NULL);
885 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
886 KERNEL_UNLOCK_ONE(NULL);
887 return error;
888 }
889
890 static int
891 tap_dev_read(int unit, struct uio *uio, int flags)
892 {
893 struct tap_softc *sc =
894 device_lookup_private(&tap_cd, unit);
895 struct ifnet *ifp;
896 struct mbuf *m, *n;
897 int error = 0, s;
898
899 if (sc == NULL)
900 return (ENXIO);
901
902 getnanotime(&sc->sc_atime);
903
904 ifp = &sc->sc_ec.ec_if;
905 if ((ifp->if_flags & IFF_UP) == 0)
906 return (EHOSTDOWN);
907
908 /*
909 * In the TAP_NBIO case, we have to make sure we won't be sleeping
910 */
911 if ((sc->sc_flags & TAP_NBIO) != 0) {
912 if (!mutex_tryenter(&sc->sc_rdlock))
913 return (EWOULDBLOCK);
914 } else {
915 mutex_enter(&sc->sc_rdlock);
916 }
917
918 s = splnet();
919 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
920 ifp->if_flags &= ~IFF_OACTIVE;
921 /*
922 * We must release the lock before sleeping, and re-acquire it
923 * after.
924 */
925 mutex_exit(&sc->sc_rdlock);
926 if (sc->sc_flags & TAP_NBIO)
927 error = EWOULDBLOCK;
928 else
929 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
930 splx(s);
931
932 if (error != 0)
933 return (error);
934 /* The device might have been downed */
935 if ((ifp->if_flags & IFF_UP) == 0)
936 return (EHOSTDOWN);
937 if ((sc->sc_flags & TAP_NBIO)) {
938 if (!mutex_tryenter(&sc->sc_rdlock))
939 return (EWOULDBLOCK);
940 } else {
941 mutex_enter(&sc->sc_rdlock);
942 }
943 s = splnet();
944 }
945
946 IFQ_DEQUEUE(&ifp->if_snd, m);
947 ifp->if_flags &= ~IFF_OACTIVE;
948 splx(s);
949 if (m == NULL) {
950 error = 0;
951 goto out;
952 }
953
954 ifp->if_opackets++;
955 bpf_mtap(ifp, m);
956
957 /*
958 * One read is one packet.
959 */
960 do {
961 error = uiomove(mtod(m, void *),
962 min(m->m_len, uio->uio_resid), uio);
963 MFREE(m, n);
964 m = n;
965 } while (m != NULL && uio->uio_resid > 0 && error == 0);
966
967 if (m != NULL)
968 m_freem(m);
969
970 out:
971 mutex_exit(&sc->sc_rdlock);
972 return (error);
973 }
974
975 static int
976 tap_fops_stat(file_t *fp, struct stat *st)
977 {
978 int error = 0;
979 struct tap_softc *sc;
980 int unit = (uintptr_t)fp->f_data;
981
982 (void)memset(st, 0, sizeof(*st));
983
984 KERNEL_LOCK(1, NULL);
985 sc = device_lookup_private(&tap_cd, unit);
986 if (sc == NULL) {
987 error = ENXIO;
988 goto out;
989 }
990
991 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
992 st->st_atimespec = sc->sc_atime;
993 st->st_mtimespec = sc->sc_mtime;
994 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
995 st->st_uid = kauth_cred_geteuid(fp->f_cred);
996 st->st_gid = kauth_cred_getegid(fp->f_cred);
997 out:
998 KERNEL_UNLOCK_ONE(NULL);
999 return error;
1000 }
1001
1002 static int
1003 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1004 {
1005 return tap_dev_write(minor(dev), uio, flags);
1006 }
1007
1008 static int
1009 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1010 kauth_cred_t cred, int flags)
1011 {
1012 int error;
1013
1014 KERNEL_LOCK(1, NULL);
1015 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1016 KERNEL_UNLOCK_ONE(NULL);
1017 return error;
1018 }
1019
1020 static int
1021 tap_dev_write(int unit, struct uio *uio, int flags)
1022 {
1023 struct tap_softc *sc =
1024 device_lookup_private(&tap_cd, unit);
1025 struct ifnet *ifp;
1026 struct mbuf *m, **mp;
1027 int error = 0;
1028 int s;
1029
1030 if (sc == NULL)
1031 return (ENXIO);
1032
1033 getnanotime(&sc->sc_mtime);
1034 ifp = &sc->sc_ec.ec_if;
1035
1036 /* One write, one packet, that's the rule */
1037 MGETHDR(m, M_DONTWAIT, MT_DATA);
1038 if (m == NULL) {
1039 ifp->if_ierrors++;
1040 return (ENOBUFS);
1041 }
1042 m->m_pkthdr.len = uio->uio_resid;
1043
1044 mp = &m;
1045 while (error == 0 && uio->uio_resid > 0) {
1046 if (*mp != m) {
1047 MGET(*mp, M_DONTWAIT, MT_DATA);
1048 if (*mp == NULL) {
1049 error = ENOBUFS;
1050 break;
1051 }
1052 }
1053 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1054 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1055 mp = &(*mp)->m_next;
1056 }
1057 if (error) {
1058 ifp->if_ierrors++;
1059 m_freem(m);
1060 return (error);
1061 }
1062
1063 ifp->if_ipackets++;
1064 m->m_pkthdr.rcvif = ifp;
1065
1066 bpf_mtap(ifp, m);
1067 s = splnet();
1068 (*ifp->if_input)(ifp, m);
1069 splx(s);
1070
1071 return (0);
1072 }
1073
1074 static int
1075 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1076 struct lwp *l)
1077 {
1078 return tap_dev_ioctl(minor(dev), cmd, data, l);
1079 }
1080
1081 static int
1082 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1083 {
1084 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1085 }
1086
1087 static int
1088 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1089 {
1090 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1091
1092 if (sc == NULL)
1093 return ENXIO;
1094
1095 switch (cmd) {
1096 case FIONREAD:
1097 {
1098 struct ifnet *ifp = &sc->sc_ec.ec_if;
1099 struct mbuf *m;
1100 int s;
1101
1102 s = splnet();
1103 IFQ_POLL(&ifp->if_snd, m);
1104
1105 if (m == NULL)
1106 *(int *)data = 0;
1107 else
1108 *(int *)data = m->m_pkthdr.len;
1109 splx(s);
1110 return 0;
1111 }
1112 case TIOCSPGRP:
1113 case FIOSETOWN:
1114 return fsetown(&sc->sc_pgid, cmd, data);
1115 case TIOCGPGRP:
1116 case FIOGETOWN:
1117 return fgetown(sc->sc_pgid, cmd, data);
1118 case FIOASYNC:
1119 if (*(int *)data) {
1120 if (sc->sc_sih == NULL) {
1121 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1122 tap_softintr, sc);
1123 if (sc->sc_sih == NULL)
1124 return EBUSY; /* XXX */
1125 }
1126 sc->sc_flags |= TAP_ASYNCIO;
1127 } else {
1128 sc->sc_flags &= ~TAP_ASYNCIO;
1129 if (sc->sc_sih != NULL) {
1130 softint_disestablish(sc->sc_sih);
1131 sc->sc_sih = NULL;
1132 }
1133 }
1134 return 0;
1135 case FIONBIO:
1136 if (*(int *)data)
1137 sc->sc_flags |= TAP_NBIO;
1138 else
1139 sc->sc_flags &= ~TAP_NBIO;
1140 return 0;
1141 #ifdef OTAPGIFNAME
1142 case OTAPGIFNAME:
1143 #endif
1144 case TAPGIFNAME:
1145 {
1146 struct ifreq *ifr = (struct ifreq *)data;
1147 struct ifnet *ifp = &sc->sc_ec.ec_if;
1148
1149 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1150 return 0;
1151 }
1152 default:
1153 return ENOTTY;
1154 }
1155 }
1156
1157 static int
1158 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1159 {
1160 return tap_dev_poll(minor(dev), events, l);
1161 }
1162
1163 static int
1164 tap_fops_poll(file_t *fp, int events)
1165 {
1166 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1167 }
1168
1169 static int
1170 tap_dev_poll(int unit, int events, struct lwp *l)
1171 {
1172 struct tap_softc *sc =
1173 device_lookup_private(&tap_cd, unit);
1174 int revents = 0;
1175
1176 if (sc == NULL)
1177 return POLLERR;
1178
1179 if (events & (POLLIN|POLLRDNORM)) {
1180 struct ifnet *ifp = &sc->sc_ec.ec_if;
1181 struct mbuf *m;
1182 int s;
1183
1184 s = splnet();
1185 IFQ_POLL(&ifp->if_snd, m);
1186 splx(s);
1187
1188 if (m != NULL)
1189 revents |= events & (POLLIN|POLLRDNORM);
1190 else {
1191 simple_lock(&sc->sc_kqlock);
1192 selrecord(l, &sc->sc_rsel);
1193 simple_unlock(&sc->sc_kqlock);
1194 }
1195 }
1196 revents |= events & (POLLOUT|POLLWRNORM);
1197
1198 return (revents);
1199 }
1200
1201 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1202 tap_kqread };
1203 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1204 filt_seltrue };
1205
1206 static int
1207 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1208 {
1209 return tap_dev_kqfilter(minor(dev), kn);
1210 }
1211
1212 static int
1213 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1214 {
1215 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1216 }
1217
1218 static int
1219 tap_dev_kqfilter(int unit, struct knote *kn)
1220 {
1221 struct tap_softc *sc =
1222 device_lookup_private(&tap_cd, unit);
1223
1224 if (sc == NULL)
1225 return (ENXIO);
1226
1227 KERNEL_LOCK(1, NULL);
1228 switch(kn->kn_filter) {
1229 case EVFILT_READ:
1230 kn->kn_fop = &tap_read_filterops;
1231 break;
1232 case EVFILT_WRITE:
1233 kn->kn_fop = &tap_seltrue_filterops;
1234 break;
1235 default:
1236 KERNEL_UNLOCK_ONE(NULL);
1237 return (EINVAL);
1238 }
1239
1240 kn->kn_hook = sc;
1241 simple_lock(&sc->sc_kqlock);
1242 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1243 simple_unlock(&sc->sc_kqlock);
1244 KERNEL_UNLOCK_ONE(NULL);
1245 return (0);
1246 }
1247
1248 static void
1249 tap_kqdetach(struct knote *kn)
1250 {
1251 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1252
1253 KERNEL_LOCK(1, NULL);
1254 simple_lock(&sc->sc_kqlock);
1255 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1256 simple_unlock(&sc->sc_kqlock);
1257 KERNEL_UNLOCK_ONE(NULL);
1258 }
1259
1260 static int
1261 tap_kqread(struct knote *kn, long hint)
1262 {
1263 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1264 struct ifnet *ifp = &sc->sc_ec.ec_if;
1265 struct mbuf *m;
1266 int s, rv;
1267
1268 KERNEL_LOCK(1, NULL);
1269 s = splnet();
1270 IFQ_POLL(&ifp->if_snd, m);
1271
1272 if (m == NULL)
1273 kn->kn_data = 0;
1274 else
1275 kn->kn_data = m->m_pkthdr.len;
1276 splx(s);
1277 rv = (kn->kn_data != 0 ? 1 : 0);
1278 KERNEL_UNLOCK_ONE(NULL);
1279 return rv;
1280 }
1281
1282 #if defined(COMPAT_40) || defined(MODULAR)
1283 /*
1284 * sysctl management routines
1285 * You can set the address of an interface through:
1286 * net.link.tap.tap<number>
1287 *
1288 * Note the consistent use of tap_log in order to use
1289 * sysctl_teardown at unload time.
1290 *
1291 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1292 * blocks register a function in a special section of the kernel
1293 * (called a link set) which is used at init_sysctl() time to cycle
1294 * through all those functions to create the kernel's sysctl tree.
1295 *
1296 * It is not possible to use link sets in a module, so the
1297 * easiest is to simply call our own setup routine at load time.
1298 *
1299 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1300 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1301 * whole kernel sysctl tree is built, it is not possible to add any
1302 * permanent node.
1303 *
1304 * It should be noted that we're not saving the sysctlnode pointer
1305 * we are returned when creating the "tap" node. That structure
1306 * cannot be trusted once out of the calling function, as it might
1307 * get reused. So we just save the MIB number, and always give the
1308 * full path starting from the root for later calls to sysctl_createv
1309 * and sysctl_destroyv.
1310 */
1311 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1312 {
1313 const struct sysctlnode *node;
1314 int error = 0;
1315
1316 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1317 CTLFLAG_PERMANENT,
1318 CTLTYPE_NODE, "link", NULL,
1319 NULL, 0, NULL, 0,
1320 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1321 return;
1322
1323 /*
1324 * The first four parameters of sysctl_createv are for management.
1325 *
1326 * The four that follows, here starting with a '0' for the flags,
1327 * describe the node.
1328 *
1329 * The next series of four set its value, through various possible
1330 * means.
1331 *
1332 * Last but not least, the path to the node is described. That path
1333 * is relative to the given root (third argument). Here we're
1334 * starting from the root.
1335 */
1336 if ((error = sysctl_createv(clog, 0, NULL, &node,
1337 CTLFLAG_PERMANENT,
1338 CTLTYPE_NODE, "tap", NULL,
1339 NULL, 0, NULL, 0,
1340 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1341 return;
1342 tap_node = node->sysctl_num;
1343 }
1344
1345 /*
1346 * The helper functions make Andrew Brown's interface really
1347 * shine. It makes possible to create value on the fly whether
1348 * the sysctl value is read or written.
1349 *
1350 * As shown as an example in the man page, the first step is to
1351 * create a copy of the node to have sysctl_lookup work on it.
1352 *
1353 * Here, we have more work to do than just a copy, since we have
1354 * to create the string. The first step is to collect the actual
1355 * value of the node, which is a convenient pointer to the softc
1356 * of the interface. From there we create the string and use it
1357 * as the value, but only for the *copy* of the node.
1358 *
1359 * Then we let sysctl_lookup do the magic, which consists in
1360 * setting oldp and newp as required by the operation. When the
1361 * value is read, that means that the string will be copied to
1362 * the user, and when it is written, the new value will be copied
1363 * over in the addr array.
1364 *
1365 * If newp is NULL, the user was reading the value, so we don't
1366 * have anything else to do. If a new value was written, we
1367 * have to check it.
1368 *
1369 * If it is incorrect, we can return an error and leave 'node' as
1370 * it is: since it is a copy of the actual node, the change will
1371 * be forgotten.
1372 *
1373 * Upon a correct input, we commit the change to the ifnet
1374 * structure of our interface.
1375 */
1376 static int
1377 tap_sysctl_handler(SYSCTLFN_ARGS)
1378 {
1379 struct sysctlnode node;
1380 struct tap_softc *sc;
1381 struct ifnet *ifp;
1382 int error;
1383 size_t len;
1384 char addr[3 * ETHER_ADDR_LEN];
1385 uint8_t enaddr[ETHER_ADDR_LEN];
1386
1387 node = *rnode;
1388 sc = node.sysctl_data;
1389 ifp = &sc->sc_ec.ec_if;
1390 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1391 node.sysctl_data = addr;
1392 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1393 if (error || newp == NULL)
1394 return (error);
1395
1396 len = strlen(addr);
1397 if (len < 11 || len > 17)
1398 return (EINVAL);
1399
1400 /* Commit change */
1401 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1402 return (EINVAL);
1403 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1404 return (error);
1405 }
1406 #endif
1407