if_tap.c revision 1.84 1 /* $NetBSD: if_tap.c,v 1.84 2016/06/10 13:27:16 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.84 2016/06/10 13:27:16 ozaki-r Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/intr.h>
63 #include <sys/stat.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_media.h>
69 #include <net/if_tap.h>
70 #include <net/bpf.h>
71
72 #include <compat/sys/sockio.h>
73
74 #include "ioconf.h"
75
76 #if defined(COMPAT_40) || defined(MODULAR)
77 /*
78 * sysctl node management
79 *
80 * It's not really possible to use a SYSCTL_SETUP block with
81 * current module implementation, so it is easier to just define
82 * our own function.
83 *
84 * The handler function is a "helper" in Andrew Brown's sysctl
85 * framework terminology. It is used as a gateway for sysctl
86 * requests over the nodes.
87 *
88 * tap_log allows the module to log creations of nodes and
89 * destroy them all at once using sysctl_teardown.
90 */
91 static int tap_node;
92 static int tap_sysctl_handler(SYSCTLFN_PROTO);
93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
94 #endif
95
96 /*
97 * Since we're an Ethernet device, we need the 2 following
98 * components: a struct ethercom and a struct ifmedia
99 * since we don't attach a PHY to ourselves.
100 * We could emulate one, but there's no real point.
101 */
102
103 struct tap_softc {
104 device_t sc_dev;
105 struct ifmedia sc_im;
106 struct ethercom sc_ec;
107 int sc_flags;
108 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
109 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
110 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
111 #define TAP_GOING 0x00000008 /* interface is being destroyed */
112 struct selinfo sc_rsel;
113 pid_t sc_pgid; /* For async. IO */
114 kmutex_t sc_rdlock;
115 kmutex_t sc_kqlock;
116 void *sc_sih;
117 struct timespec sc_atime;
118 struct timespec sc_mtime;
119 struct timespec sc_btime;
120 };
121
122 /* autoconf(9) glue */
123
124 static int tap_match(device_t, cfdata_t, void *);
125 static void tap_attach(device_t, device_t, void *);
126 static int tap_detach(device_t, int);
127
128 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
129 tap_match, tap_attach, tap_detach, NULL);
130 extern struct cfdriver tap_cd;
131
132 /* Real device access routines */
133 static int tap_dev_close(struct tap_softc *);
134 static int tap_dev_read(int, struct uio *, int);
135 static int tap_dev_write(int, struct uio *, int);
136 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
137 static int tap_dev_poll(int, int, struct lwp *);
138 static int tap_dev_kqfilter(int, struct knote *);
139
140 /* Fileops access routines */
141 static int tap_fops_close(file_t *);
142 static int tap_fops_read(file_t *, off_t *, struct uio *,
143 kauth_cred_t, int);
144 static int tap_fops_write(file_t *, off_t *, struct uio *,
145 kauth_cred_t, int);
146 static int tap_fops_ioctl(file_t *, u_long, void *);
147 static int tap_fops_poll(file_t *, int);
148 static int tap_fops_stat(file_t *, struct stat *);
149 static int tap_fops_kqfilter(file_t *, struct knote *);
150
151 static const struct fileops tap_fileops = {
152 .fo_read = tap_fops_read,
153 .fo_write = tap_fops_write,
154 .fo_ioctl = tap_fops_ioctl,
155 .fo_fcntl = fnullop_fcntl,
156 .fo_poll = tap_fops_poll,
157 .fo_stat = tap_fops_stat,
158 .fo_close = tap_fops_close,
159 .fo_kqfilter = tap_fops_kqfilter,
160 .fo_restart = fnullop_restart,
161 };
162
163 /* Helper for cloning open() */
164 static int tap_dev_cloner(struct lwp *);
165
166 /* Character device routines */
167 static int tap_cdev_open(dev_t, int, int, struct lwp *);
168 static int tap_cdev_close(dev_t, int, int, struct lwp *);
169 static int tap_cdev_read(dev_t, struct uio *, int);
170 static int tap_cdev_write(dev_t, struct uio *, int);
171 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
172 static int tap_cdev_poll(dev_t, int, struct lwp *);
173 static int tap_cdev_kqfilter(dev_t, struct knote *);
174
175 const struct cdevsw tap_cdevsw = {
176 .d_open = tap_cdev_open,
177 .d_close = tap_cdev_close,
178 .d_read = tap_cdev_read,
179 .d_write = tap_cdev_write,
180 .d_ioctl = tap_cdev_ioctl,
181 .d_stop = nostop,
182 .d_tty = notty,
183 .d_poll = tap_cdev_poll,
184 .d_mmap = nommap,
185 .d_kqfilter = tap_cdev_kqfilter,
186 .d_discard = nodiscard,
187 .d_flag = D_OTHER
188 };
189
190 #define TAP_CLONER 0xfffff /* Maximal minor value */
191
192 /* kqueue-related routines */
193 static void tap_kqdetach(struct knote *);
194 static int tap_kqread(struct knote *, long);
195
196 /*
197 * Those are needed by the if_media interface.
198 */
199
200 static int tap_mediachange(struct ifnet *);
201 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
202
203 /*
204 * Those are needed by the ifnet interface, and would typically be
205 * there for any network interface driver.
206 * Some other routines are optional: watchdog and drain.
207 */
208
209 static void tap_start(struct ifnet *);
210 static void tap_stop(struct ifnet *, int);
211 static int tap_init(struct ifnet *);
212 static int tap_ioctl(struct ifnet *, u_long, void *);
213
214 /* Internal functions */
215 #if defined(COMPAT_40) || defined(MODULAR)
216 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
217 #endif
218 static void tap_softintr(void *);
219
220 /*
221 * tap is a clonable interface, although it is highly unrealistic for
222 * an Ethernet device.
223 *
224 * Here are the bits needed for a clonable interface.
225 */
226 static int tap_clone_create(struct if_clone *, int);
227 static int tap_clone_destroy(struct ifnet *);
228
229 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
230 tap_clone_create,
231 tap_clone_destroy);
232
233 /* Helper functionis shared by the two cloning code paths */
234 static struct tap_softc * tap_clone_creator(int);
235 int tap_clone_destroyer(device_t);
236
237 void
238 tapattach(int n)
239 {
240 int error;
241
242 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
243 if (error) {
244 aprint_error("%s: unable to register cfattach\n",
245 tap_cd.cd_name);
246 (void)config_cfdriver_detach(&tap_cd);
247 return;
248 }
249
250 if_clone_attach(&tap_cloners);
251 }
252
253 /* Pretty much useless for a pseudo-device */
254 static int
255 tap_match(device_t parent, cfdata_t cfdata, void *arg)
256 {
257
258 return (1);
259 }
260
261 void
262 tap_attach(device_t parent, device_t self, void *aux)
263 {
264 struct tap_softc *sc = device_private(self);
265 struct ifnet *ifp;
266 #if defined(COMPAT_40) || defined(MODULAR)
267 const struct sysctlnode *node;
268 int error;
269 #endif
270 uint8_t enaddr[ETHER_ADDR_LEN] =
271 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
272 char enaddrstr[3 * ETHER_ADDR_LEN];
273
274 sc->sc_dev = self;
275 sc->sc_sih = NULL;
276 getnanotime(&sc->sc_btime);
277 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
278 sc->sc_flags = 0;
279 selinit(&sc->sc_rsel);
280
281 /*
282 * Initialize the two locks for the device.
283 *
284 * We need a lock here because even though the tap device can be
285 * opened only once, the file descriptor might be passed to another
286 * process, say a fork(2)ed child.
287 *
288 * The Giant saves us from most of the hassle, but since the read
289 * operation can sleep, we don't want two processes to wake up at
290 * the same moment and both try and dequeue a single packet.
291 *
292 * The queue for event listeners (used by kqueue(9), see below) has
293 * to be protected too, so use a spin lock.
294 */
295 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
296 mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
297
298 if (!pmf_device_register(self, NULL, NULL))
299 aprint_error_dev(self, "couldn't establish power handler\n");
300
301 /*
302 * In order to obtain unique initial Ethernet address on a host,
303 * do some randomisation. It's not meant for anything but avoiding
304 * hard-coding an address.
305 */
306 cprng_fast(&enaddr[3], 3);
307
308 aprint_verbose_dev(self, "Ethernet address %s\n",
309 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
310
311 /*
312 * Why 1000baseT? Why not? You can add more.
313 *
314 * Note that there are 3 steps: init, one or several additions to
315 * list of supported media, and in the end, the selection of one
316 * of them.
317 */
318 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
319 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
320 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
321 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
322 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
323 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
324 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
325 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
326 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
327
328 /*
329 * One should note that an interface must do multicast in order
330 * to support IPv6.
331 */
332 ifp = &sc->sc_ec.ec_if;
333 strcpy(ifp->if_xname, device_xname(self));
334 ifp->if_softc = sc;
335 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
336 ifp->if_ioctl = tap_ioctl;
337 ifp->if_start = tap_start;
338 ifp->if_stop = tap_stop;
339 ifp->if_init = tap_init;
340 IFQ_SET_READY(&ifp->if_snd);
341
342 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
343
344 /* Those steps are mandatory for an Ethernet driver. */
345 if_initialize(ifp);
346 ether_ifattach(ifp, enaddr);
347 if_register(ifp);
348
349 #if defined(COMPAT_40) || defined(MODULAR)
350 /*
351 * Add a sysctl node for that interface.
352 *
353 * The pointer transmitted is not a string, but instead a pointer to
354 * the softc structure, which we can use to build the string value on
355 * the fly in the helper function of the node. See the comments for
356 * tap_sysctl_handler for details.
357 *
358 * Usually sysctl_createv is called with CTL_CREATE as the before-last
359 * component. However, we can allocate a number ourselves, as we are
360 * the only consumer of the net.link.<iface> node. In this case, the
361 * unit number is conveniently used to number the node. CTL_CREATE
362 * would just work, too.
363 */
364 if ((error = sysctl_createv(NULL, 0, NULL,
365 &node, CTLFLAG_READWRITE,
366 CTLTYPE_STRING, device_xname(self), NULL,
367 tap_sysctl_handler, 0, (void *)sc, 18,
368 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
369 CTL_EOL)) != 0)
370 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
371 error);
372 #endif
373 }
374
375 /*
376 * When detaching, we do the inverse of what is done in the attach
377 * routine, in reversed order.
378 */
379 static int
380 tap_detach(device_t self, int flags)
381 {
382 struct tap_softc *sc = device_private(self);
383 struct ifnet *ifp = &sc->sc_ec.ec_if;
384 #if defined(COMPAT_40) || defined(MODULAR)
385 int error;
386 #endif
387 int s;
388
389 sc->sc_flags |= TAP_GOING;
390 s = splnet();
391 tap_stop(ifp, 1);
392 if_down(ifp);
393 splx(s);
394
395 if (sc->sc_sih != NULL) {
396 softint_disestablish(sc->sc_sih);
397 sc->sc_sih = NULL;
398 }
399
400 #if defined(COMPAT_40) || defined(MODULAR)
401 /*
402 * Destroying a single leaf is a very straightforward operation using
403 * sysctl_destroyv. One should be sure to always end the path with
404 * CTL_EOL.
405 */
406 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
407 device_unit(sc->sc_dev), CTL_EOL)) != 0)
408 aprint_error_dev(self,
409 "sysctl_destroyv returned %d, ignoring\n", error);
410 #endif
411 ether_ifdetach(ifp);
412 if_detach(ifp);
413 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
414 seldestroy(&sc->sc_rsel);
415 mutex_destroy(&sc->sc_rdlock);
416 mutex_destroy(&sc->sc_kqlock);
417
418 pmf_device_deregister(self);
419
420 return (0);
421 }
422
423 /*
424 * This function is called by the ifmedia layer to notify the driver
425 * that the user requested a media change. A real driver would
426 * reconfigure the hardware.
427 */
428 static int
429 tap_mediachange(struct ifnet *ifp)
430 {
431 return (0);
432 }
433
434 /*
435 * Here the user asks for the currently used media.
436 */
437 static void
438 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
439 {
440 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
441 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
442 }
443
444 /*
445 * This is the function where we SEND packets.
446 *
447 * There is no 'receive' equivalent. A typical driver will get
448 * interrupts from the hardware, and from there will inject new packets
449 * into the network stack.
450 *
451 * Once handled, a packet must be freed. A real driver might not be able
452 * to fit all the pending packets into the hardware, and is allowed to
453 * return before having sent all the packets. It should then use the
454 * if_flags flag IFF_OACTIVE to notify the upper layer.
455 *
456 * There are also other flags one should check, such as IFF_PAUSE.
457 *
458 * It is our duty to make packets available to BPF listeners.
459 *
460 * You should be aware that this function is called by the Ethernet layer
461 * at splnet().
462 *
463 * When the device is opened, we have to pass the packet(s) to the
464 * userland. For that we stay in OACTIVE mode while the userland gets
465 * the packets, and we send a signal to the processes waiting to read.
466 *
467 * wakeup(sc) is the counterpart to the tsleep call in
468 * tap_dev_read, while selnotify() is used for kevent(2) and
469 * poll(2) (which includes select(2)) listeners.
470 */
471 static void
472 tap_start(struct ifnet *ifp)
473 {
474 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
475 struct mbuf *m0;
476
477 if ((sc->sc_flags & TAP_INUSE) == 0) {
478 /* Simply drop packets */
479 for(;;) {
480 IFQ_DEQUEUE(&ifp->if_snd, m0);
481 if (m0 == NULL)
482 return;
483
484 ifp->if_opackets++;
485 bpf_mtap(ifp, m0);
486
487 m_freem(m0);
488 }
489 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
490 ifp->if_flags |= IFF_OACTIVE;
491 wakeup(sc);
492 selnotify(&sc->sc_rsel, 0, 1);
493 if (sc->sc_flags & TAP_ASYNCIO)
494 softint_schedule(sc->sc_sih);
495 }
496 }
497
498 static void
499 tap_softintr(void *cookie)
500 {
501 struct tap_softc *sc;
502 struct ifnet *ifp;
503 int a, b;
504
505 sc = cookie;
506
507 if (sc->sc_flags & TAP_ASYNCIO) {
508 ifp = &sc->sc_ec.ec_if;
509 if (ifp->if_flags & IFF_RUNNING) {
510 a = POLL_IN;
511 b = POLLIN|POLLRDNORM;
512 } else {
513 a = POLL_HUP;
514 b = 0;
515 }
516 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
517 }
518 }
519
520 /*
521 * A typical driver will only contain the following handlers for
522 * ioctl calls, except SIOCSIFPHYADDR.
523 * The latter is a hack I used to set the Ethernet address of the
524 * faked device.
525 *
526 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
527 * called under splnet().
528 */
529 static int
530 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
531 {
532 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
533 struct ifreq *ifr = (struct ifreq *)data;
534 int s, error;
535
536 s = splnet();
537
538 switch (cmd) {
539 #ifdef OSIOCSIFMEDIA
540 case OSIOCSIFMEDIA:
541 #endif
542 case SIOCSIFMEDIA:
543 case SIOCGIFMEDIA:
544 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
545 break;
546 #if defined(COMPAT_40) || defined(MODULAR)
547 case SIOCSIFPHYADDR:
548 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
549 break;
550 #endif
551 default:
552 error = ether_ioctl(ifp, cmd, data);
553 if (error == ENETRESET)
554 error = 0;
555 break;
556 }
557
558 splx(s);
559
560 return (error);
561 }
562
563 #if defined(COMPAT_40) || defined(MODULAR)
564 /*
565 * Helper function to set Ethernet address. This has been replaced by
566 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
567 */
568 static int
569 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
570 {
571 const struct sockaddr *sa = &ifra->ifra_addr;
572
573 if (sa->sa_family != AF_LINK)
574 return (EINVAL);
575
576 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
577
578 return (0);
579 }
580 #endif
581
582 /*
583 * _init() would typically be called when an interface goes up,
584 * meaning it should configure itself into the state in which it
585 * can send packets.
586 */
587 static int
588 tap_init(struct ifnet *ifp)
589 {
590 ifp->if_flags |= IFF_RUNNING;
591
592 tap_start(ifp);
593
594 return (0);
595 }
596
597 /*
598 * _stop() is called when an interface goes down. It is our
599 * responsability to validate that state by clearing the
600 * IFF_RUNNING flag.
601 *
602 * We have to wake up all the sleeping processes to have the pending
603 * read requests cancelled.
604 */
605 static void
606 tap_stop(struct ifnet *ifp, int disable)
607 {
608 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
609
610 ifp->if_flags &= ~IFF_RUNNING;
611 wakeup(sc);
612 selnotify(&sc->sc_rsel, 0, 1);
613 if (sc->sc_flags & TAP_ASYNCIO)
614 softint_schedule(sc->sc_sih);
615 }
616
617 /*
618 * The 'create' command of ifconfig can be used to create
619 * any numbered instance of a given device. Thus we have to
620 * make sure we have enough room in cd_devs to create the
621 * user-specified instance. config_attach_pseudo will do this
622 * for us.
623 */
624 static int
625 tap_clone_create(struct if_clone *ifc, int unit)
626 {
627 if (tap_clone_creator(unit) == NULL) {
628 aprint_error("%s%d: unable to attach an instance\n",
629 tap_cd.cd_name, unit);
630 return (ENXIO);
631 }
632
633 return (0);
634 }
635
636 /*
637 * tap(4) can be cloned by two ways:
638 * using 'ifconfig tap0 create', which will use the network
639 * interface cloning API, and call tap_clone_create above.
640 * opening the cloning device node, whose minor number is TAP_CLONER.
641 * See below for an explanation on how this part work.
642 */
643 static struct tap_softc *
644 tap_clone_creator(int unit)
645 {
646 struct cfdata *cf;
647
648 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
649 cf->cf_name = tap_cd.cd_name;
650 cf->cf_atname = tap_ca.ca_name;
651 if (unit == -1) {
652 /* let autoconf find the first free one */
653 cf->cf_unit = 0;
654 cf->cf_fstate = FSTATE_STAR;
655 } else {
656 cf->cf_unit = unit;
657 cf->cf_fstate = FSTATE_NOTFOUND;
658 }
659
660 return device_private(config_attach_pseudo(cf));
661 }
662
663 /*
664 * The clean design of if_clone and autoconf(9) makes that part
665 * really straightforward. The second argument of config_detach
666 * means neither QUIET nor FORCED.
667 */
668 static int
669 tap_clone_destroy(struct ifnet *ifp)
670 {
671 struct tap_softc *sc = ifp->if_softc;
672
673 return tap_clone_destroyer(sc->sc_dev);
674 }
675
676 int
677 tap_clone_destroyer(device_t dev)
678 {
679 cfdata_t cf = device_cfdata(dev);
680 int error;
681
682 if ((error = config_detach(dev, 0)) != 0)
683 aprint_error_dev(dev, "unable to detach instance\n");
684 free(cf, M_DEVBUF);
685
686 return (error);
687 }
688
689 /*
690 * tap(4) is a bit of an hybrid device. It can be used in two different
691 * ways:
692 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
693 * 2. open /dev/tap, get a new interface created and read/write off it.
694 * That interface is destroyed when the process that had it created exits.
695 *
696 * The first way is managed by the cdevsw structure, and you access interfaces
697 * through a (major, minor) mapping: tap4 is obtained by the minor number
698 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
699 *
700 * The second way is the so-called "cloning" device. It's a special minor
701 * number (chosen as the maximal number, to allow as much tap devices as
702 * possible). The user first opens the cloner (e.g., /dev/tap), and that
703 * call ends in tap_cdev_open. The actual place where it is handled is
704 * tap_dev_cloner.
705 *
706 * An tap device cannot be opened more than once at a time, so the cdevsw
707 * part of open() does nothing but noting that the interface is being used and
708 * hence ready to actually handle packets.
709 */
710
711 static int
712 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
713 {
714 struct tap_softc *sc;
715
716 if (minor(dev) == TAP_CLONER)
717 return tap_dev_cloner(l);
718
719 sc = device_lookup_private(&tap_cd, minor(dev));
720 if (sc == NULL)
721 return (ENXIO);
722
723 /* The device can only be opened once */
724 if (sc->sc_flags & TAP_INUSE)
725 return (EBUSY);
726 sc->sc_flags |= TAP_INUSE;
727 return (0);
728 }
729
730 /*
731 * There are several kinds of cloning devices, and the most simple is the one
732 * tap(4) uses. What it does is change the file descriptor with a new one,
733 * with its own fileops structure (which maps to the various read, write,
734 * ioctl functions). It starts allocating a new file descriptor with falloc,
735 * then actually creates the new tap devices.
736 *
737 * Once those two steps are successful, we can re-wire the existing file
738 * descriptor to its new self. This is done with fdclone(): it fills the fp
739 * structure as needed (notably f_devunit gets filled with the fifth parameter
740 * passed, the unit of the tap device which will allows us identifying the
741 * device later), and returns EMOVEFD.
742 *
743 * That magic value is interpreted by sys_open() which then replaces the
744 * current file descriptor by the new one (through a magic member of struct
745 * lwp, l_dupfd).
746 *
747 * The tap device is flagged as being busy since it otherwise could be
748 * externally accessed through the corresponding device node with the cdevsw
749 * interface.
750 */
751
752 static int
753 tap_dev_cloner(struct lwp *l)
754 {
755 struct tap_softc *sc;
756 file_t *fp;
757 int error, fd;
758
759 if ((error = fd_allocfile(&fp, &fd)) != 0)
760 return (error);
761
762 if ((sc = tap_clone_creator(-1)) == NULL) {
763 fd_abort(curproc, fp, fd);
764 return (ENXIO);
765 }
766
767 sc->sc_flags |= TAP_INUSE;
768
769 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
770 (void *)(intptr_t)device_unit(sc->sc_dev));
771 }
772
773 /*
774 * While all other operations (read, write, ioctl, poll and kqfilter) are
775 * really the same whether we are in cdevsw or fileops mode, the close()
776 * function is slightly different in the two cases.
777 *
778 * As for the other, the core of it is shared in tap_dev_close. What
779 * it does is sufficient for the cdevsw interface, but the cloning interface
780 * needs another thing: the interface is destroyed when the processes that
781 * created it closes it.
782 */
783 static int
784 tap_cdev_close(dev_t dev, int flags, int fmt,
785 struct lwp *l)
786 {
787 struct tap_softc *sc =
788 device_lookup_private(&tap_cd, minor(dev));
789
790 if (sc == NULL)
791 return (ENXIO);
792
793 return tap_dev_close(sc);
794 }
795
796 /*
797 * It might happen that the administrator used ifconfig to externally destroy
798 * the interface. In that case, tap_fops_close will be called while
799 * tap_detach is already happening. If we called it again from here, we
800 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
801 */
802 static int
803 tap_fops_close(file_t *fp)
804 {
805 int unit = fp->f_devunit;
806 struct tap_softc *sc;
807 int error;
808
809 sc = device_lookup_private(&tap_cd, unit);
810 if (sc == NULL)
811 return (ENXIO);
812
813 /* tap_dev_close currently always succeeds, but it might not
814 * always be the case. */
815 KERNEL_LOCK(1, NULL);
816 if ((error = tap_dev_close(sc)) != 0) {
817 KERNEL_UNLOCK_ONE(NULL);
818 return (error);
819 }
820
821 /* Destroy the device now that it is no longer useful,
822 * unless it's already being destroyed. */
823 if ((sc->sc_flags & TAP_GOING) != 0) {
824 KERNEL_UNLOCK_ONE(NULL);
825 return (0);
826 }
827
828 error = tap_clone_destroyer(sc->sc_dev);
829 KERNEL_UNLOCK_ONE(NULL);
830 return error;
831 }
832
833 static int
834 tap_dev_close(struct tap_softc *sc)
835 {
836 struct ifnet *ifp;
837 int s;
838
839 s = splnet();
840 /* Let tap_start handle packets again */
841 ifp = &sc->sc_ec.ec_if;
842 ifp->if_flags &= ~IFF_OACTIVE;
843
844 /* Purge output queue */
845 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
846 struct mbuf *m;
847
848 for (;;) {
849 IFQ_DEQUEUE(&ifp->if_snd, m);
850 if (m == NULL)
851 break;
852
853 ifp->if_opackets++;
854 bpf_mtap(ifp, m);
855 m_freem(m);
856 }
857 }
858 splx(s);
859
860 if (sc->sc_sih != NULL) {
861 softint_disestablish(sc->sc_sih);
862 sc->sc_sih = NULL;
863 }
864 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
865
866 return (0);
867 }
868
869 static int
870 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
871 {
872 return tap_dev_read(minor(dev), uio, flags);
873 }
874
875 static int
876 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
877 kauth_cred_t cred, int flags)
878 {
879 int error;
880
881 KERNEL_LOCK(1, NULL);
882 error = tap_dev_read(fp->f_devunit, uio, flags);
883 KERNEL_UNLOCK_ONE(NULL);
884 return error;
885 }
886
887 static int
888 tap_dev_read(int unit, struct uio *uio, int flags)
889 {
890 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
891 struct ifnet *ifp;
892 struct mbuf *m, *n;
893 int error = 0, s;
894
895 if (sc == NULL)
896 return (ENXIO);
897
898 getnanotime(&sc->sc_atime);
899
900 ifp = &sc->sc_ec.ec_if;
901 if ((ifp->if_flags & IFF_UP) == 0)
902 return (EHOSTDOWN);
903
904 /*
905 * In the TAP_NBIO case, we have to make sure we won't be sleeping
906 */
907 if ((sc->sc_flags & TAP_NBIO) != 0) {
908 if (!mutex_tryenter(&sc->sc_rdlock))
909 return (EWOULDBLOCK);
910 } else {
911 mutex_enter(&sc->sc_rdlock);
912 }
913
914 s = splnet();
915 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
916 ifp->if_flags &= ~IFF_OACTIVE;
917 /*
918 * We must release the lock before sleeping, and re-acquire it
919 * after.
920 */
921 mutex_exit(&sc->sc_rdlock);
922 if (sc->sc_flags & TAP_NBIO)
923 error = EWOULDBLOCK;
924 else
925 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
926 splx(s);
927
928 if (error != 0)
929 return (error);
930 /* The device might have been downed */
931 if ((ifp->if_flags & IFF_UP) == 0)
932 return (EHOSTDOWN);
933 if ((sc->sc_flags & TAP_NBIO)) {
934 if (!mutex_tryenter(&sc->sc_rdlock))
935 return (EWOULDBLOCK);
936 } else {
937 mutex_enter(&sc->sc_rdlock);
938 }
939 s = splnet();
940 }
941
942 IFQ_DEQUEUE(&ifp->if_snd, m);
943 ifp->if_flags &= ~IFF_OACTIVE;
944 splx(s);
945 if (m == NULL) {
946 error = 0;
947 goto out;
948 }
949
950 ifp->if_opackets++;
951 bpf_mtap(ifp, m);
952
953 /*
954 * One read is one packet.
955 */
956 do {
957 error = uiomove(mtod(m, void *),
958 min(m->m_len, uio->uio_resid), uio);
959 MFREE(m, n);
960 m = n;
961 } while (m != NULL && uio->uio_resid > 0 && error == 0);
962
963 if (m != NULL)
964 m_freem(m);
965
966 out:
967 mutex_exit(&sc->sc_rdlock);
968 return (error);
969 }
970
971 static int
972 tap_fops_stat(file_t *fp, struct stat *st)
973 {
974 int error = 0;
975 struct tap_softc *sc;
976 int unit = fp->f_devunit;
977
978 (void)memset(st, 0, sizeof(*st));
979
980 KERNEL_LOCK(1, NULL);
981 sc = device_lookup_private(&tap_cd, unit);
982 if (sc == NULL) {
983 error = ENXIO;
984 goto out;
985 }
986
987 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
988 st->st_atimespec = sc->sc_atime;
989 st->st_mtimespec = sc->sc_mtime;
990 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
991 st->st_uid = kauth_cred_geteuid(fp->f_cred);
992 st->st_gid = kauth_cred_getegid(fp->f_cred);
993 out:
994 KERNEL_UNLOCK_ONE(NULL);
995 return error;
996 }
997
998 static int
999 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1000 {
1001 return tap_dev_write(minor(dev), uio, flags);
1002 }
1003
1004 static int
1005 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1006 kauth_cred_t cred, int flags)
1007 {
1008 int error;
1009
1010 KERNEL_LOCK(1, NULL);
1011 error = tap_dev_write(fp->f_devunit, uio, flags);
1012 KERNEL_UNLOCK_ONE(NULL);
1013 return error;
1014 }
1015
1016 static int
1017 tap_dev_write(int unit, struct uio *uio, int flags)
1018 {
1019 struct tap_softc *sc =
1020 device_lookup_private(&tap_cd, unit);
1021 struct ifnet *ifp;
1022 struct mbuf *m, **mp;
1023 int error = 0;
1024 int s;
1025
1026 if (sc == NULL)
1027 return (ENXIO);
1028
1029 getnanotime(&sc->sc_mtime);
1030 ifp = &sc->sc_ec.ec_if;
1031
1032 /* One write, one packet, that's the rule */
1033 MGETHDR(m, M_DONTWAIT, MT_DATA);
1034 if (m == NULL) {
1035 ifp->if_ierrors++;
1036 return (ENOBUFS);
1037 }
1038 m->m_pkthdr.len = uio->uio_resid;
1039
1040 mp = &m;
1041 while (error == 0 && uio->uio_resid > 0) {
1042 if (*mp != m) {
1043 MGET(*mp, M_DONTWAIT, MT_DATA);
1044 if (*mp == NULL) {
1045 error = ENOBUFS;
1046 break;
1047 }
1048 }
1049 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1050 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1051 mp = &(*mp)->m_next;
1052 }
1053 if (error) {
1054 ifp->if_ierrors++;
1055 m_freem(m);
1056 return (error);
1057 }
1058
1059 ifp->if_ipackets++;
1060 m_set_rcvif(m, ifp);
1061
1062 bpf_mtap(ifp, m);
1063 s = splnet();
1064 if_input(ifp, m);
1065 splx(s);
1066
1067 return (0);
1068 }
1069
1070 static int
1071 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1072 struct lwp *l)
1073 {
1074 return tap_dev_ioctl(minor(dev), cmd, data, l);
1075 }
1076
1077 static int
1078 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1079 {
1080 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1081 }
1082
1083 static int
1084 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1085 {
1086 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1087
1088 if (sc == NULL)
1089 return ENXIO;
1090
1091 switch (cmd) {
1092 case FIONREAD:
1093 {
1094 struct ifnet *ifp = &sc->sc_ec.ec_if;
1095 struct mbuf *m;
1096 int s;
1097
1098 s = splnet();
1099 IFQ_POLL(&ifp->if_snd, m);
1100
1101 if (m == NULL)
1102 *(int *)data = 0;
1103 else
1104 *(int *)data = m->m_pkthdr.len;
1105 splx(s);
1106 return 0;
1107 }
1108 case TIOCSPGRP:
1109 case FIOSETOWN:
1110 return fsetown(&sc->sc_pgid, cmd, data);
1111 case TIOCGPGRP:
1112 case FIOGETOWN:
1113 return fgetown(sc->sc_pgid, cmd, data);
1114 case FIOASYNC:
1115 if (*(int *)data) {
1116 if (sc->sc_sih == NULL) {
1117 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1118 tap_softintr, sc);
1119 if (sc->sc_sih == NULL)
1120 return EBUSY; /* XXX */
1121 }
1122 sc->sc_flags |= TAP_ASYNCIO;
1123 } else {
1124 sc->sc_flags &= ~TAP_ASYNCIO;
1125 if (sc->sc_sih != NULL) {
1126 softint_disestablish(sc->sc_sih);
1127 sc->sc_sih = NULL;
1128 }
1129 }
1130 return 0;
1131 case FIONBIO:
1132 if (*(int *)data)
1133 sc->sc_flags |= TAP_NBIO;
1134 else
1135 sc->sc_flags &= ~TAP_NBIO;
1136 return 0;
1137 #ifdef OTAPGIFNAME
1138 case OTAPGIFNAME:
1139 #endif
1140 case TAPGIFNAME:
1141 {
1142 struct ifreq *ifr = (struct ifreq *)data;
1143 struct ifnet *ifp = &sc->sc_ec.ec_if;
1144
1145 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1146 return 0;
1147 }
1148 default:
1149 return ENOTTY;
1150 }
1151 }
1152
1153 static int
1154 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1155 {
1156 return tap_dev_poll(minor(dev), events, l);
1157 }
1158
1159 static int
1160 tap_fops_poll(file_t *fp, int events)
1161 {
1162 return tap_dev_poll(fp->f_devunit, events, curlwp);
1163 }
1164
1165 static int
1166 tap_dev_poll(int unit, int events, struct lwp *l)
1167 {
1168 struct tap_softc *sc =
1169 device_lookup_private(&tap_cd, unit);
1170 int revents = 0;
1171
1172 if (sc == NULL)
1173 return POLLERR;
1174
1175 if (events & (POLLIN|POLLRDNORM)) {
1176 struct ifnet *ifp = &sc->sc_ec.ec_if;
1177 struct mbuf *m;
1178 int s;
1179
1180 s = splnet();
1181 IFQ_POLL(&ifp->if_snd, m);
1182
1183 if (m != NULL)
1184 revents |= events & (POLLIN|POLLRDNORM);
1185 else {
1186 mutex_spin_enter(&sc->sc_kqlock);
1187 selrecord(l, &sc->sc_rsel);
1188 mutex_spin_exit(&sc->sc_kqlock);
1189 }
1190 splx(s);
1191 }
1192 revents |= events & (POLLOUT|POLLWRNORM);
1193
1194 return (revents);
1195 }
1196
1197 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1198 tap_kqread };
1199 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1200 filt_seltrue };
1201
1202 static int
1203 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1204 {
1205 return tap_dev_kqfilter(minor(dev), kn);
1206 }
1207
1208 static int
1209 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1210 {
1211 return tap_dev_kqfilter(fp->f_devunit, kn);
1212 }
1213
1214 static int
1215 tap_dev_kqfilter(int unit, struct knote *kn)
1216 {
1217 struct tap_softc *sc =
1218 device_lookup_private(&tap_cd, unit);
1219
1220 if (sc == NULL)
1221 return (ENXIO);
1222
1223 KERNEL_LOCK(1, NULL);
1224 switch(kn->kn_filter) {
1225 case EVFILT_READ:
1226 kn->kn_fop = &tap_read_filterops;
1227 break;
1228 case EVFILT_WRITE:
1229 kn->kn_fop = &tap_seltrue_filterops;
1230 break;
1231 default:
1232 KERNEL_UNLOCK_ONE(NULL);
1233 return (EINVAL);
1234 }
1235
1236 kn->kn_hook = sc;
1237 mutex_spin_enter(&sc->sc_kqlock);
1238 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1239 mutex_spin_exit(&sc->sc_kqlock);
1240 KERNEL_UNLOCK_ONE(NULL);
1241 return (0);
1242 }
1243
1244 static void
1245 tap_kqdetach(struct knote *kn)
1246 {
1247 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1248
1249 KERNEL_LOCK(1, NULL);
1250 mutex_spin_enter(&sc->sc_kqlock);
1251 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1252 mutex_spin_exit(&sc->sc_kqlock);
1253 KERNEL_UNLOCK_ONE(NULL);
1254 }
1255
1256 static int
1257 tap_kqread(struct knote *kn, long hint)
1258 {
1259 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1260 struct ifnet *ifp = &sc->sc_ec.ec_if;
1261 struct mbuf *m;
1262 int s, rv;
1263
1264 KERNEL_LOCK(1, NULL);
1265 s = splnet();
1266 IFQ_POLL(&ifp->if_snd, m);
1267
1268 if (m == NULL)
1269 kn->kn_data = 0;
1270 else
1271 kn->kn_data = m->m_pkthdr.len;
1272 splx(s);
1273 rv = (kn->kn_data != 0 ? 1 : 0);
1274 KERNEL_UNLOCK_ONE(NULL);
1275 return rv;
1276 }
1277
1278 #if defined(COMPAT_40) || defined(MODULAR)
1279 /*
1280 * sysctl management routines
1281 * You can set the address of an interface through:
1282 * net.link.tap.tap<number>
1283 *
1284 * Note the consistent use of tap_log in order to use
1285 * sysctl_teardown at unload time.
1286 *
1287 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1288 * blocks register a function in a special section of the kernel
1289 * (called a link set) which is used at init_sysctl() time to cycle
1290 * through all those functions to create the kernel's sysctl tree.
1291 *
1292 * It is not possible to use link sets in a module, so the
1293 * easiest is to simply call our own setup routine at load time.
1294 *
1295 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1296 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1297 * whole kernel sysctl tree is built, it is not possible to add any
1298 * permanent node.
1299 *
1300 * It should be noted that we're not saving the sysctlnode pointer
1301 * we are returned when creating the "tap" node. That structure
1302 * cannot be trusted once out of the calling function, as it might
1303 * get reused. So we just save the MIB number, and always give the
1304 * full path starting from the root for later calls to sysctl_createv
1305 * and sysctl_destroyv.
1306 */
1307 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1308 {
1309 const struct sysctlnode *node;
1310 int error = 0;
1311
1312 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1313 CTLFLAG_PERMANENT,
1314 CTLTYPE_NODE, "link", NULL,
1315 NULL, 0, NULL, 0,
1316 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1317 return;
1318
1319 /*
1320 * The first four parameters of sysctl_createv are for management.
1321 *
1322 * The four that follows, here starting with a '0' for the flags,
1323 * describe the node.
1324 *
1325 * The next series of four set its value, through various possible
1326 * means.
1327 *
1328 * Last but not least, the path to the node is described. That path
1329 * is relative to the given root (third argument). Here we're
1330 * starting from the root.
1331 */
1332 if ((error = sysctl_createv(clog, 0, NULL, &node,
1333 CTLFLAG_PERMANENT,
1334 CTLTYPE_NODE, "tap", NULL,
1335 NULL, 0, NULL, 0,
1336 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1337 return;
1338 tap_node = node->sysctl_num;
1339 }
1340
1341 /*
1342 * The helper functions make Andrew Brown's interface really
1343 * shine. It makes possible to create value on the fly whether
1344 * the sysctl value is read or written.
1345 *
1346 * As shown as an example in the man page, the first step is to
1347 * create a copy of the node to have sysctl_lookup work on it.
1348 *
1349 * Here, we have more work to do than just a copy, since we have
1350 * to create the string. The first step is to collect the actual
1351 * value of the node, which is a convenient pointer to the softc
1352 * of the interface. From there we create the string and use it
1353 * as the value, but only for the *copy* of the node.
1354 *
1355 * Then we let sysctl_lookup do the magic, which consists in
1356 * setting oldp and newp as required by the operation. When the
1357 * value is read, that means that the string will be copied to
1358 * the user, and when it is written, the new value will be copied
1359 * over in the addr array.
1360 *
1361 * If newp is NULL, the user was reading the value, so we don't
1362 * have anything else to do. If a new value was written, we
1363 * have to check it.
1364 *
1365 * If it is incorrect, we can return an error and leave 'node' as
1366 * it is: since it is a copy of the actual node, the change will
1367 * be forgotten.
1368 *
1369 * Upon a correct input, we commit the change to the ifnet
1370 * structure of our interface.
1371 */
1372 static int
1373 tap_sysctl_handler(SYSCTLFN_ARGS)
1374 {
1375 struct sysctlnode node;
1376 struct tap_softc *sc;
1377 struct ifnet *ifp;
1378 int error;
1379 size_t len;
1380 char addr[3 * ETHER_ADDR_LEN];
1381 uint8_t enaddr[ETHER_ADDR_LEN];
1382
1383 node = *rnode;
1384 sc = node.sysctl_data;
1385 ifp = &sc->sc_ec.ec_if;
1386 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1387 node.sysctl_data = addr;
1388 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1389 if (error || newp == NULL)
1390 return (error);
1391
1392 len = strlen(addr);
1393 if (len < 11 || len > 17)
1394 return (EINVAL);
1395
1396 /* Commit change */
1397 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1398 return (EINVAL);
1399 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1400 return (error);
1401 }
1402 #endif
1403