if_tap.c revision 1.76 1 /* $NetBSD: if_tap.c,v 1.76 2014/05/07 22:53:34 cube Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.76 2014/05/07 22:53:34 cube Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/ksyms.h>
54 #include <sys/poll.h>
55 #include <sys/proc.h>
56 #include <sys/select.h>
57 #include <sys/sockio.h>
58 #if defined(COMPAT_40) || defined(MODULAR)
59 #include <sys/sysctl.h>
60 #endif
61 #include <sys/kauth.h>
62 #include <sys/mutex.h>
63 #include <sys/intr.h>
64 #include <sys/stat.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72
73 #include <compat/sys/sockio.h>
74
75 #if defined(COMPAT_40) || defined(MODULAR)
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current module implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93 #endif
94
95 /*
96 * Since we're an Ethernet device, we need the 2 following
97 * components: a struct ethercom and a struct ifmedia
98 * since we don't attach a PHY to ourselves.
99 * We could emulate one, but there's no real point.
100 */
101
102 struct tap_softc {
103 device_t sc_dev;
104 struct ifmedia sc_im;
105 struct ethercom sc_ec;
106 int sc_flags;
107 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 struct selinfo sc_rsel;
112 pid_t sc_pgid; /* For async. IO */
113 kmutex_t sc_rdlock;
114 kmutex_t sc_kqlock;
115 void *sc_sih;
116 struct timespec sc_atime;
117 struct timespec sc_mtime;
118 struct timespec sc_btime;
119 };
120
121 /* autoconf(9) glue */
122
123 void tapattach(int);
124
125 static int tap_match(device_t, cfdata_t, void *);
126 static void tap_attach(device_t, device_t, void *);
127 static int tap_detach(device_t, int);
128
129 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
130 tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132
133 /* Real device access routines */
134 static int tap_dev_close(struct tap_softc *);
135 static int tap_dev_read(int, struct uio *, int);
136 static int tap_dev_write(int, struct uio *, int);
137 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
138 static int tap_dev_poll(int, int, struct lwp *);
139 static int tap_dev_kqfilter(int, struct knote *);
140
141 /* Fileops access routines */
142 static int tap_fops_close(file_t *);
143 static int tap_fops_read(file_t *, off_t *, struct uio *,
144 kauth_cred_t, int);
145 static int tap_fops_write(file_t *, off_t *, struct uio *,
146 kauth_cred_t, int);
147 static int tap_fops_ioctl(file_t *, u_long, void *);
148 static int tap_fops_poll(file_t *, int);
149 static int tap_fops_stat(file_t *, struct stat *);
150 static int tap_fops_kqfilter(file_t *, struct knote *);
151
152 static const struct fileops tap_fileops = {
153 .fo_read = tap_fops_read,
154 .fo_write = tap_fops_write,
155 .fo_ioctl = tap_fops_ioctl,
156 .fo_fcntl = fnullop_fcntl,
157 .fo_poll = tap_fops_poll,
158 .fo_stat = tap_fops_stat,
159 .fo_close = tap_fops_close,
160 .fo_kqfilter = tap_fops_kqfilter,
161 .fo_restart = fnullop_restart,
162 };
163
164 /* Helper for cloning open() */
165 static int tap_dev_cloner(struct lwp *);
166
167 /* Character device routines */
168 static int tap_cdev_open(dev_t, int, int, struct lwp *);
169 static int tap_cdev_close(dev_t, int, int, struct lwp *);
170 static int tap_cdev_read(dev_t, struct uio *, int);
171 static int tap_cdev_write(dev_t, struct uio *, int);
172 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
173 static int tap_cdev_poll(dev_t, int, struct lwp *);
174 static int tap_cdev_kqfilter(dev_t, struct knote *);
175
176 const struct cdevsw tap_cdevsw = {
177 .d_open = tap_cdev_open,
178 .d_close = tap_cdev_close,
179 .d_read = tap_cdev_read,
180 .d_write = tap_cdev_write,
181 .d_ioctl = tap_cdev_ioctl,
182 .d_stop = nostop,
183 .d_tty = notty,
184 .d_poll = tap_cdev_poll,
185 .d_mmap = nommap,
186 .d_kqfilter = tap_cdev_kqfilter,
187 .d_flag = D_OTHER
188 };
189
190 #define TAP_CLONER 0xfffff /* Maximal minor value */
191
192 /* kqueue-related routines */
193 static void tap_kqdetach(struct knote *);
194 static int tap_kqread(struct knote *, long);
195
196 /*
197 * Those are needed by the if_media interface.
198 */
199
200 static int tap_mediachange(struct ifnet *);
201 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
202
203 /*
204 * Those are needed by the ifnet interface, and would typically be
205 * there for any network interface driver.
206 * Some other routines are optional: watchdog and drain.
207 */
208
209 static void tap_start(struct ifnet *);
210 static void tap_stop(struct ifnet *, int);
211 static int tap_init(struct ifnet *);
212 static int tap_ioctl(struct ifnet *, u_long, void *);
213
214 /* Internal functions */
215 #if defined(COMPAT_40) || defined(MODULAR)
216 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
217 #endif
218 static void tap_softintr(void *);
219
220 /*
221 * tap is a clonable interface, although it is highly unrealistic for
222 * an Ethernet device.
223 *
224 * Here are the bits needed for a clonable interface.
225 */
226 static int tap_clone_create(struct if_clone *, int);
227 static int tap_clone_destroy(struct ifnet *);
228
229 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
230 tap_clone_create,
231 tap_clone_destroy);
232
233 /* Helper functionis shared by the two cloning code paths */
234 static struct tap_softc * tap_clone_creator(int);
235 int tap_clone_destroyer(device_t);
236
237 void
238 tapattach(int n)
239 {
240 int error;
241
242 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
243 if (error) {
244 aprint_error("%s: unable to register cfattach\n",
245 tap_cd.cd_name);
246 (void)config_cfdriver_detach(&tap_cd);
247 return;
248 }
249
250 if_clone_attach(&tap_cloners);
251 }
252
253 /* Pretty much useless for a pseudo-device */
254 static int
255 tap_match(device_t parent, cfdata_t cfdata, void *arg)
256 {
257
258 return (1);
259 }
260
261 void
262 tap_attach(device_t parent, device_t self, void *aux)
263 {
264 struct tap_softc *sc = device_private(self);
265 struct ifnet *ifp;
266 #if defined(COMPAT_40) || defined(MODULAR)
267 const struct sysctlnode *node;
268 int error;
269 #endif
270 uint8_t enaddr[ETHER_ADDR_LEN] =
271 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
272 char enaddrstr[3 * ETHER_ADDR_LEN];
273
274 sc->sc_dev = self;
275 sc->sc_sih = NULL;
276 getnanotime(&sc->sc_btime);
277 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
278
279 if (!pmf_device_register(self, NULL, NULL))
280 aprint_error_dev(self, "couldn't establish power handler\n");
281
282 /*
283 * In order to obtain unique initial Ethernet address on a host,
284 * do some randomisation. It's not meant for anything but avoiding
285 * hard-coding an address.
286 */
287 cprng_fast(&enaddr[3], 3);
288
289 aprint_verbose_dev(self, "Ethernet address %s\n",
290 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
291
292 /*
293 * Why 1000baseT? Why not? You can add more.
294 *
295 * Note that there are 3 steps: init, one or several additions to
296 * list of supported media, and in the end, the selection of one
297 * of them.
298 */
299 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
300 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
303 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
304 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
305 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
306 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
307 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
308
309 /*
310 * One should note that an interface must do multicast in order
311 * to support IPv6.
312 */
313 ifp = &sc->sc_ec.ec_if;
314 strcpy(ifp->if_xname, device_xname(self));
315 ifp->if_softc = sc;
316 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
317 ifp->if_ioctl = tap_ioctl;
318 ifp->if_start = tap_start;
319 ifp->if_stop = tap_stop;
320 ifp->if_init = tap_init;
321 IFQ_SET_READY(&ifp->if_snd);
322
323 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
324
325 /* Those steps are mandatory for an Ethernet driver, the fisrt call
326 * being common to all network interface drivers. */
327 if_attach(ifp);
328 ether_ifattach(ifp, enaddr);
329
330 sc->sc_flags = 0;
331
332 #if defined(COMPAT_40) || defined(MODULAR)
333 /*
334 * Add a sysctl node for that interface.
335 *
336 * The pointer transmitted is not a string, but instead a pointer to
337 * the softc structure, which we can use to build the string value on
338 * the fly in the helper function of the node. See the comments for
339 * tap_sysctl_handler for details.
340 *
341 * Usually sysctl_createv is called with CTL_CREATE as the before-last
342 * component. However, we can allocate a number ourselves, as we are
343 * the only consumer of the net.link.<iface> node. In this case, the
344 * unit number is conveniently used to number the node. CTL_CREATE
345 * would just work, too.
346 */
347 if ((error = sysctl_createv(NULL, 0, NULL,
348 &node, CTLFLAG_READWRITE,
349 CTLTYPE_STRING, device_xname(self), NULL,
350 tap_sysctl_handler, 0, (void *)sc, 18,
351 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
352 CTL_EOL)) != 0)
353 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
354 error);
355 #endif
356
357 /*
358 * Initialize the two locks for the device.
359 *
360 * We need a lock here because even though the tap device can be
361 * opened only once, the file descriptor might be passed to another
362 * process, say a fork(2)ed child.
363 *
364 * The Giant saves us from most of the hassle, but since the read
365 * operation can sleep, we don't want two processes to wake up at
366 * the same moment and both try and dequeue a single packet.
367 *
368 * The queue for event listeners (used by kqueue(9), see below) has
369 * to be protected too, so use a spin lock.
370 */
371 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
372 mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
373
374 selinit(&sc->sc_rsel);
375 }
376
377 /*
378 * When detaching, we do the inverse of what is done in the attach
379 * routine, in reversed order.
380 */
381 static int
382 tap_detach(device_t self, int flags)
383 {
384 struct tap_softc *sc = device_private(self);
385 struct ifnet *ifp = &sc->sc_ec.ec_if;
386 #if defined(COMPAT_40) || defined(MODULAR)
387 int error;
388 #endif
389 int s;
390
391 sc->sc_flags |= TAP_GOING;
392 s = splnet();
393 tap_stop(ifp, 1);
394 if_down(ifp);
395 splx(s);
396
397 if (sc->sc_sih != NULL) {
398 softint_disestablish(sc->sc_sih);
399 sc->sc_sih = NULL;
400 }
401
402 #if defined(COMPAT_40) || defined(MODULAR)
403 /*
404 * Destroying a single leaf is a very straightforward operation using
405 * sysctl_destroyv. One should be sure to always end the path with
406 * CTL_EOL.
407 */
408 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
409 device_unit(sc->sc_dev), CTL_EOL)) != 0)
410 aprint_error_dev(self,
411 "sysctl_destroyv returned %d, ignoring\n", error);
412 #endif
413 ether_ifdetach(ifp);
414 if_detach(ifp);
415 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
416 seldestroy(&sc->sc_rsel);
417 mutex_destroy(&sc->sc_rdlock);
418 mutex_destroy(&sc->sc_kqlock);
419
420 pmf_device_deregister(self);
421
422 return (0);
423 }
424
425 /*
426 * This function is called by the ifmedia layer to notify the driver
427 * that the user requested a media change. A real driver would
428 * reconfigure the hardware.
429 */
430 static int
431 tap_mediachange(struct ifnet *ifp)
432 {
433 return (0);
434 }
435
436 /*
437 * Here the user asks for the currently used media.
438 */
439 static void
440 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
441 {
442 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
443 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
444 }
445
446 /*
447 * This is the function where we SEND packets.
448 *
449 * There is no 'receive' equivalent. A typical driver will get
450 * interrupts from the hardware, and from there will inject new packets
451 * into the network stack.
452 *
453 * Once handled, a packet must be freed. A real driver might not be able
454 * to fit all the pending packets into the hardware, and is allowed to
455 * return before having sent all the packets. It should then use the
456 * if_flags flag IFF_OACTIVE to notify the upper layer.
457 *
458 * There are also other flags one should check, such as IFF_PAUSE.
459 *
460 * It is our duty to make packets available to BPF listeners.
461 *
462 * You should be aware that this function is called by the Ethernet layer
463 * at splnet().
464 *
465 * When the device is opened, we have to pass the packet(s) to the
466 * userland. For that we stay in OACTIVE mode while the userland gets
467 * the packets, and we send a signal to the processes waiting to read.
468 *
469 * wakeup(sc) is the counterpart to the tsleep call in
470 * tap_dev_read, while selnotify() is used for kevent(2) and
471 * poll(2) (which includes select(2)) listeners.
472 */
473 static void
474 tap_start(struct ifnet *ifp)
475 {
476 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
477 struct mbuf *m0;
478
479 if ((sc->sc_flags & TAP_INUSE) == 0) {
480 /* Simply drop packets */
481 for(;;) {
482 IFQ_DEQUEUE(&ifp->if_snd, m0);
483 if (m0 == NULL)
484 return;
485
486 ifp->if_opackets++;
487 bpf_mtap(ifp, m0);
488
489 m_freem(m0);
490 }
491 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
492 ifp->if_flags |= IFF_OACTIVE;
493 wakeup(sc);
494 selnotify(&sc->sc_rsel, 0, 1);
495 if (sc->sc_flags & TAP_ASYNCIO)
496 softint_schedule(sc->sc_sih);
497 }
498 }
499
500 static void
501 tap_softintr(void *cookie)
502 {
503 struct tap_softc *sc;
504 struct ifnet *ifp;
505 int a, b;
506
507 sc = cookie;
508
509 if (sc->sc_flags & TAP_ASYNCIO) {
510 ifp = &sc->sc_ec.ec_if;
511 if (ifp->if_flags & IFF_RUNNING) {
512 a = POLL_IN;
513 b = POLLIN|POLLRDNORM;
514 } else {
515 a = POLL_HUP;
516 b = 0;
517 }
518 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
519 }
520 }
521
522 /*
523 * A typical driver will only contain the following handlers for
524 * ioctl calls, except SIOCSIFPHYADDR.
525 * The latter is a hack I used to set the Ethernet address of the
526 * faked device.
527 *
528 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
529 * called under splnet().
530 */
531 static int
532 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
533 {
534 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
535 struct ifreq *ifr = (struct ifreq *)data;
536 int s, error;
537
538 s = splnet();
539
540 switch (cmd) {
541 #ifdef OSIOCSIFMEDIA
542 case OSIOCSIFMEDIA:
543 #endif
544 case SIOCSIFMEDIA:
545 case SIOCGIFMEDIA:
546 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
547 break;
548 #if defined(COMPAT_40) || defined(MODULAR)
549 case SIOCSIFPHYADDR:
550 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
551 break;
552 #endif
553 default:
554 error = ether_ioctl(ifp, cmd, data);
555 if (error == ENETRESET)
556 error = 0;
557 break;
558 }
559
560 splx(s);
561
562 return (error);
563 }
564
565 #if defined(COMPAT_40) || defined(MODULAR)
566 /*
567 * Helper function to set Ethernet address. This has been replaced by
568 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
569 */
570 static int
571 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
572 {
573 const struct sockaddr *sa = &ifra->ifra_addr;
574
575 if (sa->sa_family != AF_LINK)
576 return (EINVAL);
577
578 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
579
580 return (0);
581 }
582 #endif
583
584 /*
585 * _init() would typically be called when an interface goes up,
586 * meaning it should configure itself into the state in which it
587 * can send packets.
588 */
589 static int
590 tap_init(struct ifnet *ifp)
591 {
592 ifp->if_flags |= IFF_RUNNING;
593
594 tap_start(ifp);
595
596 return (0);
597 }
598
599 /*
600 * _stop() is called when an interface goes down. It is our
601 * responsability to validate that state by clearing the
602 * IFF_RUNNING flag.
603 *
604 * We have to wake up all the sleeping processes to have the pending
605 * read requests cancelled.
606 */
607 static void
608 tap_stop(struct ifnet *ifp, int disable)
609 {
610 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
611
612 ifp->if_flags &= ~IFF_RUNNING;
613 wakeup(sc);
614 selnotify(&sc->sc_rsel, 0, 1);
615 if (sc->sc_flags & TAP_ASYNCIO)
616 softint_schedule(sc->sc_sih);
617 }
618
619 /*
620 * The 'create' command of ifconfig can be used to create
621 * any numbered instance of a given device. Thus we have to
622 * make sure we have enough room in cd_devs to create the
623 * user-specified instance. config_attach_pseudo will do this
624 * for us.
625 */
626 static int
627 tap_clone_create(struct if_clone *ifc, int unit)
628 {
629 if (tap_clone_creator(unit) == NULL) {
630 aprint_error("%s%d: unable to attach an instance\n",
631 tap_cd.cd_name, unit);
632 return (ENXIO);
633 }
634
635 return (0);
636 }
637
638 /*
639 * tap(4) can be cloned by two ways:
640 * using 'ifconfig tap0 create', which will use the network
641 * interface cloning API, and call tap_clone_create above.
642 * opening the cloning device node, whose minor number is TAP_CLONER.
643 * See below for an explanation on how this part work.
644 */
645 static struct tap_softc *
646 tap_clone_creator(int unit)
647 {
648 struct cfdata *cf;
649
650 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
651 cf->cf_name = tap_cd.cd_name;
652 cf->cf_atname = tap_ca.ca_name;
653 if (unit == -1) {
654 /* let autoconf find the first free one */
655 cf->cf_unit = 0;
656 cf->cf_fstate = FSTATE_STAR;
657 } else {
658 cf->cf_unit = unit;
659 cf->cf_fstate = FSTATE_NOTFOUND;
660 }
661
662 return device_private(config_attach_pseudo(cf));
663 }
664
665 /*
666 * The clean design of if_clone and autoconf(9) makes that part
667 * really straightforward. The second argument of config_detach
668 * means neither QUIET nor FORCED.
669 */
670 static int
671 tap_clone_destroy(struct ifnet *ifp)
672 {
673 struct tap_softc *sc = ifp->if_softc;
674
675 return tap_clone_destroyer(sc->sc_dev);
676 }
677
678 int
679 tap_clone_destroyer(device_t dev)
680 {
681 cfdata_t cf = device_cfdata(dev);
682 int error;
683
684 if ((error = config_detach(dev, 0)) != 0)
685 aprint_error_dev(dev, "unable to detach instance\n");
686 free(cf, M_DEVBUF);
687
688 return (error);
689 }
690
691 /*
692 * tap(4) is a bit of an hybrid device. It can be used in two different
693 * ways:
694 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
695 * 2. open /dev/tap, get a new interface created and read/write off it.
696 * That interface is destroyed when the process that had it created exits.
697 *
698 * The first way is managed by the cdevsw structure, and you access interfaces
699 * through a (major, minor) mapping: tap4 is obtained by the minor number
700 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
701 *
702 * The second way is the so-called "cloning" device. It's a special minor
703 * number (chosen as the maximal number, to allow as much tap devices as
704 * possible). The user first opens the cloner (e.g., /dev/tap), and that
705 * call ends in tap_cdev_open. The actual place where it is handled is
706 * tap_dev_cloner.
707 *
708 * An tap device cannot be opened more than once at a time, so the cdevsw
709 * part of open() does nothing but noting that the interface is being used and
710 * hence ready to actually handle packets.
711 */
712
713 static int
714 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
715 {
716 struct tap_softc *sc;
717
718 if (minor(dev) == TAP_CLONER)
719 return tap_dev_cloner(l);
720
721 sc = device_lookup_private(&tap_cd, minor(dev));
722 if (sc == NULL)
723 return (ENXIO);
724
725 /* The device can only be opened once */
726 if (sc->sc_flags & TAP_INUSE)
727 return (EBUSY);
728 sc->sc_flags |= TAP_INUSE;
729 return (0);
730 }
731
732 /*
733 * There are several kinds of cloning devices, and the most simple is the one
734 * tap(4) uses. What it does is change the file descriptor with a new one,
735 * with its own fileops structure (which maps to the various read, write,
736 * ioctl functions). It starts allocating a new file descriptor with falloc,
737 * then actually creates the new tap devices.
738 *
739 * Once those two steps are successful, we can re-wire the existing file
740 * descriptor to its new self. This is done with fdclone(): it fills the fp
741 * structure as needed (notably f_data gets filled with the fifth parameter
742 * passed, the unit of the tap device which will allows us identifying the
743 * device later), and returns EMOVEFD.
744 *
745 * That magic value is interpreted by sys_open() which then replaces the
746 * current file descriptor by the new one (through a magic member of struct
747 * lwp, l_dupfd).
748 *
749 * The tap device is flagged as being busy since it otherwise could be
750 * externally accessed through the corresponding device node with the cdevsw
751 * interface.
752 */
753
754 static int
755 tap_dev_cloner(struct lwp *l)
756 {
757 struct tap_softc *sc;
758 file_t *fp;
759 int error, fd;
760
761 if ((error = fd_allocfile(&fp, &fd)) != 0)
762 return (error);
763
764 if ((sc = tap_clone_creator(-1)) == NULL) {
765 fd_abort(curproc, fp, fd);
766 return (ENXIO);
767 }
768
769 sc->sc_flags |= TAP_INUSE;
770
771 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
772 (void *)(intptr_t)device_unit(sc->sc_dev));
773 }
774
775 /*
776 * While all other operations (read, write, ioctl, poll and kqfilter) are
777 * really the same whether we are in cdevsw or fileops mode, the close()
778 * function is slightly different in the two cases.
779 *
780 * As for the other, the core of it is shared in tap_dev_close. What
781 * it does is sufficient for the cdevsw interface, but the cloning interface
782 * needs another thing: the interface is destroyed when the processes that
783 * created it closes it.
784 */
785 static int
786 tap_cdev_close(dev_t dev, int flags, int fmt,
787 struct lwp *l)
788 {
789 struct tap_softc *sc =
790 device_lookup_private(&tap_cd, minor(dev));
791
792 if (sc == NULL)
793 return (ENXIO);
794
795 return tap_dev_close(sc);
796 }
797
798 /*
799 * It might happen that the administrator used ifconfig to externally destroy
800 * the interface. In that case, tap_fops_close will be called while
801 * tap_detach is already happening. If we called it again from here, we
802 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
803 */
804 static int
805 tap_fops_close(file_t *fp)
806 {
807 int unit = (intptr_t)fp->f_data;
808 struct tap_softc *sc;
809 int error;
810
811 sc = device_lookup_private(&tap_cd, unit);
812 if (sc == NULL)
813 return (ENXIO);
814
815 /* tap_dev_close currently always succeeds, but it might not
816 * always be the case. */
817 KERNEL_LOCK(1, NULL);
818 if ((error = tap_dev_close(sc)) != 0) {
819 KERNEL_UNLOCK_ONE(NULL);
820 return (error);
821 }
822
823 /* Destroy the device now that it is no longer useful,
824 * unless it's already being destroyed. */
825 if ((sc->sc_flags & TAP_GOING) != 0) {
826 KERNEL_UNLOCK_ONE(NULL);
827 return (0);
828 }
829
830 error = tap_clone_destroyer(sc->sc_dev);
831 KERNEL_UNLOCK_ONE(NULL);
832 return error;
833 }
834
835 static int
836 tap_dev_close(struct tap_softc *sc)
837 {
838 struct ifnet *ifp;
839 int s;
840
841 s = splnet();
842 /* Let tap_start handle packets again */
843 ifp = &sc->sc_ec.ec_if;
844 ifp->if_flags &= ~IFF_OACTIVE;
845
846 /* Purge output queue */
847 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
848 struct mbuf *m;
849
850 for (;;) {
851 IFQ_DEQUEUE(&ifp->if_snd, m);
852 if (m == NULL)
853 break;
854
855 ifp->if_opackets++;
856 bpf_mtap(ifp, m);
857 m_freem(m);
858 }
859 }
860 splx(s);
861
862 if (sc->sc_sih != NULL) {
863 softint_disestablish(sc->sc_sih);
864 sc->sc_sih = NULL;
865 }
866 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
867
868 return (0);
869 }
870
871 static int
872 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
873 {
874 return tap_dev_read(minor(dev), uio, flags);
875 }
876
877 static int
878 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
879 kauth_cred_t cred, int flags)
880 {
881 int error;
882
883 KERNEL_LOCK(1, NULL);
884 error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
885 KERNEL_UNLOCK_ONE(NULL);
886 return error;
887 }
888
889 static int
890 tap_dev_read(int unit, struct uio *uio, int flags)
891 {
892 struct tap_softc *sc =
893 device_lookup_private(&tap_cd, unit);
894 struct ifnet *ifp;
895 struct mbuf *m, *n;
896 int error = 0, s;
897
898 if (sc == NULL)
899 return (ENXIO);
900
901 getnanotime(&sc->sc_atime);
902
903 ifp = &sc->sc_ec.ec_if;
904 if ((ifp->if_flags & IFF_UP) == 0)
905 return (EHOSTDOWN);
906
907 /*
908 * In the TAP_NBIO case, we have to make sure we won't be sleeping
909 */
910 if ((sc->sc_flags & TAP_NBIO) != 0) {
911 if (!mutex_tryenter(&sc->sc_rdlock))
912 return (EWOULDBLOCK);
913 } else {
914 mutex_enter(&sc->sc_rdlock);
915 }
916
917 s = splnet();
918 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
919 ifp->if_flags &= ~IFF_OACTIVE;
920 /*
921 * We must release the lock before sleeping, and re-acquire it
922 * after.
923 */
924 mutex_exit(&sc->sc_rdlock);
925 if (sc->sc_flags & TAP_NBIO)
926 error = EWOULDBLOCK;
927 else
928 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
929 splx(s);
930
931 if (error != 0)
932 return (error);
933 /* The device might have been downed */
934 if ((ifp->if_flags & IFF_UP) == 0)
935 return (EHOSTDOWN);
936 if ((sc->sc_flags & TAP_NBIO)) {
937 if (!mutex_tryenter(&sc->sc_rdlock))
938 return (EWOULDBLOCK);
939 } else {
940 mutex_enter(&sc->sc_rdlock);
941 }
942 s = splnet();
943 }
944
945 IFQ_DEQUEUE(&ifp->if_snd, m);
946 ifp->if_flags &= ~IFF_OACTIVE;
947 splx(s);
948 if (m == NULL) {
949 error = 0;
950 goto out;
951 }
952
953 ifp->if_opackets++;
954 bpf_mtap(ifp, m);
955
956 /*
957 * One read is one packet.
958 */
959 do {
960 error = uiomove(mtod(m, void *),
961 min(m->m_len, uio->uio_resid), uio);
962 MFREE(m, n);
963 m = n;
964 } while (m != NULL && uio->uio_resid > 0 && error == 0);
965
966 if (m != NULL)
967 m_freem(m);
968
969 out:
970 mutex_exit(&sc->sc_rdlock);
971 return (error);
972 }
973
974 static int
975 tap_fops_stat(file_t *fp, struct stat *st)
976 {
977 int error = 0;
978 struct tap_softc *sc;
979 int unit = (uintptr_t)fp->f_data;
980
981 (void)memset(st, 0, sizeof(*st));
982
983 KERNEL_LOCK(1, NULL);
984 sc = device_lookup_private(&tap_cd, unit);
985 if (sc == NULL) {
986 error = ENXIO;
987 goto out;
988 }
989
990 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
991 st->st_atimespec = sc->sc_atime;
992 st->st_mtimespec = sc->sc_mtime;
993 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
994 st->st_uid = kauth_cred_geteuid(fp->f_cred);
995 st->st_gid = kauth_cred_getegid(fp->f_cred);
996 out:
997 KERNEL_UNLOCK_ONE(NULL);
998 return error;
999 }
1000
1001 static int
1002 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1003 {
1004 return tap_dev_write(minor(dev), uio, flags);
1005 }
1006
1007 static int
1008 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1009 kauth_cred_t cred, int flags)
1010 {
1011 int error;
1012
1013 KERNEL_LOCK(1, NULL);
1014 error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1015 KERNEL_UNLOCK_ONE(NULL);
1016 return error;
1017 }
1018
1019 static int
1020 tap_dev_write(int unit, struct uio *uio, int flags)
1021 {
1022 struct tap_softc *sc =
1023 device_lookup_private(&tap_cd, unit);
1024 struct ifnet *ifp;
1025 struct mbuf *m, **mp;
1026 int error = 0;
1027 int s;
1028
1029 if (sc == NULL)
1030 return (ENXIO);
1031
1032 getnanotime(&sc->sc_mtime);
1033 ifp = &sc->sc_ec.ec_if;
1034
1035 /* One write, one packet, that's the rule */
1036 MGETHDR(m, M_DONTWAIT, MT_DATA);
1037 if (m == NULL) {
1038 ifp->if_ierrors++;
1039 return (ENOBUFS);
1040 }
1041 m->m_pkthdr.len = uio->uio_resid;
1042
1043 mp = &m;
1044 while (error == 0 && uio->uio_resid > 0) {
1045 if (*mp != m) {
1046 MGET(*mp, M_DONTWAIT, MT_DATA);
1047 if (*mp == NULL) {
1048 error = ENOBUFS;
1049 break;
1050 }
1051 }
1052 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1053 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1054 mp = &(*mp)->m_next;
1055 }
1056 if (error) {
1057 ifp->if_ierrors++;
1058 m_freem(m);
1059 return (error);
1060 }
1061
1062 ifp->if_ipackets++;
1063 m->m_pkthdr.rcvif = ifp;
1064
1065 bpf_mtap(ifp, m);
1066 s = splnet();
1067 (*ifp->if_input)(ifp, m);
1068 splx(s);
1069
1070 return (0);
1071 }
1072
1073 static int
1074 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1075 struct lwp *l)
1076 {
1077 return tap_dev_ioctl(minor(dev), cmd, data, l);
1078 }
1079
1080 static int
1081 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1082 {
1083 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1084 }
1085
1086 static int
1087 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1088 {
1089 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1090
1091 if (sc == NULL)
1092 return ENXIO;
1093
1094 switch (cmd) {
1095 case FIONREAD:
1096 {
1097 struct ifnet *ifp = &sc->sc_ec.ec_if;
1098 struct mbuf *m;
1099 int s;
1100
1101 s = splnet();
1102 IFQ_POLL(&ifp->if_snd, m);
1103
1104 if (m == NULL)
1105 *(int *)data = 0;
1106 else
1107 *(int *)data = m->m_pkthdr.len;
1108 splx(s);
1109 return 0;
1110 }
1111 case TIOCSPGRP:
1112 case FIOSETOWN:
1113 return fsetown(&sc->sc_pgid, cmd, data);
1114 case TIOCGPGRP:
1115 case FIOGETOWN:
1116 return fgetown(sc->sc_pgid, cmd, data);
1117 case FIOASYNC:
1118 if (*(int *)data) {
1119 if (sc->sc_sih == NULL) {
1120 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1121 tap_softintr, sc);
1122 if (sc->sc_sih == NULL)
1123 return EBUSY; /* XXX */
1124 }
1125 sc->sc_flags |= TAP_ASYNCIO;
1126 } else {
1127 sc->sc_flags &= ~TAP_ASYNCIO;
1128 if (sc->sc_sih != NULL) {
1129 softint_disestablish(sc->sc_sih);
1130 sc->sc_sih = NULL;
1131 }
1132 }
1133 return 0;
1134 case FIONBIO:
1135 if (*(int *)data)
1136 sc->sc_flags |= TAP_NBIO;
1137 else
1138 sc->sc_flags &= ~TAP_NBIO;
1139 return 0;
1140 #ifdef OTAPGIFNAME
1141 case OTAPGIFNAME:
1142 #endif
1143 case TAPGIFNAME:
1144 {
1145 struct ifreq *ifr = (struct ifreq *)data;
1146 struct ifnet *ifp = &sc->sc_ec.ec_if;
1147
1148 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1149 return 0;
1150 }
1151 default:
1152 return ENOTTY;
1153 }
1154 }
1155
1156 static int
1157 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1158 {
1159 return tap_dev_poll(minor(dev), events, l);
1160 }
1161
1162 static int
1163 tap_fops_poll(file_t *fp, int events)
1164 {
1165 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1166 }
1167
1168 static int
1169 tap_dev_poll(int unit, int events, struct lwp *l)
1170 {
1171 struct tap_softc *sc =
1172 device_lookup_private(&tap_cd, unit);
1173 int revents = 0;
1174
1175 if (sc == NULL)
1176 return POLLERR;
1177
1178 if (events & (POLLIN|POLLRDNORM)) {
1179 struct ifnet *ifp = &sc->sc_ec.ec_if;
1180 struct mbuf *m;
1181 int s;
1182
1183 s = splnet();
1184 IFQ_POLL(&ifp->if_snd, m);
1185
1186 if (m != NULL)
1187 revents |= events & (POLLIN|POLLRDNORM);
1188 else {
1189 mutex_spin_enter(&sc->sc_kqlock);
1190 selrecord(l, &sc->sc_rsel);
1191 mutex_spin_exit(&sc->sc_kqlock);
1192 }
1193 splx(s);
1194 }
1195 revents |= events & (POLLOUT|POLLWRNORM);
1196
1197 return (revents);
1198 }
1199
1200 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1201 tap_kqread };
1202 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1203 filt_seltrue };
1204
1205 static int
1206 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1207 {
1208 return tap_dev_kqfilter(minor(dev), kn);
1209 }
1210
1211 static int
1212 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1213 {
1214 return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1215 }
1216
1217 static int
1218 tap_dev_kqfilter(int unit, struct knote *kn)
1219 {
1220 struct tap_softc *sc =
1221 device_lookup_private(&tap_cd, unit);
1222
1223 if (sc == NULL)
1224 return (ENXIO);
1225
1226 KERNEL_LOCK(1, NULL);
1227 switch(kn->kn_filter) {
1228 case EVFILT_READ:
1229 kn->kn_fop = &tap_read_filterops;
1230 break;
1231 case EVFILT_WRITE:
1232 kn->kn_fop = &tap_seltrue_filterops;
1233 break;
1234 default:
1235 KERNEL_UNLOCK_ONE(NULL);
1236 return (EINVAL);
1237 }
1238
1239 kn->kn_hook = sc;
1240 mutex_spin_enter(&sc->sc_kqlock);
1241 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1242 mutex_spin_exit(&sc->sc_kqlock);
1243 KERNEL_UNLOCK_ONE(NULL);
1244 return (0);
1245 }
1246
1247 static void
1248 tap_kqdetach(struct knote *kn)
1249 {
1250 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1251
1252 KERNEL_LOCK(1, NULL);
1253 mutex_spin_enter(&sc->sc_kqlock);
1254 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1255 mutex_spin_exit(&sc->sc_kqlock);
1256 KERNEL_UNLOCK_ONE(NULL);
1257 }
1258
1259 static int
1260 tap_kqread(struct knote *kn, long hint)
1261 {
1262 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1263 struct ifnet *ifp = &sc->sc_ec.ec_if;
1264 struct mbuf *m;
1265 int s, rv;
1266
1267 KERNEL_LOCK(1, NULL);
1268 s = splnet();
1269 IFQ_POLL(&ifp->if_snd, m);
1270
1271 if (m == NULL)
1272 kn->kn_data = 0;
1273 else
1274 kn->kn_data = m->m_pkthdr.len;
1275 splx(s);
1276 rv = (kn->kn_data != 0 ? 1 : 0);
1277 KERNEL_UNLOCK_ONE(NULL);
1278 return rv;
1279 }
1280
1281 #if defined(COMPAT_40) || defined(MODULAR)
1282 /*
1283 * sysctl management routines
1284 * You can set the address of an interface through:
1285 * net.link.tap.tap<number>
1286 *
1287 * Note the consistent use of tap_log in order to use
1288 * sysctl_teardown at unload time.
1289 *
1290 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1291 * blocks register a function in a special section of the kernel
1292 * (called a link set) which is used at init_sysctl() time to cycle
1293 * through all those functions to create the kernel's sysctl tree.
1294 *
1295 * It is not possible to use link sets in a module, so the
1296 * easiest is to simply call our own setup routine at load time.
1297 *
1298 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1299 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1300 * whole kernel sysctl tree is built, it is not possible to add any
1301 * permanent node.
1302 *
1303 * It should be noted that we're not saving the sysctlnode pointer
1304 * we are returned when creating the "tap" node. That structure
1305 * cannot be trusted once out of the calling function, as it might
1306 * get reused. So we just save the MIB number, and always give the
1307 * full path starting from the root for later calls to sysctl_createv
1308 * and sysctl_destroyv.
1309 */
1310 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1311 {
1312 const struct sysctlnode *node;
1313 int error = 0;
1314
1315 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1316 CTLFLAG_PERMANENT,
1317 CTLTYPE_NODE, "link", NULL,
1318 NULL, 0, NULL, 0,
1319 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1320 return;
1321
1322 /*
1323 * The first four parameters of sysctl_createv are for management.
1324 *
1325 * The four that follows, here starting with a '0' for the flags,
1326 * describe the node.
1327 *
1328 * The next series of four set its value, through various possible
1329 * means.
1330 *
1331 * Last but not least, the path to the node is described. That path
1332 * is relative to the given root (third argument). Here we're
1333 * starting from the root.
1334 */
1335 if ((error = sysctl_createv(clog, 0, NULL, &node,
1336 CTLFLAG_PERMANENT,
1337 CTLTYPE_NODE, "tap", NULL,
1338 NULL, 0, NULL, 0,
1339 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1340 return;
1341 tap_node = node->sysctl_num;
1342 }
1343
1344 /*
1345 * The helper functions make Andrew Brown's interface really
1346 * shine. It makes possible to create value on the fly whether
1347 * the sysctl value is read or written.
1348 *
1349 * As shown as an example in the man page, the first step is to
1350 * create a copy of the node to have sysctl_lookup work on it.
1351 *
1352 * Here, we have more work to do than just a copy, since we have
1353 * to create the string. The first step is to collect the actual
1354 * value of the node, which is a convenient pointer to the softc
1355 * of the interface. From there we create the string and use it
1356 * as the value, but only for the *copy* of the node.
1357 *
1358 * Then we let sysctl_lookup do the magic, which consists in
1359 * setting oldp and newp as required by the operation. When the
1360 * value is read, that means that the string will be copied to
1361 * the user, and when it is written, the new value will be copied
1362 * over in the addr array.
1363 *
1364 * If newp is NULL, the user was reading the value, so we don't
1365 * have anything else to do. If a new value was written, we
1366 * have to check it.
1367 *
1368 * If it is incorrect, we can return an error and leave 'node' as
1369 * it is: since it is a copy of the actual node, the change will
1370 * be forgotten.
1371 *
1372 * Upon a correct input, we commit the change to the ifnet
1373 * structure of our interface.
1374 */
1375 static int
1376 tap_sysctl_handler(SYSCTLFN_ARGS)
1377 {
1378 struct sysctlnode node;
1379 struct tap_softc *sc;
1380 struct ifnet *ifp;
1381 int error;
1382 size_t len;
1383 char addr[3 * ETHER_ADDR_LEN];
1384 uint8_t enaddr[ETHER_ADDR_LEN];
1385
1386 node = *rnode;
1387 sc = node.sysctl_data;
1388 ifp = &sc->sc_ec.ec_if;
1389 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1390 node.sysctl_data = addr;
1391 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1392 if (error || newp == NULL)
1393 return (error);
1394
1395 len = strlen(addr);
1396 if (len < 11 || len > 17)
1397 return (EINVAL);
1398
1399 /* Commit change */
1400 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1401 return (EINVAL);
1402 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1403 return (error);
1404 }
1405 #endif
1406