Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.74
      1 /*	$NetBSD: if_tap.c,v 1.74 2014/03/20 06:48:54 skrll Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.74 2014/03/20 06:48:54 skrll Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/cprng.h>
     50 #include <sys/device.h>
     51 #include <sys/file.h>
     52 #include <sys/filedesc.h>
     53 #include <sys/ksyms.h>
     54 #include <sys/poll.h>
     55 #include <sys/proc.h>
     56 #include <sys/select.h>
     57 #include <sys/sockio.h>
     58 #if defined(COMPAT_40) || defined(MODULAR)
     59 #include <sys/sysctl.h>
     60 #endif
     61 #include <sys/kauth.h>
     62 #include <sys/mutex.h>
     63 #include <sys/intr.h>
     64 #include <sys/stat.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #include <net/bpf.h>
     72 
     73 #include <compat/sys/sockio.h>
     74 
     75 #if defined(COMPAT_40) || defined(MODULAR)
     76 /*
     77  * sysctl node management
     78  *
     79  * It's not really possible to use a SYSCTL_SETUP block with
     80  * current module implementation, so it is easier to just define
     81  * our own function.
     82  *
     83  * The handler function is a "helper" in Andrew Brown's sysctl
     84  * framework terminology.  It is used as a gateway for sysctl
     85  * requests over the nodes.
     86  *
     87  * tap_log allows the module to log creations of nodes and
     88  * destroy them all at once using sysctl_teardown.
     89  */
     90 static int tap_node;
     91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93 #endif
     94 
     95 /*
     96  * Since we're an Ethernet device, we need the 2 following
     97  * components: a struct ethercom and a struct ifmedia
     98  * since we don't attach a PHY to ourselves.
     99  * We could emulate one, but there's no real point.
    100  */
    101 
    102 struct tap_softc {
    103 	device_t	sc_dev;
    104 	struct ifmedia	sc_im;
    105 	struct ethercom	sc_ec;
    106 	int		sc_flags;
    107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111 	struct selinfo	sc_rsel;
    112 	pid_t		sc_pgid; /* For async. IO */
    113 	kmutex_t	sc_rdlock;
    114 	kmutex_t	sc_kqlock;
    115 	void		*sc_sih;
    116 	struct timespec sc_atime;
    117 	struct timespec sc_mtime;
    118 	struct timespec sc_btime;
    119 };
    120 
    121 /* autoconf(9) glue */
    122 
    123 void	tapattach(int);
    124 
    125 static int	tap_match(device_t, cfdata_t, void *);
    126 static void	tap_attach(device_t, device_t, void *);
    127 static int	tap_detach(device_t, int);
    128 
    129 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    130     tap_match, tap_attach, tap_detach, NULL);
    131 extern struct cfdriver tap_cd;
    132 
    133 /* Real device access routines */
    134 static int	tap_dev_close(struct tap_softc *);
    135 static int	tap_dev_read(int, struct uio *, int);
    136 static int	tap_dev_write(int, struct uio *, int);
    137 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    138 static int	tap_dev_poll(int, int, struct lwp *);
    139 static int	tap_dev_kqfilter(int, struct knote *);
    140 
    141 /* Fileops access routines */
    142 static int	tap_fops_close(file_t *);
    143 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    146     kauth_cred_t, int);
    147 static int	tap_fops_ioctl(file_t *, u_long, void *);
    148 static int	tap_fops_poll(file_t *, int);
    149 static int	tap_fops_stat(file_t *, struct stat *);
    150 static int	tap_fops_kqfilter(file_t *, struct knote *);
    151 
    152 static const struct fileops tap_fileops = {
    153 	.fo_read = tap_fops_read,
    154 	.fo_write = tap_fops_write,
    155 	.fo_ioctl = tap_fops_ioctl,
    156 	.fo_fcntl = fnullop_fcntl,
    157 	.fo_poll = tap_fops_poll,
    158 	.fo_stat = tap_fops_stat,
    159 	.fo_close = tap_fops_close,
    160 	.fo_kqfilter = tap_fops_kqfilter,
    161 	.fo_restart = fnullop_restart,
    162 };
    163 
    164 /* Helper for cloning open() */
    165 static int	tap_dev_cloner(struct lwp *);
    166 
    167 /* Character device routines */
    168 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    169 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    170 static int	tap_cdev_read(dev_t, struct uio *, int);
    171 static int	tap_cdev_write(dev_t, struct uio *, int);
    172 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    173 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    174 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    175 
    176 const struct cdevsw tap_cdevsw = {
    177 	.d_open = tap_cdev_open,
    178 	.d_close = tap_cdev_close,
    179 	.d_read = tap_cdev_read,
    180 	.d_write = tap_cdev_write,
    181 	.d_ioctl = tap_cdev_ioctl,
    182 	.d_stop = nostop,
    183 	.d_tty = notty,
    184 	.d_poll = tap_cdev_poll,
    185 	.d_mmap = nommap,
    186 	.d_kqfilter = tap_cdev_kqfilter,
    187 	.d_flag = D_OTHER
    188 };
    189 
    190 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    191 
    192 /* kqueue-related routines */
    193 static void	tap_kqdetach(struct knote *);
    194 static int	tap_kqread(struct knote *, long);
    195 
    196 /*
    197  * Those are needed by the if_media interface.
    198  */
    199 
    200 static int	tap_mediachange(struct ifnet *);
    201 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    202 
    203 /*
    204  * Those are needed by the ifnet interface, and would typically be
    205  * there for any network interface driver.
    206  * Some other routines are optional: watchdog and drain.
    207  */
    208 
    209 static void	tap_start(struct ifnet *);
    210 static void	tap_stop(struct ifnet *, int);
    211 static int	tap_init(struct ifnet *);
    212 static int	tap_ioctl(struct ifnet *, u_long, void *);
    213 
    214 /* Internal functions */
    215 #if defined(COMPAT_40) || defined(MODULAR)
    216 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    217 #endif
    218 static void	tap_softintr(void *);
    219 
    220 /*
    221  * tap is a clonable interface, although it is highly unrealistic for
    222  * an Ethernet device.
    223  *
    224  * Here are the bits needed for a clonable interface.
    225  */
    226 static int	tap_clone_create(struct if_clone *, int);
    227 static int	tap_clone_destroy(struct ifnet *);
    228 
    229 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    230 					tap_clone_create,
    231 					tap_clone_destroy);
    232 
    233 /* Helper functionis shared by the two cloning code paths */
    234 static struct tap_softc *	tap_clone_creator(int);
    235 int	tap_clone_destroyer(device_t);
    236 
    237 void
    238 tapattach(int n)
    239 {
    240 	int error;
    241 
    242 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    243 	if (error) {
    244 		aprint_error("%s: unable to register cfattach\n",
    245 		    tap_cd.cd_name);
    246 		(void)config_cfdriver_detach(&tap_cd);
    247 		return;
    248 	}
    249 
    250 	if_clone_attach(&tap_cloners);
    251 }
    252 
    253 /* Pretty much useless for a pseudo-device */
    254 static int
    255 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    256 {
    257 
    258 	return (1);
    259 }
    260 
    261 void
    262 tap_attach(device_t parent, device_t self, void *aux)
    263 {
    264 	struct tap_softc *sc = device_private(self);
    265 	struct ifnet *ifp;
    266 #if defined(COMPAT_40) || defined(MODULAR)
    267 	const struct sysctlnode *node;
    268 	int error;
    269 #endif
    270 	uint8_t enaddr[ETHER_ADDR_LEN] =
    271 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    272 	char enaddrstr[3 * ETHER_ADDR_LEN];
    273 
    274 	sc->sc_dev = self;
    275 	sc->sc_sih = NULL;
    276 	getnanotime(&sc->sc_btime);
    277 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    278 
    279 	if (!pmf_device_register(self, NULL, NULL))
    280 		aprint_error_dev(self, "couldn't establish power handler\n");
    281 
    282 	/*
    283 	 * In order to obtain unique initial Ethernet address on a host,
    284 	 * do some randomisation.  It's not meant for anything but avoiding
    285 	 * hard-coding an address.
    286 	 */
    287 	cprng_fast(&enaddr[3], 3);
    288 
    289 	aprint_verbose_dev(self, "Ethernet address %s\n",
    290 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    291 
    292 	/*
    293 	 * Why 1000baseT? Why not? You can add more.
    294 	 *
    295 	 * Note that there are 3 steps: init, one or several additions to
    296 	 * list of supported media, and in the end, the selection of one
    297 	 * of them.
    298 	 */
    299 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    300 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    301 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    302 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    303 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    304 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    305 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    306 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    307 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    308 
    309 	/*
    310 	 * One should note that an interface must do multicast in order
    311 	 * to support IPv6.
    312 	 */
    313 	ifp = &sc->sc_ec.ec_if;
    314 	strcpy(ifp->if_xname, device_xname(self));
    315 	ifp->if_softc	= sc;
    316 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    317 	ifp->if_ioctl	= tap_ioctl;
    318 	ifp->if_start	= tap_start;
    319 	ifp->if_stop	= tap_stop;
    320 	ifp->if_init	= tap_init;
    321 	IFQ_SET_READY(&ifp->if_snd);
    322 
    323 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    324 
    325 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    326 	 * being common to all network interface drivers. */
    327 	if_attach(ifp);
    328 	ether_ifattach(ifp, enaddr);
    329 
    330 	sc->sc_flags = 0;
    331 
    332 #if defined(COMPAT_40) || defined(MODULAR)
    333 	/*
    334 	 * Add a sysctl node for that interface.
    335 	 *
    336 	 * The pointer transmitted is not a string, but instead a pointer to
    337 	 * the softc structure, which we can use to build the string value on
    338 	 * the fly in the helper function of the node.  See the comments for
    339 	 * tap_sysctl_handler for details.
    340 	 *
    341 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    342 	 * component.  However, we can allocate a number ourselves, as we are
    343 	 * the only consumer of the net.link.<iface> node.  In this case, the
    344 	 * unit number is conveniently used to number the node.  CTL_CREATE
    345 	 * would just work, too.
    346 	 */
    347 	if ((error = sysctl_createv(NULL, 0, NULL,
    348 	    &node, CTLFLAG_READWRITE,
    349 	    CTLTYPE_STRING, device_xname(self), NULL,
    350 	    tap_sysctl_handler, 0, (void *)sc, 18,
    351 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    352 	    CTL_EOL)) != 0)
    353 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    354 		    error);
    355 #endif
    356 
    357 	/*
    358 	 * Initialize the two locks for the device.
    359 	 *
    360 	 * We need a lock here because even though the tap device can be
    361 	 * opened only once, the file descriptor might be passed to another
    362 	 * process, say a fork(2)ed child.
    363 	 *
    364 	 * The Giant saves us from most of the hassle, but since the read
    365 	 * operation can sleep, we don't want two processes to wake up at
    366 	 * the same moment and both try and dequeue a single packet.
    367 	 *
    368 	 * The queue for event listeners (used by kqueue(9), see below) has
    369 	 * to be protected too, so use a spin lock.
    370 	 */
    371 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    372 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    373 
    374 	selinit(&sc->sc_rsel);
    375 }
    376 
    377 /*
    378  * When detaching, we do the inverse of what is done in the attach
    379  * routine, in reversed order.
    380  */
    381 static int
    382 tap_detach(device_t self, int flags)
    383 {
    384 	struct tap_softc *sc = device_private(self);
    385 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    386 #if defined(COMPAT_40) || defined(MODULAR)
    387 	int error;
    388 #endif
    389 	int s;
    390 
    391 	sc->sc_flags |= TAP_GOING;
    392 	s = splnet();
    393 	tap_stop(ifp, 1);
    394 	if_down(ifp);
    395 	splx(s);
    396 
    397 	if (sc->sc_sih != NULL) {
    398 		softint_disestablish(sc->sc_sih);
    399 		sc->sc_sih = NULL;
    400 	}
    401 
    402 #if defined(COMPAT_40) || defined(MODULAR)
    403 	/*
    404 	 * Destroying a single leaf is a very straightforward operation using
    405 	 * sysctl_destroyv.  One should be sure to always end the path with
    406 	 * CTL_EOL.
    407 	 */
    408 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    409 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    410 		aprint_error_dev(self,
    411 		    "sysctl_destroyv returned %d, ignoring\n", error);
    412 #endif
    413 	ether_ifdetach(ifp);
    414 	if_detach(ifp);
    415 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    416 	seldestroy(&sc->sc_rsel);
    417 	mutex_destroy(&sc->sc_rdlock);
    418 
    419 	pmf_device_deregister(self);
    420 
    421 	return (0);
    422 }
    423 
    424 /*
    425  * This function is called by the ifmedia layer to notify the driver
    426  * that the user requested a media change.  A real driver would
    427  * reconfigure the hardware.
    428  */
    429 static int
    430 tap_mediachange(struct ifnet *ifp)
    431 {
    432 	return (0);
    433 }
    434 
    435 /*
    436  * Here the user asks for the currently used media.
    437  */
    438 static void
    439 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    440 {
    441 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    442 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    443 }
    444 
    445 /*
    446  * This is the function where we SEND packets.
    447  *
    448  * There is no 'receive' equivalent.  A typical driver will get
    449  * interrupts from the hardware, and from there will inject new packets
    450  * into the network stack.
    451  *
    452  * Once handled, a packet must be freed.  A real driver might not be able
    453  * to fit all the pending packets into the hardware, and is allowed to
    454  * return before having sent all the packets.  It should then use the
    455  * if_flags flag IFF_OACTIVE to notify the upper layer.
    456  *
    457  * There are also other flags one should check, such as IFF_PAUSE.
    458  *
    459  * It is our duty to make packets available to BPF listeners.
    460  *
    461  * You should be aware that this function is called by the Ethernet layer
    462  * at splnet().
    463  *
    464  * When the device is opened, we have to pass the packet(s) to the
    465  * userland.  For that we stay in OACTIVE mode while the userland gets
    466  * the packets, and we send a signal to the processes waiting to read.
    467  *
    468  * wakeup(sc) is the counterpart to the tsleep call in
    469  * tap_dev_read, while selnotify() is used for kevent(2) and
    470  * poll(2) (which includes select(2)) listeners.
    471  */
    472 static void
    473 tap_start(struct ifnet *ifp)
    474 {
    475 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    476 	struct mbuf *m0;
    477 
    478 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    479 		/* Simply drop packets */
    480 		for(;;) {
    481 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    482 			if (m0 == NULL)
    483 				return;
    484 
    485 			ifp->if_opackets++;
    486 			bpf_mtap(ifp, m0);
    487 
    488 			m_freem(m0);
    489 		}
    490 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    491 		ifp->if_flags |= IFF_OACTIVE;
    492 		wakeup(sc);
    493 		selnotify(&sc->sc_rsel, 0, 1);
    494 		if (sc->sc_flags & TAP_ASYNCIO)
    495 			softint_schedule(sc->sc_sih);
    496 	}
    497 }
    498 
    499 static void
    500 tap_softintr(void *cookie)
    501 {
    502 	struct tap_softc *sc;
    503 	struct ifnet *ifp;
    504 	int a, b;
    505 
    506 	sc = cookie;
    507 
    508 	if (sc->sc_flags & TAP_ASYNCIO) {
    509 		ifp = &sc->sc_ec.ec_if;
    510 		if (ifp->if_flags & IFF_RUNNING) {
    511 			a = POLL_IN;
    512 			b = POLLIN|POLLRDNORM;
    513 		} else {
    514 			a = POLL_HUP;
    515 			b = 0;
    516 		}
    517 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    518 	}
    519 }
    520 
    521 /*
    522  * A typical driver will only contain the following handlers for
    523  * ioctl calls, except SIOCSIFPHYADDR.
    524  * The latter is a hack I used to set the Ethernet address of the
    525  * faked device.
    526  *
    527  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    528  * called under splnet().
    529  */
    530 static int
    531 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    532 {
    533 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    534 	struct ifreq *ifr = (struct ifreq *)data;
    535 	int s, error;
    536 
    537 	s = splnet();
    538 
    539 	switch (cmd) {
    540 #ifdef OSIOCSIFMEDIA
    541 	case OSIOCSIFMEDIA:
    542 #endif
    543 	case SIOCSIFMEDIA:
    544 	case SIOCGIFMEDIA:
    545 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    546 		break;
    547 #if defined(COMPAT_40) || defined(MODULAR)
    548 	case SIOCSIFPHYADDR:
    549 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    550 		break;
    551 #endif
    552 	default:
    553 		error = ether_ioctl(ifp, cmd, data);
    554 		if (error == ENETRESET)
    555 			error = 0;
    556 		break;
    557 	}
    558 
    559 	splx(s);
    560 
    561 	return (error);
    562 }
    563 
    564 #if defined(COMPAT_40) || defined(MODULAR)
    565 /*
    566  * Helper function to set Ethernet address.  This has been replaced by
    567  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    568  */
    569 static int
    570 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    571 {
    572 	const struct sockaddr *sa = &ifra->ifra_addr;
    573 
    574 	if (sa->sa_family != AF_LINK)
    575 		return (EINVAL);
    576 
    577 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    578 
    579 	return (0);
    580 }
    581 #endif
    582 
    583 /*
    584  * _init() would typically be called when an interface goes up,
    585  * meaning it should configure itself into the state in which it
    586  * can send packets.
    587  */
    588 static int
    589 tap_init(struct ifnet *ifp)
    590 {
    591 	ifp->if_flags |= IFF_RUNNING;
    592 
    593 	tap_start(ifp);
    594 
    595 	return (0);
    596 }
    597 
    598 /*
    599  * _stop() is called when an interface goes down.  It is our
    600  * responsability to validate that state by clearing the
    601  * IFF_RUNNING flag.
    602  *
    603  * We have to wake up all the sleeping processes to have the pending
    604  * read requests cancelled.
    605  */
    606 static void
    607 tap_stop(struct ifnet *ifp, int disable)
    608 {
    609 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    610 
    611 	ifp->if_flags &= ~IFF_RUNNING;
    612 	wakeup(sc);
    613 	selnotify(&sc->sc_rsel, 0, 1);
    614 	if (sc->sc_flags & TAP_ASYNCIO)
    615 		softint_schedule(sc->sc_sih);
    616 }
    617 
    618 /*
    619  * The 'create' command of ifconfig can be used to create
    620  * any numbered instance of a given device.  Thus we have to
    621  * make sure we have enough room in cd_devs to create the
    622  * user-specified instance.  config_attach_pseudo will do this
    623  * for us.
    624  */
    625 static int
    626 tap_clone_create(struct if_clone *ifc, int unit)
    627 {
    628 	if (tap_clone_creator(unit) == NULL) {
    629 		aprint_error("%s%d: unable to attach an instance\n",
    630                     tap_cd.cd_name, unit);
    631 		return (ENXIO);
    632 	}
    633 
    634 	return (0);
    635 }
    636 
    637 /*
    638  * tap(4) can be cloned by two ways:
    639  *   using 'ifconfig tap0 create', which will use the network
    640  *     interface cloning API, and call tap_clone_create above.
    641  *   opening the cloning device node, whose minor number is TAP_CLONER.
    642  *     See below for an explanation on how this part work.
    643  */
    644 static struct tap_softc *
    645 tap_clone_creator(int unit)
    646 {
    647 	struct cfdata *cf;
    648 
    649 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    650 	cf->cf_name = tap_cd.cd_name;
    651 	cf->cf_atname = tap_ca.ca_name;
    652 	if (unit == -1) {
    653 		/* let autoconf find the first free one */
    654 		cf->cf_unit = 0;
    655 		cf->cf_fstate = FSTATE_STAR;
    656 	} else {
    657 		cf->cf_unit = unit;
    658 		cf->cf_fstate = FSTATE_NOTFOUND;
    659 	}
    660 
    661 	return device_private(config_attach_pseudo(cf));
    662 }
    663 
    664 /*
    665  * The clean design of if_clone and autoconf(9) makes that part
    666  * really straightforward.  The second argument of config_detach
    667  * means neither QUIET nor FORCED.
    668  */
    669 static int
    670 tap_clone_destroy(struct ifnet *ifp)
    671 {
    672 	struct tap_softc *sc = ifp->if_softc;
    673 
    674 	return tap_clone_destroyer(sc->sc_dev);
    675 }
    676 
    677 int
    678 tap_clone_destroyer(device_t dev)
    679 {
    680 	cfdata_t cf = device_cfdata(dev);
    681 	int error;
    682 
    683 	if ((error = config_detach(dev, 0)) != 0)
    684 		aprint_error_dev(dev, "unable to detach instance\n");
    685 	free(cf, M_DEVBUF);
    686 
    687 	return (error);
    688 }
    689 
    690 /*
    691  * tap(4) is a bit of an hybrid device.  It can be used in two different
    692  * ways:
    693  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    694  *  2. open /dev/tap, get a new interface created and read/write off it.
    695  *     That interface is destroyed when the process that had it created exits.
    696  *
    697  * The first way is managed by the cdevsw structure, and you access interfaces
    698  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    699  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    700  *
    701  * The second way is the so-called "cloning" device.  It's a special minor
    702  * number (chosen as the maximal number, to allow as much tap devices as
    703  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    704  * call ends in tap_cdev_open.  The actual place where it is handled is
    705  * tap_dev_cloner.
    706  *
    707  * An tap device cannot be opened more than once at a time, so the cdevsw
    708  * part of open() does nothing but noting that the interface is being used and
    709  * hence ready to actually handle packets.
    710  */
    711 
    712 static int
    713 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    714 {
    715 	struct tap_softc *sc;
    716 
    717 	if (minor(dev) == TAP_CLONER)
    718 		return tap_dev_cloner(l);
    719 
    720 	sc = device_lookup_private(&tap_cd, minor(dev));
    721 	if (sc == NULL)
    722 		return (ENXIO);
    723 
    724 	/* The device can only be opened once */
    725 	if (sc->sc_flags & TAP_INUSE)
    726 		return (EBUSY);
    727 	sc->sc_flags |= TAP_INUSE;
    728 	return (0);
    729 }
    730 
    731 /*
    732  * There are several kinds of cloning devices, and the most simple is the one
    733  * tap(4) uses.  What it does is change the file descriptor with a new one,
    734  * with its own fileops structure (which maps to the various read, write,
    735  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    736  * then actually creates the new tap devices.
    737  *
    738  * Once those two steps are successful, we can re-wire the existing file
    739  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    740  * structure as needed (notably f_data gets filled with the fifth parameter
    741  * passed, the unit of the tap device which will allows us identifying the
    742  * device later), and returns EMOVEFD.
    743  *
    744  * That magic value is interpreted by sys_open() which then replaces the
    745  * current file descriptor by the new one (through a magic member of struct
    746  * lwp, l_dupfd).
    747  *
    748  * The tap device is flagged as being busy since it otherwise could be
    749  * externally accessed through the corresponding device node with the cdevsw
    750  * interface.
    751  */
    752 
    753 static int
    754 tap_dev_cloner(struct lwp *l)
    755 {
    756 	struct tap_softc *sc;
    757 	file_t *fp;
    758 	int error, fd;
    759 
    760 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    761 		return (error);
    762 
    763 	if ((sc = tap_clone_creator(-1)) == NULL) {
    764 		fd_abort(curproc, fp, fd);
    765 		return (ENXIO);
    766 	}
    767 
    768 	sc->sc_flags |= TAP_INUSE;
    769 
    770 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    771 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    772 }
    773 
    774 /*
    775  * While all other operations (read, write, ioctl, poll and kqfilter) are
    776  * really the same whether we are in cdevsw or fileops mode, the close()
    777  * function is slightly different in the two cases.
    778  *
    779  * As for the other, the core of it is shared in tap_dev_close.  What
    780  * it does is sufficient for the cdevsw interface, but the cloning interface
    781  * needs another thing:  the interface is destroyed when the processes that
    782  * created it closes it.
    783  */
    784 static int
    785 tap_cdev_close(dev_t dev, int flags, int fmt,
    786     struct lwp *l)
    787 {
    788 	struct tap_softc *sc =
    789 	    device_lookup_private(&tap_cd, minor(dev));
    790 
    791 	if (sc == NULL)
    792 		return (ENXIO);
    793 
    794 	return tap_dev_close(sc);
    795 }
    796 
    797 /*
    798  * It might happen that the administrator used ifconfig to externally destroy
    799  * the interface.  In that case, tap_fops_close will be called while
    800  * tap_detach is already happening.  If we called it again from here, we
    801  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    802  */
    803 static int
    804 tap_fops_close(file_t *fp)
    805 {
    806 	int unit = (intptr_t)fp->f_data;
    807 	struct tap_softc *sc;
    808 	int error;
    809 
    810 	sc = device_lookup_private(&tap_cd, unit);
    811 	if (sc == NULL)
    812 		return (ENXIO);
    813 
    814 	/* tap_dev_close currently always succeeds, but it might not
    815 	 * always be the case. */
    816 	KERNEL_LOCK(1, NULL);
    817 	if ((error = tap_dev_close(sc)) != 0) {
    818 		KERNEL_UNLOCK_ONE(NULL);
    819 		return (error);
    820 	}
    821 
    822 	/* Destroy the device now that it is no longer useful,
    823 	 * unless it's already being destroyed. */
    824 	if ((sc->sc_flags & TAP_GOING) != 0) {
    825 		KERNEL_UNLOCK_ONE(NULL);
    826 		return (0);
    827 	}
    828 
    829 	error = tap_clone_destroyer(sc->sc_dev);
    830 	KERNEL_UNLOCK_ONE(NULL);
    831 	return error;
    832 }
    833 
    834 static int
    835 tap_dev_close(struct tap_softc *sc)
    836 {
    837 	struct ifnet *ifp;
    838 	int s;
    839 
    840 	s = splnet();
    841 	/* Let tap_start handle packets again */
    842 	ifp = &sc->sc_ec.ec_if;
    843 	ifp->if_flags &= ~IFF_OACTIVE;
    844 
    845 	/* Purge output queue */
    846 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    847 		struct mbuf *m;
    848 
    849 		for (;;) {
    850 			IFQ_DEQUEUE(&ifp->if_snd, m);
    851 			if (m == NULL)
    852 				break;
    853 
    854 			ifp->if_opackets++;
    855 			bpf_mtap(ifp, m);
    856 			m_freem(m);
    857 		}
    858 	}
    859 	splx(s);
    860 
    861 	if (sc->sc_sih != NULL) {
    862 		softint_disestablish(sc->sc_sih);
    863 		sc->sc_sih = NULL;
    864 	}
    865 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    866 
    867 	return (0);
    868 }
    869 
    870 static int
    871 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    872 {
    873 	return tap_dev_read(minor(dev), uio, flags);
    874 }
    875 
    876 static int
    877 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    878     kauth_cred_t cred, int flags)
    879 {
    880 	int error;
    881 
    882 	KERNEL_LOCK(1, NULL);
    883 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
    884 	KERNEL_UNLOCK_ONE(NULL);
    885 	return error;
    886 }
    887 
    888 static int
    889 tap_dev_read(int unit, struct uio *uio, int flags)
    890 {
    891 	struct tap_softc *sc =
    892 	    device_lookup_private(&tap_cd, unit);
    893 	struct ifnet *ifp;
    894 	struct mbuf *m, *n;
    895 	int error = 0, s;
    896 
    897 	if (sc == NULL)
    898 		return (ENXIO);
    899 
    900 	getnanotime(&sc->sc_atime);
    901 
    902 	ifp = &sc->sc_ec.ec_if;
    903 	if ((ifp->if_flags & IFF_UP) == 0)
    904 		return (EHOSTDOWN);
    905 
    906 	/*
    907 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    908 	 */
    909 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    910 		if (!mutex_tryenter(&sc->sc_rdlock))
    911 			return (EWOULDBLOCK);
    912 	} else {
    913 		mutex_enter(&sc->sc_rdlock);
    914 	}
    915 
    916 	s = splnet();
    917 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    918 		ifp->if_flags &= ~IFF_OACTIVE;
    919 		/*
    920 		 * We must release the lock before sleeping, and re-acquire it
    921 		 * after.
    922 		 */
    923 		mutex_exit(&sc->sc_rdlock);
    924 		if (sc->sc_flags & TAP_NBIO)
    925 			error = EWOULDBLOCK;
    926 		else
    927 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    928 		splx(s);
    929 
    930 		if (error != 0)
    931 			return (error);
    932 		/* The device might have been downed */
    933 		if ((ifp->if_flags & IFF_UP) == 0)
    934 			return (EHOSTDOWN);
    935 		if ((sc->sc_flags & TAP_NBIO)) {
    936 			if (!mutex_tryenter(&sc->sc_rdlock))
    937 				return (EWOULDBLOCK);
    938 		} else {
    939 			mutex_enter(&sc->sc_rdlock);
    940 		}
    941 		s = splnet();
    942 	}
    943 
    944 	IFQ_DEQUEUE(&ifp->if_snd, m);
    945 	ifp->if_flags &= ~IFF_OACTIVE;
    946 	splx(s);
    947 	if (m == NULL) {
    948 		error = 0;
    949 		goto out;
    950 	}
    951 
    952 	ifp->if_opackets++;
    953 	bpf_mtap(ifp, m);
    954 
    955 	/*
    956 	 * One read is one packet.
    957 	 */
    958 	do {
    959 		error = uiomove(mtod(m, void *),
    960 		    min(m->m_len, uio->uio_resid), uio);
    961 		MFREE(m, n);
    962 		m = n;
    963 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    964 
    965 	if (m != NULL)
    966 		m_freem(m);
    967 
    968 out:
    969 	mutex_exit(&sc->sc_rdlock);
    970 	return (error);
    971 }
    972 
    973 static int
    974 tap_fops_stat(file_t *fp, struct stat *st)
    975 {
    976 	int error = 0;
    977 	struct tap_softc *sc;
    978 	int unit = (uintptr_t)fp->f_data;
    979 
    980 	(void)memset(st, 0, sizeof(*st));
    981 
    982 	KERNEL_LOCK(1, NULL);
    983 	sc = device_lookup_private(&tap_cd, unit);
    984 	if (sc == NULL) {
    985 		error = ENXIO;
    986 		goto out;
    987 	}
    988 
    989 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    990 	st->st_atimespec = sc->sc_atime;
    991 	st->st_mtimespec = sc->sc_mtime;
    992 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    993 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    994 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    995 out:
    996 	KERNEL_UNLOCK_ONE(NULL);
    997 	return error;
    998 }
    999 
   1000 static int
   1001 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1002 {
   1003 	return tap_dev_write(minor(dev), uio, flags);
   1004 }
   1005 
   1006 static int
   1007 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1008     kauth_cred_t cred, int flags)
   1009 {
   1010 	int error;
   1011 
   1012 	KERNEL_LOCK(1, NULL);
   1013 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
   1014 	KERNEL_UNLOCK_ONE(NULL);
   1015 	return error;
   1016 }
   1017 
   1018 static int
   1019 tap_dev_write(int unit, struct uio *uio, int flags)
   1020 {
   1021 	struct tap_softc *sc =
   1022 	    device_lookup_private(&tap_cd, unit);
   1023 	struct ifnet *ifp;
   1024 	struct mbuf *m, **mp;
   1025 	int error = 0;
   1026 	int s;
   1027 
   1028 	if (sc == NULL)
   1029 		return (ENXIO);
   1030 
   1031 	getnanotime(&sc->sc_mtime);
   1032 	ifp = &sc->sc_ec.ec_if;
   1033 
   1034 	/* One write, one packet, that's the rule */
   1035 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1036 	if (m == NULL) {
   1037 		ifp->if_ierrors++;
   1038 		return (ENOBUFS);
   1039 	}
   1040 	m->m_pkthdr.len = uio->uio_resid;
   1041 
   1042 	mp = &m;
   1043 	while (error == 0 && uio->uio_resid > 0) {
   1044 		if (*mp != m) {
   1045 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1046 			if (*mp == NULL) {
   1047 				error = ENOBUFS;
   1048 				break;
   1049 			}
   1050 		}
   1051 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1052 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1053 		mp = &(*mp)->m_next;
   1054 	}
   1055 	if (error) {
   1056 		ifp->if_ierrors++;
   1057 		m_freem(m);
   1058 		return (error);
   1059 	}
   1060 
   1061 	ifp->if_ipackets++;
   1062 	m->m_pkthdr.rcvif = ifp;
   1063 
   1064 	bpf_mtap(ifp, m);
   1065 	s = splnet();
   1066 	(*ifp->if_input)(ifp, m);
   1067 	splx(s);
   1068 
   1069 	return (0);
   1070 }
   1071 
   1072 static int
   1073 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1074     struct lwp *l)
   1075 {
   1076 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1077 }
   1078 
   1079 static int
   1080 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1081 {
   1082 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
   1083 }
   1084 
   1085 static int
   1086 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1087 {
   1088 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1089 
   1090 	if (sc == NULL)
   1091 		return ENXIO;
   1092 
   1093 	switch (cmd) {
   1094 	case FIONREAD:
   1095 		{
   1096 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1097 			struct mbuf *m;
   1098 			int s;
   1099 
   1100 			s = splnet();
   1101 			IFQ_POLL(&ifp->if_snd, m);
   1102 
   1103 			if (m == NULL)
   1104 				*(int *)data = 0;
   1105 			else
   1106 				*(int *)data = m->m_pkthdr.len;
   1107 			splx(s);
   1108 			return 0;
   1109 		}
   1110 	case TIOCSPGRP:
   1111 	case FIOSETOWN:
   1112 		return fsetown(&sc->sc_pgid, cmd, data);
   1113 	case TIOCGPGRP:
   1114 	case FIOGETOWN:
   1115 		return fgetown(sc->sc_pgid, cmd, data);
   1116 	case FIOASYNC:
   1117 		if (*(int *)data) {
   1118 			if (sc->sc_sih == NULL) {
   1119 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1120 				    tap_softintr, sc);
   1121 				if (sc->sc_sih == NULL)
   1122 					return EBUSY; /* XXX */
   1123 			}
   1124 			sc->sc_flags |= TAP_ASYNCIO;
   1125 		} else {
   1126 			sc->sc_flags &= ~TAP_ASYNCIO;
   1127 			if (sc->sc_sih != NULL) {
   1128 				softint_disestablish(sc->sc_sih);
   1129 				sc->sc_sih = NULL;
   1130 			}
   1131 		}
   1132 		return 0;
   1133 	case FIONBIO:
   1134 		if (*(int *)data)
   1135 			sc->sc_flags |= TAP_NBIO;
   1136 		else
   1137 			sc->sc_flags &= ~TAP_NBIO;
   1138 		return 0;
   1139 #ifdef OTAPGIFNAME
   1140 	case OTAPGIFNAME:
   1141 #endif
   1142 	case TAPGIFNAME:
   1143 		{
   1144 			struct ifreq *ifr = (struct ifreq *)data;
   1145 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1146 
   1147 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1148 			return 0;
   1149 		}
   1150 	default:
   1151 		return ENOTTY;
   1152 	}
   1153 }
   1154 
   1155 static int
   1156 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1157 {
   1158 	return tap_dev_poll(minor(dev), events, l);
   1159 }
   1160 
   1161 static int
   1162 tap_fops_poll(file_t *fp, int events)
   1163 {
   1164 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1165 }
   1166 
   1167 static int
   1168 tap_dev_poll(int unit, int events, struct lwp *l)
   1169 {
   1170 	struct tap_softc *sc =
   1171 	    device_lookup_private(&tap_cd, unit);
   1172 	int revents = 0;
   1173 
   1174 	if (sc == NULL)
   1175 		return POLLERR;
   1176 
   1177 	if (events & (POLLIN|POLLRDNORM)) {
   1178 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1179 		struct mbuf *m;
   1180 		int s;
   1181 
   1182 		s = splnet();
   1183 		IFQ_POLL(&ifp->if_snd, m);
   1184 		splx(s);
   1185 
   1186 		if (m != NULL)
   1187 			revents |= events & (POLLIN|POLLRDNORM);
   1188 		else {
   1189 			mutex_spin_enter(&sc->sc_kqlock);
   1190 			selrecord(l, &sc->sc_rsel);
   1191 			mutex_spin_exit(&sc->sc_kqlock);
   1192 		}
   1193 	}
   1194 	revents |= events & (POLLOUT|POLLWRNORM);
   1195 
   1196 	return (revents);
   1197 }
   1198 
   1199 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1200 	tap_kqread };
   1201 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1202 	filt_seltrue };
   1203 
   1204 static int
   1205 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1206 {
   1207 	return tap_dev_kqfilter(minor(dev), kn);
   1208 }
   1209 
   1210 static int
   1211 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1212 {
   1213 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1214 }
   1215 
   1216 static int
   1217 tap_dev_kqfilter(int unit, struct knote *kn)
   1218 {
   1219 	struct tap_softc *sc =
   1220 	    device_lookup_private(&tap_cd, unit);
   1221 
   1222 	if (sc == NULL)
   1223 		return (ENXIO);
   1224 
   1225 	KERNEL_LOCK(1, NULL);
   1226 	switch(kn->kn_filter) {
   1227 	case EVFILT_READ:
   1228 		kn->kn_fop = &tap_read_filterops;
   1229 		break;
   1230 	case EVFILT_WRITE:
   1231 		kn->kn_fop = &tap_seltrue_filterops;
   1232 		break;
   1233 	default:
   1234 		KERNEL_UNLOCK_ONE(NULL);
   1235 		return (EINVAL);
   1236 	}
   1237 
   1238 	kn->kn_hook = sc;
   1239 	mutex_spin_enter(&sc->sc_kqlock);
   1240 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1241 	mutex_spin_exit(&sc->sc_kqlock);
   1242 	KERNEL_UNLOCK_ONE(NULL);
   1243 	return (0);
   1244 }
   1245 
   1246 static void
   1247 tap_kqdetach(struct knote *kn)
   1248 {
   1249 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1250 
   1251 	KERNEL_LOCK(1, NULL);
   1252 	mutex_spin_enter(&sc->sc_kqlock);
   1253 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1254 	mutex_spin_exit(&sc->sc_kqlock);
   1255 	KERNEL_UNLOCK_ONE(NULL);
   1256 }
   1257 
   1258 static int
   1259 tap_kqread(struct knote *kn, long hint)
   1260 {
   1261 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1262 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1263 	struct mbuf *m;
   1264 	int s, rv;
   1265 
   1266 	KERNEL_LOCK(1, NULL);
   1267 	s = splnet();
   1268 	IFQ_POLL(&ifp->if_snd, m);
   1269 
   1270 	if (m == NULL)
   1271 		kn->kn_data = 0;
   1272 	else
   1273 		kn->kn_data = m->m_pkthdr.len;
   1274 	splx(s);
   1275 	rv = (kn->kn_data != 0 ? 1 : 0);
   1276 	KERNEL_UNLOCK_ONE(NULL);
   1277 	return rv;
   1278 }
   1279 
   1280 #if defined(COMPAT_40) || defined(MODULAR)
   1281 /*
   1282  * sysctl management routines
   1283  * You can set the address of an interface through:
   1284  * net.link.tap.tap<number>
   1285  *
   1286  * Note the consistent use of tap_log in order to use
   1287  * sysctl_teardown at unload time.
   1288  *
   1289  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1290  * blocks register a function in a special section of the kernel
   1291  * (called a link set) which is used at init_sysctl() time to cycle
   1292  * through all those functions to create the kernel's sysctl tree.
   1293  *
   1294  * It is not possible to use link sets in a module, so the
   1295  * easiest is to simply call our own setup routine at load time.
   1296  *
   1297  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1298  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1299  * whole kernel sysctl tree is built, it is not possible to add any
   1300  * permanent node.
   1301  *
   1302  * It should be noted that we're not saving the sysctlnode pointer
   1303  * we are returned when creating the "tap" node.  That structure
   1304  * cannot be trusted once out of the calling function, as it might
   1305  * get reused.  So we just save the MIB number, and always give the
   1306  * full path starting from the root for later calls to sysctl_createv
   1307  * and sysctl_destroyv.
   1308  */
   1309 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1310 {
   1311 	const struct sysctlnode *node;
   1312 	int error = 0;
   1313 
   1314 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1315 	    CTLFLAG_PERMANENT,
   1316 	    CTLTYPE_NODE, "link", NULL,
   1317 	    NULL, 0, NULL, 0,
   1318 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1319 		return;
   1320 
   1321 	/*
   1322 	 * The first four parameters of sysctl_createv are for management.
   1323 	 *
   1324 	 * The four that follows, here starting with a '0' for the flags,
   1325 	 * describe the node.
   1326 	 *
   1327 	 * The next series of four set its value, through various possible
   1328 	 * means.
   1329 	 *
   1330 	 * Last but not least, the path to the node is described.  That path
   1331 	 * is relative to the given root (third argument).  Here we're
   1332 	 * starting from the root.
   1333 	 */
   1334 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1335 	    CTLFLAG_PERMANENT,
   1336 	    CTLTYPE_NODE, "tap", NULL,
   1337 	    NULL, 0, NULL, 0,
   1338 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1339 		return;
   1340 	tap_node = node->sysctl_num;
   1341 }
   1342 
   1343 /*
   1344  * The helper functions make Andrew Brown's interface really
   1345  * shine.  It makes possible to create value on the fly whether
   1346  * the sysctl value is read or written.
   1347  *
   1348  * As shown as an example in the man page, the first step is to
   1349  * create a copy of the node to have sysctl_lookup work on it.
   1350  *
   1351  * Here, we have more work to do than just a copy, since we have
   1352  * to create the string.  The first step is to collect the actual
   1353  * value of the node, which is a convenient pointer to the softc
   1354  * of the interface.  From there we create the string and use it
   1355  * as the value, but only for the *copy* of the node.
   1356  *
   1357  * Then we let sysctl_lookup do the magic, which consists in
   1358  * setting oldp and newp as required by the operation.  When the
   1359  * value is read, that means that the string will be copied to
   1360  * the user, and when it is written, the new value will be copied
   1361  * over in the addr array.
   1362  *
   1363  * If newp is NULL, the user was reading the value, so we don't
   1364  * have anything else to do.  If a new value was written, we
   1365  * have to check it.
   1366  *
   1367  * If it is incorrect, we can return an error and leave 'node' as
   1368  * it is:  since it is a copy of the actual node, the change will
   1369  * be forgotten.
   1370  *
   1371  * Upon a correct input, we commit the change to the ifnet
   1372  * structure of our interface.
   1373  */
   1374 static int
   1375 tap_sysctl_handler(SYSCTLFN_ARGS)
   1376 {
   1377 	struct sysctlnode node;
   1378 	struct tap_softc *sc;
   1379 	struct ifnet *ifp;
   1380 	int error;
   1381 	size_t len;
   1382 	char addr[3 * ETHER_ADDR_LEN];
   1383 	uint8_t enaddr[ETHER_ADDR_LEN];
   1384 
   1385 	node = *rnode;
   1386 	sc = node.sysctl_data;
   1387 	ifp = &sc->sc_ec.ec_if;
   1388 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1389 	node.sysctl_data = addr;
   1390 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1391 	if (error || newp == NULL)
   1392 		return (error);
   1393 
   1394 	len = strlen(addr);
   1395 	if (len < 11 || len > 17)
   1396 		return (EINVAL);
   1397 
   1398 	/* Commit change */
   1399 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1400 		return (EINVAL);
   1401 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1402 	return (error);
   1403 }
   1404 #endif
   1405