if_tap.c revision 1.84.2.4 1 /* $NetBSD: if_tap.c,v 1.84.2.4 2016/11/04 14:49:21 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.84.2.4 2016/11/04 14:49:21 pgoyette Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/intr.h>
63 #include <sys/stat.h>
64 #include <sys/localcount.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72
73 #include <compat/sys/sockio.h>
74
75 #include "ioconf.h"
76
77 #if defined(COMPAT_40) || defined(MODULAR)
78 /*
79 * sysctl node management
80 *
81 * It's not really possible to use a SYSCTL_SETUP block with
82 * current module implementation, so it is easier to just define
83 * our own function.
84 *
85 * The handler function is a "helper" in Andrew Brown's sysctl
86 * framework terminology. It is used as a gateway for sysctl
87 * requests over the nodes.
88 *
89 * tap_log allows the module to log creations of nodes and
90 * destroy them all at once using sysctl_teardown.
91 */
92 static int tap_node;
93 static int tap_sysctl_handler(SYSCTLFN_PROTO);
94 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
95 #endif
96
97 /*
98 * Since we're an Ethernet device, we need the 2 following
99 * components: a struct ethercom and a struct ifmedia
100 * since we don't attach a PHY to ourselves.
101 * We could emulate one, but there's no real point.
102 */
103
104 struct tap_softc {
105 device_t sc_dev;
106 struct ifmedia sc_im;
107 struct ethercom sc_ec;
108 int sc_flags;
109 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
110 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
111 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
112 #define TAP_GOING 0x00000008 /* interface is being destroyed */
113 struct selinfo sc_rsel;
114 pid_t sc_pgid; /* For async. IO */
115 kmutex_t sc_rdlock;
116 kmutex_t sc_kqlock;
117 void *sc_sih;
118 struct timespec sc_atime;
119 struct timespec sc_mtime;
120 struct timespec sc_btime;
121 };
122
123 /* autoconf(9) glue */
124
125 static int tap_match(device_t, cfdata_t, void *);
126 static void tap_attach(device_t, device_t, void *);
127 static int tap_detach(device_t, int);
128
129 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
130 tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132
133 /* Real device access routines */
134 static int tap_dev_close(struct tap_softc *);
135 static int tap_dev_read(int, struct uio *, int);
136 static int tap_dev_write(int, struct uio *, int);
137 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
138 static int tap_dev_poll(int, int, struct lwp *);
139 static int tap_dev_kqfilter(int, struct knote *);
140
141 /* Fileops access routines */
142 static int tap_fops_close(file_t *);
143 static int tap_fops_read(file_t *, off_t *, struct uio *,
144 kauth_cred_t, int);
145 static int tap_fops_write(file_t *, off_t *, struct uio *,
146 kauth_cred_t, int);
147 static int tap_fops_ioctl(file_t *, u_long, void *);
148 static int tap_fops_poll(file_t *, int);
149 static int tap_fops_stat(file_t *, struct stat *);
150 static int tap_fops_kqfilter(file_t *, struct knote *);
151
152 static const struct fileops tap_fileops = {
153 .fo_read = tap_fops_read,
154 .fo_write = tap_fops_write,
155 .fo_ioctl = tap_fops_ioctl,
156 .fo_fcntl = fnullop_fcntl,
157 .fo_poll = tap_fops_poll,
158 .fo_stat = tap_fops_stat,
159 .fo_close = tap_fops_close,
160 .fo_kqfilter = tap_fops_kqfilter,
161 .fo_restart = fnullop_restart,
162 };
163
164 /* Helper for cloning open() */
165 static int tap_dev_cloner(struct lwp *);
166
167 /* Character device routines */
168 static int tap_cdev_open(dev_t, int, int, struct lwp *);
169 static int tap_cdev_close(dev_t, int, int, struct lwp *);
170 static int tap_cdev_read(dev_t, struct uio *, int);
171 static int tap_cdev_write(dev_t, struct uio *, int);
172 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
173 static int tap_cdev_poll(dev_t, int, struct lwp *);
174 static int tap_cdev_kqfilter(dev_t, struct knote *);
175
176 const struct cdevsw tap_cdevsw = {
177 DEVSW_MODULE_INIT
178 .d_open = tap_cdev_open,
179 .d_close = tap_cdev_close,
180 .d_read = tap_cdev_read,
181 .d_write = tap_cdev_write,
182 .d_ioctl = tap_cdev_ioctl,
183 .d_stop = nostop,
184 .d_tty = notty,
185 .d_poll = tap_cdev_poll,
186 .d_mmap = nommap,
187 .d_kqfilter = tap_cdev_kqfilter,
188 .d_discard = nodiscard,
189 .d_flag = D_OTHER
190 };
191
192 #define TAP_CLONER 0xfffff /* Maximal minor value */
193
194 /* kqueue-related routines */
195 static void tap_kqdetach(struct knote *);
196 static int tap_kqread(struct knote *, long);
197
198 /*
199 * Those are needed by the if_media interface.
200 */
201
202 static int tap_mediachange(struct ifnet *);
203 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
204
205 /*
206 * Those are needed by the ifnet interface, and would typically be
207 * there for any network interface driver.
208 * Some other routines are optional: watchdog and drain.
209 */
210
211 static void tap_start(struct ifnet *);
212 static void tap_stop(struct ifnet *, int);
213 static int tap_init(struct ifnet *);
214 static int tap_ioctl(struct ifnet *, u_long, void *);
215
216 /* Internal functions */
217 #if defined(COMPAT_40) || defined(MODULAR)
218 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
219 #endif
220 static void tap_softintr(void *);
221
222 /*
223 * tap is a clonable interface, although it is highly unrealistic for
224 * an Ethernet device.
225 *
226 * Here are the bits needed for a clonable interface.
227 */
228 static int tap_clone_create(struct if_clone *, int);
229 static int tap_clone_destroy(struct ifnet *);
230
231 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
232 tap_clone_create,
233 tap_clone_destroy);
234
235 /* Helper functionis shared by the two cloning code paths */
236 static struct tap_softc * tap_clone_creator(int);
237 int tap_clone_destroyer(device_t);
238
239 void
240 tapattach(int n)
241 {
242 int error;
243
244 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
245 if (error) {
246 aprint_error("%s: unable to register cfattach\n",
247 tap_cd.cd_name);
248 (void)config_cfdriver_detach(&tap_cd);
249 return;
250 }
251
252 if_clone_attach(&tap_cloners);
253 }
254
255 /* Pretty much useless for a pseudo-device */
256 static int
257 tap_match(device_t parent, cfdata_t cfdata, void *arg)
258 {
259
260 return (1);
261 }
262
263 void
264 tap_attach(device_t parent, device_t self, void *aux)
265 {
266 struct tap_softc *sc = device_private(self);
267 struct ifnet *ifp;
268 #if defined(COMPAT_40) || defined(MODULAR)
269 const struct sysctlnode *node;
270 int error;
271 #endif
272 uint8_t enaddr[ETHER_ADDR_LEN] =
273 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
274 char enaddrstr[3 * ETHER_ADDR_LEN];
275
276 sc->sc_dev = self;
277 sc->sc_sih = NULL;
278 getnanotime(&sc->sc_btime);
279 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
280 sc->sc_flags = 0;
281 selinit(&sc->sc_rsel);
282
283 /*
284 * Initialize the two locks for the device.
285 *
286 * We need a lock here because even though the tap device can be
287 * opened only once, the file descriptor might be passed to another
288 * process, say a fork(2)ed child.
289 *
290 * The Giant saves us from most of the hassle, but since the read
291 * operation can sleep, we don't want two processes to wake up at
292 * the same moment and both try and dequeue a single packet.
293 *
294 * The queue for event listeners (used by kqueue(9), see below) has
295 * to be protected too, so use a spin lock.
296 */
297 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
298 mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
299
300 if (!pmf_device_register(self, NULL, NULL))
301 aprint_error_dev(self, "couldn't establish power handler\n");
302
303 /*
304 * In order to obtain unique initial Ethernet address on a host,
305 * do some randomisation. It's not meant for anything but avoiding
306 * hard-coding an address.
307 */
308 cprng_fast(&enaddr[3], 3);
309
310 aprint_verbose_dev(self, "Ethernet address %s\n",
311 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
312
313 /*
314 * Why 1000baseT? Why not? You can add more.
315 *
316 * Note that there are 3 steps: init, one or several additions to
317 * list of supported media, and in the end, the selection of one
318 * of them.
319 */
320 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
321 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
322 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
323 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
324 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
325 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
326 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
327 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
328 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
329
330 /*
331 * One should note that an interface must do multicast in order
332 * to support IPv6.
333 */
334 ifp = &sc->sc_ec.ec_if;
335 strcpy(ifp->if_xname, device_xname(self));
336 ifp->if_softc = sc;
337 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
338 ifp->if_ioctl = tap_ioctl;
339 ifp->if_start = tap_start;
340 ifp->if_stop = tap_stop;
341 ifp->if_init = tap_init;
342 IFQ_SET_READY(&ifp->if_snd);
343
344 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
345
346 /* Those steps are mandatory for an Ethernet driver. */
347 if_initialize(ifp);
348 ether_ifattach(ifp, enaddr);
349 if_register(ifp);
350
351 #if defined(COMPAT_40) || defined(MODULAR)
352 /*
353 * Add a sysctl node for that interface.
354 *
355 * The pointer transmitted is not a string, but instead a pointer to
356 * the softc structure, which we can use to build the string value on
357 * the fly in the helper function of the node. See the comments for
358 * tap_sysctl_handler for details.
359 *
360 * Usually sysctl_createv is called with CTL_CREATE as the before-last
361 * component. However, we can allocate a number ourselves, as we are
362 * the only consumer of the net.link.<iface> node. In this case, the
363 * unit number is conveniently used to number the node. CTL_CREATE
364 * would just work, too.
365 */
366 if ((error = sysctl_createv(NULL, 0, NULL,
367 &node, CTLFLAG_READWRITE,
368 CTLTYPE_STRING, device_xname(self), NULL,
369 tap_sysctl_handler, 0, (void *)sc, 18,
370 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
371 CTL_EOL)) != 0)
372 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
373 error);
374 #endif
375 }
376
377 /*
378 * When detaching, we do the inverse of what is done in the attach
379 * routine, in reversed order.
380 */
381 static int
382 tap_detach(device_t self, int flags)
383 {
384 struct tap_softc *sc = device_private(self);
385 struct ifnet *ifp = &sc->sc_ec.ec_if;
386 #if defined(COMPAT_40) || defined(MODULAR)
387 int error;
388 #endif
389 int s;
390
391 sc->sc_flags |= TAP_GOING;
392 s = splnet();
393 tap_stop(ifp, 1);
394 if_down(ifp);
395 splx(s);
396
397 if (sc->sc_sih != NULL) {
398 softint_disestablish(sc->sc_sih);
399 sc->sc_sih = NULL;
400 }
401
402 #if defined(COMPAT_40) || defined(MODULAR)
403 /*
404 * Destroying a single leaf is a very straightforward operation using
405 * sysctl_destroyv. One should be sure to always end the path with
406 * CTL_EOL.
407 */
408 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
409 device_unit(sc->sc_dev), CTL_EOL)) != 0)
410 aprint_error_dev(self,
411 "sysctl_destroyv returned %d, ignoring\n", error);
412 #endif
413 ether_ifdetach(ifp);
414 if_detach(ifp);
415 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
416 seldestroy(&sc->sc_rsel);
417 mutex_destroy(&sc->sc_rdlock);
418 mutex_destroy(&sc->sc_kqlock);
419
420 pmf_device_deregister(self);
421
422 return (0);
423 }
424
425 /*
426 * This function is called by the ifmedia layer to notify the driver
427 * that the user requested a media change. A real driver would
428 * reconfigure the hardware.
429 */
430 static int
431 tap_mediachange(struct ifnet *ifp)
432 {
433 return (0);
434 }
435
436 /*
437 * Here the user asks for the currently used media.
438 */
439 static void
440 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
441 {
442 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
443 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
444 }
445
446 /*
447 * This is the function where we SEND packets.
448 *
449 * There is no 'receive' equivalent. A typical driver will get
450 * interrupts from the hardware, and from there will inject new packets
451 * into the network stack.
452 *
453 * Once handled, a packet must be freed. A real driver might not be able
454 * to fit all the pending packets into the hardware, and is allowed to
455 * return before having sent all the packets. It should then use the
456 * if_flags flag IFF_OACTIVE to notify the upper layer.
457 *
458 * There are also other flags one should check, such as IFF_PAUSE.
459 *
460 * It is our duty to make packets available to BPF listeners.
461 *
462 * You should be aware that this function is called by the Ethernet layer
463 * at splnet().
464 *
465 * When the device is opened, we have to pass the packet(s) to the
466 * userland. For that we stay in OACTIVE mode while the userland gets
467 * the packets, and we send a signal to the processes waiting to read.
468 *
469 * wakeup(sc) is the counterpart to the tsleep call in
470 * tap_dev_read, while selnotify() is used for kevent(2) and
471 * poll(2) (which includes select(2)) listeners.
472 */
473 static void
474 tap_start(struct ifnet *ifp)
475 {
476 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
477 struct mbuf *m0;
478
479 if ((sc->sc_flags & TAP_INUSE) == 0) {
480 /* Simply drop packets */
481 for(;;) {
482 IFQ_DEQUEUE(&ifp->if_snd, m0);
483 if (m0 == NULL)
484 return;
485
486 ifp->if_opackets++;
487 bpf_mtap(ifp, m0);
488
489 m_freem(m0);
490 }
491 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
492 ifp->if_flags |= IFF_OACTIVE;
493 wakeup(sc);
494 selnotify(&sc->sc_rsel, 0, 1);
495 if (sc->sc_flags & TAP_ASYNCIO)
496 softint_schedule(sc->sc_sih);
497 }
498 }
499
500 static void
501 tap_softintr(void *cookie)
502 {
503 struct tap_softc *sc;
504 struct ifnet *ifp;
505 int a, b;
506
507 sc = cookie;
508
509 if (sc->sc_flags & TAP_ASYNCIO) {
510 ifp = &sc->sc_ec.ec_if;
511 if (ifp->if_flags & IFF_RUNNING) {
512 a = POLL_IN;
513 b = POLLIN|POLLRDNORM;
514 } else {
515 a = POLL_HUP;
516 b = 0;
517 }
518 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
519 }
520 }
521
522 /*
523 * A typical driver will only contain the following handlers for
524 * ioctl calls, except SIOCSIFPHYADDR.
525 * The latter is a hack I used to set the Ethernet address of the
526 * faked device.
527 *
528 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
529 * called under splnet().
530 */
531 static int
532 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
533 {
534 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
535 struct ifreq *ifr = (struct ifreq *)data;
536 int s, error;
537
538 s = splnet();
539
540 switch (cmd) {
541 #ifdef OSIOCSIFMEDIA
542 case OSIOCSIFMEDIA:
543 #endif
544 case SIOCSIFMEDIA:
545 case SIOCGIFMEDIA:
546 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
547 break;
548 #if defined(COMPAT_40) || defined(MODULAR)
549 case SIOCSIFPHYADDR:
550 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
551 break;
552 #endif
553 default:
554 error = ether_ioctl(ifp, cmd, data);
555 if (error == ENETRESET)
556 error = 0;
557 break;
558 }
559
560 splx(s);
561
562 return (error);
563 }
564
565 #if defined(COMPAT_40) || defined(MODULAR)
566 /*
567 * Helper function to set Ethernet address. This has been replaced by
568 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
569 */
570 static int
571 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
572 {
573 const struct sockaddr *sa = &ifra->ifra_addr;
574
575 if (sa->sa_family != AF_LINK)
576 return (EINVAL);
577
578 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
579
580 return (0);
581 }
582 #endif
583
584 /*
585 * _init() would typically be called when an interface goes up,
586 * meaning it should configure itself into the state in which it
587 * can send packets.
588 */
589 static int
590 tap_init(struct ifnet *ifp)
591 {
592 ifp->if_flags |= IFF_RUNNING;
593
594 tap_start(ifp);
595
596 return (0);
597 }
598
599 /*
600 * _stop() is called when an interface goes down. It is our
601 * responsability to validate that state by clearing the
602 * IFF_RUNNING flag.
603 *
604 * We have to wake up all the sleeping processes to have the pending
605 * read requests cancelled.
606 */
607 static void
608 tap_stop(struct ifnet *ifp, int disable)
609 {
610 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
611
612 ifp->if_flags &= ~IFF_RUNNING;
613 wakeup(sc);
614 selnotify(&sc->sc_rsel, 0, 1);
615 if (sc->sc_flags & TAP_ASYNCIO)
616 softint_schedule(sc->sc_sih);
617 }
618
619 /*
620 * The 'create' command of ifconfig can be used to create
621 * any numbered instance of a given device. Thus we have to
622 * make sure we have enough room in cd_devs to create the
623 * user-specified instance. config_attach_pseudo will do this
624 * for us.
625 */
626 static int
627 tap_clone_create(struct if_clone *ifc, int unit)
628 {
629 if (tap_clone_creator(unit) == NULL) {
630 aprint_error("%s%d: unable to attach an instance\n",
631 tap_cd.cd_name, unit);
632 return (ENXIO);
633 }
634
635 return (0);
636 }
637
638 /*
639 * tap(4) can be cloned by two ways:
640 * using 'ifconfig tap0 create', which will use the network
641 * interface cloning API, and call tap_clone_create above.
642 * opening the cloning device node, whose minor number is TAP_CLONER.
643 * See below for an explanation on how this part work.
644 */
645 static struct tap_softc *
646 tap_clone_creator(int unit)
647 {
648 struct cfdata *cf;
649
650 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
651 cf->cf_name = tap_cd.cd_name;
652 cf->cf_atname = tap_ca.ca_name;
653 if (unit == -1) {
654 /* let autoconf find the first free one */
655 cf->cf_unit = 0;
656 cf->cf_fstate = FSTATE_STAR;
657 } else {
658 cf->cf_unit = unit;
659 cf->cf_fstate = FSTATE_NOTFOUND;
660 }
661
662 return device_private(config_attach_pseudo(cf));
663 }
664
665 /*
666 * The clean design of if_clone and autoconf(9) makes that part
667 * really straightforward. The second argument of config_detach
668 * means neither QUIET nor FORCED.
669 */
670 static int
671 tap_clone_destroy(struct ifnet *ifp)
672 {
673 struct tap_softc *sc = ifp->if_softc;
674
675 return tap_clone_destroyer(sc->sc_dev);
676 }
677
678 int
679 tap_clone_destroyer(device_t dev)
680 {
681 cfdata_t cf = device_cfdata(dev);
682 int error;
683
684 if ((error = config_detach(dev, 0)) != 0)
685 aprint_error_dev(dev, "unable to detach instance\n");
686 free(cf, M_DEVBUF);
687
688 return (error);
689 }
690
691 /*
692 * tap(4) is a bit of an hybrid device. It can be used in two different
693 * ways:
694 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
695 * 2. open /dev/tap, get a new interface created and read/write off it.
696 * That interface is destroyed when the process that had it created exits.
697 *
698 * The first way is managed by the cdevsw structure, and you access interfaces
699 * through a (major, minor) mapping: tap4 is obtained by the minor number
700 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
701 *
702 * The second way is the so-called "cloning" device. It's a special minor
703 * number (chosen as the maximal number, to allow as much tap devices as
704 * possible). The user first opens the cloner (e.g., /dev/tap), and that
705 * call ends in tap_cdev_open. The actual place where it is handled is
706 * tap_dev_cloner.
707 *
708 * An tap device cannot be opened more than once at a time, so the cdevsw
709 * part of open() does nothing but noting that the interface is being used and
710 * hence ready to actually handle packets.
711 */
712
713 static int
714 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
715 {
716 struct tap_softc *sc;
717
718 if (minor(dev) == TAP_CLONER)
719 return tap_dev_cloner(l);
720
721 sc = device_lookup_private(&tap_cd, minor(dev));
722 if (sc == NULL)
723 return (ENXIO);
724
725 /* The device can only be opened once */
726 if (sc->sc_flags & TAP_INUSE)
727 return (EBUSY);
728 sc->sc_flags |= TAP_INUSE;
729 return (0);
730 }
731
732 /*
733 * There are several kinds of cloning devices, and the most simple is the one
734 * tap(4) uses. What it does is change the file descriptor with a new one,
735 * with its own fileops structure (which maps to the various read, write,
736 * ioctl functions). It starts allocating a new file descriptor with falloc,
737 * then actually creates the new tap devices.
738 *
739 * Once those two steps are successful, we can re-wire the existing file
740 * descriptor to its new self. This is done with fdclone(): it fills the fp
741 * structure as needed (notably f_devunit gets filled with the fifth parameter
742 * passed, the unit of the tap device which will allows us identifying the
743 * device later), and returns EMOVEFD.
744 *
745 * That magic value is interpreted by sys_open() which then replaces the
746 * current file descriptor by the new one (through a magic member of struct
747 * lwp, l_dupfd).
748 *
749 * The tap device is flagged as being busy since it otherwise could be
750 * externally accessed through the corresponding device node with the cdevsw
751 * interface.
752 */
753
754 static int
755 tap_dev_cloner(struct lwp *l)
756 {
757 struct tap_softc *sc;
758 file_t *fp;
759 int error, fd;
760
761 if ((error = fd_allocfile(&fp, &fd)) != 0)
762 return (error);
763
764 if ((sc = tap_clone_creator(-1)) == NULL) {
765 fd_abort(curproc, fp, fd);
766 return (ENXIO);
767 }
768
769 sc->sc_flags |= TAP_INUSE;
770
771 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
772 (void *)(intptr_t)device_unit(sc->sc_dev));
773 }
774
775 /*
776 * While all other operations (read, write, ioctl, poll and kqfilter) are
777 * really the same whether we are in cdevsw or fileops mode, the close()
778 * function is slightly different in the two cases.
779 *
780 * As for the other, the core of it is shared in tap_dev_close. What
781 * it does is sufficient for the cdevsw interface, but the cloning interface
782 * needs another thing: the interface is destroyed when the processes that
783 * created it closes it.
784 */
785 static int
786 tap_cdev_close(dev_t dev, int flags, int fmt,
787 struct lwp *l)
788 {
789 struct tap_softc *sc =
790 device_lookup_private(&tap_cd, minor(dev));
791
792 if (sc == NULL)
793 return (ENXIO);
794
795 return tap_dev_close(sc);
796 }
797
798 /*
799 * It might happen that the administrator used ifconfig to externally destroy
800 * the interface. In that case, tap_fops_close will be called while
801 * tap_detach is already happening. If we called it again from here, we
802 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
803 */
804 static int
805 tap_fops_close(file_t *fp)
806 {
807 int unit = fp->f_devunit;
808 struct tap_softc *sc;
809 int error;
810
811 sc = device_lookup_private(&tap_cd, unit);
812 if (sc == NULL)
813 return (ENXIO);
814
815 /* tap_dev_close currently always succeeds, but it might not
816 * always be the case. */
817 KERNEL_LOCK(1, NULL);
818 if ((error = tap_dev_close(sc)) != 0) {
819 KERNEL_UNLOCK_ONE(NULL);
820 return (error);
821 }
822
823 /* Destroy the device now that it is no longer useful,
824 * unless it's already being destroyed. */
825 if ((sc->sc_flags & TAP_GOING) != 0) {
826 KERNEL_UNLOCK_ONE(NULL);
827 return (0);
828 }
829
830 error = tap_clone_destroyer(sc->sc_dev);
831 KERNEL_UNLOCK_ONE(NULL);
832 return error;
833 }
834
835 static int
836 tap_dev_close(struct tap_softc *sc)
837 {
838 struct ifnet *ifp;
839 int s;
840
841 s = splnet();
842 /* Let tap_start handle packets again */
843 ifp = &sc->sc_ec.ec_if;
844 ifp->if_flags &= ~IFF_OACTIVE;
845
846 /* Purge output queue */
847 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
848 struct mbuf *m;
849
850 for (;;) {
851 IFQ_DEQUEUE(&ifp->if_snd, m);
852 if (m == NULL)
853 break;
854
855 ifp->if_opackets++;
856 bpf_mtap(ifp, m);
857 m_freem(m);
858 }
859 }
860 splx(s);
861
862 if (sc->sc_sih != NULL) {
863 softint_disestablish(sc->sc_sih);
864 sc->sc_sih = NULL;
865 }
866 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
867
868 return (0);
869 }
870
871 static int
872 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
873 {
874 return tap_dev_read(minor(dev), uio, flags);
875 }
876
877 static int
878 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
879 kauth_cred_t cred, int flags)
880 {
881 int error;
882
883 KERNEL_LOCK(1, NULL);
884 error = tap_dev_read(fp->f_devunit, uio, flags);
885 KERNEL_UNLOCK_ONE(NULL);
886 return error;
887 }
888
889 static int
890 tap_dev_read(int unit, struct uio *uio, int flags)
891 {
892 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
893 struct ifnet *ifp;
894 struct mbuf *m, *n;
895 int error = 0, s;
896
897 if (sc == NULL)
898 return (ENXIO);
899
900 getnanotime(&sc->sc_atime);
901
902 ifp = &sc->sc_ec.ec_if;
903 if ((ifp->if_flags & IFF_UP) == 0)
904 return (EHOSTDOWN);
905
906 /*
907 * In the TAP_NBIO case, we have to make sure we won't be sleeping
908 */
909 if ((sc->sc_flags & TAP_NBIO) != 0) {
910 if (!mutex_tryenter(&sc->sc_rdlock))
911 return (EWOULDBLOCK);
912 } else {
913 mutex_enter(&sc->sc_rdlock);
914 }
915
916 s = splnet();
917 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
918 ifp->if_flags &= ~IFF_OACTIVE;
919 /*
920 * We must release the lock before sleeping, and re-acquire it
921 * after.
922 */
923 mutex_exit(&sc->sc_rdlock);
924 if (sc->sc_flags & TAP_NBIO)
925 error = EWOULDBLOCK;
926 else
927 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
928 splx(s);
929
930 if (error != 0)
931 return (error);
932 /* The device might have been downed */
933 if ((ifp->if_flags & IFF_UP) == 0)
934 return (EHOSTDOWN);
935 if ((sc->sc_flags & TAP_NBIO)) {
936 if (!mutex_tryenter(&sc->sc_rdlock))
937 return (EWOULDBLOCK);
938 } else {
939 mutex_enter(&sc->sc_rdlock);
940 }
941 s = splnet();
942 }
943
944 IFQ_DEQUEUE(&ifp->if_snd, m);
945 ifp->if_flags &= ~IFF_OACTIVE;
946 splx(s);
947 if (m == NULL) {
948 error = 0;
949 goto out;
950 }
951
952 ifp->if_opackets++;
953 bpf_mtap(ifp, m);
954
955 /*
956 * One read is one packet.
957 */
958 do {
959 error = uiomove(mtod(m, void *),
960 min(m->m_len, uio->uio_resid), uio);
961 m = n = m_free(m);
962 } while (m != NULL && uio->uio_resid > 0 && error == 0);
963
964 if (m != NULL)
965 m_freem(m);
966
967 out:
968 mutex_exit(&sc->sc_rdlock);
969 return (error);
970 }
971
972 static int
973 tap_fops_stat(file_t *fp, struct stat *st)
974 {
975 int error = 0;
976 struct tap_softc *sc;
977 int unit = fp->f_devunit;
978
979 (void)memset(st, 0, sizeof(*st));
980
981 KERNEL_LOCK(1, NULL);
982 sc = device_lookup_private(&tap_cd, unit);
983 if (sc == NULL) {
984 error = ENXIO;
985 goto out;
986 }
987
988 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
989 st->st_atimespec = sc->sc_atime;
990 st->st_mtimespec = sc->sc_mtime;
991 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
992 st->st_uid = kauth_cred_geteuid(fp->f_cred);
993 st->st_gid = kauth_cred_getegid(fp->f_cred);
994 out:
995 KERNEL_UNLOCK_ONE(NULL);
996 return error;
997 }
998
999 static int
1000 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1001 {
1002 return tap_dev_write(minor(dev), uio, flags);
1003 }
1004
1005 static int
1006 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1007 kauth_cred_t cred, int flags)
1008 {
1009 int error;
1010
1011 KERNEL_LOCK(1, NULL);
1012 error = tap_dev_write(fp->f_devunit, uio, flags);
1013 KERNEL_UNLOCK_ONE(NULL);
1014 return error;
1015 }
1016
1017 static int
1018 tap_dev_write(int unit, struct uio *uio, int flags)
1019 {
1020 struct tap_softc *sc =
1021 device_lookup_private(&tap_cd, unit);
1022 struct ifnet *ifp;
1023 struct mbuf *m, **mp;
1024 int error = 0;
1025 int s;
1026
1027 if (sc == NULL)
1028 return (ENXIO);
1029
1030 getnanotime(&sc->sc_mtime);
1031 ifp = &sc->sc_ec.ec_if;
1032
1033 /* One write, one packet, that's the rule */
1034 MGETHDR(m, M_DONTWAIT, MT_DATA);
1035 if (m == NULL) {
1036 ifp->if_ierrors++;
1037 return (ENOBUFS);
1038 }
1039 m->m_pkthdr.len = uio->uio_resid;
1040
1041 mp = &m;
1042 while (error == 0 && uio->uio_resid > 0) {
1043 if (*mp != m) {
1044 MGET(*mp, M_DONTWAIT, MT_DATA);
1045 if (*mp == NULL) {
1046 error = ENOBUFS;
1047 break;
1048 }
1049 }
1050 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1051 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1052 mp = &(*mp)->m_next;
1053 }
1054 if (error) {
1055 ifp->if_ierrors++;
1056 m_freem(m);
1057 return (error);
1058 }
1059
1060 ifp->if_ipackets++;
1061 m_set_rcvif(m, ifp);
1062
1063 bpf_mtap(ifp, m);
1064 s = splnet();
1065 if_input(ifp, m);
1066 splx(s);
1067
1068 return (0);
1069 }
1070
1071 static int
1072 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1073 struct lwp *l)
1074 {
1075 return tap_dev_ioctl(minor(dev), cmd, data, l);
1076 }
1077
1078 static int
1079 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1080 {
1081 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1082 }
1083
1084 static int
1085 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1086 {
1087 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1088
1089 if (sc == NULL)
1090 return ENXIO;
1091
1092 switch (cmd) {
1093 case FIONREAD:
1094 {
1095 struct ifnet *ifp = &sc->sc_ec.ec_if;
1096 struct mbuf *m;
1097 int s;
1098
1099 s = splnet();
1100 IFQ_POLL(&ifp->if_snd, m);
1101
1102 if (m == NULL)
1103 *(int *)data = 0;
1104 else
1105 *(int *)data = m->m_pkthdr.len;
1106 splx(s);
1107 return 0;
1108 }
1109 case TIOCSPGRP:
1110 case FIOSETOWN:
1111 return fsetown(&sc->sc_pgid, cmd, data);
1112 case TIOCGPGRP:
1113 case FIOGETOWN:
1114 return fgetown(sc->sc_pgid, cmd, data);
1115 case FIOASYNC:
1116 if (*(int *)data) {
1117 if (sc->sc_sih == NULL) {
1118 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1119 tap_softintr, sc);
1120 if (sc->sc_sih == NULL)
1121 return EBUSY; /* XXX */
1122 }
1123 sc->sc_flags |= TAP_ASYNCIO;
1124 } else {
1125 sc->sc_flags &= ~TAP_ASYNCIO;
1126 if (sc->sc_sih != NULL) {
1127 softint_disestablish(sc->sc_sih);
1128 sc->sc_sih = NULL;
1129 }
1130 }
1131 return 0;
1132 case FIONBIO:
1133 if (*(int *)data)
1134 sc->sc_flags |= TAP_NBIO;
1135 else
1136 sc->sc_flags &= ~TAP_NBIO;
1137 return 0;
1138 #ifdef OTAPGIFNAME
1139 case OTAPGIFNAME:
1140 #endif
1141 case TAPGIFNAME:
1142 {
1143 struct ifreq *ifr = (struct ifreq *)data;
1144 struct ifnet *ifp = &sc->sc_ec.ec_if;
1145
1146 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1147 return 0;
1148 }
1149 default:
1150 return ENOTTY;
1151 }
1152 }
1153
1154 static int
1155 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1156 {
1157 return tap_dev_poll(minor(dev), events, l);
1158 }
1159
1160 static int
1161 tap_fops_poll(file_t *fp, int events)
1162 {
1163 return tap_dev_poll(fp->f_devunit, events, curlwp);
1164 }
1165
1166 static int
1167 tap_dev_poll(int unit, int events, struct lwp *l)
1168 {
1169 struct tap_softc *sc =
1170 device_lookup_private(&tap_cd, unit);
1171 int revents = 0;
1172
1173 if (sc == NULL)
1174 return POLLERR;
1175
1176 if (events & (POLLIN|POLLRDNORM)) {
1177 struct ifnet *ifp = &sc->sc_ec.ec_if;
1178 struct mbuf *m;
1179 int s;
1180
1181 s = splnet();
1182 IFQ_POLL(&ifp->if_snd, m);
1183
1184 if (m != NULL)
1185 revents |= events & (POLLIN|POLLRDNORM);
1186 else {
1187 mutex_spin_enter(&sc->sc_kqlock);
1188 selrecord(l, &sc->sc_rsel);
1189 mutex_spin_exit(&sc->sc_kqlock);
1190 }
1191 splx(s);
1192 }
1193 revents |= events & (POLLOUT|POLLWRNORM);
1194
1195 return (revents);
1196 }
1197
1198 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1199 tap_kqread };
1200 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1201 filt_seltrue };
1202
1203 static int
1204 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1205 {
1206 return tap_dev_kqfilter(minor(dev), kn);
1207 }
1208
1209 static int
1210 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1211 {
1212 return tap_dev_kqfilter(fp->f_devunit, kn);
1213 }
1214
1215 static int
1216 tap_dev_kqfilter(int unit, struct knote *kn)
1217 {
1218 struct tap_softc *sc =
1219 device_lookup_private(&tap_cd, unit);
1220
1221 if (sc == NULL)
1222 return (ENXIO);
1223
1224 KERNEL_LOCK(1, NULL);
1225 switch(kn->kn_filter) {
1226 case EVFILT_READ:
1227 kn->kn_fop = &tap_read_filterops;
1228 break;
1229 case EVFILT_WRITE:
1230 kn->kn_fop = &tap_seltrue_filterops;
1231 break;
1232 default:
1233 KERNEL_UNLOCK_ONE(NULL);
1234 return (EINVAL);
1235 }
1236
1237 kn->kn_hook = sc;
1238 mutex_spin_enter(&sc->sc_kqlock);
1239 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1240 mutex_spin_exit(&sc->sc_kqlock);
1241 KERNEL_UNLOCK_ONE(NULL);
1242 return (0);
1243 }
1244
1245 static void
1246 tap_kqdetach(struct knote *kn)
1247 {
1248 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1249
1250 KERNEL_LOCK(1, NULL);
1251 mutex_spin_enter(&sc->sc_kqlock);
1252 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1253 mutex_spin_exit(&sc->sc_kqlock);
1254 KERNEL_UNLOCK_ONE(NULL);
1255 }
1256
1257 static int
1258 tap_kqread(struct knote *kn, long hint)
1259 {
1260 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1261 struct ifnet *ifp = &sc->sc_ec.ec_if;
1262 struct mbuf *m;
1263 int s, rv;
1264
1265 KERNEL_LOCK(1, NULL);
1266 s = splnet();
1267 IFQ_POLL(&ifp->if_snd, m);
1268
1269 if (m == NULL)
1270 kn->kn_data = 0;
1271 else
1272 kn->kn_data = m->m_pkthdr.len;
1273 splx(s);
1274 rv = (kn->kn_data != 0 ? 1 : 0);
1275 KERNEL_UNLOCK_ONE(NULL);
1276 return rv;
1277 }
1278
1279 #if defined(COMPAT_40) || defined(MODULAR)
1280 /*
1281 * sysctl management routines
1282 * You can set the address of an interface through:
1283 * net.link.tap.tap<number>
1284 *
1285 * Note the consistent use of tap_log in order to use
1286 * sysctl_teardown at unload time.
1287 *
1288 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1289 * blocks register a function in a special section of the kernel
1290 * (called a link set) which is used at init_sysctl() time to cycle
1291 * through all those functions to create the kernel's sysctl tree.
1292 *
1293 * It is not possible to use link sets in a module, so the
1294 * easiest is to simply call our own setup routine at load time.
1295 *
1296 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1297 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1298 * whole kernel sysctl tree is built, it is not possible to add any
1299 * permanent node.
1300 *
1301 * It should be noted that we're not saving the sysctlnode pointer
1302 * we are returned when creating the "tap" node. That structure
1303 * cannot be trusted once out of the calling function, as it might
1304 * get reused. So we just save the MIB number, and always give the
1305 * full path starting from the root for later calls to sysctl_createv
1306 * and sysctl_destroyv.
1307 */
1308 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1309 {
1310 const struct sysctlnode *node;
1311 int error = 0;
1312
1313 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1314 CTLFLAG_PERMANENT,
1315 CTLTYPE_NODE, "link", NULL,
1316 NULL, 0, NULL, 0,
1317 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1318 return;
1319
1320 /*
1321 * The first four parameters of sysctl_createv are for management.
1322 *
1323 * The four that follows, here starting with a '0' for the flags,
1324 * describe the node.
1325 *
1326 * The next series of four set its value, through various possible
1327 * means.
1328 *
1329 * Last but not least, the path to the node is described. That path
1330 * is relative to the given root (third argument). Here we're
1331 * starting from the root.
1332 */
1333 if ((error = sysctl_createv(clog, 0, NULL, &node,
1334 CTLFLAG_PERMANENT,
1335 CTLTYPE_NODE, "tap", NULL,
1336 NULL, 0, NULL, 0,
1337 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1338 return;
1339 tap_node = node->sysctl_num;
1340 }
1341
1342 /*
1343 * The helper functions make Andrew Brown's interface really
1344 * shine. It makes possible to create value on the fly whether
1345 * the sysctl value is read or written.
1346 *
1347 * As shown as an example in the man page, the first step is to
1348 * create a copy of the node to have sysctl_lookup work on it.
1349 *
1350 * Here, we have more work to do than just a copy, since we have
1351 * to create the string. The first step is to collect the actual
1352 * value of the node, which is a convenient pointer to the softc
1353 * of the interface. From there we create the string and use it
1354 * as the value, but only for the *copy* of the node.
1355 *
1356 * Then we let sysctl_lookup do the magic, which consists in
1357 * setting oldp and newp as required by the operation. When the
1358 * value is read, that means that the string will be copied to
1359 * the user, and when it is written, the new value will be copied
1360 * over in the addr array.
1361 *
1362 * If newp is NULL, the user was reading the value, so we don't
1363 * have anything else to do. If a new value was written, we
1364 * have to check it.
1365 *
1366 * If it is incorrect, we can return an error and leave 'node' as
1367 * it is: since it is a copy of the actual node, the change will
1368 * be forgotten.
1369 *
1370 * Upon a correct input, we commit the change to the ifnet
1371 * structure of our interface.
1372 */
1373 static int
1374 tap_sysctl_handler(SYSCTLFN_ARGS)
1375 {
1376 struct sysctlnode node;
1377 struct tap_softc *sc;
1378 struct ifnet *ifp;
1379 int error;
1380 size_t len;
1381 char addr[3 * ETHER_ADDR_LEN];
1382 uint8_t enaddr[ETHER_ADDR_LEN];
1383
1384 node = *rnode;
1385 sc = node.sysctl_data;
1386 ifp = &sc->sc_ec.ec_if;
1387 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1388 node.sysctl_data = addr;
1389 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1390 if (error || newp == NULL)
1391 return (error);
1392
1393 len = strlen(addr);
1394 if (len < 11 || len > 17)
1395 return (EINVAL);
1396
1397 /* Commit change */
1398 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1399 return (EINVAL);
1400 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1401 return (error);
1402 }
1403 #endif
1404