Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.84.2.1
      1 /*	$NetBSD: if_tap.c,v 1.84.2.1 2016/07/18 03:50:00 pgoyette Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.84.2.1 2016/07/18 03:50:00 pgoyette Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/cprng.h>
     50 #include <sys/device.h>
     51 #include <sys/file.h>
     52 #include <sys/filedesc.h>
     53 #include <sys/poll.h>
     54 #include <sys/proc.h>
     55 #include <sys/select.h>
     56 #include <sys/sockio.h>
     57 #if defined(COMPAT_40) || defined(MODULAR)
     58 #include <sys/sysctl.h>
     59 #endif
     60 #include <sys/kauth.h>
     61 #include <sys/mutex.h>
     62 #include <sys/intr.h>
     63 #include <sys/stat.h>
     64 #include <sys/localcount.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #include <net/bpf.h>
     72 
     73 #include <compat/sys/sockio.h>
     74 
     75 #include "ioconf.h"
     76 
     77 #if defined(COMPAT_40) || defined(MODULAR)
     78 /*
     79  * sysctl node management
     80  *
     81  * It's not really possible to use a SYSCTL_SETUP block with
     82  * current module implementation, so it is easier to just define
     83  * our own function.
     84  *
     85  * The handler function is a "helper" in Andrew Brown's sysctl
     86  * framework terminology.  It is used as a gateway for sysctl
     87  * requests over the nodes.
     88  *
     89  * tap_log allows the module to log creations of nodes and
     90  * destroy them all at once using sysctl_teardown.
     91  */
     92 static int tap_node;
     93 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     94 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     95 #endif
     96 
     97 /*
     98  * Since we're an Ethernet device, we need the 2 following
     99  * components: a struct ethercom and a struct ifmedia
    100  * since we don't attach a PHY to ourselves.
    101  * We could emulate one, but there's no real point.
    102  */
    103 
    104 struct tap_softc {
    105 	device_t	sc_dev;
    106 	struct ifmedia	sc_im;
    107 	struct ethercom	sc_ec;
    108 	int		sc_flags;
    109 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    110 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    111 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    112 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    113 	struct selinfo	sc_rsel;
    114 	pid_t		sc_pgid; /* For async. IO */
    115 	kmutex_t	sc_rdlock;
    116 	kmutex_t	sc_kqlock;
    117 	void		*sc_sih;
    118 	struct timespec sc_atime;
    119 	struct timespec sc_mtime;
    120 	struct timespec sc_btime;
    121 };
    122 
    123 /* autoconf(9) glue */
    124 
    125 static int	tap_match(device_t, cfdata_t, void *);
    126 static void	tap_attach(device_t, device_t, void *);
    127 static int	tap_detach(device_t, int);
    128 
    129 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    130     tap_match, tap_attach, tap_detach, NULL);
    131 extern struct cfdriver tap_cd;
    132 
    133 /* Real device access routines */
    134 static int	tap_dev_close(struct tap_softc *);
    135 static int	tap_dev_read(int, struct uio *, int);
    136 static int	tap_dev_write(int, struct uio *, int);
    137 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    138 static int	tap_dev_poll(int, int, struct lwp *);
    139 static int	tap_dev_kqfilter(int, struct knote *);
    140 
    141 /* Fileops access routines */
    142 static int	tap_fops_close(file_t *);
    143 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    146     kauth_cred_t, int);
    147 static int	tap_fops_ioctl(file_t *, u_long, void *);
    148 static int	tap_fops_poll(file_t *, int);
    149 static int	tap_fops_stat(file_t *, struct stat *);
    150 static int	tap_fops_kqfilter(file_t *, struct knote *);
    151 
    152 static const struct fileops tap_fileops = {
    153 	.fo_read = tap_fops_read,
    154 	.fo_write = tap_fops_write,
    155 	.fo_ioctl = tap_fops_ioctl,
    156 	.fo_fcntl = fnullop_fcntl,
    157 	.fo_poll = tap_fops_poll,
    158 	.fo_stat = tap_fops_stat,
    159 	.fo_close = tap_fops_close,
    160 	.fo_kqfilter = tap_fops_kqfilter,
    161 	.fo_restart = fnullop_restart,
    162 };
    163 
    164 /* Helper for cloning open() */
    165 static int	tap_dev_cloner(struct lwp *);
    166 
    167 /* Character device routines */
    168 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    169 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    170 static int	tap_cdev_read(dev_t, struct uio *, int);
    171 static int	tap_cdev_write(dev_t, struct uio *, int);
    172 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    173 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    174 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    175 
    176 #ifdef _MODULE
    177 struct localcount tap_localcount;
    178 #endif
    179 
    180 const struct cdevsw tap_cdevsw = {
    181 	.d_open = tap_cdev_open,
    182 	.d_close = tap_cdev_close,
    183 	.d_read = tap_cdev_read,
    184 	.d_write = tap_cdev_write,
    185 	.d_ioctl = tap_cdev_ioctl,
    186 	.d_stop = nostop,
    187 	.d_tty = notty,
    188 	.d_poll = tap_cdev_poll,
    189 	.d_mmap = nommap,
    190 	.d_kqfilter = tap_cdev_kqfilter,
    191 	.d_discard = nodiscard,
    192 #ifdef _MODULE
    193 	.d_localcount = &tap_localcount,
    194 #endif
    195 	.d_flag = D_OTHER
    196 };
    197 
    198 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    199 
    200 /* kqueue-related routines */
    201 static void	tap_kqdetach(struct knote *);
    202 static int	tap_kqread(struct knote *, long);
    203 
    204 /*
    205  * Those are needed by the if_media interface.
    206  */
    207 
    208 static int	tap_mediachange(struct ifnet *);
    209 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    210 
    211 /*
    212  * Those are needed by the ifnet interface, and would typically be
    213  * there for any network interface driver.
    214  * Some other routines are optional: watchdog and drain.
    215  */
    216 
    217 static void	tap_start(struct ifnet *);
    218 static void	tap_stop(struct ifnet *, int);
    219 static int	tap_init(struct ifnet *);
    220 static int	tap_ioctl(struct ifnet *, u_long, void *);
    221 
    222 /* Internal functions */
    223 #if defined(COMPAT_40) || defined(MODULAR)
    224 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    225 #endif
    226 static void	tap_softintr(void *);
    227 
    228 /*
    229  * tap is a clonable interface, although it is highly unrealistic for
    230  * an Ethernet device.
    231  *
    232  * Here are the bits needed for a clonable interface.
    233  */
    234 static int	tap_clone_create(struct if_clone *, int);
    235 static int	tap_clone_destroy(struct ifnet *);
    236 
    237 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    238 					tap_clone_create,
    239 					tap_clone_destroy);
    240 
    241 /* Helper functionis shared by the two cloning code paths */
    242 static struct tap_softc *	tap_clone_creator(int);
    243 int	tap_clone_destroyer(device_t);
    244 
    245 void
    246 tapattach(int n)
    247 {
    248 	int error;
    249 
    250 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    251 	if (error) {
    252 		aprint_error("%s: unable to register cfattach\n",
    253 		    tap_cd.cd_name);
    254 		(void)config_cfdriver_detach(&tap_cd);
    255 		return;
    256 	}
    257 
    258 	if_clone_attach(&tap_cloners);
    259 }
    260 
    261 /* Pretty much useless for a pseudo-device */
    262 static int
    263 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    264 {
    265 
    266 	return (1);
    267 }
    268 
    269 void
    270 tap_attach(device_t parent, device_t self, void *aux)
    271 {
    272 	struct tap_softc *sc = device_private(self);
    273 	struct ifnet *ifp;
    274 #if defined(COMPAT_40) || defined(MODULAR)
    275 	const struct sysctlnode *node;
    276 	int error;
    277 #endif
    278 	uint8_t enaddr[ETHER_ADDR_LEN] =
    279 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    280 	char enaddrstr[3 * ETHER_ADDR_LEN];
    281 
    282 	sc->sc_dev = self;
    283 	sc->sc_sih = NULL;
    284 	getnanotime(&sc->sc_btime);
    285 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    286 	sc->sc_flags = 0;
    287 	selinit(&sc->sc_rsel);
    288 
    289 	/*
    290 	 * Initialize the two locks for the device.
    291 	 *
    292 	 * We need a lock here because even though the tap device can be
    293 	 * opened only once, the file descriptor might be passed to another
    294 	 * process, say a fork(2)ed child.
    295 	 *
    296 	 * The Giant saves us from most of the hassle, but since the read
    297 	 * operation can sleep, we don't want two processes to wake up at
    298 	 * the same moment and both try and dequeue a single packet.
    299 	 *
    300 	 * The queue for event listeners (used by kqueue(9), see below) has
    301 	 * to be protected too, so use a spin lock.
    302 	 */
    303 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    304 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    305 
    306 	if (!pmf_device_register(self, NULL, NULL))
    307 		aprint_error_dev(self, "couldn't establish power handler\n");
    308 
    309 	/*
    310 	 * In order to obtain unique initial Ethernet address on a host,
    311 	 * do some randomisation.  It's not meant for anything but avoiding
    312 	 * hard-coding an address.
    313 	 */
    314 	cprng_fast(&enaddr[3], 3);
    315 
    316 	aprint_verbose_dev(self, "Ethernet address %s\n",
    317 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    318 
    319 	/*
    320 	 * Why 1000baseT? Why not? You can add more.
    321 	 *
    322 	 * Note that there are 3 steps: init, one or several additions to
    323 	 * list of supported media, and in the end, the selection of one
    324 	 * of them.
    325 	 */
    326 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    327 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    328 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    329 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    330 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    331 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    332 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    333 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    334 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    335 
    336 	/*
    337 	 * One should note that an interface must do multicast in order
    338 	 * to support IPv6.
    339 	 */
    340 	ifp = &sc->sc_ec.ec_if;
    341 	strcpy(ifp->if_xname, device_xname(self));
    342 	ifp->if_softc	= sc;
    343 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    344 	ifp->if_ioctl	= tap_ioctl;
    345 	ifp->if_start	= tap_start;
    346 	ifp->if_stop	= tap_stop;
    347 	ifp->if_init	= tap_init;
    348 	IFQ_SET_READY(&ifp->if_snd);
    349 
    350 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    351 
    352 	/* Those steps are mandatory for an Ethernet driver. */
    353 	if_initialize(ifp);
    354 	ether_ifattach(ifp, enaddr);
    355 	if_register(ifp);
    356 
    357 #if defined(COMPAT_40) || defined(MODULAR)
    358 	/*
    359 	 * Add a sysctl node for that interface.
    360 	 *
    361 	 * The pointer transmitted is not a string, but instead a pointer to
    362 	 * the softc structure, which we can use to build the string value on
    363 	 * the fly in the helper function of the node.  See the comments for
    364 	 * tap_sysctl_handler for details.
    365 	 *
    366 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    367 	 * component.  However, we can allocate a number ourselves, as we are
    368 	 * the only consumer of the net.link.<iface> node.  In this case, the
    369 	 * unit number is conveniently used to number the node.  CTL_CREATE
    370 	 * would just work, too.
    371 	 */
    372 	if ((error = sysctl_createv(NULL, 0, NULL,
    373 	    &node, CTLFLAG_READWRITE,
    374 	    CTLTYPE_STRING, device_xname(self), NULL,
    375 	    tap_sysctl_handler, 0, (void *)sc, 18,
    376 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    377 	    CTL_EOL)) != 0)
    378 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    379 		    error);
    380 #endif
    381 }
    382 
    383 /*
    384  * When detaching, we do the inverse of what is done in the attach
    385  * routine, in reversed order.
    386  */
    387 static int
    388 tap_detach(device_t self, int flags)
    389 {
    390 	struct tap_softc *sc = device_private(self);
    391 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    392 #if defined(COMPAT_40) || defined(MODULAR)
    393 	int error;
    394 #endif
    395 	int s;
    396 
    397 	sc->sc_flags |= TAP_GOING;
    398 	s = splnet();
    399 	tap_stop(ifp, 1);
    400 	if_down(ifp);
    401 	splx(s);
    402 
    403 	if (sc->sc_sih != NULL) {
    404 		softint_disestablish(sc->sc_sih);
    405 		sc->sc_sih = NULL;
    406 	}
    407 
    408 #if defined(COMPAT_40) || defined(MODULAR)
    409 	/*
    410 	 * Destroying a single leaf is a very straightforward operation using
    411 	 * sysctl_destroyv.  One should be sure to always end the path with
    412 	 * CTL_EOL.
    413 	 */
    414 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    415 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    416 		aprint_error_dev(self,
    417 		    "sysctl_destroyv returned %d, ignoring\n", error);
    418 #endif
    419 	ether_ifdetach(ifp);
    420 	if_detach(ifp);
    421 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    422 	seldestroy(&sc->sc_rsel);
    423 	mutex_destroy(&sc->sc_rdlock);
    424 	mutex_destroy(&sc->sc_kqlock);
    425 
    426 	pmf_device_deregister(self);
    427 
    428 	return (0);
    429 }
    430 
    431 /*
    432  * This function is called by the ifmedia layer to notify the driver
    433  * that the user requested a media change.  A real driver would
    434  * reconfigure the hardware.
    435  */
    436 static int
    437 tap_mediachange(struct ifnet *ifp)
    438 {
    439 	return (0);
    440 }
    441 
    442 /*
    443  * Here the user asks for the currently used media.
    444  */
    445 static void
    446 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    447 {
    448 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    449 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    450 }
    451 
    452 /*
    453  * This is the function where we SEND packets.
    454  *
    455  * There is no 'receive' equivalent.  A typical driver will get
    456  * interrupts from the hardware, and from there will inject new packets
    457  * into the network stack.
    458  *
    459  * Once handled, a packet must be freed.  A real driver might not be able
    460  * to fit all the pending packets into the hardware, and is allowed to
    461  * return before having sent all the packets.  It should then use the
    462  * if_flags flag IFF_OACTIVE to notify the upper layer.
    463  *
    464  * There are also other flags one should check, such as IFF_PAUSE.
    465  *
    466  * It is our duty to make packets available to BPF listeners.
    467  *
    468  * You should be aware that this function is called by the Ethernet layer
    469  * at splnet().
    470  *
    471  * When the device is opened, we have to pass the packet(s) to the
    472  * userland.  For that we stay in OACTIVE mode while the userland gets
    473  * the packets, and we send a signal to the processes waiting to read.
    474  *
    475  * wakeup(sc) is the counterpart to the tsleep call in
    476  * tap_dev_read, while selnotify() is used for kevent(2) and
    477  * poll(2) (which includes select(2)) listeners.
    478  */
    479 static void
    480 tap_start(struct ifnet *ifp)
    481 {
    482 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    483 	struct mbuf *m0;
    484 
    485 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    486 		/* Simply drop packets */
    487 		for(;;) {
    488 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    489 			if (m0 == NULL)
    490 				return;
    491 
    492 			ifp->if_opackets++;
    493 			bpf_mtap(ifp, m0);
    494 
    495 			m_freem(m0);
    496 		}
    497 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    498 		ifp->if_flags |= IFF_OACTIVE;
    499 		wakeup(sc);
    500 		selnotify(&sc->sc_rsel, 0, 1);
    501 		if (sc->sc_flags & TAP_ASYNCIO)
    502 			softint_schedule(sc->sc_sih);
    503 	}
    504 }
    505 
    506 static void
    507 tap_softintr(void *cookie)
    508 {
    509 	struct tap_softc *sc;
    510 	struct ifnet *ifp;
    511 	int a, b;
    512 
    513 	sc = cookie;
    514 
    515 	if (sc->sc_flags & TAP_ASYNCIO) {
    516 		ifp = &sc->sc_ec.ec_if;
    517 		if (ifp->if_flags & IFF_RUNNING) {
    518 			a = POLL_IN;
    519 			b = POLLIN|POLLRDNORM;
    520 		} else {
    521 			a = POLL_HUP;
    522 			b = 0;
    523 		}
    524 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    525 	}
    526 }
    527 
    528 /*
    529  * A typical driver will only contain the following handlers for
    530  * ioctl calls, except SIOCSIFPHYADDR.
    531  * The latter is a hack I used to set the Ethernet address of the
    532  * faked device.
    533  *
    534  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    535  * called under splnet().
    536  */
    537 static int
    538 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    539 {
    540 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    541 	struct ifreq *ifr = (struct ifreq *)data;
    542 	int s, error;
    543 
    544 	s = splnet();
    545 
    546 	switch (cmd) {
    547 #ifdef OSIOCSIFMEDIA
    548 	case OSIOCSIFMEDIA:
    549 #endif
    550 	case SIOCSIFMEDIA:
    551 	case SIOCGIFMEDIA:
    552 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    553 		break;
    554 #if defined(COMPAT_40) || defined(MODULAR)
    555 	case SIOCSIFPHYADDR:
    556 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    557 		break;
    558 #endif
    559 	default:
    560 		error = ether_ioctl(ifp, cmd, data);
    561 		if (error == ENETRESET)
    562 			error = 0;
    563 		break;
    564 	}
    565 
    566 	splx(s);
    567 
    568 	return (error);
    569 }
    570 
    571 #if defined(COMPAT_40) || defined(MODULAR)
    572 /*
    573  * Helper function to set Ethernet address.  This has been replaced by
    574  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    575  */
    576 static int
    577 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    578 {
    579 	const struct sockaddr *sa = &ifra->ifra_addr;
    580 
    581 	if (sa->sa_family != AF_LINK)
    582 		return (EINVAL);
    583 
    584 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    585 
    586 	return (0);
    587 }
    588 #endif
    589 
    590 /*
    591  * _init() would typically be called when an interface goes up,
    592  * meaning it should configure itself into the state in which it
    593  * can send packets.
    594  */
    595 static int
    596 tap_init(struct ifnet *ifp)
    597 {
    598 	ifp->if_flags |= IFF_RUNNING;
    599 
    600 	tap_start(ifp);
    601 
    602 	return (0);
    603 }
    604 
    605 /*
    606  * _stop() is called when an interface goes down.  It is our
    607  * responsability to validate that state by clearing the
    608  * IFF_RUNNING flag.
    609  *
    610  * We have to wake up all the sleeping processes to have the pending
    611  * read requests cancelled.
    612  */
    613 static void
    614 tap_stop(struct ifnet *ifp, int disable)
    615 {
    616 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    617 
    618 	ifp->if_flags &= ~IFF_RUNNING;
    619 	wakeup(sc);
    620 	selnotify(&sc->sc_rsel, 0, 1);
    621 	if (sc->sc_flags & TAP_ASYNCIO)
    622 		softint_schedule(sc->sc_sih);
    623 }
    624 
    625 /*
    626  * The 'create' command of ifconfig can be used to create
    627  * any numbered instance of a given device.  Thus we have to
    628  * make sure we have enough room in cd_devs to create the
    629  * user-specified instance.  config_attach_pseudo will do this
    630  * for us.
    631  */
    632 static int
    633 tap_clone_create(struct if_clone *ifc, int unit)
    634 {
    635 	if (tap_clone_creator(unit) == NULL) {
    636 		aprint_error("%s%d: unable to attach an instance\n",
    637                     tap_cd.cd_name, unit);
    638 		return (ENXIO);
    639 	}
    640 
    641 	return (0);
    642 }
    643 
    644 /*
    645  * tap(4) can be cloned by two ways:
    646  *   using 'ifconfig tap0 create', which will use the network
    647  *     interface cloning API, and call tap_clone_create above.
    648  *   opening the cloning device node, whose minor number is TAP_CLONER.
    649  *     See below for an explanation on how this part work.
    650  */
    651 static struct tap_softc *
    652 tap_clone_creator(int unit)
    653 {
    654 	struct cfdata *cf;
    655 
    656 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    657 	cf->cf_name = tap_cd.cd_name;
    658 	cf->cf_atname = tap_ca.ca_name;
    659 	if (unit == -1) {
    660 		/* let autoconf find the first free one */
    661 		cf->cf_unit = 0;
    662 		cf->cf_fstate = FSTATE_STAR;
    663 	} else {
    664 		cf->cf_unit = unit;
    665 		cf->cf_fstate = FSTATE_NOTFOUND;
    666 	}
    667 
    668 	return device_private(config_attach_pseudo(cf));
    669 }
    670 
    671 /*
    672  * The clean design of if_clone and autoconf(9) makes that part
    673  * really straightforward.  The second argument of config_detach
    674  * means neither QUIET nor FORCED.
    675  */
    676 static int
    677 tap_clone_destroy(struct ifnet *ifp)
    678 {
    679 	struct tap_softc *sc = ifp->if_softc;
    680 
    681 	return tap_clone_destroyer(sc->sc_dev);
    682 }
    683 
    684 int
    685 tap_clone_destroyer(device_t dev)
    686 {
    687 	cfdata_t cf = device_cfdata(dev);
    688 	int error;
    689 
    690 	if ((error = config_detach(dev, 0)) != 0)
    691 		aprint_error_dev(dev, "unable to detach instance\n");
    692 	free(cf, M_DEVBUF);
    693 
    694 	return (error);
    695 }
    696 
    697 /*
    698  * tap(4) is a bit of an hybrid device.  It can be used in two different
    699  * ways:
    700  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    701  *  2. open /dev/tap, get a new interface created and read/write off it.
    702  *     That interface is destroyed when the process that had it created exits.
    703  *
    704  * The first way is managed by the cdevsw structure, and you access interfaces
    705  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    706  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    707  *
    708  * The second way is the so-called "cloning" device.  It's a special minor
    709  * number (chosen as the maximal number, to allow as much tap devices as
    710  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    711  * call ends in tap_cdev_open.  The actual place where it is handled is
    712  * tap_dev_cloner.
    713  *
    714  * An tap device cannot be opened more than once at a time, so the cdevsw
    715  * part of open() does nothing but noting that the interface is being used and
    716  * hence ready to actually handle packets.
    717  */
    718 
    719 static int
    720 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    721 {
    722 	struct tap_softc *sc;
    723 
    724 	if (minor(dev) == TAP_CLONER)
    725 		return tap_dev_cloner(l);
    726 
    727 	sc = device_lookup_private(&tap_cd, minor(dev));
    728 	if (sc == NULL)
    729 		return (ENXIO);
    730 
    731 	/* The device can only be opened once */
    732 	if (sc->sc_flags & TAP_INUSE)
    733 		return (EBUSY);
    734 	sc->sc_flags |= TAP_INUSE;
    735 	return (0);
    736 }
    737 
    738 /*
    739  * There are several kinds of cloning devices, and the most simple is the one
    740  * tap(4) uses.  What it does is change the file descriptor with a new one,
    741  * with its own fileops structure (which maps to the various read, write,
    742  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    743  * then actually creates the new tap devices.
    744  *
    745  * Once those two steps are successful, we can re-wire the existing file
    746  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    747  * structure as needed (notably f_devunit gets filled with the fifth parameter
    748  * passed, the unit of the tap device which will allows us identifying the
    749  * device later), and returns EMOVEFD.
    750  *
    751  * That magic value is interpreted by sys_open() which then replaces the
    752  * current file descriptor by the new one (through a magic member of struct
    753  * lwp, l_dupfd).
    754  *
    755  * The tap device is flagged as being busy since it otherwise could be
    756  * externally accessed through the corresponding device node with the cdevsw
    757  * interface.
    758  */
    759 
    760 static int
    761 tap_dev_cloner(struct lwp *l)
    762 {
    763 	struct tap_softc *sc;
    764 	file_t *fp;
    765 	int error, fd;
    766 
    767 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    768 		return (error);
    769 
    770 	if ((sc = tap_clone_creator(-1)) == NULL) {
    771 		fd_abort(curproc, fp, fd);
    772 		return (ENXIO);
    773 	}
    774 
    775 	sc->sc_flags |= TAP_INUSE;
    776 
    777 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    778 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    779 }
    780 
    781 /*
    782  * While all other operations (read, write, ioctl, poll and kqfilter) are
    783  * really the same whether we are in cdevsw or fileops mode, the close()
    784  * function is slightly different in the two cases.
    785  *
    786  * As for the other, the core of it is shared in tap_dev_close.  What
    787  * it does is sufficient for the cdevsw interface, but the cloning interface
    788  * needs another thing:  the interface is destroyed when the processes that
    789  * created it closes it.
    790  */
    791 static int
    792 tap_cdev_close(dev_t dev, int flags, int fmt,
    793     struct lwp *l)
    794 {
    795 	struct tap_softc *sc =
    796 	    device_lookup_private(&tap_cd, minor(dev));
    797 
    798 	if (sc == NULL)
    799 		return (ENXIO);
    800 
    801 	return tap_dev_close(sc);
    802 }
    803 
    804 /*
    805  * It might happen that the administrator used ifconfig to externally destroy
    806  * the interface.  In that case, tap_fops_close will be called while
    807  * tap_detach is already happening.  If we called it again from here, we
    808  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    809  */
    810 static int
    811 tap_fops_close(file_t *fp)
    812 {
    813 	int unit = fp->f_devunit;
    814 	struct tap_softc *sc;
    815 	int error;
    816 
    817 	sc = device_lookup_private(&tap_cd, unit);
    818 	if (sc == NULL)
    819 		return (ENXIO);
    820 
    821 	/* tap_dev_close currently always succeeds, but it might not
    822 	 * always be the case. */
    823 	KERNEL_LOCK(1, NULL);
    824 	if ((error = tap_dev_close(sc)) != 0) {
    825 		KERNEL_UNLOCK_ONE(NULL);
    826 		return (error);
    827 	}
    828 
    829 	/* Destroy the device now that it is no longer useful,
    830 	 * unless it's already being destroyed. */
    831 	if ((sc->sc_flags & TAP_GOING) != 0) {
    832 		KERNEL_UNLOCK_ONE(NULL);
    833 		return (0);
    834 	}
    835 
    836 	error = tap_clone_destroyer(sc->sc_dev);
    837 	KERNEL_UNLOCK_ONE(NULL);
    838 	return error;
    839 }
    840 
    841 static int
    842 tap_dev_close(struct tap_softc *sc)
    843 {
    844 	struct ifnet *ifp;
    845 	int s;
    846 
    847 	s = splnet();
    848 	/* Let tap_start handle packets again */
    849 	ifp = &sc->sc_ec.ec_if;
    850 	ifp->if_flags &= ~IFF_OACTIVE;
    851 
    852 	/* Purge output queue */
    853 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    854 		struct mbuf *m;
    855 
    856 		for (;;) {
    857 			IFQ_DEQUEUE(&ifp->if_snd, m);
    858 			if (m == NULL)
    859 				break;
    860 
    861 			ifp->if_opackets++;
    862 			bpf_mtap(ifp, m);
    863 			m_freem(m);
    864 		}
    865 	}
    866 	splx(s);
    867 
    868 	if (sc->sc_sih != NULL) {
    869 		softint_disestablish(sc->sc_sih);
    870 		sc->sc_sih = NULL;
    871 	}
    872 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    873 
    874 	return (0);
    875 }
    876 
    877 static int
    878 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    879 {
    880 	return tap_dev_read(minor(dev), uio, flags);
    881 }
    882 
    883 static int
    884 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    885     kauth_cred_t cred, int flags)
    886 {
    887 	int error;
    888 
    889 	KERNEL_LOCK(1, NULL);
    890 	error = tap_dev_read(fp->f_devunit, uio, flags);
    891 	KERNEL_UNLOCK_ONE(NULL);
    892 	return error;
    893 }
    894 
    895 static int
    896 tap_dev_read(int unit, struct uio *uio, int flags)
    897 {
    898 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    899 	struct ifnet *ifp;
    900 	struct mbuf *m, *n;
    901 	int error = 0, s;
    902 
    903 	if (sc == NULL)
    904 		return (ENXIO);
    905 
    906 	getnanotime(&sc->sc_atime);
    907 
    908 	ifp = &sc->sc_ec.ec_if;
    909 	if ((ifp->if_flags & IFF_UP) == 0)
    910 		return (EHOSTDOWN);
    911 
    912 	/*
    913 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    914 	 */
    915 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    916 		if (!mutex_tryenter(&sc->sc_rdlock))
    917 			return (EWOULDBLOCK);
    918 	} else {
    919 		mutex_enter(&sc->sc_rdlock);
    920 	}
    921 
    922 	s = splnet();
    923 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    924 		ifp->if_flags &= ~IFF_OACTIVE;
    925 		/*
    926 		 * We must release the lock before sleeping, and re-acquire it
    927 		 * after.
    928 		 */
    929 		mutex_exit(&sc->sc_rdlock);
    930 		if (sc->sc_flags & TAP_NBIO)
    931 			error = EWOULDBLOCK;
    932 		else
    933 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    934 		splx(s);
    935 
    936 		if (error != 0)
    937 			return (error);
    938 		/* The device might have been downed */
    939 		if ((ifp->if_flags & IFF_UP) == 0)
    940 			return (EHOSTDOWN);
    941 		if ((sc->sc_flags & TAP_NBIO)) {
    942 			if (!mutex_tryenter(&sc->sc_rdlock))
    943 				return (EWOULDBLOCK);
    944 		} else {
    945 			mutex_enter(&sc->sc_rdlock);
    946 		}
    947 		s = splnet();
    948 	}
    949 
    950 	IFQ_DEQUEUE(&ifp->if_snd, m);
    951 	ifp->if_flags &= ~IFF_OACTIVE;
    952 	splx(s);
    953 	if (m == NULL) {
    954 		error = 0;
    955 		goto out;
    956 	}
    957 
    958 	ifp->if_opackets++;
    959 	bpf_mtap(ifp, m);
    960 
    961 	/*
    962 	 * One read is one packet.
    963 	 */
    964 	do {
    965 		error = uiomove(mtod(m, void *),
    966 		    min(m->m_len, uio->uio_resid), uio);
    967 		MFREE(m, n);
    968 		m = n;
    969 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    970 
    971 	if (m != NULL)
    972 		m_freem(m);
    973 
    974 out:
    975 	mutex_exit(&sc->sc_rdlock);
    976 	return (error);
    977 }
    978 
    979 static int
    980 tap_fops_stat(file_t *fp, struct stat *st)
    981 {
    982 	int error = 0;
    983 	struct tap_softc *sc;
    984 	int unit = fp->f_devunit;
    985 
    986 	(void)memset(st, 0, sizeof(*st));
    987 
    988 	KERNEL_LOCK(1, NULL);
    989 	sc = device_lookup_private(&tap_cd, unit);
    990 	if (sc == NULL) {
    991 		error = ENXIO;
    992 		goto out;
    993 	}
    994 
    995 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    996 	st->st_atimespec = sc->sc_atime;
    997 	st->st_mtimespec = sc->sc_mtime;
    998 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    999 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1000 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1001 out:
   1002 	KERNEL_UNLOCK_ONE(NULL);
   1003 	return error;
   1004 }
   1005 
   1006 static int
   1007 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1008 {
   1009 	return tap_dev_write(minor(dev), uio, flags);
   1010 }
   1011 
   1012 static int
   1013 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1014     kauth_cred_t cred, int flags)
   1015 {
   1016 	int error;
   1017 
   1018 	KERNEL_LOCK(1, NULL);
   1019 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1020 	KERNEL_UNLOCK_ONE(NULL);
   1021 	return error;
   1022 }
   1023 
   1024 static int
   1025 tap_dev_write(int unit, struct uio *uio, int flags)
   1026 {
   1027 	struct tap_softc *sc =
   1028 	    device_lookup_private(&tap_cd, unit);
   1029 	struct ifnet *ifp;
   1030 	struct mbuf *m, **mp;
   1031 	int error = 0;
   1032 	int s;
   1033 
   1034 	if (sc == NULL)
   1035 		return (ENXIO);
   1036 
   1037 	getnanotime(&sc->sc_mtime);
   1038 	ifp = &sc->sc_ec.ec_if;
   1039 
   1040 	/* One write, one packet, that's the rule */
   1041 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1042 	if (m == NULL) {
   1043 		ifp->if_ierrors++;
   1044 		return (ENOBUFS);
   1045 	}
   1046 	m->m_pkthdr.len = uio->uio_resid;
   1047 
   1048 	mp = &m;
   1049 	while (error == 0 && uio->uio_resid > 0) {
   1050 		if (*mp != m) {
   1051 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1052 			if (*mp == NULL) {
   1053 				error = ENOBUFS;
   1054 				break;
   1055 			}
   1056 		}
   1057 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1058 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1059 		mp = &(*mp)->m_next;
   1060 	}
   1061 	if (error) {
   1062 		ifp->if_ierrors++;
   1063 		m_freem(m);
   1064 		return (error);
   1065 	}
   1066 
   1067 	ifp->if_ipackets++;
   1068 	m_set_rcvif(m, ifp);
   1069 
   1070 	bpf_mtap(ifp, m);
   1071 	s = splnet();
   1072 	if_input(ifp, m);
   1073 	splx(s);
   1074 
   1075 	return (0);
   1076 }
   1077 
   1078 static int
   1079 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1080     struct lwp *l)
   1081 {
   1082 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1083 }
   1084 
   1085 static int
   1086 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1087 {
   1088 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1089 }
   1090 
   1091 static int
   1092 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1093 {
   1094 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1095 
   1096 	if (sc == NULL)
   1097 		return ENXIO;
   1098 
   1099 	switch (cmd) {
   1100 	case FIONREAD:
   1101 		{
   1102 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1103 			struct mbuf *m;
   1104 			int s;
   1105 
   1106 			s = splnet();
   1107 			IFQ_POLL(&ifp->if_snd, m);
   1108 
   1109 			if (m == NULL)
   1110 				*(int *)data = 0;
   1111 			else
   1112 				*(int *)data = m->m_pkthdr.len;
   1113 			splx(s);
   1114 			return 0;
   1115 		}
   1116 	case TIOCSPGRP:
   1117 	case FIOSETOWN:
   1118 		return fsetown(&sc->sc_pgid, cmd, data);
   1119 	case TIOCGPGRP:
   1120 	case FIOGETOWN:
   1121 		return fgetown(sc->sc_pgid, cmd, data);
   1122 	case FIOASYNC:
   1123 		if (*(int *)data) {
   1124 			if (sc->sc_sih == NULL) {
   1125 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1126 				    tap_softintr, sc);
   1127 				if (sc->sc_sih == NULL)
   1128 					return EBUSY; /* XXX */
   1129 			}
   1130 			sc->sc_flags |= TAP_ASYNCIO;
   1131 		} else {
   1132 			sc->sc_flags &= ~TAP_ASYNCIO;
   1133 			if (sc->sc_sih != NULL) {
   1134 				softint_disestablish(sc->sc_sih);
   1135 				sc->sc_sih = NULL;
   1136 			}
   1137 		}
   1138 		return 0;
   1139 	case FIONBIO:
   1140 		if (*(int *)data)
   1141 			sc->sc_flags |= TAP_NBIO;
   1142 		else
   1143 			sc->sc_flags &= ~TAP_NBIO;
   1144 		return 0;
   1145 #ifdef OTAPGIFNAME
   1146 	case OTAPGIFNAME:
   1147 #endif
   1148 	case TAPGIFNAME:
   1149 		{
   1150 			struct ifreq *ifr = (struct ifreq *)data;
   1151 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1152 
   1153 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1154 			return 0;
   1155 		}
   1156 	default:
   1157 		return ENOTTY;
   1158 	}
   1159 }
   1160 
   1161 static int
   1162 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1163 {
   1164 	return tap_dev_poll(minor(dev), events, l);
   1165 }
   1166 
   1167 static int
   1168 tap_fops_poll(file_t *fp, int events)
   1169 {
   1170 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1171 }
   1172 
   1173 static int
   1174 tap_dev_poll(int unit, int events, struct lwp *l)
   1175 {
   1176 	struct tap_softc *sc =
   1177 	    device_lookup_private(&tap_cd, unit);
   1178 	int revents = 0;
   1179 
   1180 	if (sc == NULL)
   1181 		return POLLERR;
   1182 
   1183 	if (events & (POLLIN|POLLRDNORM)) {
   1184 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1185 		struct mbuf *m;
   1186 		int s;
   1187 
   1188 		s = splnet();
   1189 		IFQ_POLL(&ifp->if_snd, m);
   1190 
   1191 		if (m != NULL)
   1192 			revents |= events & (POLLIN|POLLRDNORM);
   1193 		else {
   1194 			mutex_spin_enter(&sc->sc_kqlock);
   1195 			selrecord(l, &sc->sc_rsel);
   1196 			mutex_spin_exit(&sc->sc_kqlock);
   1197 		}
   1198 		splx(s);
   1199 	}
   1200 	revents |= events & (POLLOUT|POLLWRNORM);
   1201 
   1202 	return (revents);
   1203 }
   1204 
   1205 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1206 	tap_kqread };
   1207 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1208 	filt_seltrue };
   1209 
   1210 static int
   1211 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1212 {
   1213 	return tap_dev_kqfilter(minor(dev), kn);
   1214 }
   1215 
   1216 static int
   1217 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1218 {
   1219 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1220 }
   1221 
   1222 static int
   1223 tap_dev_kqfilter(int unit, struct knote *kn)
   1224 {
   1225 	struct tap_softc *sc =
   1226 	    device_lookup_private(&tap_cd, unit);
   1227 
   1228 	if (sc == NULL)
   1229 		return (ENXIO);
   1230 
   1231 	KERNEL_LOCK(1, NULL);
   1232 	switch(kn->kn_filter) {
   1233 	case EVFILT_READ:
   1234 		kn->kn_fop = &tap_read_filterops;
   1235 		break;
   1236 	case EVFILT_WRITE:
   1237 		kn->kn_fop = &tap_seltrue_filterops;
   1238 		break;
   1239 	default:
   1240 		KERNEL_UNLOCK_ONE(NULL);
   1241 		return (EINVAL);
   1242 	}
   1243 
   1244 	kn->kn_hook = sc;
   1245 	mutex_spin_enter(&sc->sc_kqlock);
   1246 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1247 	mutex_spin_exit(&sc->sc_kqlock);
   1248 	KERNEL_UNLOCK_ONE(NULL);
   1249 	return (0);
   1250 }
   1251 
   1252 static void
   1253 tap_kqdetach(struct knote *kn)
   1254 {
   1255 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1256 
   1257 	KERNEL_LOCK(1, NULL);
   1258 	mutex_spin_enter(&sc->sc_kqlock);
   1259 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1260 	mutex_spin_exit(&sc->sc_kqlock);
   1261 	KERNEL_UNLOCK_ONE(NULL);
   1262 }
   1263 
   1264 static int
   1265 tap_kqread(struct knote *kn, long hint)
   1266 {
   1267 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1268 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1269 	struct mbuf *m;
   1270 	int s, rv;
   1271 
   1272 	KERNEL_LOCK(1, NULL);
   1273 	s = splnet();
   1274 	IFQ_POLL(&ifp->if_snd, m);
   1275 
   1276 	if (m == NULL)
   1277 		kn->kn_data = 0;
   1278 	else
   1279 		kn->kn_data = m->m_pkthdr.len;
   1280 	splx(s);
   1281 	rv = (kn->kn_data != 0 ? 1 : 0);
   1282 	KERNEL_UNLOCK_ONE(NULL);
   1283 	return rv;
   1284 }
   1285 
   1286 #if defined(COMPAT_40) || defined(MODULAR)
   1287 /*
   1288  * sysctl management routines
   1289  * You can set the address of an interface through:
   1290  * net.link.tap.tap<number>
   1291  *
   1292  * Note the consistent use of tap_log in order to use
   1293  * sysctl_teardown at unload time.
   1294  *
   1295  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1296  * blocks register a function in a special section of the kernel
   1297  * (called a link set) which is used at init_sysctl() time to cycle
   1298  * through all those functions to create the kernel's sysctl tree.
   1299  *
   1300  * It is not possible to use link sets in a module, so the
   1301  * easiest is to simply call our own setup routine at load time.
   1302  *
   1303  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1304  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1305  * whole kernel sysctl tree is built, it is not possible to add any
   1306  * permanent node.
   1307  *
   1308  * It should be noted that we're not saving the sysctlnode pointer
   1309  * we are returned when creating the "tap" node.  That structure
   1310  * cannot be trusted once out of the calling function, as it might
   1311  * get reused.  So we just save the MIB number, and always give the
   1312  * full path starting from the root for later calls to sysctl_createv
   1313  * and sysctl_destroyv.
   1314  */
   1315 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1316 {
   1317 	const struct sysctlnode *node;
   1318 	int error = 0;
   1319 
   1320 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1321 	    CTLFLAG_PERMANENT,
   1322 	    CTLTYPE_NODE, "link", NULL,
   1323 	    NULL, 0, NULL, 0,
   1324 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1325 		return;
   1326 
   1327 	/*
   1328 	 * The first four parameters of sysctl_createv are for management.
   1329 	 *
   1330 	 * The four that follows, here starting with a '0' for the flags,
   1331 	 * describe the node.
   1332 	 *
   1333 	 * The next series of four set its value, through various possible
   1334 	 * means.
   1335 	 *
   1336 	 * Last but not least, the path to the node is described.  That path
   1337 	 * is relative to the given root (third argument).  Here we're
   1338 	 * starting from the root.
   1339 	 */
   1340 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1341 	    CTLFLAG_PERMANENT,
   1342 	    CTLTYPE_NODE, "tap", NULL,
   1343 	    NULL, 0, NULL, 0,
   1344 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1345 		return;
   1346 	tap_node = node->sysctl_num;
   1347 }
   1348 
   1349 /*
   1350  * The helper functions make Andrew Brown's interface really
   1351  * shine.  It makes possible to create value on the fly whether
   1352  * the sysctl value is read or written.
   1353  *
   1354  * As shown as an example in the man page, the first step is to
   1355  * create a copy of the node to have sysctl_lookup work on it.
   1356  *
   1357  * Here, we have more work to do than just a copy, since we have
   1358  * to create the string.  The first step is to collect the actual
   1359  * value of the node, which is a convenient pointer to the softc
   1360  * of the interface.  From there we create the string and use it
   1361  * as the value, but only for the *copy* of the node.
   1362  *
   1363  * Then we let sysctl_lookup do the magic, which consists in
   1364  * setting oldp and newp as required by the operation.  When the
   1365  * value is read, that means that the string will be copied to
   1366  * the user, and when it is written, the new value will be copied
   1367  * over in the addr array.
   1368  *
   1369  * If newp is NULL, the user was reading the value, so we don't
   1370  * have anything else to do.  If a new value was written, we
   1371  * have to check it.
   1372  *
   1373  * If it is incorrect, we can return an error and leave 'node' as
   1374  * it is:  since it is a copy of the actual node, the change will
   1375  * be forgotten.
   1376  *
   1377  * Upon a correct input, we commit the change to the ifnet
   1378  * structure of our interface.
   1379  */
   1380 static int
   1381 tap_sysctl_handler(SYSCTLFN_ARGS)
   1382 {
   1383 	struct sysctlnode node;
   1384 	struct tap_softc *sc;
   1385 	struct ifnet *ifp;
   1386 	int error;
   1387 	size_t len;
   1388 	char addr[3 * ETHER_ADDR_LEN];
   1389 	uint8_t enaddr[ETHER_ADDR_LEN];
   1390 
   1391 	node = *rnode;
   1392 	sc = node.sysctl_data;
   1393 	ifp = &sc->sc_ec.ec_if;
   1394 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1395 	node.sysctl_data = addr;
   1396 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1397 	if (error || newp == NULL)
   1398 		return (error);
   1399 
   1400 	len = strlen(addr);
   1401 	if (len < 11 || len > 17)
   1402 		return (EINVAL);
   1403 
   1404 	/* Commit change */
   1405 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1406 		return (EINVAL);
   1407 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1408 	return (error);
   1409 }
   1410 #endif
   1411