Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.84
      1 /*	$NetBSD: if_tap.c,v 1.84 2016/06/10 13:27:16 ozaki-r Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.84 2016/06/10 13:27:16 ozaki-r Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/cprng.h>
     50 #include <sys/device.h>
     51 #include <sys/file.h>
     52 #include <sys/filedesc.h>
     53 #include <sys/poll.h>
     54 #include <sys/proc.h>
     55 #include <sys/select.h>
     56 #include <sys/sockio.h>
     57 #if defined(COMPAT_40) || defined(MODULAR)
     58 #include <sys/sysctl.h>
     59 #endif
     60 #include <sys/kauth.h>
     61 #include <sys/mutex.h>
     62 #include <sys/intr.h>
     63 #include <sys/stat.h>
     64 
     65 #include <net/if.h>
     66 #include <net/if_dl.h>
     67 #include <net/if_ether.h>
     68 #include <net/if_media.h>
     69 #include <net/if_tap.h>
     70 #include <net/bpf.h>
     71 
     72 #include <compat/sys/sockio.h>
     73 
     74 #include "ioconf.h"
     75 
     76 #if defined(COMPAT_40) || defined(MODULAR)
     77 /*
     78  * sysctl node management
     79  *
     80  * It's not really possible to use a SYSCTL_SETUP block with
     81  * current module implementation, so it is easier to just define
     82  * our own function.
     83  *
     84  * The handler function is a "helper" in Andrew Brown's sysctl
     85  * framework terminology.  It is used as a gateway for sysctl
     86  * requests over the nodes.
     87  *
     88  * tap_log allows the module to log creations of nodes and
     89  * destroy them all at once using sysctl_teardown.
     90  */
     91 static int tap_node;
     92 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     94 #endif
     95 
     96 /*
     97  * Since we're an Ethernet device, we need the 2 following
     98  * components: a struct ethercom and a struct ifmedia
     99  * since we don't attach a PHY to ourselves.
    100  * We could emulate one, but there's no real point.
    101  */
    102 
    103 struct tap_softc {
    104 	device_t	sc_dev;
    105 	struct ifmedia	sc_im;
    106 	struct ethercom	sc_ec;
    107 	int		sc_flags;
    108 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    109 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    110 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    111 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    112 	struct selinfo	sc_rsel;
    113 	pid_t		sc_pgid; /* For async. IO */
    114 	kmutex_t	sc_rdlock;
    115 	kmutex_t	sc_kqlock;
    116 	void		*sc_sih;
    117 	struct timespec sc_atime;
    118 	struct timespec sc_mtime;
    119 	struct timespec sc_btime;
    120 };
    121 
    122 /* autoconf(9) glue */
    123 
    124 static int	tap_match(device_t, cfdata_t, void *);
    125 static void	tap_attach(device_t, device_t, void *);
    126 static int	tap_detach(device_t, int);
    127 
    128 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    129     tap_match, tap_attach, tap_detach, NULL);
    130 extern struct cfdriver tap_cd;
    131 
    132 /* Real device access routines */
    133 static int	tap_dev_close(struct tap_softc *);
    134 static int	tap_dev_read(int, struct uio *, int);
    135 static int	tap_dev_write(int, struct uio *, int);
    136 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    137 static int	tap_dev_poll(int, int, struct lwp *);
    138 static int	tap_dev_kqfilter(int, struct knote *);
    139 
    140 /* Fileops access routines */
    141 static int	tap_fops_close(file_t *);
    142 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    143     kauth_cred_t, int);
    144 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    145     kauth_cred_t, int);
    146 static int	tap_fops_ioctl(file_t *, u_long, void *);
    147 static int	tap_fops_poll(file_t *, int);
    148 static int	tap_fops_stat(file_t *, struct stat *);
    149 static int	tap_fops_kqfilter(file_t *, struct knote *);
    150 
    151 static const struct fileops tap_fileops = {
    152 	.fo_read = tap_fops_read,
    153 	.fo_write = tap_fops_write,
    154 	.fo_ioctl = tap_fops_ioctl,
    155 	.fo_fcntl = fnullop_fcntl,
    156 	.fo_poll = tap_fops_poll,
    157 	.fo_stat = tap_fops_stat,
    158 	.fo_close = tap_fops_close,
    159 	.fo_kqfilter = tap_fops_kqfilter,
    160 	.fo_restart = fnullop_restart,
    161 };
    162 
    163 /* Helper for cloning open() */
    164 static int	tap_dev_cloner(struct lwp *);
    165 
    166 /* Character device routines */
    167 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    168 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    169 static int	tap_cdev_read(dev_t, struct uio *, int);
    170 static int	tap_cdev_write(dev_t, struct uio *, int);
    171 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    172 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174 
    175 const struct cdevsw tap_cdevsw = {
    176 	.d_open = tap_cdev_open,
    177 	.d_close = tap_cdev_close,
    178 	.d_read = tap_cdev_read,
    179 	.d_write = tap_cdev_write,
    180 	.d_ioctl = tap_cdev_ioctl,
    181 	.d_stop = nostop,
    182 	.d_tty = notty,
    183 	.d_poll = tap_cdev_poll,
    184 	.d_mmap = nommap,
    185 	.d_kqfilter = tap_cdev_kqfilter,
    186 	.d_discard = nodiscard,
    187 	.d_flag = D_OTHER
    188 };
    189 
    190 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    191 
    192 /* kqueue-related routines */
    193 static void	tap_kqdetach(struct knote *);
    194 static int	tap_kqread(struct knote *, long);
    195 
    196 /*
    197  * Those are needed by the if_media interface.
    198  */
    199 
    200 static int	tap_mediachange(struct ifnet *);
    201 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    202 
    203 /*
    204  * Those are needed by the ifnet interface, and would typically be
    205  * there for any network interface driver.
    206  * Some other routines are optional: watchdog and drain.
    207  */
    208 
    209 static void	tap_start(struct ifnet *);
    210 static void	tap_stop(struct ifnet *, int);
    211 static int	tap_init(struct ifnet *);
    212 static int	tap_ioctl(struct ifnet *, u_long, void *);
    213 
    214 /* Internal functions */
    215 #if defined(COMPAT_40) || defined(MODULAR)
    216 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    217 #endif
    218 static void	tap_softintr(void *);
    219 
    220 /*
    221  * tap is a clonable interface, although it is highly unrealistic for
    222  * an Ethernet device.
    223  *
    224  * Here are the bits needed for a clonable interface.
    225  */
    226 static int	tap_clone_create(struct if_clone *, int);
    227 static int	tap_clone_destroy(struct ifnet *);
    228 
    229 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    230 					tap_clone_create,
    231 					tap_clone_destroy);
    232 
    233 /* Helper functionis shared by the two cloning code paths */
    234 static struct tap_softc *	tap_clone_creator(int);
    235 int	tap_clone_destroyer(device_t);
    236 
    237 void
    238 tapattach(int n)
    239 {
    240 	int error;
    241 
    242 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    243 	if (error) {
    244 		aprint_error("%s: unable to register cfattach\n",
    245 		    tap_cd.cd_name);
    246 		(void)config_cfdriver_detach(&tap_cd);
    247 		return;
    248 	}
    249 
    250 	if_clone_attach(&tap_cloners);
    251 }
    252 
    253 /* Pretty much useless for a pseudo-device */
    254 static int
    255 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    256 {
    257 
    258 	return (1);
    259 }
    260 
    261 void
    262 tap_attach(device_t parent, device_t self, void *aux)
    263 {
    264 	struct tap_softc *sc = device_private(self);
    265 	struct ifnet *ifp;
    266 #if defined(COMPAT_40) || defined(MODULAR)
    267 	const struct sysctlnode *node;
    268 	int error;
    269 #endif
    270 	uint8_t enaddr[ETHER_ADDR_LEN] =
    271 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    272 	char enaddrstr[3 * ETHER_ADDR_LEN];
    273 
    274 	sc->sc_dev = self;
    275 	sc->sc_sih = NULL;
    276 	getnanotime(&sc->sc_btime);
    277 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    278 	sc->sc_flags = 0;
    279 	selinit(&sc->sc_rsel);
    280 
    281 	/*
    282 	 * Initialize the two locks for the device.
    283 	 *
    284 	 * We need a lock here because even though the tap device can be
    285 	 * opened only once, the file descriptor might be passed to another
    286 	 * process, say a fork(2)ed child.
    287 	 *
    288 	 * The Giant saves us from most of the hassle, but since the read
    289 	 * operation can sleep, we don't want two processes to wake up at
    290 	 * the same moment and both try and dequeue a single packet.
    291 	 *
    292 	 * The queue for event listeners (used by kqueue(9), see below) has
    293 	 * to be protected too, so use a spin lock.
    294 	 */
    295 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    296 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    297 
    298 	if (!pmf_device_register(self, NULL, NULL))
    299 		aprint_error_dev(self, "couldn't establish power handler\n");
    300 
    301 	/*
    302 	 * In order to obtain unique initial Ethernet address on a host,
    303 	 * do some randomisation.  It's not meant for anything but avoiding
    304 	 * hard-coding an address.
    305 	 */
    306 	cprng_fast(&enaddr[3], 3);
    307 
    308 	aprint_verbose_dev(self, "Ethernet address %s\n",
    309 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    310 
    311 	/*
    312 	 * Why 1000baseT? Why not? You can add more.
    313 	 *
    314 	 * Note that there are 3 steps: init, one or several additions to
    315 	 * list of supported media, and in the end, the selection of one
    316 	 * of them.
    317 	 */
    318 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    319 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    320 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    321 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    322 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    323 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    324 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    325 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    326 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    327 
    328 	/*
    329 	 * One should note that an interface must do multicast in order
    330 	 * to support IPv6.
    331 	 */
    332 	ifp = &sc->sc_ec.ec_if;
    333 	strcpy(ifp->if_xname, device_xname(self));
    334 	ifp->if_softc	= sc;
    335 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    336 	ifp->if_ioctl	= tap_ioctl;
    337 	ifp->if_start	= tap_start;
    338 	ifp->if_stop	= tap_stop;
    339 	ifp->if_init	= tap_init;
    340 	IFQ_SET_READY(&ifp->if_snd);
    341 
    342 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    343 
    344 	/* Those steps are mandatory for an Ethernet driver. */
    345 	if_initialize(ifp);
    346 	ether_ifattach(ifp, enaddr);
    347 	if_register(ifp);
    348 
    349 #if defined(COMPAT_40) || defined(MODULAR)
    350 	/*
    351 	 * Add a sysctl node for that interface.
    352 	 *
    353 	 * The pointer transmitted is not a string, but instead a pointer to
    354 	 * the softc structure, which we can use to build the string value on
    355 	 * the fly in the helper function of the node.  See the comments for
    356 	 * tap_sysctl_handler for details.
    357 	 *
    358 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    359 	 * component.  However, we can allocate a number ourselves, as we are
    360 	 * the only consumer of the net.link.<iface> node.  In this case, the
    361 	 * unit number is conveniently used to number the node.  CTL_CREATE
    362 	 * would just work, too.
    363 	 */
    364 	if ((error = sysctl_createv(NULL, 0, NULL,
    365 	    &node, CTLFLAG_READWRITE,
    366 	    CTLTYPE_STRING, device_xname(self), NULL,
    367 	    tap_sysctl_handler, 0, (void *)sc, 18,
    368 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    369 	    CTL_EOL)) != 0)
    370 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    371 		    error);
    372 #endif
    373 }
    374 
    375 /*
    376  * When detaching, we do the inverse of what is done in the attach
    377  * routine, in reversed order.
    378  */
    379 static int
    380 tap_detach(device_t self, int flags)
    381 {
    382 	struct tap_softc *sc = device_private(self);
    383 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    384 #if defined(COMPAT_40) || defined(MODULAR)
    385 	int error;
    386 #endif
    387 	int s;
    388 
    389 	sc->sc_flags |= TAP_GOING;
    390 	s = splnet();
    391 	tap_stop(ifp, 1);
    392 	if_down(ifp);
    393 	splx(s);
    394 
    395 	if (sc->sc_sih != NULL) {
    396 		softint_disestablish(sc->sc_sih);
    397 		sc->sc_sih = NULL;
    398 	}
    399 
    400 #if defined(COMPAT_40) || defined(MODULAR)
    401 	/*
    402 	 * Destroying a single leaf is a very straightforward operation using
    403 	 * sysctl_destroyv.  One should be sure to always end the path with
    404 	 * CTL_EOL.
    405 	 */
    406 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    407 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    408 		aprint_error_dev(self,
    409 		    "sysctl_destroyv returned %d, ignoring\n", error);
    410 #endif
    411 	ether_ifdetach(ifp);
    412 	if_detach(ifp);
    413 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    414 	seldestroy(&sc->sc_rsel);
    415 	mutex_destroy(&sc->sc_rdlock);
    416 	mutex_destroy(&sc->sc_kqlock);
    417 
    418 	pmf_device_deregister(self);
    419 
    420 	return (0);
    421 }
    422 
    423 /*
    424  * This function is called by the ifmedia layer to notify the driver
    425  * that the user requested a media change.  A real driver would
    426  * reconfigure the hardware.
    427  */
    428 static int
    429 tap_mediachange(struct ifnet *ifp)
    430 {
    431 	return (0);
    432 }
    433 
    434 /*
    435  * Here the user asks for the currently used media.
    436  */
    437 static void
    438 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    439 {
    440 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    441 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    442 }
    443 
    444 /*
    445  * This is the function where we SEND packets.
    446  *
    447  * There is no 'receive' equivalent.  A typical driver will get
    448  * interrupts from the hardware, and from there will inject new packets
    449  * into the network stack.
    450  *
    451  * Once handled, a packet must be freed.  A real driver might not be able
    452  * to fit all the pending packets into the hardware, and is allowed to
    453  * return before having sent all the packets.  It should then use the
    454  * if_flags flag IFF_OACTIVE to notify the upper layer.
    455  *
    456  * There are also other flags one should check, such as IFF_PAUSE.
    457  *
    458  * It is our duty to make packets available to BPF listeners.
    459  *
    460  * You should be aware that this function is called by the Ethernet layer
    461  * at splnet().
    462  *
    463  * When the device is opened, we have to pass the packet(s) to the
    464  * userland.  For that we stay in OACTIVE mode while the userland gets
    465  * the packets, and we send a signal to the processes waiting to read.
    466  *
    467  * wakeup(sc) is the counterpart to the tsleep call in
    468  * tap_dev_read, while selnotify() is used for kevent(2) and
    469  * poll(2) (which includes select(2)) listeners.
    470  */
    471 static void
    472 tap_start(struct ifnet *ifp)
    473 {
    474 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    475 	struct mbuf *m0;
    476 
    477 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    478 		/* Simply drop packets */
    479 		for(;;) {
    480 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    481 			if (m0 == NULL)
    482 				return;
    483 
    484 			ifp->if_opackets++;
    485 			bpf_mtap(ifp, m0);
    486 
    487 			m_freem(m0);
    488 		}
    489 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    490 		ifp->if_flags |= IFF_OACTIVE;
    491 		wakeup(sc);
    492 		selnotify(&sc->sc_rsel, 0, 1);
    493 		if (sc->sc_flags & TAP_ASYNCIO)
    494 			softint_schedule(sc->sc_sih);
    495 	}
    496 }
    497 
    498 static void
    499 tap_softintr(void *cookie)
    500 {
    501 	struct tap_softc *sc;
    502 	struct ifnet *ifp;
    503 	int a, b;
    504 
    505 	sc = cookie;
    506 
    507 	if (sc->sc_flags & TAP_ASYNCIO) {
    508 		ifp = &sc->sc_ec.ec_if;
    509 		if (ifp->if_flags & IFF_RUNNING) {
    510 			a = POLL_IN;
    511 			b = POLLIN|POLLRDNORM;
    512 		} else {
    513 			a = POLL_HUP;
    514 			b = 0;
    515 		}
    516 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    517 	}
    518 }
    519 
    520 /*
    521  * A typical driver will only contain the following handlers for
    522  * ioctl calls, except SIOCSIFPHYADDR.
    523  * The latter is a hack I used to set the Ethernet address of the
    524  * faked device.
    525  *
    526  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    527  * called under splnet().
    528  */
    529 static int
    530 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    531 {
    532 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    533 	struct ifreq *ifr = (struct ifreq *)data;
    534 	int s, error;
    535 
    536 	s = splnet();
    537 
    538 	switch (cmd) {
    539 #ifdef OSIOCSIFMEDIA
    540 	case OSIOCSIFMEDIA:
    541 #endif
    542 	case SIOCSIFMEDIA:
    543 	case SIOCGIFMEDIA:
    544 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    545 		break;
    546 #if defined(COMPAT_40) || defined(MODULAR)
    547 	case SIOCSIFPHYADDR:
    548 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    549 		break;
    550 #endif
    551 	default:
    552 		error = ether_ioctl(ifp, cmd, data);
    553 		if (error == ENETRESET)
    554 			error = 0;
    555 		break;
    556 	}
    557 
    558 	splx(s);
    559 
    560 	return (error);
    561 }
    562 
    563 #if defined(COMPAT_40) || defined(MODULAR)
    564 /*
    565  * Helper function to set Ethernet address.  This has been replaced by
    566  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    567  */
    568 static int
    569 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    570 {
    571 	const struct sockaddr *sa = &ifra->ifra_addr;
    572 
    573 	if (sa->sa_family != AF_LINK)
    574 		return (EINVAL);
    575 
    576 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    577 
    578 	return (0);
    579 }
    580 #endif
    581 
    582 /*
    583  * _init() would typically be called when an interface goes up,
    584  * meaning it should configure itself into the state in which it
    585  * can send packets.
    586  */
    587 static int
    588 tap_init(struct ifnet *ifp)
    589 {
    590 	ifp->if_flags |= IFF_RUNNING;
    591 
    592 	tap_start(ifp);
    593 
    594 	return (0);
    595 }
    596 
    597 /*
    598  * _stop() is called when an interface goes down.  It is our
    599  * responsability to validate that state by clearing the
    600  * IFF_RUNNING flag.
    601  *
    602  * We have to wake up all the sleeping processes to have the pending
    603  * read requests cancelled.
    604  */
    605 static void
    606 tap_stop(struct ifnet *ifp, int disable)
    607 {
    608 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    609 
    610 	ifp->if_flags &= ~IFF_RUNNING;
    611 	wakeup(sc);
    612 	selnotify(&sc->sc_rsel, 0, 1);
    613 	if (sc->sc_flags & TAP_ASYNCIO)
    614 		softint_schedule(sc->sc_sih);
    615 }
    616 
    617 /*
    618  * The 'create' command of ifconfig can be used to create
    619  * any numbered instance of a given device.  Thus we have to
    620  * make sure we have enough room in cd_devs to create the
    621  * user-specified instance.  config_attach_pseudo will do this
    622  * for us.
    623  */
    624 static int
    625 tap_clone_create(struct if_clone *ifc, int unit)
    626 {
    627 	if (tap_clone_creator(unit) == NULL) {
    628 		aprint_error("%s%d: unable to attach an instance\n",
    629                     tap_cd.cd_name, unit);
    630 		return (ENXIO);
    631 	}
    632 
    633 	return (0);
    634 }
    635 
    636 /*
    637  * tap(4) can be cloned by two ways:
    638  *   using 'ifconfig tap0 create', which will use the network
    639  *     interface cloning API, and call tap_clone_create above.
    640  *   opening the cloning device node, whose minor number is TAP_CLONER.
    641  *     See below for an explanation on how this part work.
    642  */
    643 static struct tap_softc *
    644 tap_clone_creator(int unit)
    645 {
    646 	struct cfdata *cf;
    647 
    648 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    649 	cf->cf_name = tap_cd.cd_name;
    650 	cf->cf_atname = tap_ca.ca_name;
    651 	if (unit == -1) {
    652 		/* let autoconf find the first free one */
    653 		cf->cf_unit = 0;
    654 		cf->cf_fstate = FSTATE_STAR;
    655 	} else {
    656 		cf->cf_unit = unit;
    657 		cf->cf_fstate = FSTATE_NOTFOUND;
    658 	}
    659 
    660 	return device_private(config_attach_pseudo(cf));
    661 }
    662 
    663 /*
    664  * The clean design of if_clone and autoconf(9) makes that part
    665  * really straightforward.  The second argument of config_detach
    666  * means neither QUIET nor FORCED.
    667  */
    668 static int
    669 tap_clone_destroy(struct ifnet *ifp)
    670 {
    671 	struct tap_softc *sc = ifp->if_softc;
    672 
    673 	return tap_clone_destroyer(sc->sc_dev);
    674 }
    675 
    676 int
    677 tap_clone_destroyer(device_t dev)
    678 {
    679 	cfdata_t cf = device_cfdata(dev);
    680 	int error;
    681 
    682 	if ((error = config_detach(dev, 0)) != 0)
    683 		aprint_error_dev(dev, "unable to detach instance\n");
    684 	free(cf, M_DEVBUF);
    685 
    686 	return (error);
    687 }
    688 
    689 /*
    690  * tap(4) is a bit of an hybrid device.  It can be used in two different
    691  * ways:
    692  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    693  *  2. open /dev/tap, get a new interface created and read/write off it.
    694  *     That interface is destroyed when the process that had it created exits.
    695  *
    696  * The first way is managed by the cdevsw structure, and you access interfaces
    697  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    698  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    699  *
    700  * The second way is the so-called "cloning" device.  It's a special minor
    701  * number (chosen as the maximal number, to allow as much tap devices as
    702  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    703  * call ends in tap_cdev_open.  The actual place where it is handled is
    704  * tap_dev_cloner.
    705  *
    706  * An tap device cannot be opened more than once at a time, so the cdevsw
    707  * part of open() does nothing but noting that the interface is being used and
    708  * hence ready to actually handle packets.
    709  */
    710 
    711 static int
    712 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    713 {
    714 	struct tap_softc *sc;
    715 
    716 	if (minor(dev) == TAP_CLONER)
    717 		return tap_dev_cloner(l);
    718 
    719 	sc = device_lookup_private(&tap_cd, minor(dev));
    720 	if (sc == NULL)
    721 		return (ENXIO);
    722 
    723 	/* The device can only be opened once */
    724 	if (sc->sc_flags & TAP_INUSE)
    725 		return (EBUSY);
    726 	sc->sc_flags |= TAP_INUSE;
    727 	return (0);
    728 }
    729 
    730 /*
    731  * There are several kinds of cloning devices, and the most simple is the one
    732  * tap(4) uses.  What it does is change the file descriptor with a new one,
    733  * with its own fileops structure (which maps to the various read, write,
    734  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    735  * then actually creates the new tap devices.
    736  *
    737  * Once those two steps are successful, we can re-wire the existing file
    738  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    739  * structure as needed (notably f_devunit gets filled with the fifth parameter
    740  * passed, the unit of the tap device which will allows us identifying the
    741  * device later), and returns EMOVEFD.
    742  *
    743  * That magic value is interpreted by sys_open() which then replaces the
    744  * current file descriptor by the new one (through a magic member of struct
    745  * lwp, l_dupfd).
    746  *
    747  * The tap device is flagged as being busy since it otherwise could be
    748  * externally accessed through the corresponding device node with the cdevsw
    749  * interface.
    750  */
    751 
    752 static int
    753 tap_dev_cloner(struct lwp *l)
    754 {
    755 	struct tap_softc *sc;
    756 	file_t *fp;
    757 	int error, fd;
    758 
    759 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    760 		return (error);
    761 
    762 	if ((sc = tap_clone_creator(-1)) == NULL) {
    763 		fd_abort(curproc, fp, fd);
    764 		return (ENXIO);
    765 	}
    766 
    767 	sc->sc_flags |= TAP_INUSE;
    768 
    769 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    770 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    771 }
    772 
    773 /*
    774  * While all other operations (read, write, ioctl, poll and kqfilter) are
    775  * really the same whether we are in cdevsw or fileops mode, the close()
    776  * function is slightly different in the two cases.
    777  *
    778  * As for the other, the core of it is shared in tap_dev_close.  What
    779  * it does is sufficient for the cdevsw interface, but the cloning interface
    780  * needs another thing:  the interface is destroyed when the processes that
    781  * created it closes it.
    782  */
    783 static int
    784 tap_cdev_close(dev_t dev, int flags, int fmt,
    785     struct lwp *l)
    786 {
    787 	struct tap_softc *sc =
    788 	    device_lookup_private(&tap_cd, minor(dev));
    789 
    790 	if (sc == NULL)
    791 		return (ENXIO);
    792 
    793 	return tap_dev_close(sc);
    794 }
    795 
    796 /*
    797  * It might happen that the administrator used ifconfig to externally destroy
    798  * the interface.  In that case, tap_fops_close will be called while
    799  * tap_detach is already happening.  If we called it again from here, we
    800  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    801  */
    802 static int
    803 tap_fops_close(file_t *fp)
    804 {
    805 	int unit = fp->f_devunit;
    806 	struct tap_softc *sc;
    807 	int error;
    808 
    809 	sc = device_lookup_private(&tap_cd, unit);
    810 	if (sc == NULL)
    811 		return (ENXIO);
    812 
    813 	/* tap_dev_close currently always succeeds, but it might not
    814 	 * always be the case. */
    815 	KERNEL_LOCK(1, NULL);
    816 	if ((error = tap_dev_close(sc)) != 0) {
    817 		KERNEL_UNLOCK_ONE(NULL);
    818 		return (error);
    819 	}
    820 
    821 	/* Destroy the device now that it is no longer useful,
    822 	 * unless it's already being destroyed. */
    823 	if ((sc->sc_flags & TAP_GOING) != 0) {
    824 		KERNEL_UNLOCK_ONE(NULL);
    825 		return (0);
    826 	}
    827 
    828 	error = tap_clone_destroyer(sc->sc_dev);
    829 	KERNEL_UNLOCK_ONE(NULL);
    830 	return error;
    831 }
    832 
    833 static int
    834 tap_dev_close(struct tap_softc *sc)
    835 {
    836 	struct ifnet *ifp;
    837 	int s;
    838 
    839 	s = splnet();
    840 	/* Let tap_start handle packets again */
    841 	ifp = &sc->sc_ec.ec_if;
    842 	ifp->if_flags &= ~IFF_OACTIVE;
    843 
    844 	/* Purge output queue */
    845 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    846 		struct mbuf *m;
    847 
    848 		for (;;) {
    849 			IFQ_DEQUEUE(&ifp->if_snd, m);
    850 			if (m == NULL)
    851 				break;
    852 
    853 			ifp->if_opackets++;
    854 			bpf_mtap(ifp, m);
    855 			m_freem(m);
    856 		}
    857 	}
    858 	splx(s);
    859 
    860 	if (sc->sc_sih != NULL) {
    861 		softint_disestablish(sc->sc_sih);
    862 		sc->sc_sih = NULL;
    863 	}
    864 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    865 
    866 	return (0);
    867 }
    868 
    869 static int
    870 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    871 {
    872 	return tap_dev_read(minor(dev), uio, flags);
    873 }
    874 
    875 static int
    876 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    877     kauth_cred_t cred, int flags)
    878 {
    879 	int error;
    880 
    881 	KERNEL_LOCK(1, NULL);
    882 	error = tap_dev_read(fp->f_devunit, uio, flags);
    883 	KERNEL_UNLOCK_ONE(NULL);
    884 	return error;
    885 }
    886 
    887 static int
    888 tap_dev_read(int unit, struct uio *uio, int flags)
    889 {
    890 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    891 	struct ifnet *ifp;
    892 	struct mbuf *m, *n;
    893 	int error = 0, s;
    894 
    895 	if (sc == NULL)
    896 		return (ENXIO);
    897 
    898 	getnanotime(&sc->sc_atime);
    899 
    900 	ifp = &sc->sc_ec.ec_if;
    901 	if ((ifp->if_flags & IFF_UP) == 0)
    902 		return (EHOSTDOWN);
    903 
    904 	/*
    905 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    906 	 */
    907 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    908 		if (!mutex_tryenter(&sc->sc_rdlock))
    909 			return (EWOULDBLOCK);
    910 	} else {
    911 		mutex_enter(&sc->sc_rdlock);
    912 	}
    913 
    914 	s = splnet();
    915 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    916 		ifp->if_flags &= ~IFF_OACTIVE;
    917 		/*
    918 		 * We must release the lock before sleeping, and re-acquire it
    919 		 * after.
    920 		 */
    921 		mutex_exit(&sc->sc_rdlock);
    922 		if (sc->sc_flags & TAP_NBIO)
    923 			error = EWOULDBLOCK;
    924 		else
    925 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    926 		splx(s);
    927 
    928 		if (error != 0)
    929 			return (error);
    930 		/* The device might have been downed */
    931 		if ((ifp->if_flags & IFF_UP) == 0)
    932 			return (EHOSTDOWN);
    933 		if ((sc->sc_flags & TAP_NBIO)) {
    934 			if (!mutex_tryenter(&sc->sc_rdlock))
    935 				return (EWOULDBLOCK);
    936 		} else {
    937 			mutex_enter(&sc->sc_rdlock);
    938 		}
    939 		s = splnet();
    940 	}
    941 
    942 	IFQ_DEQUEUE(&ifp->if_snd, m);
    943 	ifp->if_flags &= ~IFF_OACTIVE;
    944 	splx(s);
    945 	if (m == NULL) {
    946 		error = 0;
    947 		goto out;
    948 	}
    949 
    950 	ifp->if_opackets++;
    951 	bpf_mtap(ifp, m);
    952 
    953 	/*
    954 	 * One read is one packet.
    955 	 */
    956 	do {
    957 		error = uiomove(mtod(m, void *),
    958 		    min(m->m_len, uio->uio_resid), uio);
    959 		MFREE(m, n);
    960 		m = n;
    961 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    962 
    963 	if (m != NULL)
    964 		m_freem(m);
    965 
    966 out:
    967 	mutex_exit(&sc->sc_rdlock);
    968 	return (error);
    969 }
    970 
    971 static int
    972 tap_fops_stat(file_t *fp, struct stat *st)
    973 {
    974 	int error = 0;
    975 	struct tap_softc *sc;
    976 	int unit = fp->f_devunit;
    977 
    978 	(void)memset(st, 0, sizeof(*st));
    979 
    980 	KERNEL_LOCK(1, NULL);
    981 	sc = device_lookup_private(&tap_cd, unit);
    982 	if (sc == NULL) {
    983 		error = ENXIO;
    984 		goto out;
    985 	}
    986 
    987 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    988 	st->st_atimespec = sc->sc_atime;
    989 	st->st_mtimespec = sc->sc_mtime;
    990 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    991 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    992 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    993 out:
    994 	KERNEL_UNLOCK_ONE(NULL);
    995 	return error;
    996 }
    997 
    998 static int
    999 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1000 {
   1001 	return tap_dev_write(minor(dev), uio, flags);
   1002 }
   1003 
   1004 static int
   1005 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1006     kauth_cred_t cred, int flags)
   1007 {
   1008 	int error;
   1009 
   1010 	KERNEL_LOCK(1, NULL);
   1011 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1012 	KERNEL_UNLOCK_ONE(NULL);
   1013 	return error;
   1014 }
   1015 
   1016 static int
   1017 tap_dev_write(int unit, struct uio *uio, int flags)
   1018 {
   1019 	struct tap_softc *sc =
   1020 	    device_lookup_private(&tap_cd, unit);
   1021 	struct ifnet *ifp;
   1022 	struct mbuf *m, **mp;
   1023 	int error = 0;
   1024 	int s;
   1025 
   1026 	if (sc == NULL)
   1027 		return (ENXIO);
   1028 
   1029 	getnanotime(&sc->sc_mtime);
   1030 	ifp = &sc->sc_ec.ec_if;
   1031 
   1032 	/* One write, one packet, that's the rule */
   1033 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1034 	if (m == NULL) {
   1035 		ifp->if_ierrors++;
   1036 		return (ENOBUFS);
   1037 	}
   1038 	m->m_pkthdr.len = uio->uio_resid;
   1039 
   1040 	mp = &m;
   1041 	while (error == 0 && uio->uio_resid > 0) {
   1042 		if (*mp != m) {
   1043 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1044 			if (*mp == NULL) {
   1045 				error = ENOBUFS;
   1046 				break;
   1047 			}
   1048 		}
   1049 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1050 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1051 		mp = &(*mp)->m_next;
   1052 	}
   1053 	if (error) {
   1054 		ifp->if_ierrors++;
   1055 		m_freem(m);
   1056 		return (error);
   1057 	}
   1058 
   1059 	ifp->if_ipackets++;
   1060 	m_set_rcvif(m, ifp);
   1061 
   1062 	bpf_mtap(ifp, m);
   1063 	s = splnet();
   1064 	if_input(ifp, m);
   1065 	splx(s);
   1066 
   1067 	return (0);
   1068 }
   1069 
   1070 static int
   1071 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1072     struct lwp *l)
   1073 {
   1074 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1075 }
   1076 
   1077 static int
   1078 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1079 {
   1080 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1081 }
   1082 
   1083 static int
   1084 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1085 {
   1086 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1087 
   1088 	if (sc == NULL)
   1089 		return ENXIO;
   1090 
   1091 	switch (cmd) {
   1092 	case FIONREAD:
   1093 		{
   1094 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1095 			struct mbuf *m;
   1096 			int s;
   1097 
   1098 			s = splnet();
   1099 			IFQ_POLL(&ifp->if_snd, m);
   1100 
   1101 			if (m == NULL)
   1102 				*(int *)data = 0;
   1103 			else
   1104 				*(int *)data = m->m_pkthdr.len;
   1105 			splx(s);
   1106 			return 0;
   1107 		}
   1108 	case TIOCSPGRP:
   1109 	case FIOSETOWN:
   1110 		return fsetown(&sc->sc_pgid, cmd, data);
   1111 	case TIOCGPGRP:
   1112 	case FIOGETOWN:
   1113 		return fgetown(sc->sc_pgid, cmd, data);
   1114 	case FIOASYNC:
   1115 		if (*(int *)data) {
   1116 			if (sc->sc_sih == NULL) {
   1117 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1118 				    tap_softintr, sc);
   1119 				if (sc->sc_sih == NULL)
   1120 					return EBUSY; /* XXX */
   1121 			}
   1122 			sc->sc_flags |= TAP_ASYNCIO;
   1123 		} else {
   1124 			sc->sc_flags &= ~TAP_ASYNCIO;
   1125 			if (sc->sc_sih != NULL) {
   1126 				softint_disestablish(sc->sc_sih);
   1127 				sc->sc_sih = NULL;
   1128 			}
   1129 		}
   1130 		return 0;
   1131 	case FIONBIO:
   1132 		if (*(int *)data)
   1133 			sc->sc_flags |= TAP_NBIO;
   1134 		else
   1135 			sc->sc_flags &= ~TAP_NBIO;
   1136 		return 0;
   1137 #ifdef OTAPGIFNAME
   1138 	case OTAPGIFNAME:
   1139 #endif
   1140 	case TAPGIFNAME:
   1141 		{
   1142 			struct ifreq *ifr = (struct ifreq *)data;
   1143 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1144 
   1145 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1146 			return 0;
   1147 		}
   1148 	default:
   1149 		return ENOTTY;
   1150 	}
   1151 }
   1152 
   1153 static int
   1154 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1155 {
   1156 	return tap_dev_poll(minor(dev), events, l);
   1157 }
   1158 
   1159 static int
   1160 tap_fops_poll(file_t *fp, int events)
   1161 {
   1162 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1163 }
   1164 
   1165 static int
   1166 tap_dev_poll(int unit, int events, struct lwp *l)
   1167 {
   1168 	struct tap_softc *sc =
   1169 	    device_lookup_private(&tap_cd, unit);
   1170 	int revents = 0;
   1171 
   1172 	if (sc == NULL)
   1173 		return POLLERR;
   1174 
   1175 	if (events & (POLLIN|POLLRDNORM)) {
   1176 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1177 		struct mbuf *m;
   1178 		int s;
   1179 
   1180 		s = splnet();
   1181 		IFQ_POLL(&ifp->if_snd, m);
   1182 
   1183 		if (m != NULL)
   1184 			revents |= events & (POLLIN|POLLRDNORM);
   1185 		else {
   1186 			mutex_spin_enter(&sc->sc_kqlock);
   1187 			selrecord(l, &sc->sc_rsel);
   1188 			mutex_spin_exit(&sc->sc_kqlock);
   1189 		}
   1190 		splx(s);
   1191 	}
   1192 	revents |= events & (POLLOUT|POLLWRNORM);
   1193 
   1194 	return (revents);
   1195 }
   1196 
   1197 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1198 	tap_kqread };
   1199 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1200 	filt_seltrue };
   1201 
   1202 static int
   1203 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1204 {
   1205 	return tap_dev_kqfilter(minor(dev), kn);
   1206 }
   1207 
   1208 static int
   1209 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1210 {
   1211 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1212 }
   1213 
   1214 static int
   1215 tap_dev_kqfilter(int unit, struct knote *kn)
   1216 {
   1217 	struct tap_softc *sc =
   1218 	    device_lookup_private(&tap_cd, unit);
   1219 
   1220 	if (sc == NULL)
   1221 		return (ENXIO);
   1222 
   1223 	KERNEL_LOCK(1, NULL);
   1224 	switch(kn->kn_filter) {
   1225 	case EVFILT_READ:
   1226 		kn->kn_fop = &tap_read_filterops;
   1227 		break;
   1228 	case EVFILT_WRITE:
   1229 		kn->kn_fop = &tap_seltrue_filterops;
   1230 		break;
   1231 	default:
   1232 		KERNEL_UNLOCK_ONE(NULL);
   1233 		return (EINVAL);
   1234 	}
   1235 
   1236 	kn->kn_hook = sc;
   1237 	mutex_spin_enter(&sc->sc_kqlock);
   1238 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1239 	mutex_spin_exit(&sc->sc_kqlock);
   1240 	KERNEL_UNLOCK_ONE(NULL);
   1241 	return (0);
   1242 }
   1243 
   1244 static void
   1245 tap_kqdetach(struct knote *kn)
   1246 {
   1247 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1248 
   1249 	KERNEL_LOCK(1, NULL);
   1250 	mutex_spin_enter(&sc->sc_kqlock);
   1251 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1252 	mutex_spin_exit(&sc->sc_kqlock);
   1253 	KERNEL_UNLOCK_ONE(NULL);
   1254 }
   1255 
   1256 static int
   1257 tap_kqread(struct knote *kn, long hint)
   1258 {
   1259 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1260 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1261 	struct mbuf *m;
   1262 	int s, rv;
   1263 
   1264 	KERNEL_LOCK(1, NULL);
   1265 	s = splnet();
   1266 	IFQ_POLL(&ifp->if_snd, m);
   1267 
   1268 	if (m == NULL)
   1269 		kn->kn_data = 0;
   1270 	else
   1271 		kn->kn_data = m->m_pkthdr.len;
   1272 	splx(s);
   1273 	rv = (kn->kn_data != 0 ? 1 : 0);
   1274 	KERNEL_UNLOCK_ONE(NULL);
   1275 	return rv;
   1276 }
   1277 
   1278 #if defined(COMPAT_40) || defined(MODULAR)
   1279 /*
   1280  * sysctl management routines
   1281  * You can set the address of an interface through:
   1282  * net.link.tap.tap<number>
   1283  *
   1284  * Note the consistent use of tap_log in order to use
   1285  * sysctl_teardown at unload time.
   1286  *
   1287  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1288  * blocks register a function in a special section of the kernel
   1289  * (called a link set) which is used at init_sysctl() time to cycle
   1290  * through all those functions to create the kernel's sysctl tree.
   1291  *
   1292  * It is not possible to use link sets in a module, so the
   1293  * easiest is to simply call our own setup routine at load time.
   1294  *
   1295  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1296  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1297  * whole kernel sysctl tree is built, it is not possible to add any
   1298  * permanent node.
   1299  *
   1300  * It should be noted that we're not saving the sysctlnode pointer
   1301  * we are returned when creating the "tap" node.  That structure
   1302  * cannot be trusted once out of the calling function, as it might
   1303  * get reused.  So we just save the MIB number, and always give the
   1304  * full path starting from the root for later calls to sysctl_createv
   1305  * and sysctl_destroyv.
   1306  */
   1307 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1308 {
   1309 	const struct sysctlnode *node;
   1310 	int error = 0;
   1311 
   1312 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1313 	    CTLFLAG_PERMANENT,
   1314 	    CTLTYPE_NODE, "link", NULL,
   1315 	    NULL, 0, NULL, 0,
   1316 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1317 		return;
   1318 
   1319 	/*
   1320 	 * The first four parameters of sysctl_createv are for management.
   1321 	 *
   1322 	 * The four that follows, here starting with a '0' for the flags,
   1323 	 * describe the node.
   1324 	 *
   1325 	 * The next series of four set its value, through various possible
   1326 	 * means.
   1327 	 *
   1328 	 * Last but not least, the path to the node is described.  That path
   1329 	 * is relative to the given root (third argument).  Here we're
   1330 	 * starting from the root.
   1331 	 */
   1332 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1333 	    CTLFLAG_PERMANENT,
   1334 	    CTLTYPE_NODE, "tap", NULL,
   1335 	    NULL, 0, NULL, 0,
   1336 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1337 		return;
   1338 	tap_node = node->sysctl_num;
   1339 }
   1340 
   1341 /*
   1342  * The helper functions make Andrew Brown's interface really
   1343  * shine.  It makes possible to create value on the fly whether
   1344  * the sysctl value is read or written.
   1345  *
   1346  * As shown as an example in the man page, the first step is to
   1347  * create a copy of the node to have sysctl_lookup work on it.
   1348  *
   1349  * Here, we have more work to do than just a copy, since we have
   1350  * to create the string.  The first step is to collect the actual
   1351  * value of the node, which is a convenient pointer to the softc
   1352  * of the interface.  From there we create the string and use it
   1353  * as the value, but only for the *copy* of the node.
   1354  *
   1355  * Then we let sysctl_lookup do the magic, which consists in
   1356  * setting oldp and newp as required by the operation.  When the
   1357  * value is read, that means that the string will be copied to
   1358  * the user, and when it is written, the new value will be copied
   1359  * over in the addr array.
   1360  *
   1361  * If newp is NULL, the user was reading the value, so we don't
   1362  * have anything else to do.  If a new value was written, we
   1363  * have to check it.
   1364  *
   1365  * If it is incorrect, we can return an error and leave 'node' as
   1366  * it is:  since it is a copy of the actual node, the change will
   1367  * be forgotten.
   1368  *
   1369  * Upon a correct input, we commit the change to the ifnet
   1370  * structure of our interface.
   1371  */
   1372 static int
   1373 tap_sysctl_handler(SYSCTLFN_ARGS)
   1374 {
   1375 	struct sysctlnode node;
   1376 	struct tap_softc *sc;
   1377 	struct ifnet *ifp;
   1378 	int error;
   1379 	size_t len;
   1380 	char addr[3 * ETHER_ADDR_LEN];
   1381 	uint8_t enaddr[ETHER_ADDR_LEN];
   1382 
   1383 	node = *rnode;
   1384 	sc = node.sysctl_data;
   1385 	ifp = &sc->sc_ec.ec_if;
   1386 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1387 	node.sysctl_data = addr;
   1388 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1389 	if (error || newp == NULL)
   1390 		return (error);
   1391 
   1392 	len = strlen(addr);
   1393 	if (len < 11 || len > 17)
   1394 		return (EINVAL);
   1395 
   1396 	/* Commit change */
   1397 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1398 		return (EINVAL);
   1399 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1400 	return (error);
   1401 }
   1402 #endif
   1403