Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.78
      1 /*	$NetBSD: if_tap.c,v 1.78 2014/09/05 09:22:22 matt Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.78 2014/09/05 09:22:22 matt Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/cprng.h>
     50 #include <sys/device.h>
     51 #include <sys/file.h>
     52 #include <sys/filedesc.h>
     53 #include <sys/ksyms.h>
     54 #include <sys/poll.h>
     55 #include <sys/proc.h>
     56 #include <sys/select.h>
     57 #include <sys/sockio.h>
     58 #if defined(COMPAT_40) || defined(MODULAR)
     59 #include <sys/sysctl.h>
     60 #endif
     61 #include <sys/kauth.h>
     62 #include <sys/mutex.h>
     63 #include <sys/intr.h>
     64 #include <sys/stat.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #include <net/bpf.h>
     72 
     73 #include <compat/sys/sockio.h>
     74 
     75 #if defined(COMPAT_40) || defined(MODULAR)
     76 /*
     77  * sysctl node management
     78  *
     79  * It's not really possible to use a SYSCTL_SETUP block with
     80  * current module implementation, so it is easier to just define
     81  * our own function.
     82  *
     83  * The handler function is a "helper" in Andrew Brown's sysctl
     84  * framework terminology.  It is used as a gateway for sysctl
     85  * requests over the nodes.
     86  *
     87  * tap_log allows the module to log creations of nodes and
     88  * destroy them all at once using sysctl_teardown.
     89  */
     90 static int tap_node;
     91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93 #endif
     94 
     95 /*
     96  * Since we're an Ethernet device, we need the 2 following
     97  * components: a struct ethercom and a struct ifmedia
     98  * since we don't attach a PHY to ourselves.
     99  * We could emulate one, but there's no real point.
    100  */
    101 
    102 struct tap_softc {
    103 	device_t	sc_dev;
    104 	struct ifmedia	sc_im;
    105 	struct ethercom	sc_ec;
    106 	int		sc_flags;
    107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111 	struct selinfo	sc_rsel;
    112 	pid_t		sc_pgid; /* For async. IO */
    113 	kmutex_t	sc_rdlock;
    114 	kmutex_t	sc_kqlock;
    115 	void		*sc_sih;
    116 	struct timespec sc_atime;
    117 	struct timespec sc_mtime;
    118 	struct timespec sc_btime;
    119 };
    120 
    121 /* autoconf(9) glue */
    122 
    123 void	tapattach(int);
    124 
    125 static int	tap_match(device_t, cfdata_t, void *);
    126 static void	tap_attach(device_t, device_t, void *);
    127 static int	tap_detach(device_t, int);
    128 
    129 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    130     tap_match, tap_attach, tap_detach, NULL);
    131 extern struct cfdriver tap_cd;
    132 
    133 /* Real device access routines */
    134 static int	tap_dev_close(struct tap_softc *);
    135 static int	tap_dev_read(int, struct uio *, int);
    136 static int	tap_dev_write(int, struct uio *, int);
    137 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    138 static int	tap_dev_poll(int, int, struct lwp *);
    139 static int	tap_dev_kqfilter(int, struct knote *);
    140 
    141 /* Fileops access routines */
    142 static int	tap_fops_close(file_t *);
    143 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    146     kauth_cred_t, int);
    147 static int	tap_fops_ioctl(file_t *, u_long, void *);
    148 static int	tap_fops_poll(file_t *, int);
    149 static int	tap_fops_stat(file_t *, struct stat *);
    150 static int	tap_fops_kqfilter(file_t *, struct knote *);
    151 
    152 static const struct fileops tap_fileops = {
    153 	.fo_read = tap_fops_read,
    154 	.fo_write = tap_fops_write,
    155 	.fo_ioctl = tap_fops_ioctl,
    156 	.fo_fcntl = fnullop_fcntl,
    157 	.fo_poll = tap_fops_poll,
    158 	.fo_stat = tap_fops_stat,
    159 	.fo_close = tap_fops_close,
    160 	.fo_kqfilter = tap_fops_kqfilter,
    161 	.fo_restart = fnullop_restart,
    162 };
    163 
    164 /* Helper for cloning open() */
    165 static int	tap_dev_cloner(struct lwp *);
    166 
    167 /* Character device routines */
    168 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    169 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    170 static int	tap_cdev_read(dev_t, struct uio *, int);
    171 static int	tap_cdev_write(dev_t, struct uio *, int);
    172 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    173 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    174 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    175 
    176 const struct cdevsw tap_cdevsw = {
    177 	.d_open = tap_cdev_open,
    178 	.d_close = tap_cdev_close,
    179 	.d_read = tap_cdev_read,
    180 	.d_write = tap_cdev_write,
    181 	.d_ioctl = tap_cdev_ioctl,
    182 	.d_stop = nostop,
    183 	.d_tty = notty,
    184 	.d_poll = tap_cdev_poll,
    185 	.d_mmap = nommap,
    186 	.d_kqfilter = tap_cdev_kqfilter,
    187 	.d_discard = nodiscard,
    188 	.d_flag = D_OTHER
    189 };
    190 
    191 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    192 
    193 /* kqueue-related routines */
    194 static void	tap_kqdetach(struct knote *);
    195 static int	tap_kqread(struct knote *, long);
    196 
    197 /*
    198  * Those are needed by the if_media interface.
    199  */
    200 
    201 static int	tap_mediachange(struct ifnet *);
    202 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    203 
    204 /*
    205  * Those are needed by the ifnet interface, and would typically be
    206  * there for any network interface driver.
    207  * Some other routines are optional: watchdog and drain.
    208  */
    209 
    210 static void	tap_start(struct ifnet *);
    211 static void	tap_stop(struct ifnet *, int);
    212 static int	tap_init(struct ifnet *);
    213 static int	tap_ioctl(struct ifnet *, u_long, void *);
    214 
    215 /* Internal functions */
    216 #if defined(COMPAT_40) || defined(MODULAR)
    217 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    218 #endif
    219 static void	tap_softintr(void *);
    220 
    221 /*
    222  * tap is a clonable interface, although it is highly unrealistic for
    223  * an Ethernet device.
    224  *
    225  * Here are the bits needed for a clonable interface.
    226  */
    227 static int	tap_clone_create(struct if_clone *, int);
    228 static int	tap_clone_destroy(struct ifnet *);
    229 
    230 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    231 					tap_clone_create,
    232 					tap_clone_destroy);
    233 
    234 /* Helper functionis shared by the two cloning code paths */
    235 static struct tap_softc *	tap_clone_creator(int);
    236 int	tap_clone_destroyer(device_t);
    237 
    238 void
    239 tapattach(int n)
    240 {
    241 	int error;
    242 
    243 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    244 	if (error) {
    245 		aprint_error("%s: unable to register cfattach\n",
    246 		    tap_cd.cd_name);
    247 		(void)config_cfdriver_detach(&tap_cd);
    248 		return;
    249 	}
    250 
    251 	if_clone_attach(&tap_cloners);
    252 }
    253 
    254 /* Pretty much useless for a pseudo-device */
    255 static int
    256 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    257 {
    258 
    259 	return (1);
    260 }
    261 
    262 void
    263 tap_attach(device_t parent, device_t self, void *aux)
    264 {
    265 	struct tap_softc *sc = device_private(self);
    266 	struct ifnet *ifp;
    267 #if defined(COMPAT_40) || defined(MODULAR)
    268 	const struct sysctlnode *node;
    269 	int error;
    270 #endif
    271 	uint8_t enaddr[ETHER_ADDR_LEN] =
    272 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    273 	char enaddrstr[3 * ETHER_ADDR_LEN];
    274 
    275 	sc->sc_dev = self;
    276 	sc->sc_sih = NULL;
    277 	getnanotime(&sc->sc_btime);
    278 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    279 
    280 	if (!pmf_device_register(self, NULL, NULL))
    281 		aprint_error_dev(self, "couldn't establish power handler\n");
    282 
    283 	/*
    284 	 * In order to obtain unique initial Ethernet address on a host,
    285 	 * do some randomisation.  It's not meant for anything but avoiding
    286 	 * hard-coding an address.
    287 	 */
    288 	cprng_fast(&enaddr[3], 3);
    289 
    290 	aprint_verbose_dev(self, "Ethernet address %s\n",
    291 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    292 
    293 	/*
    294 	 * Why 1000baseT? Why not? You can add more.
    295 	 *
    296 	 * Note that there are 3 steps: init, one or several additions to
    297 	 * list of supported media, and in the end, the selection of one
    298 	 * of them.
    299 	 */
    300 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    301 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    302 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    303 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    304 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    305 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    306 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    307 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    308 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    309 
    310 	/*
    311 	 * One should note that an interface must do multicast in order
    312 	 * to support IPv6.
    313 	 */
    314 	ifp = &sc->sc_ec.ec_if;
    315 	strcpy(ifp->if_xname, device_xname(self));
    316 	ifp->if_softc	= sc;
    317 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    318 	ifp->if_ioctl	= tap_ioctl;
    319 	ifp->if_start	= tap_start;
    320 	ifp->if_stop	= tap_stop;
    321 	ifp->if_init	= tap_init;
    322 	IFQ_SET_READY(&ifp->if_snd);
    323 
    324 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    325 
    326 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    327 	 * being common to all network interface drivers. */
    328 	if_attach(ifp);
    329 	ether_ifattach(ifp, enaddr);
    330 
    331 	sc->sc_flags = 0;
    332 
    333 #if defined(COMPAT_40) || defined(MODULAR)
    334 	/*
    335 	 * Add a sysctl node for that interface.
    336 	 *
    337 	 * The pointer transmitted is not a string, but instead a pointer to
    338 	 * the softc structure, which we can use to build the string value on
    339 	 * the fly in the helper function of the node.  See the comments for
    340 	 * tap_sysctl_handler for details.
    341 	 *
    342 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    343 	 * component.  However, we can allocate a number ourselves, as we are
    344 	 * the only consumer of the net.link.<iface> node.  In this case, the
    345 	 * unit number is conveniently used to number the node.  CTL_CREATE
    346 	 * would just work, too.
    347 	 */
    348 	if ((error = sysctl_createv(NULL, 0, NULL,
    349 	    &node, CTLFLAG_READWRITE,
    350 	    CTLTYPE_STRING, device_xname(self), NULL,
    351 	    tap_sysctl_handler, 0, (void *)sc, 18,
    352 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    353 	    CTL_EOL)) != 0)
    354 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    355 		    error);
    356 #endif
    357 
    358 	/*
    359 	 * Initialize the two locks for the device.
    360 	 *
    361 	 * We need a lock here because even though the tap device can be
    362 	 * opened only once, the file descriptor might be passed to another
    363 	 * process, say a fork(2)ed child.
    364 	 *
    365 	 * The Giant saves us from most of the hassle, but since the read
    366 	 * operation can sleep, we don't want two processes to wake up at
    367 	 * the same moment and both try and dequeue a single packet.
    368 	 *
    369 	 * The queue for event listeners (used by kqueue(9), see below) has
    370 	 * to be protected too, so use a spin lock.
    371 	 */
    372 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    373 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    374 
    375 	selinit(&sc->sc_rsel);
    376 }
    377 
    378 /*
    379  * When detaching, we do the inverse of what is done in the attach
    380  * routine, in reversed order.
    381  */
    382 static int
    383 tap_detach(device_t self, int flags)
    384 {
    385 	struct tap_softc *sc = device_private(self);
    386 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    387 #if defined(COMPAT_40) || defined(MODULAR)
    388 	int error;
    389 #endif
    390 	int s;
    391 
    392 	sc->sc_flags |= TAP_GOING;
    393 	s = splnet();
    394 	tap_stop(ifp, 1);
    395 	if_down(ifp);
    396 	splx(s);
    397 
    398 	if (sc->sc_sih != NULL) {
    399 		softint_disestablish(sc->sc_sih);
    400 		sc->sc_sih = NULL;
    401 	}
    402 
    403 #if defined(COMPAT_40) || defined(MODULAR)
    404 	/*
    405 	 * Destroying a single leaf is a very straightforward operation using
    406 	 * sysctl_destroyv.  One should be sure to always end the path with
    407 	 * CTL_EOL.
    408 	 */
    409 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    410 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    411 		aprint_error_dev(self,
    412 		    "sysctl_destroyv returned %d, ignoring\n", error);
    413 #endif
    414 	ether_ifdetach(ifp);
    415 	if_detach(ifp);
    416 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    417 	seldestroy(&sc->sc_rsel);
    418 	mutex_destroy(&sc->sc_rdlock);
    419 	mutex_destroy(&sc->sc_kqlock);
    420 
    421 	pmf_device_deregister(self);
    422 
    423 	return (0);
    424 }
    425 
    426 /*
    427  * This function is called by the ifmedia layer to notify the driver
    428  * that the user requested a media change.  A real driver would
    429  * reconfigure the hardware.
    430  */
    431 static int
    432 tap_mediachange(struct ifnet *ifp)
    433 {
    434 	return (0);
    435 }
    436 
    437 /*
    438  * Here the user asks for the currently used media.
    439  */
    440 static void
    441 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    442 {
    443 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    444 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    445 }
    446 
    447 /*
    448  * This is the function where we SEND packets.
    449  *
    450  * There is no 'receive' equivalent.  A typical driver will get
    451  * interrupts from the hardware, and from there will inject new packets
    452  * into the network stack.
    453  *
    454  * Once handled, a packet must be freed.  A real driver might not be able
    455  * to fit all the pending packets into the hardware, and is allowed to
    456  * return before having sent all the packets.  It should then use the
    457  * if_flags flag IFF_OACTIVE to notify the upper layer.
    458  *
    459  * There are also other flags one should check, such as IFF_PAUSE.
    460  *
    461  * It is our duty to make packets available to BPF listeners.
    462  *
    463  * You should be aware that this function is called by the Ethernet layer
    464  * at splnet().
    465  *
    466  * When the device is opened, we have to pass the packet(s) to the
    467  * userland.  For that we stay in OACTIVE mode while the userland gets
    468  * the packets, and we send a signal to the processes waiting to read.
    469  *
    470  * wakeup(sc) is the counterpart to the tsleep call in
    471  * tap_dev_read, while selnotify() is used for kevent(2) and
    472  * poll(2) (which includes select(2)) listeners.
    473  */
    474 static void
    475 tap_start(struct ifnet *ifp)
    476 {
    477 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    478 	struct mbuf *m0;
    479 
    480 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    481 		/* Simply drop packets */
    482 		for(;;) {
    483 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    484 			if (m0 == NULL)
    485 				return;
    486 
    487 			ifp->if_opackets++;
    488 			bpf_mtap(ifp, m0);
    489 
    490 			m_freem(m0);
    491 		}
    492 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    493 		ifp->if_flags |= IFF_OACTIVE;
    494 		wakeup(sc);
    495 		selnotify(&sc->sc_rsel, 0, 1);
    496 		if (sc->sc_flags & TAP_ASYNCIO)
    497 			softint_schedule(sc->sc_sih);
    498 	}
    499 }
    500 
    501 static void
    502 tap_softintr(void *cookie)
    503 {
    504 	struct tap_softc *sc;
    505 	struct ifnet *ifp;
    506 	int a, b;
    507 
    508 	sc = cookie;
    509 
    510 	if (sc->sc_flags & TAP_ASYNCIO) {
    511 		ifp = &sc->sc_ec.ec_if;
    512 		if (ifp->if_flags & IFF_RUNNING) {
    513 			a = POLL_IN;
    514 			b = POLLIN|POLLRDNORM;
    515 		} else {
    516 			a = POLL_HUP;
    517 			b = 0;
    518 		}
    519 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    520 	}
    521 }
    522 
    523 /*
    524  * A typical driver will only contain the following handlers for
    525  * ioctl calls, except SIOCSIFPHYADDR.
    526  * The latter is a hack I used to set the Ethernet address of the
    527  * faked device.
    528  *
    529  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    530  * called under splnet().
    531  */
    532 static int
    533 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    534 {
    535 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    536 	struct ifreq *ifr = (struct ifreq *)data;
    537 	int s, error;
    538 
    539 	s = splnet();
    540 
    541 	switch (cmd) {
    542 #ifdef OSIOCSIFMEDIA
    543 	case OSIOCSIFMEDIA:
    544 #endif
    545 	case SIOCSIFMEDIA:
    546 	case SIOCGIFMEDIA:
    547 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    548 		break;
    549 #if defined(COMPAT_40) || defined(MODULAR)
    550 	case SIOCSIFPHYADDR:
    551 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    552 		break;
    553 #endif
    554 	default:
    555 		error = ether_ioctl(ifp, cmd, data);
    556 		if (error == ENETRESET)
    557 			error = 0;
    558 		break;
    559 	}
    560 
    561 	splx(s);
    562 
    563 	return (error);
    564 }
    565 
    566 #if defined(COMPAT_40) || defined(MODULAR)
    567 /*
    568  * Helper function to set Ethernet address.  This has been replaced by
    569  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    570  */
    571 static int
    572 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    573 {
    574 	const struct sockaddr *sa = &ifra->ifra_addr;
    575 
    576 	if (sa->sa_family != AF_LINK)
    577 		return (EINVAL);
    578 
    579 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    580 
    581 	return (0);
    582 }
    583 #endif
    584 
    585 /*
    586  * _init() would typically be called when an interface goes up,
    587  * meaning it should configure itself into the state in which it
    588  * can send packets.
    589  */
    590 static int
    591 tap_init(struct ifnet *ifp)
    592 {
    593 	ifp->if_flags |= IFF_RUNNING;
    594 
    595 	tap_start(ifp);
    596 
    597 	return (0);
    598 }
    599 
    600 /*
    601  * _stop() is called when an interface goes down.  It is our
    602  * responsability to validate that state by clearing the
    603  * IFF_RUNNING flag.
    604  *
    605  * We have to wake up all the sleeping processes to have the pending
    606  * read requests cancelled.
    607  */
    608 static void
    609 tap_stop(struct ifnet *ifp, int disable)
    610 {
    611 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    612 
    613 	ifp->if_flags &= ~IFF_RUNNING;
    614 	wakeup(sc);
    615 	selnotify(&sc->sc_rsel, 0, 1);
    616 	if (sc->sc_flags & TAP_ASYNCIO)
    617 		softint_schedule(sc->sc_sih);
    618 }
    619 
    620 /*
    621  * The 'create' command of ifconfig can be used to create
    622  * any numbered instance of a given device.  Thus we have to
    623  * make sure we have enough room in cd_devs to create the
    624  * user-specified instance.  config_attach_pseudo will do this
    625  * for us.
    626  */
    627 static int
    628 tap_clone_create(struct if_clone *ifc, int unit)
    629 {
    630 	if (tap_clone_creator(unit) == NULL) {
    631 		aprint_error("%s%d: unable to attach an instance\n",
    632                     tap_cd.cd_name, unit);
    633 		return (ENXIO);
    634 	}
    635 
    636 	return (0);
    637 }
    638 
    639 /*
    640  * tap(4) can be cloned by two ways:
    641  *   using 'ifconfig tap0 create', which will use the network
    642  *     interface cloning API, and call tap_clone_create above.
    643  *   opening the cloning device node, whose minor number is TAP_CLONER.
    644  *     See below for an explanation on how this part work.
    645  */
    646 static struct tap_softc *
    647 tap_clone_creator(int unit)
    648 {
    649 	struct cfdata *cf;
    650 
    651 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    652 	cf->cf_name = tap_cd.cd_name;
    653 	cf->cf_atname = tap_ca.ca_name;
    654 	if (unit == -1) {
    655 		/* let autoconf find the first free one */
    656 		cf->cf_unit = 0;
    657 		cf->cf_fstate = FSTATE_STAR;
    658 	} else {
    659 		cf->cf_unit = unit;
    660 		cf->cf_fstate = FSTATE_NOTFOUND;
    661 	}
    662 
    663 	return device_private(config_attach_pseudo(cf));
    664 }
    665 
    666 /*
    667  * The clean design of if_clone and autoconf(9) makes that part
    668  * really straightforward.  The second argument of config_detach
    669  * means neither QUIET nor FORCED.
    670  */
    671 static int
    672 tap_clone_destroy(struct ifnet *ifp)
    673 {
    674 	struct tap_softc *sc = ifp->if_softc;
    675 
    676 	return tap_clone_destroyer(sc->sc_dev);
    677 }
    678 
    679 int
    680 tap_clone_destroyer(device_t dev)
    681 {
    682 	cfdata_t cf = device_cfdata(dev);
    683 	int error;
    684 
    685 	if ((error = config_detach(dev, 0)) != 0)
    686 		aprint_error_dev(dev, "unable to detach instance\n");
    687 	free(cf, M_DEVBUF);
    688 
    689 	return (error);
    690 }
    691 
    692 /*
    693  * tap(4) is a bit of an hybrid device.  It can be used in two different
    694  * ways:
    695  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    696  *  2. open /dev/tap, get a new interface created and read/write off it.
    697  *     That interface is destroyed when the process that had it created exits.
    698  *
    699  * The first way is managed by the cdevsw structure, and you access interfaces
    700  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    701  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    702  *
    703  * The second way is the so-called "cloning" device.  It's a special minor
    704  * number (chosen as the maximal number, to allow as much tap devices as
    705  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    706  * call ends in tap_cdev_open.  The actual place where it is handled is
    707  * tap_dev_cloner.
    708  *
    709  * An tap device cannot be opened more than once at a time, so the cdevsw
    710  * part of open() does nothing but noting that the interface is being used and
    711  * hence ready to actually handle packets.
    712  */
    713 
    714 static int
    715 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    716 {
    717 	struct tap_softc *sc;
    718 
    719 	if (minor(dev) == TAP_CLONER)
    720 		return tap_dev_cloner(l);
    721 
    722 	sc = device_lookup_private(&tap_cd, minor(dev));
    723 	if (sc == NULL)
    724 		return (ENXIO);
    725 
    726 	/* The device can only be opened once */
    727 	if (sc->sc_flags & TAP_INUSE)
    728 		return (EBUSY);
    729 	sc->sc_flags |= TAP_INUSE;
    730 	return (0);
    731 }
    732 
    733 /*
    734  * There are several kinds of cloning devices, and the most simple is the one
    735  * tap(4) uses.  What it does is change the file descriptor with a new one,
    736  * with its own fileops structure (which maps to the various read, write,
    737  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    738  * then actually creates the new tap devices.
    739  *
    740  * Once those two steps are successful, we can re-wire the existing file
    741  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    742  * structure as needed (notably f_devunit gets filled with the fifth parameter
    743  * passed, the unit of the tap device which will allows us identifying the
    744  * device later), and returns EMOVEFD.
    745  *
    746  * That magic value is interpreted by sys_open() which then replaces the
    747  * current file descriptor by the new one (through a magic member of struct
    748  * lwp, l_dupfd).
    749  *
    750  * The tap device is flagged as being busy since it otherwise could be
    751  * externally accessed through the corresponding device node with the cdevsw
    752  * interface.
    753  */
    754 
    755 static int
    756 tap_dev_cloner(struct lwp *l)
    757 {
    758 	struct tap_softc *sc;
    759 	file_t *fp;
    760 	int error, fd;
    761 
    762 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    763 		return (error);
    764 
    765 	if ((sc = tap_clone_creator(-1)) == NULL) {
    766 		fd_abort(curproc, fp, fd);
    767 		return (ENXIO);
    768 	}
    769 
    770 	sc->sc_flags |= TAP_INUSE;
    771 
    772 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    773 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    774 }
    775 
    776 /*
    777  * While all other operations (read, write, ioctl, poll and kqfilter) are
    778  * really the same whether we are in cdevsw or fileops mode, the close()
    779  * function is slightly different in the two cases.
    780  *
    781  * As for the other, the core of it is shared in tap_dev_close.  What
    782  * it does is sufficient for the cdevsw interface, but the cloning interface
    783  * needs another thing:  the interface is destroyed when the processes that
    784  * created it closes it.
    785  */
    786 static int
    787 tap_cdev_close(dev_t dev, int flags, int fmt,
    788     struct lwp *l)
    789 {
    790 	struct tap_softc *sc =
    791 	    device_lookup_private(&tap_cd, minor(dev));
    792 
    793 	if (sc == NULL)
    794 		return (ENXIO);
    795 
    796 	return tap_dev_close(sc);
    797 }
    798 
    799 /*
    800  * It might happen that the administrator used ifconfig to externally destroy
    801  * the interface.  In that case, tap_fops_close will be called while
    802  * tap_detach is already happening.  If we called it again from here, we
    803  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    804  */
    805 static int
    806 tap_fops_close(file_t *fp)
    807 {
    808 	int unit = fp->f_devunit;
    809 	struct tap_softc *sc;
    810 	int error;
    811 
    812 	sc = device_lookup_private(&tap_cd, unit);
    813 	if (sc == NULL)
    814 		return (ENXIO);
    815 
    816 	/* tap_dev_close currently always succeeds, but it might not
    817 	 * always be the case. */
    818 	KERNEL_LOCK(1, NULL);
    819 	if ((error = tap_dev_close(sc)) != 0) {
    820 		KERNEL_UNLOCK_ONE(NULL);
    821 		return (error);
    822 	}
    823 
    824 	/* Destroy the device now that it is no longer useful,
    825 	 * unless it's already being destroyed. */
    826 	if ((sc->sc_flags & TAP_GOING) != 0) {
    827 		KERNEL_UNLOCK_ONE(NULL);
    828 		return (0);
    829 	}
    830 
    831 	error = tap_clone_destroyer(sc->sc_dev);
    832 	KERNEL_UNLOCK_ONE(NULL);
    833 	return error;
    834 }
    835 
    836 static int
    837 tap_dev_close(struct tap_softc *sc)
    838 {
    839 	struct ifnet *ifp;
    840 	int s;
    841 
    842 	s = splnet();
    843 	/* Let tap_start handle packets again */
    844 	ifp = &sc->sc_ec.ec_if;
    845 	ifp->if_flags &= ~IFF_OACTIVE;
    846 
    847 	/* Purge output queue */
    848 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    849 		struct mbuf *m;
    850 
    851 		for (;;) {
    852 			IFQ_DEQUEUE(&ifp->if_snd, m);
    853 			if (m == NULL)
    854 				break;
    855 
    856 			ifp->if_opackets++;
    857 			bpf_mtap(ifp, m);
    858 			m_freem(m);
    859 		}
    860 	}
    861 	splx(s);
    862 
    863 	if (sc->sc_sih != NULL) {
    864 		softint_disestablish(sc->sc_sih);
    865 		sc->sc_sih = NULL;
    866 	}
    867 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    868 
    869 	return (0);
    870 }
    871 
    872 static int
    873 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    874 {
    875 	return tap_dev_read(minor(dev), uio, flags);
    876 }
    877 
    878 static int
    879 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    880     kauth_cred_t cred, int flags)
    881 {
    882 	int error;
    883 
    884 	KERNEL_LOCK(1, NULL);
    885 	error = tap_dev_read(fp->f_devunit, uio, flags);
    886 	KERNEL_UNLOCK_ONE(NULL);
    887 	return error;
    888 }
    889 
    890 static int
    891 tap_dev_read(int unit, struct uio *uio, int flags)
    892 {
    893 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    894 	struct ifnet *ifp;
    895 	struct mbuf *m, *n;
    896 	int error = 0, s;
    897 
    898 	if (sc == NULL)
    899 		return (ENXIO);
    900 
    901 	getnanotime(&sc->sc_atime);
    902 
    903 	ifp = &sc->sc_ec.ec_if;
    904 	if ((ifp->if_flags & IFF_UP) == 0)
    905 		return (EHOSTDOWN);
    906 
    907 	/*
    908 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    909 	 */
    910 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    911 		if (!mutex_tryenter(&sc->sc_rdlock))
    912 			return (EWOULDBLOCK);
    913 	} else {
    914 		mutex_enter(&sc->sc_rdlock);
    915 	}
    916 
    917 	s = splnet();
    918 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    919 		ifp->if_flags &= ~IFF_OACTIVE;
    920 		/*
    921 		 * We must release the lock before sleeping, and re-acquire it
    922 		 * after.
    923 		 */
    924 		mutex_exit(&sc->sc_rdlock);
    925 		if (sc->sc_flags & TAP_NBIO)
    926 			error = EWOULDBLOCK;
    927 		else
    928 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    929 		splx(s);
    930 
    931 		if (error != 0)
    932 			return (error);
    933 		/* The device might have been downed */
    934 		if ((ifp->if_flags & IFF_UP) == 0)
    935 			return (EHOSTDOWN);
    936 		if ((sc->sc_flags & TAP_NBIO)) {
    937 			if (!mutex_tryenter(&sc->sc_rdlock))
    938 				return (EWOULDBLOCK);
    939 		} else {
    940 			mutex_enter(&sc->sc_rdlock);
    941 		}
    942 		s = splnet();
    943 	}
    944 
    945 	IFQ_DEQUEUE(&ifp->if_snd, m);
    946 	ifp->if_flags &= ~IFF_OACTIVE;
    947 	splx(s);
    948 	if (m == NULL) {
    949 		error = 0;
    950 		goto out;
    951 	}
    952 
    953 	ifp->if_opackets++;
    954 	bpf_mtap(ifp, m);
    955 
    956 	/*
    957 	 * One read is one packet.
    958 	 */
    959 	do {
    960 		error = uiomove(mtod(m, void *),
    961 		    min(m->m_len, uio->uio_resid), uio);
    962 		MFREE(m, n);
    963 		m = n;
    964 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    965 
    966 	if (m != NULL)
    967 		m_freem(m);
    968 
    969 out:
    970 	mutex_exit(&sc->sc_rdlock);
    971 	return (error);
    972 }
    973 
    974 static int
    975 tap_fops_stat(file_t *fp, struct stat *st)
    976 {
    977 	int error = 0;
    978 	struct tap_softc *sc;
    979 	int unit = fp->f_devunit;
    980 
    981 	(void)memset(st, 0, sizeof(*st));
    982 
    983 	KERNEL_LOCK(1, NULL);
    984 	sc = device_lookup_private(&tap_cd, unit);
    985 	if (sc == NULL) {
    986 		error = ENXIO;
    987 		goto out;
    988 	}
    989 
    990 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    991 	st->st_atimespec = sc->sc_atime;
    992 	st->st_mtimespec = sc->sc_mtime;
    993 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    994 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    995 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    996 out:
    997 	KERNEL_UNLOCK_ONE(NULL);
    998 	return error;
    999 }
   1000 
   1001 static int
   1002 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1003 {
   1004 	return tap_dev_write(minor(dev), uio, flags);
   1005 }
   1006 
   1007 static int
   1008 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1009     kauth_cred_t cred, int flags)
   1010 {
   1011 	int error;
   1012 
   1013 	KERNEL_LOCK(1, NULL);
   1014 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1015 	KERNEL_UNLOCK_ONE(NULL);
   1016 	return error;
   1017 }
   1018 
   1019 static int
   1020 tap_dev_write(int unit, struct uio *uio, int flags)
   1021 {
   1022 	struct tap_softc *sc =
   1023 	    device_lookup_private(&tap_cd, unit);
   1024 	struct ifnet *ifp;
   1025 	struct mbuf *m, **mp;
   1026 	int error = 0;
   1027 	int s;
   1028 
   1029 	if (sc == NULL)
   1030 		return (ENXIO);
   1031 
   1032 	getnanotime(&sc->sc_mtime);
   1033 	ifp = &sc->sc_ec.ec_if;
   1034 
   1035 	/* One write, one packet, that's the rule */
   1036 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1037 	if (m == NULL) {
   1038 		ifp->if_ierrors++;
   1039 		return (ENOBUFS);
   1040 	}
   1041 	m->m_pkthdr.len = uio->uio_resid;
   1042 
   1043 	mp = &m;
   1044 	while (error == 0 && uio->uio_resid > 0) {
   1045 		if (*mp != m) {
   1046 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1047 			if (*mp == NULL) {
   1048 				error = ENOBUFS;
   1049 				break;
   1050 			}
   1051 		}
   1052 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1053 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1054 		mp = &(*mp)->m_next;
   1055 	}
   1056 	if (error) {
   1057 		ifp->if_ierrors++;
   1058 		m_freem(m);
   1059 		return (error);
   1060 	}
   1061 
   1062 	ifp->if_ipackets++;
   1063 	m->m_pkthdr.rcvif = ifp;
   1064 
   1065 	bpf_mtap(ifp, m);
   1066 	s = splnet();
   1067 	(*ifp->if_input)(ifp, m);
   1068 	splx(s);
   1069 
   1070 	return (0);
   1071 }
   1072 
   1073 static int
   1074 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1075     struct lwp *l)
   1076 {
   1077 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1078 }
   1079 
   1080 static int
   1081 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1082 {
   1083 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1084 }
   1085 
   1086 static int
   1087 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1088 {
   1089 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1090 
   1091 	if (sc == NULL)
   1092 		return ENXIO;
   1093 
   1094 	switch (cmd) {
   1095 	case FIONREAD:
   1096 		{
   1097 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1098 			struct mbuf *m;
   1099 			int s;
   1100 
   1101 			s = splnet();
   1102 			IFQ_POLL(&ifp->if_snd, m);
   1103 
   1104 			if (m == NULL)
   1105 				*(int *)data = 0;
   1106 			else
   1107 				*(int *)data = m->m_pkthdr.len;
   1108 			splx(s);
   1109 			return 0;
   1110 		}
   1111 	case TIOCSPGRP:
   1112 	case FIOSETOWN:
   1113 		return fsetown(&sc->sc_pgid, cmd, data);
   1114 	case TIOCGPGRP:
   1115 	case FIOGETOWN:
   1116 		return fgetown(sc->sc_pgid, cmd, data);
   1117 	case FIOASYNC:
   1118 		if (*(int *)data) {
   1119 			if (sc->sc_sih == NULL) {
   1120 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1121 				    tap_softintr, sc);
   1122 				if (sc->sc_sih == NULL)
   1123 					return EBUSY; /* XXX */
   1124 			}
   1125 			sc->sc_flags |= TAP_ASYNCIO;
   1126 		} else {
   1127 			sc->sc_flags &= ~TAP_ASYNCIO;
   1128 			if (sc->sc_sih != NULL) {
   1129 				softint_disestablish(sc->sc_sih);
   1130 				sc->sc_sih = NULL;
   1131 			}
   1132 		}
   1133 		return 0;
   1134 	case FIONBIO:
   1135 		if (*(int *)data)
   1136 			sc->sc_flags |= TAP_NBIO;
   1137 		else
   1138 			sc->sc_flags &= ~TAP_NBIO;
   1139 		return 0;
   1140 #ifdef OTAPGIFNAME
   1141 	case OTAPGIFNAME:
   1142 #endif
   1143 	case TAPGIFNAME:
   1144 		{
   1145 			struct ifreq *ifr = (struct ifreq *)data;
   1146 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1147 
   1148 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1149 			return 0;
   1150 		}
   1151 	default:
   1152 		return ENOTTY;
   1153 	}
   1154 }
   1155 
   1156 static int
   1157 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1158 {
   1159 	return tap_dev_poll(minor(dev), events, l);
   1160 }
   1161 
   1162 static int
   1163 tap_fops_poll(file_t *fp, int events)
   1164 {
   1165 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1166 }
   1167 
   1168 static int
   1169 tap_dev_poll(int unit, int events, struct lwp *l)
   1170 {
   1171 	struct tap_softc *sc =
   1172 	    device_lookup_private(&tap_cd, unit);
   1173 	int revents = 0;
   1174 
   1175 	if (sc == NULL)
   1176 		return POLLERR;
   1177 
   1178 	if (events & (POLLIN|POLLRDNORM)) {
   1179 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1180 		struct mbuf *m;
   1181 		int s;
   1182 
   1183 		s = splnet();
   1184 		IFQ_POLL(&ifp->if_snd, m);
   1185 
   1186 		if (m != NULL)
   1187 			revents |= events & (POLLIN|POLLRDNORM);
   1188 		else {
   1189 			mutex_spin_enter(&sc->sc_kqlock);
   1190 			selrecord(l, &sc->sc_rsel);
   1191 			mutex_spin_exit(&sc->sc_kqlock);
   1192 		}
   1193 		splx(s);
   1194 	}
   1195 	revents |= events & (POLLOUT|POLLWRNORM);
   1196 
   1197 	return (revents);
   1198 }
   1199 
   1200 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1201 	tap_kqread };
   1202 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1203 	filt_seltrue };
   1204 
   1205 static int
   1206 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1207 {
   1208 	return tap_dev_kqfilter(minor(dev), kn);
   1209 }
   1210 
   1211 static int
   1212 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1213 {
   1214 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1215 }
   1216 
   1217 static int
   1218 tap_dev_kqfilter(int unit, struct knote *kn)
   1219 {
   1220 	struct tap_softc *sc =
   1221 	    device_lookup_private(&tap_cd, unit);
   1222 
   1223 	if (sc == NULL)
   1224 		return (ENXIO);
   1225 
   1226 	KERNEL_LOCK(1, NULL);
   1227 	switch(kn->kn_filter) {
   1228 	case EVFILT_READ:
   1229 		kn->kn_fop = &tap_read_filterops;
   1230 		break;
   1231 	case EVFILT_WRITE:
   1232 		kn->kn_fop = &tap_seltrue_filterops;
   1233 		break;
   1234 	default:
   1235 		KERNEL_UNLOCK_ONE(NULL);
   1236 		return (EINVAL);
   1237 	}
   1238 
   1239 	kn->kn_hook = sc;
   1240 	mutex_spin_enter(&sc->sc_kqlock);
   1241 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1242 	mutex_spin_exit(&sc->sc_kqlock);
   1243 	KERNEL_UNLOCK_ONE(NULL);
   1244 	return (0);
   1245 }
   1246 
   1247 static void
   1248 tap_kqdetach(struct knote *kn)
   1249 {
   1250 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1251 
   1252 	KERNEL_LOCK(1, NULL);
   1253 	mutex_spin_enter(&sc->sc_kqlock);
   1254 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1255 	mutex_spin_exit(&sc->sc_kqlock);
   1256 	KERNEL_UNLOCK_ONE(NULL);
   1257 }
   1258 
   1259 static int
   1260 tap_kqread(struct knote *kn, long hint)
   1261 {
   1262 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1263 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1264 	struct mbuf *m;
   1265 	int s, rv;
   1266 
   1267 	KERNEL_LOCK(1, NULL);
   1268 	s = splnet();
   1269 	IFQ_POLL(&ifp->if_snd, m);
   1270 
   1271 	if (m == NULL)
   1272 		kn->kn_data = 0;
   1273 	else
   1274 		kn->kn_data = m->m_pkthdr.len;
   1275 	splx(s);
   1276 	rv = (kn->kn_data != 0 ? 1 : 0);
   1277 	KERNEL_UNLOCK_ONE(NULL);
   1278 	return rv;
   1279 }
   1280 
   1281 #if defined(COMPAT_40) || defined(MODULAR)
   1282 /*
   1283  * sysctl management routines
   1284  * You can set the address of an interface through:
   1285  * net.link.tap.tap<number>
   1286  *
   1287  * Note the consistent use of tap_log in order to use
   1288  * sysctl_teardown at unload time.
   1289  *
   1290  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1291  * blocks register a function in a special section of the kernel
   1292  * (called a link set) which is used at init_sysctl() time to cycle
   1293  * through all those functions to create the kernel's sysctl tree.
   1294  *
   1295  * It is not possible to use link sets in a module, so the
   1296  * easiest is to simply call our own setup routine at load time.
   1297  *
   1298  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1299  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1300  * whole kernel sysctl tree is built, it is not possible to add any
   1301  * permanent node.
   1302  *
   1303  * It should be noted that we're not saving the sysctlnode pointer
   1304  * we are returned when creating the "tap" node.  That structure
   1305  * cannot be trusted once out of the calling function, as it might
   1306  * get reused.  So we just save the MIB number, and always give the
   1307  * full path starting from the root for later calls to sysctl_createv
   1308  * and sysctl_destroyv.
   1309  */
   1310 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1311 {
   1312 	const struct sysctlnode *node;
   1313 	int error = 0;
   1314 
   1315 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1316 	    CTLFLAG_PERMANENT,
   1317 	    CTLTYPE_NODE, "link", NULL,
   1318 	    NULL, 0, NULL, 0,
   1319 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1320 		return;
   1321 
   1322 	/*
   1323 	 * The first four parameters of sysctl_createv are for management.
   1324 	 *
   1325 	 * The four that follows, here starting with a '0' for the flags,
   1326 	 * describe the node.
   1327 	 *
   1328 	 * The next series of four set its value, through various possible
   1329 	 * means.
   1330 	 *
   1331 	 * Last but not least, the path to the node is described.  That path
   1332 	 * is relative to the given root (third argument).  Here we're
   1333 	 * starting from the root.
   1334 	 */
   1335 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1336 	    CTLFLAG_PERMANENT,
   1337 	    CTLTYPE_NODE, "tap", NULL,
   1338 	    NULL, 0, NULL, 0,
   1339 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1340 		return;
   1341 	tap_node = node->sysctl_num;
   1342 }
   1343 
   1344 /*
   1345  * The helper functions make Andrew Brown's interface really
   1346  * shine.  It makes possible to create value on the fly whether
   1347  * the sysctl value is read or written.
   1348  *
   1349  * As shown as an example in the man page, the first step is to
   1350  * create a copy of the node to have sysctl_lookup work on it.
   1351  *
   1352  * Here, we have more work to do than just a copy, since we have
   1353  * to create the string.  The first step is to collect the actual
   1354  * value of the node, which is a convenient pointer to the softc
   1355  * of the interface.  From there we create the string and use it
   1356  * as the value, but only for the *copy* of the node.
   1357  *
   1358  * Then we let sysctl_lookup do the magic, which consists in
   1359  * setting oldp and newp as required by the operation.  When the
   1360  * value is read, that means that the string will be copied to
   1361  * the user, and when it is written, the new value will be copied
   1362  * over in the addr array.
   1363  *
   1364  * If newp is NULL, the user was reading the value, so we don't
   1365  * have anything else to do.  If a new value was written, we
   1366  * have to check it.
   1367  *
   1368  * If it is incorrect, we can return an error and leave 'node' as
   1369  * it is:  since it is a copy of the actual node, the change will
   1370  * be forgotten.
   1371  *
   1372  * Upon a correct input, we commit the change to the ifnet
   1373  * structure of our interface.
   1374  */
   1375 static int
   1376 tap_sysctl_handler(SYSCTLFN_ARGS)
   1377 {
   1378 	struct sysctlnode node;
   1379 	struct tap_softc *sc;
   1380 	struct ifnet *ifp;
   1381 	int error;
   1382 	size_t len;
   1383 	char addr[3 * ETHER_ADDR_LEN];
   1384 	uint8_t enaddr[ETHER_ADDR_LEN];
   1385 
   1386 	node = *rnode;
   1387 	sc = node.sysctl_data;
   1388 	ifp = &sc->sc_ec.ec_if;
   1389 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1390 	node.sysctl_data = addr;
   1391 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1392 	if (error || newp == NULL)
   1393 		return (error);
   1394 
   1395 	len = strlen(addr);
   1396 	if (len < 11 || len > 17)
   1397 		return (EINVAL);
   1398 
   1399 	/* Commit change */
   1400 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1401 		return (EINVAL);
   1402 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1403 	return (error);
   1404 }
   1405 #endif
   1406