if_tap.c revision 1.78 1 /* $NetBSD: if_tap.c,v 1.78 2014/09/05 09:22:22 matt Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.78 2014/09/05 09:22:22 matt Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/ksyms.h>
54 #include <sys/poll.h>
55 #include <sys/proc.h>
56 #include <sys/select.h>
57 #include <sys/sockio.h>
58 #if defined(COMPAT_40) || defined(MODULAR)
59 #include <sys/sysctl.h>
60 #endif
61 #include <sys/kauth.h>
62 #include <sys/mutex.h>
63 #include <sys/intr.h>
64 #include <sys/stat.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72
73 #include <compat/sys/sockio.h>
74
75 #if defined(COMPAT_40) || defined(MODULAR)
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current module implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93 #endif
94
95 /*
96 * Since we're an Ethernet device, we need the 2 following
97 * components: a struct ethercom and a struct ifmedia
98 * since we don't attach a PHY to ourselves.
99 * We could emulate one, but there's no real point.
100 */
101
102 struct tap_softc {
103 device_t sc_dev;
104 struct ifmedia sc_im;
105 struct ethercom sc_ec;
106 int sc_flags;
107 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 struct selinfo sc_rsel;
112 pid_t sc_pgid; /* For async. IO */
113 kmutex_t sc_rdlock;
114 kmutex_t sc_kqlock;
115 void *sc_sih;
116 struct timespec sc_atime;
117 struct timespec sc_mtime;
118 struct timespec sc_btime;
119 };
120
121 /* autoconf(9) glue */
122
123 void tapattach(int);
124
125 static int tap_match(device_t, cfdata_t, void *);
126 static void tap_attach(device_t, device_t, void *);
127 static int tap_detach(device_t, int);
128
129 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
130 tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132
133 /* Real device access routines */
134 static int tap_dev_close(struct tap_softc *);
135 static int tap_dev_read(int, struct uio *, int);
136 static int tap_dev_write(int, struct uio *, int);
137 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
138 static int tap_dev_poll(int, int, struct lwp *);
139 static int tap_dev_kqfilter(int, struct knote *);
140
141 /* Fileops access routines */
142 static int tap_fops_close(file_t *);
143 static int tap_fops_read(file_t *, off_t *, struct uio *,
144 kauth_cred_t, int);
145 static int tap_fops_write(file_t *, off_t *, struct uio *,
146 kauth_cred_t, int);
147 static int tap_fops_ioctl(file_t *, u_long, void *);
148 static int tap_fops_poll(file_t *, int);
149 static int tap_fops_stat(file_t *, struct stat *);
150 static int tap_fops_kqfilter(file_t *, struct knote *);
151
152 static const struct fileops tap_fileops = {
153 .fo_read = tap_fops_read,
154 .fo_write = tap_fops_write,
155 .fo_ioctl = tap_fops_ioctl,
156 .fo_fcntl = fnullop_fcntl,
157 .fo_poll = tap_fops_poll,
158 .fo_stat = tap_fops_stat,
159 .fo_close = tap_fops_close,
160 .fo_kqfilter = tap_fops_kqfilter,
161 .fo_restart = fnullop_restart,
162 };
163
164 /* Helper for cloning open() */
165 static int tap_dev_cloner(struct lwp *);
166
167 /* Character device routines */
168 static int tap_cdev_open(dev_t, int, int, struct lwp *);
169 static int tap_cdev_close(dev_t, int, int, struct lwp *);
170 static int tap_cdev_read(dev_t, struct uio *, int);
171 static int tap_cdev_write(dev_t, struct uio *, int);
172 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
173 static int tap_cdev_poll(dev_t, int, struct lwp *);
174 static int tap_cdev_kqfilter(dev_t, struct knote *);
175
176 const struct cdevsw tap_cdevsw = {
177 .d_open = tap_cdev_open,
178 .d_close = tap_cdev_close,
179 .d_read = tap_cdev_read,
180 .d_write = tap_cdev_write,
181 .d_ioctl = tap_cdev_ioctl,
182 .d_stop = nostop,
183 .d_tty = notty,
184 .d_poll = tap_cdev_poll,
185 .d_mmap = nommap,
186 .d_kqfilter = tap_cdev_kqfilter,
187 .d_discard = nodiscard,
188 .d_flag = D_OTHER
189 };
190
191 #define TAP_CLONER 0xfffff /* Maximal minor value */
192
193 /* kqueue-related routines */
194 static void tap_kqdetach(struct knote *);
195 static int tap_kqread(struct knote *, long);
196
197 /*
198 * Those are needed by the if_media interface.
199 */
200
201 static int tap_mediachange(struct ifnet *);
202 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
203
204 /*
205 * Those are needed by the ifnet interface, and would typically be
206 * there for any network interface driver.
207 * Some other routines are optional: watchdog and drain.
208 */
209
210 static void tap_start(struct ifnet *);
211 static void tap_stop(struct ifnet *, int);
212 static int tap_init(struct ifnet *);
213 static int tap_ioctl(struct ifnet *, u_long, void *);
214
215 /* Internal functions */
216 #if defined(COMPAT_40) || defined(MODULAR)
217 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
218 #endif
219 static void tap_softintr(void *);
220
221 /*
222 * tap is a clonable interface, although it is highly unrealistic for
223 * an Ethernet device.
224 *
225 * Here are the bits needed for a clonable interface.
226 */
227 static int tap_clone_create(struct if_clone *, int);
228 static int tap_clone_destroy(struct ifnet *);
229
230 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
231 tap_clone_create,
232 tap_clone_destroy);
233
234 /* Helper functionis shared by the two cloning code paths */
235 static struct tap_softc * tap_clone_creator(int);
236 int tap_clone_destroyer(device_t);
237
238 void
239 tapattach(int n)
240 {
241 int error;
242
243 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
244 if (error) {
245 aprint_error("%s: unable to register cfattach\n",
246 tap_cd.cd_name);
247 (void)config_cfdriver_detach(&tap_cd);
248 return;
249 }
250
251 if_clone_attach(&tap_cloners);
252 }
253
254 /* Pretty much useless for a pseudo-device */
255 static int
256 tap_match(device_t parent, cfdata_t cfdata, void *arg)
257 {
258
259 return (1);
260 }
261
262 void
263 tap_attach(device_t parent, device_t self, void *aux)
264 {
265 struct tap_softc *sc = device_private(self);
266 struct ifnet *ifp;
267 #if defined(COMPAT_40) || defined(MODULAR)
268 const struct sysctlnode *node;
269 int error;
270 #endif
271 uint8_t enaddr[ETHER_ADDR_LEN] =
272 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
273 char enaddrstr[3 * ETHER_ADDR_LEN];
274
275 sc->sc_dev = self;
276 sc->sc_sih = NULL;
277 getnanotime(&sc->sc_btime);
278 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
279
280 if (!pmf_device_register(self, NULL, NULL))
281 aprint_error_dev(self, "couldn't establish power handler\n");
282
283 /*
284 * In order to obtain unique initial Ethernet address on a host,
285 * do some randomisation. It's not meant for anything but avoiding
286 * hard-coding an address.
287 */
288 cprng_fast(&enaddr[3], 3);
289
290 aprint_verbose_dev(self, "Ethernet address %s\n",
291 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
292
293 /*
294 * Why 1000baseT? Why not? You can add more.
295 *
296 * Note that there are 3 steps: init, one or several additions to
297 * list of supported media, and in the end, the selection of one
298 * of them.
299 */
300 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
303 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
304 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
305 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
306 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
307 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
308 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
309
310 /*
311 * One should note that an interface must do multicast in order
312 * to support IPv6.
313 */
314 ifp = &sc->sc_ec.ec_if;
315 strcpy(ifp->if_xname, device_xname(self));
316 ifp->if_softc = sc;
317 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
318 ifp->if_ioctl = tap_ioctl;
319 ifp->if_start = tap_start;
320 ifp->if_stop = tap_stop;
321 ifp->if_init = tap_init;
322 IFQ_SET_READY(&ifp->if_snd);
323
324 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
325
326 /* Those steps are mandatory for an Ethernet driver, the fisrt call
327 * being common to all network interface drivers. */
328 if_attach(ifp);
329 ether_ifattach(ifp, enaddr);
330
331 sc->sc_flags = 0;
332
333 #if defined(COMPAT_40) || defined(MODULAR)
334 /*
335 * Add a sysctl node for that interface.
336 *
337 * The pointer transmitted is not a string, but instead a pointer to
338 * the softc structure, which we can use to build the string value on
339 * the fly in the helper function of the node. See the comments for
340 * tap_sysctl_handler for details.
341 *
342 * Usually sysctl_createv is called with CTL_CREATE as the before-last
343 * component. However, we can allocate a number ourselves, as we are
344 * the only consumer of the net.link.<iface> node. In this case, the
345 * unit number is conveniently used to number the node. CTL_CREATE
346 * would just work, too.
347 */
348 if ((error = sysctl_createv(NULL, 0, NULL,
349 &node, CTLFLAG_READWRITE,
350 CTLTYPE_STRING, device_xname(self), NULL,
351 tap_sysctl_handler, 0, (void *)sc, 18,
352 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
353 CTL_EOL)) != 0)
354 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
355 error);
356 #endif
357
358 /*
359 * Initialize the two locks for the device.
360 *
361 * We need a lock here because even though the tap device can be
362 * opened only once, the file descriptor might be passed to another
363 * process, say a fork(2)ed child.
364 *
365 * The Giant saves us from most of the hassle, but since the read
366 * operation can sleep, we don't want two processes to wake up at
367 * the same moment and both try and dequeue a single packet.
368 *
369 * The queue for event listeners (used by kqueue(9), see below) has
370 * to be protected too, so use a spin lock.
371 */
372 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
373 mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
374
375 selinit(&sc->sc_rsel);
376 }
377
378 /*
379 * When detaching, we do the inverse of what is done in the attach
380 * routine, in reversed order.
381 */
382 static int
383 tap_detach(device_t self, int flags)
384 {
385 struct tap_softc *sc = device_private(self);
386 struct ifnet *ifp = &sc->sc_ec.ec_if;
387 #if defined(COMPAT_40) || defined(MODULAR)
388 int error;
389 #endif
390 int s;
391
392 sc->sc_flags |= TAP_GOING;
393 s = splnet();
394 tap_stop(ifp, 1);
395 if_down(ifp);
396 splx(s);
397
398 if (sc->sc_sih != NULL) {
399 softint_disestablish(sc->sc_sih);
400 sc->sc_sih = NULL;
401 }
402
403 #if defined(COMPAT_40) || defined(MODULAR)
404 /*
405 * Destroying a single leaf is a very straightforward operation using
406 * sysctl_destroyv. One should be sure to always end the path with
407 * CTL_EOL.
408 */
409 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
410 device_unit(sc->sc_dev), CTL_EOL)) != 0)
411 aprint_error_dev(self,
412 "sysctl_destroyv returned %d, ignoring\n", error);
413 #endif
414 ether_ifdetach(ifp);
415 if_detach(ifp);
416 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
417 seldestroy(&sc->sc_rsel);
418 mutex_destroy(&sc->sc_rdlock);
419 mutex_destroy(&sc->sc_kqlock);
420
421 pmf_device_deregister(self);
422
423 return (0);
424 }
425
426 /*
427 * This function is called by the ifmedia layer to notify the driver
428 * that the user requested a media change. A real driver would
429 * reconfigure the hardware.
430 */
431 static int
432 tap_mediachange(struct ifnet *ifp)
433 {
434 return (0);
435 }
436
437 /*
438 * Here the user asks for the currently used media.
439 */
440 static void
441 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
442 {
443 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
444 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
445 }
446
447 /*
448 * This is the function where we SEND packets.
449 *
450 * There is no 'receive' equivalent. A typical driver will get
451 * interrupts from the hardware, and from there will inject new packets
452 * into the network stack.
453 *
454 * Once handled, a packet must be freed. A real driver might not be able
455 * to fit all the pending packets into the hardware, and is allowed to
456 * return before having sent all the packets. It should then use the
457 * if_flags flag IFF_OACTIVE to notify the upper layer.
458 *
459 * There are also other flags one should check, such as IFF_PAUSE.
460 *
461 * It is our duty to make packets available to BPF listeners.
462 *
463 * You should be aware that this function is called by the Ethernet layer
464 * at splnet().
465 *
466 * When the device is opened, we have to pass the packet(s) to the
467 * userland. For that we stay in OACTIVE mode while the userland gets
468 * the packets, and we send a signal to the processes waiting to read.
469 *
470 * wakeup(sc) is the counterpart to the tsleep call in
471 * tap_dev_read, while selnotify() is used for kevent(2) and
472 * poll(2) (which includes select(2)) listeners.
473 */
474 static void
475 tap_start(struct ifnet *ifp)
476 {
477 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
478 struct mbuf *m0;
479
480 if ((sc->sc_flags & TAP_INUSE) == 0) {
481 /* Simply drop packets */
482 for(;;) {
483 IFQ_DEQUEUE(&ifp->if_snd, m0);
484 if (m0 == NULL)
485 return;
486
487 ifp->if_opackets++;
488 bpf_mtap(ifp, m0);
489
490 m_freem(m0);
491 }
492 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
493 ifp->if_flags |= IFF_OACTIVE;
494 wakeup(sc);
495 selnotify(&sc->sc_rsel, 0, 1);
496 if (sc->sc_flags & TAP_ASYNCIO)
497 softint_schedule(sc->sc_sih);
498 }
499 }
500
501 static void
502 tap_softintr(void *cookie)
503 {
504 struct tap_softc *sc;
505 struct ifnet *ifp;
506 int a, b;
507
508 sc = cookie;
509
510 if (sc->sc_flags & TAP_ASYNCIO) {
511 ifp = &sc->sc_ec.ec_if;
512 if (ifp->if_flags & IFF_RUNNING) {
513 a = POLL_IN;
514 b = POLLIN|POLLRDNORM;
515 } else {
516 a = POLL_HUP;
517 b = 0;
518 }
519 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
520 }
521 }
522
523 /*
524 * A typical driver will only contain the following handlers for
525 * ioctl calls, except SIOCSIFPHYADDR.
526 * The latter is a hack I used to set the Ethernet address of the
527 * faked device.
528 *
529 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
530 * called under splnet().
531 */
532 static int
533 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
534 {
535 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
536 struct ifreq *ifr = (struct ifreq *)data;
537 int s, error;
538
539 s = splnet();
540
541 switch (cmd) {
542 #ifdef OSIOCSIFMEDIA
543 case OSIOCSIFMEDIA:
544 #endif
545 case SIOCSIFMEDIA:
546 case SIOCGIFMEDIA:
547 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
548 break;
549 #if defined(COMPAT_40) || defined(MODULAR)
550 case SIOCSIFPHYADDR:
551 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
552 break;
553 #endif
554 default:
555 error = ether_ioctl(ifp, cmd, data);
556 if (error == ENETRESET)
557 error = 0;
558 break;
559 }
560
561 splx(s);
562
563 return (error);
564 }
565
566 #if defined(COMPAT_40) || defined(MODULAR)
567 /*
568 * Helper function to set Ethernet address. This has been replaced by
569 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
570 */
571 static int
572 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
573 {
574 const struct sockaddr *sa = &ifra->ifra_addr;
575
576 if (sa->sa_family != AF_LINK)
577 return (EINVAL);
578
579 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
580
581 return (0);
582 }
583 #endif
584
585 /*
586 * _init() would typically be called when an interface goes up,
587 * meaning it should configure itself into the state in which it
588 * can send packets.
589 */
590 static int
591 tap_init(struct ifnet *ifp)
592 {
593 ifp->if_flags |= IFF_RUNNING;
594
595 tap_start(ifp);
596
597 return (0);
598 }
599
600 /*
601 * _stop() is called when an interface goes down. It is our
602 * responsability to validate that state by clearing the
603 * IFF_RUNNING flag.
604 *
605 * We have to wake up all the sleeping processes to have the pending
606 * read requests cancelled.
607 */
608 static void
609 tap_stop(struct ifnet *ifp, int disable)
610 {
611 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
612
613 ifp->if_flags &= ~IFF_RUNNING;
614 wakeup(sc);
615 selnotify(&sc->sc_rsel, 0, 1);
616 if (sc->sc_flags & TAP_ASYNCIO)
617 softint_schedule(sc->sc_sih);
618 }
619
620 /*
621 * The 'create' command of ifconfig can be used to create
622 * any numbered instance of a given device. Thus we have to
623 * make sure we have enough room in cd_devs to create the
624 * user-specified instance. config_attach_pseudo will do this
625 * for us.
626 */
627 static int
628 tap_clone_create(struct if_clone *ifc, int unit)
629 {
630 if (tap_clone_creator(unit) == NULL) {
631 aprint_error("%s%d: unable to attach an instance\n",
632 tap_cd.cd_name, unit);
633 return (ENXIO);
634 }
635
636 return (0);
637 }
638
639 /*
640 * tap(4) can be cloned by two ways:
641 * using 'ifconfig tap0 create', which will use the network
642 * interface cloning API, and call tap_clone_create above.
643 * opening the cloning device node, whose minor number is TAP_CLONER.
644 * See below for an explanation on how this part work.
645 */
646 static struct tap_softc *
647 tap_clone_creator(int unit)
648 {
649 struct cfdata *cf;
650
651 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
652 cf->cf_name = tap_cd.cd_name;
653 cf->cf_atname = tap_ca.ca_name;
654 if (unit == -1) {
655 /* let autoconf find the first free one */
656 cf->cf_unit = 0;
657 cf->cf_fstate = FSTATE_STAR;
658 } else {
659 cf->cf_unit = unit;
660 cf->cf_fstate = FSTATE_NOTFOUND;
661 }
662
663 return device_private(config_attach_pseudo(cf));
664 }
665
666 /*
667 * The clean design of if_clone and autoconf(9) makes that part
668 * really straightforward. The second argument of config_detach
669 * means neither QUIET nor FORCED.
670 */
671 static int
672 tap_clone_destroy(struct ifnet *ifp)
673 {
674 struct tap_softc *sc = ifp->if_softc;
675
676 return tap_clone_destroyer(sc->sc_dev);
677 }
678
679 int
680 tap_clone_destroyer(device_t dev)
681 {
682 cfdata_t cf = device_cfdata(dev);
683 int error;
684
685 if ((error = config_detach(dev, 0)) != 0)
686 aprint_error_dev(dev, "unable to detach instance\n");
687 free(cf, M_DEVBUF);
688
689 return (error);
690 }
691
692 /*
693 * tap(4) is a bit of an hybrid device. It can be used in two different
694 * ways:
695 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
696 * 2. open /dev/tap, get a new interface created and read/write off it.
697 * That interface is destroyed when the process that had it created exits.
698 *
699 * The first way is managed by the cdevsw structure, and you access interfaces
700 * through a (major, minor) mapping: tap4 is obtained by the minor number
701 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
702 *
703 * The second way is the so-called "cloning" device. It's a special minor
704 * number (chosen as the maximal number, to allow as much tap devices as
705 * possible). The user first opens the cloner (e.g., /dev/tap), and that
706 * call ends in tap_cdev_open. The actual place where it is handled is
707 * tap_dev_cloner.
708 *
709 * An tap device cannot be opened more than once at a time, so the cdevsw
710 * part of open() does nothing but noting that the interface is being used and
711 * hence ready to actually handle packets.
712 */
713
714 static int
715 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
716 {
717 struct tap_softc *sc;
718
719 if (minor(dev) == TAP_CLONER)
720 return tap_dev_cloner(l);
721
722 sc = device_lookup_private(&tap_cd, minor(dev));
723 if (sc == NULL)
724 return (ENXIO);
725
726 /* The device can only be opened once */
727 if (sc->sc_flags & TAP_INUSE)
728 return (EBUSY);
729 sc->sc_flags |= TAP_INUSE;
730 return (0);
731 }
732
733 /*
734 * There are several kinds of cloning devices, and the most simple is the one
735 * tap(4) uses. What it does is change the file descriptor with a new one,
736 * with its own fileops structure (which maps to the various read, write,
737 * ioctl functions). It starts allocating a new file descriptor with falloc,
738 * then actually creates the new tap devices.
739 *
740 * Once those two steps are successful, we can re-wire the existing file
741 * descriptor to its new self. This is done with fdclone(): it fills the fp
742 * structure as needed (notably f_devunit gets filled with the fifth parameter
743 * passed, the unit of the tap device which will allows us identifying the
744 * device later), and returns EMOVEFD.
745 *
746 * That magic value is interpreted by sys_open() which then replaces the
747 * current file descriptor by the new one (through a magic member of struct
748 * lwp, l_dupfd).
749 *
750 * The tap device is flagged as being busy since it otherwise could be
751 * externally accessed through the corresponding device node with the cdevsw
752 * interface.
753 */
754
755 static int
756 tap_dev_cloner(struct lwp *l)
757 {
758 struct tap_softc *sc;
759 file_t *fp;
760 int error, fd;
761
762 if ((error = fd_allocfile(&fp, &fd)) != 0)
763 return (error);
764
765 if ((sc = tap_clone_creator(-1)) == NULL) {
766 fd_abort(curproc, fp, fd);
767 return (ENXIO);
768 }
769
770 sc->sc_flags |= TAP_INUSE;
771
772 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
773 (void *)(intptr_t)device_unit(sc->sc_dev));
774 }
775
776 /*
777 * While all other operations (read, write, ioctl, poll and kqfilter) are
778 * really the same whether we are in cdevsw or fileops mode, the close()
779 * function is slightly different in the two cases.
780 *
781 * As for the other, the core of it is shared in tap_dev_close. What
782 * it does is sufficient for the cdevsw interface, but the cloning interface
783 * needs another thing: the interface is destroyed when the processes that
784 * created it closes it.
785 */
786 static int
787 tap_cdev_close(dev_t dev, int flags, int fmt,
788 struct lwp *l)
789 {
790 struct tap_softc *sc =
791 device_lookup_private(&tap_cd, minor(dev));
792
793 if (sc == NULL)
794 return (ENXIO);
795
796 return tap_dev_close(sc);
797 }
798
799 /*
800 * It might happen that the administrator used ifconfig to externally destroy
801 * the interface. In that case, tap_fops_close will be called while
802 * tap_detach is already happening. If we called it again from here, we
803 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
804 */
805 static int
806 tap_fops_close(file_t *fp)
807 {
808 int unit = fp->f_devunit;
809 struct tap_softc *sc;
810 int error;
811
812 sc = device_lookup_private(&tap_cd, unit);
813 if (sc == NULL)
814 return (ENXIO);
815
816 /* tap_dev_close currently always succeeds, but it might not
817 * always be the case. */
818 KERNEL_LOCK(1, NULL);
819 if ((error = tap_dev_close(sc)) != 0) {
820 KERNEL_UNLOCK_ONE(NULL);
821 return (error);
822 }
823
824 /* Destroy the device now that it is no longer useful,
825 * unless it's already being destroyed. */
826 if ((sc->sc_flags & TAP_GOING) != 0) {
827 KERNEL_UNLOCK_ONE(NULL);
828 return (0);
829 }
830
831 error = tap_clone_destroyer(sc->sc_dev);
832 KERNEL_UNLOCK_ONE(NULL);
833 return error;
834 }
835
836 static int
837 tap_dev_close(struct tap_softc *sc)
838 {
839 struct ifnet *ifp;
840 int s;
841
842 s = splnet();
843 /* Let tap_start handle packets again */
844 ifp = &sc->sc_ec.ec_if;
845 ifp->if_flags &= ~IFF_OACTIVE;
846
847 /* Purge output queue */
848 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
849 struct mbuf *m;
850
851 for (;;) {
852 IFQ_DEQUEUE(&ifp->if_snd, m);
853 if (m == NULL)
854 break;
855
856 ifp->if_opackets++;
857 bpf_mtap(ifp, m);
858 m_freem(m);
859 }
860 }
861 splx(s);
862
863 if (sc->sc_sih != NULL) {
864 softint_disestablish(sc->sc_sih);
865 sc->sc_sih = NULL;
866 }
867 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
868
869 return (0);
870 }
871
872 static int
873 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
874 {
875 return tap_dev_read(minor(dev), uio, flags);
876 }
877
878 static int
879 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
880 kauth_cred_t cred, int flags)
881 {
882 int error;
883
884 KERNEL_LOCK(1, NULL);
885 error = tap_dev_read(fp->f_devunit, uio, flags);
886 KERNEL_UNLOCK_ONE(NULL);
887 return error;
888 }
889
890 static int
891 tap_dev_read(int unit, struct uio *uio, int flags)
892 {
893 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
894 struct ifnet *ifp;
895 struct mbuf *m, *n;
896 int error = 0, s;
897
898 if (sc == NULL)
899 return (ENXIO);
900
901 getnanotime(&sc->sc_atime);
902
903 ifp = &sc->sc_ec.ec_if;
904 if ((ifp->if_flags & IFF_UP) == 0)
905 return (EHOSTDOWN);
906
907 /*
908 * In the TAP_NBIO case, we have to make sure we won't be sleeping
909 */
910 if ((sc->sc_flags & TAP_NBIO) != 0) {
911 if (!mutex_tryenter(&sc->sc_rdlock))
912 return (EWOULDBLOCK);
913 } else {
914 mutex_enter(&sc->sc_rdlock);
915 }
916
917 s = splnet();
918 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
919 ifp->if_flags &= ~IFF_OACTIVE;
920 /*
921 * We must release the lock before sleeping, and re-acquire it
922 * after.
923 */
924 mutex_exit(&sc->sc_rdlock);
925 if (sc->sc_flags & TAP_NBIO)
926 error = EWOULDBLOCK;
927 else
928 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
929 splx(s);
930
931 if (error != 0)
932 return (error);
933 /* The device might have been downed */
934 if ((ifp->if_flags & IFF_UP) == 0)
935 return (EHOSTDOWN);
936 if ((sc->sc_flags & TAP_NBIO)) {
937 if (!mutex_tryenter(&sc->sc_rdlock))
938 return (EWOULDBLOCK);
939 } else {
940 mutex_enter(&sc->sc_rdlock);
941 }
942 s = splnet();
943 }
944
945 IFQ_DEQUEUE(&ifp->if_snd, m);
946 ifp->if_flags &= ~IFF_OACTIVE;
947 splx(s);
948 if (m == NULL) {
949 error = 0;
950 goto out;
951 }
952
953 ifp->if_opackets++;
954 bpf_mtap(ifp, m);
955
956 /*
957 * One read is one packet.
958 */
959 do {
960 error = uiomove(mtod(m, void *),
961 min(m->m_len, uio->uio_resid), uio);
962 MFREE(m, n);
963 m = n;
964 } while (m != NULL && uio->uio_resid > 0 && error == 0);
965
966 if (m != NULL)
967 m_freem(m);
968
969 out:
970 mutex_exit(&sc->sc_rdlock);
971 return (error);
972 }
973
974 static int
975 tap_fops_stat(file_t *fp, struct stat *st)
976 {
977 int error = 0;
978 struct tap_softc *sc;
979 int unit = fp->f_devunit;
980
981 (void)memset(st, 0, sizeof(*st));
982
983 KERNEL_LOCK(1, NULL);
984 sc = device_lookup_private(&tap_cd, unit);
985 if (sc == NULL) {
986 error = ENXIO;
987 goto out;
988 }
989
990 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
991 st->st_atimespec = sc->sc_atime;
992 st->st_mtimespec = sc->sc_mtime;
993 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
994 st->st_uid = kauth_cred_geteuid(fp->f_cred);
995 st->st_gid = kauth_cred_getegid(fp->f_cred);
996 out:
997 KERNEL_UNLOCK_ONE(NULL);
998 return error;
999 }
1000
1001 static int
1002 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1003 {
1004 return tap_dev_write(minor(dev), uio, flags);
1005 }
1006
1007 static int
1008 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1009 kauth_cred_t cred, int flags)
1010 {
1011 int error;
1012
1013 KERNEL_LOCK(1, NULL);
1014 error = tap_dev_write(fp->f_devunit, uio, flags);
1015 KERNEL_UNLOCK_ONE(NULL);
1016 return error;
1017 }
1018
1019 static int
1020 tap_dev_write(int unit, struct uio *uio, int flags)
1021 {
1022 struct tap_softc *sc =
1023 device_lookup_private(&tap_cd, unit);
1024 struct ifnet *ifp;
1025 struct mbuf *m, **mp;
1026 int error = 0;
1027 int s;
1028
1029 if (sc == NULL)
1030 return (ENXIO);
1031
1032 getnanotime(&sc->sc_mtime);
1033 ifp = &sc->sc_ec.ec_if;
1034
1035 /* One write, one packet, that's the rule */
1036 MGETHDR(m, M_DONTWAIT, MT_DATA);
1037 if (m == NULL) {
1038 ifp->if_ierrors++;
1039 return (ENOBUFS);
1040 }
1041 m->m_pkthdr.len = uio->uio_resid;
1042
1043 mp = &m;
1044 while (error == 0 && uio->uio_resid > 0) {
1045 if (*mp != m) {
1046 MGET(*mp, M_DONTWAIT, MT_DATA);
1047 if (*mp == NULL) {
1048 error = ENOBUFS;
1049 break;
1050 }
1051 }
1052 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1053 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1054 mp = &(*mp)->m_next;
1055 }
1056 if (error) {
1057 ifp->if_ierrors++;
1058 m_freem(m);
1059 return (error);
1060 }
1061
1062 ifp->if_ipackets++;
1063 m->m_pkthdr.rcvif = ifp;
1064
1065 bpf_mtap(ifp, m);
1066 s = splnet();
1067 (*ifp->if_input)(ifp, m);
1068 splx(s);
1069
1070 return (0);
1071 }
1072
1073 static int
1074 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1075 struct lwp *l)
1076 {
1077 return tap_dev_ioctl(minor(dev), cmd, data, l);
1078 }
1079
1080 static int
1081 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1082 {
1083 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1084 }
1085
1086 static int
1087 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1088 {
1089 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1090
1091 if (sc == NULL)
1092 return ENXIO;
1093
1094 switch (cmd) {
1095 case FIONREAD:
1096 {
1097 struct ifnet *ifp = &sc->sc_ec.ec_if;
1098 struct mbuf *m;
1099 int s;
1100
1101 s = splnet();
1102 IFQ_POLL(&ifp->if_snd, m);
1103
1104 if (m == NULL)
1105 *(int *)data = 0;
1106 else
1107 *(int *)data = m->m_pkthdr.len;
1108 splx(s);
1109 return 0;
1110 }
1111 case TIOCSPGRP:
1112 case FIOSETOWN:
1113 return fsetown(&sc->sc_pgid, cmd, data);
1114 case TIOCGPGRP:
1115 case FIOGETOWN:
1116 return fgetown(sc->sc_pgid, cmd, data);
1117 case FIOASYNC:
1118 if (*(int *)data) {
1119 if (sc->sc_sih == NULL) {
1120 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1121 tap_softintr, sc);
1122 if (sc->sc_sih == NULL)
1123 return EBUSY; /* XXX */
1124 }
1125 sc->sc_flags |= TAP_ASYNCIO;
1126 } else {
1127 sc->sc_flags &= ~TAP_ASYNCIO;
1128 if (sc->sc_sih != NULL) {
1129 softint_disestablish(sc->sc_sih);
1130 sc->sc_sih = NULL;
1131 }
1132 }
1133 return 0;
1134 case FIONBIO:
1135 if (*(int *)data)
1136 sc->sc_flags |= TAP_NBIO;
1137 else
1138 sc->sc_flags &= ~TAP_NBIO;
1139 return 0;
1140 #ifdef OTAPGIFNAME
1141 case OTAPGIFNAME:
1142 #endif
1143 case TAPGIFNAME:
1144 {
1145 struct ifreq *ifr = (struct ifreq *)data;
1146 struct ifnet *ifp = &sc->sc_ec.ec_if;
1147
1148 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1149 return 0;
1150 }
1151 default:
1152 return ENOTTY;
1153 }
1154 }
1155
1156 static int
1157 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1158 {
1159 return tap_dev_poll(minor(dev), events, l);
1160 }
1161
1162 static int
1163 tap_fops_poll(file_t *fp, int events)
1164 {
1165 return tap_dev_poll(fp->f_devunit, events, curlwp);
1166 }
1167
1168 static int
1169 tap_dev_poll(int unit, int events, struct lwp *l)
1170 {
1171 struct tap_softc *sc =
1172 device_lookup_private(&tap_cd, unit);
1173 int revents = 0;
1174
1175 if (sc == NULL)
1176 return POLLERR;
1177
1178 if (events & (POLLIN|POLLRDNORM)) {
1179 struct ifnet *ifp = &sc->sc_ec.ec_if;
1180 struct mbuf *m;
1181 int s;
1182
1183 s = splnet();
1184 IFQ_POLL(&ifp->if_snd, m);
1185
1186 if (m != NULL)
1187 revents |= events & (POLLIN|POLLRDNORM);
1188 else {
1189 mutex_spin_enter(&sc->sc_kqlock);
1190 selrecord(l, &sc->sc_rsel);
1191 mutex_spin_exit(&sc->sc_kqlock);
1192 }
1193 splx(s);
1194 }
1195 revents |= events & (POLLOUT|POLLWRNORM);
1196
1197 return (revents);
1198 }
1199
1200 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1201 tap_kqread };
1202 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1203 filt_seltrue };
1204
1205 static int
1206 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1207 {
1208 return tap_dev_kqfilter(minor(dev), kn);
1209 }
1210
1211 static int
1212 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1213 {
1214 return tap_dev_kqfilter(fp->f_devunit, kn);
1215 }
1216
1217 static int
1218 tap_dev_kqfilter(int unit, struct knote *kn)
1219 {
1220 struct tap_softc *sc =
1221 device_lookup_private(&tap_cd, unit);
1222
1223 if (sc == NULL)
1224 return (ENXIO);
1225
1226 KERNEL_LOCK(1, NULL);
1227 switch(kn->kn_filter) {
1228 case EVFILT_READ:
1229 kn->kn_fop = &tap_read_filterops;
1230 break;
1231 case EVFILT_WRITE:
1232 kn->kn_fop = &tap_seltrue_filterops;
1233 break;
1234 default:
1235 KERNEL_UNLOCK_ONE(NULL);
1236 return (EINVAL);
1237 }
1238
1239 kn->kn_hook = sc;
1240 mutex_spin_enter(&sc->sc_kqlock);
1241 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1242 mutex_spin_exit(&sc->sc_kqlock);
1243 KERNEL_UNLOCK_ONE(NULL);
1244 return (0);
1245 }
1246
1247 static void
1248 tap_kqdetach(struct knote *kn)
1249 {
1250 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1251
1252 KERNEL_LOCK(1, NULL);
1253 mutex_spin_enter(&sc->sc_kqlock);
1254 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1255 mutex_spin_exit(&sc->sc_kqlock);
1256 KERNEL_UNLOCK_ONE(NULL);
1257 }
1258
1259 static int
1260 tap_kqread(struct knote *kn, long hint)
1261 {
1262 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1263 struct ifnet *ifp = &sc->sc_ec.ec_if;
1264 struct mbuf *m;
1265 int s, rv;
1266
1267 KERNEL_LOCK(1, NULL);
1268 s = splnet();
1269 IFQ_POLL(&ifp->if_snd, m);
1270
1271 if (m == NULL)
1272 kn->kn_data = 0;
1273 else
1274 kn->kn_data = m->m_pkthdr.len;
1275 splx(s);
1276 rv = (kn->kn_data != 0 ? 1 : 0);
1277 KERNEL_UNLOCK_ONE(NULL);
1278 return rv;
1279 }
1280
1281 #if defined(COMPAT_40) || defined(MODULAR)
1282 /*
1283 * sysctl management routines
1284 * You can set the address of an interface through:
1285 * net.link.tap.tap<number>
1286 *
1287 * Note the consistent use of tap_log in order to use
1288 * sysctl_teardown at unload time.
1289 *
1290 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1291 * blocks register a function in a special section of the kernel
1292 * (called a link set) which is used at init_sysctl() time to cycle
1293 * through all those functions to create the kernel's sysctl tree.
1294 *
1295 * It is not possible to use link sets in a module, so the
1296 * easiest is to simply call our own setup routine at load time.
1297 *
1298 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1299 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1300 * whole kernel sysctl tree is built, it is not possible to add any
1301 * permanent node.
1302 *
1303 * It should be noted that we're not saving the sysctlnode pointer
1304 * we are returned when creating the "tap" node. That structure
1305 * cannot be trusted once out of the calling function, as it might
1306 * get reused. So we just save the MIB number, and always give the
1307 * full path starting from the root for later calls to sysctl_createv
1308 * and sysctl_destroyv.
1309 */
1310 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1311 {
1312 const struct sysctlnode *node;
1313 int error = 0;
1314
1315 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1316 CTLFLAG_PERMANENT,
1317 CTLTYPE_NODE, "link", NULL,
1318 NULL, 0, NULL, 0,
1319 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1320 return;
1321
1322 /*
1323 * The first four parameters of sysctl_createv are for management.
1324 *
1325 * The four that follows, here starting with a '0' for the flags,
1326 * describe the node.
1327 *
1328 * The next series of four set its value, through various possible
1329 * means.
1330 *
1331 * Last but not least, the path to the node is described. That path
1332 * is relative to the given root (third argument). Here we're
1333 * starting from the root.
1334 */
1335 if ((error = sysctl_createv(clog, 0, NULL, &node,
1336 CTLFLAG_PERMANENT,
1337 CTLTYPE_NODE, "tap", NULL,
1338 NULL, 0, NULL, 0,
1339 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1340 return;
1341 tap_node = node->sysctl_num;
1342 }
1343
1344 /*
1345 * The helper functions make Andrew Brown's interface really
1346 * shine. It makes possible to create value on the fly whether
1347 * the sysctl value is read or written.
1348 *
1349 * As shown as an example in the man page, the first step is to
1350 * create a copy of the node to have sysctl_lookup work on it.
1351 *
1352 * Here, we have more work to do than just a copy, since we have
1353 * to create the string. The first step is to collect the actual
1354 * value of the node, which is a convenient pointer to the softc
1355 * of the interface. From there we create the string and use it
1356 * as the value, but only for the *copy* of the node.
1357 *
1358 * Then we let sysctl_lookup do the magic, which consists in
1359 * setting oldp and newp as required by the operation. When the
1360 * value is read, that means that the string will be copied to
1361 * the user, and when it is written, the new value will be copied
1362 * over in the addr array.
1363 *
1364 * If newp is NULL, the user was reading the value, so we don't
1365 * have anything else to do. If a new value was written, we
1366 * have to check it.
1367 *
1368 * If it is incorrect, we can return an error and leave 'node' as
1369 * it is: since it is a copy of the actual node, the change will
1370 * be forgotten.
1371 *
1372 * Upon a correct input, we commit the change to the ifnet
1373 * structure of our interface.
1374 */
1375 static int
1376 tap_sysctl_handler(SYSCTLFN_ARGS)
1377 {
1378 struct sysctlnode node;
1379 struct tap_softc *sc;
1380 struct ifnet *ifp;
1381 int error;
1382 size_t len;
1383 char addr[3 * ETHER_ADDR_LEN];
1384 uint8_t enaddr[ETHER_ADDR_LEN];
1385
1386 node = *rnode;
1387 sc = node.sysctl_data;
1388 ifp = &sc->sc_ec.ec_if;
1389 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1390 node.sysctl_data = addr;
1391 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1392 if (error || newp == NULL)
1393 return (error);
1394
1395 len = strlen(addr);
1396 if (len < 11 || len > 17)
1397 return (EINVAL);
1398
1399 /* Commit change */
1400 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1401 return (EINVAL);
1402 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1403 return (error);
1404 }
1405 #endif
1406