Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.84.2.4
      1 /*	$NetBSD: if_tap.c,v 1.84.2.4 2016/11/04 14:49:21 pgoyette Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.84.2.4 2016/11/04 14:49:21 pgoyette Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/cprng.h>
     50 #include <sys/device.h>
     51 #include <sys/file.h>
     52 #include <sys/filedesc.h>
     53 #include <sys/poll.h>
     54 #include <sys/proc.h>
     55 #include <sys/select.h>
     56 #include <sys/sockio.h>
     57 #if defined(COMPAT_40) || defined(MODULAR)
     58 #include <sys/sysctl.h>
     59 #endif
     60 #include <sys/kauth.h>
     61 #include <sys/mutex.h>
     62 #include <sys/intr.h>
     63 #include <sys/stat.h>
     64 #include <sys/localcount.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #include <net/bpf.h>
     72 
     73 #include <compat/sys/sockio.h>
     74 
     75 #include "ioconf.h"
     76 
     77 #if defined(COMPAT_40) || defined(MODULAR)
     78 /*
     79  * sysctl node management
     80  *
     81  * It's not really possible to use a SYSCTL_SETUP block with
     82  * current module implementation, so it is easier to just define
     83  * our own function.
     84  *
     85  * The handler function is a "helper" in Andrew Brown's sysctl
     86  * framework terminology.  It is used as a gateway for sysctl
     87  * requests over the nodes.
     88  *
     89  * tap_log allows the module to log creations of nodes and
     90  * destroy them all at once using sysctl_teardown.
     91  */
     92 static int tap_node;
     93 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     94 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     95 #endif
     96 
     97 /*
     98  * Since we're an Ethernet device, we need the 2 following
     99  * components: a struct ethercom and a struct ifmedia
    100  * since we don't attach a PHY to ourselves.
    101  * We could emulate one, but there's no real point.
    102  */
    103 
    104 struct tap_softc {
    105 	device_t	sc_dev;
    106 	struct ifmedia	sc_im;
    107 	struct ethercom	sc_ec;
    108 	int		sc_flags;
    109 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    110 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    111 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    112 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    113 	struct selinfo	sc_rsel;
    114 	pid_t		sc_pgid; /* For async. IO */
    115 	kmutex_t	sc_rdlock;
    116 	kmutex_t	sc_kqlock;
    117 	void		*sc_sih;
    118 	struct timespec sc_atime;
    119 	struct timespec sc_mtime;
    120 	struct timespec sc_btime;
    121 };
    122 
    123 /* autoconf(9) glue */
    124 
    125 static int	tap_match(device_t, cfdata_t, void *);
    126 static void	tap_attach(device_t, device_t, void *);
    127 static int	tap_detach(device_t, int);
    128 
    129 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    130     tap_match, tap_attach, tap_detach, NULL);
    131 extern struct cfdriver tap_cd;
    132 
    133 /* Real device access routines */
    134 static int	tap_dev_close(struct tap_softc *);
    135 static int	tap_dev_read(int, struct uio *, int);
    136 static int	tap_dev_write(int, struct uio *, int);
    137 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    138 static int	tap_dev_poll(int, int, struct lwp *);
    139 static int	tap_dev_kqfilter(int, struct knote *);
    140 
    141 /* Fileops access routines */
    142 static int	tap_fops_close(file_t *);
    143 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    146     kauth_cred_t, int);
    147 static int	tap_fops_ioctl(file_t *, u_long, void *);
    148 static int	tap_fops_poll(file_t *, int);
    149 static int	tap_fops_stat(file_t *, struct stat *);
    150 static int	tap_fops_kqfilter(file_t *, struct knote *);
    151 
    152 static const struct fileops tap_fileops = {
    153 	.fo_read = tap_fops_read,
    154 	.fo_write = tap_fops_write,
    155 	.fo_ioctl = tap_fops_ioctl,
    156 	.fo_fcntl = fnullop_fcntl,
    157 	.fo_poll = tap_fops_poll,
    158 	.fo_stat = tap_fops_stat,
    159 	.fo_close = tap_fops_close,
    160 	.fo_kqfilter = tap_fops_kqfilter,
    161 	.fo_restart = fnullop_restart,
    162 };
    163 
    164 /* Helper for cloning open() */
    165 static int	tap_dev_cloner(struct lwp *);
    166 
    167 /* Character device routines */
    168 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    169 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    170 static int	tap_cdev_read(dev_t, struct uio *, int);
    171 static int	tap_cdev_write(dev_t, struct uio *, int);
    172 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    173 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    174 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    175 
    176 const struct cdevsw tap_cdevsw = {
    177 	DEVSW_MODULE_INIT
    178 	.d_open = tap_cdev_open,
    179 	.d_close = tap_cdev_close,
    180 	.d_read = tap_cdev_read,
    181 	.d_write = tap_cdev_write,
    182 	.d_ioctl = tap_cdev_ioctl,
    183 	.d_stop = nostop,
    184 	.d_tty = notty,
    185 	.d_poll = tap_cdev_poll,
    186 	.d_mmap = nommap,
    187 	.d_kqfilter = tap_cdev_kqfilter,
    188 	.d_discard = nodiscard,
    189 	.d_flag = D_OTHER
    190 };
    191 
    192 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    193 
    194 /* kqueue-related routines */
    195 static void	tap_kqdetach(struct knote *);
    196 static int	tap_kqread(struct knote *, long);
    197 
    198 /*
    199  * Those are needed by the if_media interface.
    200  */
    201 
    202 static int	tap_mediachange(struct ifnet *);
    203 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    204 
    205 /*
    206  * Those are needed by the ifnet interface, and would typically be
    207  * there for any network interface driver.
    208  * Some other routines are optional: watchdog and drain.
    209  */
    210 
    211 static void	tap_start(struct ifnet *);
    212 static void	tap_stop(struct ifnet *, int);
    213 static int	tap_init(struct ifnet *);
    214 static int	tap_ioctl(struct ifnet *, u_long, void *);
    215 
    216 /* Internal functions */
    217 #if defined(COMPAT_40) || defined(MODULAR)
    218 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    219 #endif
    220 static void	tap_softintr(void *);
    221 
    222 /*
    223  * tap is a clonable interface, although it is highly unrealistic for
    224  * an Ethernet device.
    225  *
    226  * Here are the bits needed for a clonable interface.
    227  */
    228 static int	tap_clone_create(struct if_clone *, int);
    229 static int	tap_clone_destroy(struct ifnet *);
    230 
    231 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    232 					tap_clone_create,
    233 					tap_clone_destroy);
    234 
    235 /* Helper functionis shared by the two cloning code paths */
    236 static struct tap_softc *	tap_clone_creator(int);
    237 int	tap_clone_destroyer(device_t);
    238 
    239 void
    240 tapattach(int n)
    241 {
    242 	int error;
    243 
    244 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    245 	if (error) {
    246 		aprint_error("%s: unable to register cfattach\n",
    247 		    tap_cd.cd_name);
    248 		(void)config_cfdriver_detach(&tap_cd);
    249 		return;
    250 	}
    251 
    252 	if_clone_attach(&tap_cloners);
    253 }
    254 
    255 /* Pretty much useless for a pseudo-device */
    256 static int
    257 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    258 {
    259 
    260 	return (1);
    261 }
    262 
    263 void
    264 tap_attach(device_t parent, device_t self, void *aux)
    265 {
    266 	struct tap_softc *sc = device_private(self);
    267 	struct ifnet *ifp;
    268 #if defined(COMPAT_40) || defined(MODULAR)
    269 	const struct sysctlnode *node;
    270 	int error;
    271 #endif
    272 	uint8_t enaddr[ETHER_ADDR_LEN] =
    273 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    274 	char enaddrstr[3 * ETHER_ADDR_LEN];
    275 
    276 	sc->sc_dev = self;
    277 	sc->sc_sih = NULL;
    278 	getnanotime(&sc->sc_btime);
    279 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    280 	sc->sc_flags = 0;
    281 	selinit(&sc->sc_rsel);
    282 
    283 	/*
    284 	 * Initialize the two locks for the device.
    285 	 *
    286 	 * We need a lock here because even though the tap device can be
    287 	 * opened only once, the file descriptor might be passed to another
    288 	 * process, say a fork(2)ed child.
    289 	 *
    290 	 * The Giant saves us from most of the hassle, but since the read
    291 	 * operation can sleep, we don't want two processes to wake up at
    292 	 * the same moment and both try and dequeue a single packet.
    293 	 *
    294 	 * The queue for event listeners (used by kqueue(9), see below) has
    295 	 * to be protected too, so use a spin lock.
    296 	 */
    297 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    298 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    299 
    300 	if (!pmf_device_register(self, NULL, NULL))
    301 		aprint_error_dev(self, "couldn't establish power handler\n");
    302 
    303 	/*
    304 	 * In order to obtain unique initial Ethernet address on a host,
    305 	 * do some randomisation.  It's not meant for anything but avoiding
    306 	 * hard-coding an address.
    307 	 */
    308 	cprng_fast(&enaddr[3], 3);
    309 
    310 	aprint_verbose_dev(self, "Ethernet address %s\n",
    311 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    312 
    313 	/*
    314 	 * Why 1000baseT? Why not? You can add more.
    315 	 *
    316 	 * Note that there are 3 steps: init, one or several additions to
    317 	 * list of supported media, and in the end, the selection of one
    318 	 * of them.
    319 	 */
    320 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    321 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    322 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    323 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    324 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    325 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    326 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    327 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    328 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    329 
    330 	/*
    331 	 * One should note that an interface must do multicast in order
    332 	 * to support IPv6.
    333 	 */
    334 	ifp = &sc->sc_ec.ec_if;
    335 	strcpy(ifp->if_xname, device_xname(self));
    336 	ifp->if_softc	= sc;
    337 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    338 	ifp->if_ioctl	= tap_ioctl;
    339 	ifp->if_start	= tap_start;
    340 	ifp->if_stop	= tap_stop;
    341 	ifp->if_init	= tap_init;
    342 	IFQ_SET_READY(&ifp->if_snd);
    343 
    344 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    345 
    346 	/* Those steps are mandatory for an Ethernet driver. */
    347 	if_initialize(ifp);
    348 	ether_ifattach(ifp, enaddr);
    349 	if_register(ifp);
    350 
    351 #if defined(COMPAT_40) || defined(MODULAR)
    352 	/*
    353 	 * Add a sysctl node for that interface.
    354 	 *
    355 	 * The pointer transmitted is not a string, but instead a pointer to
    356 	 * the softc structure, which we can use to build the string value on
    357 	 * the fly in the helper function of the node.  See the comments for
    358 	 * tap_sysctl_handler for details.
    359 	 *
    360 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    361 	 * component.  However, we can allocate a number ourselves, as we are
    362 	 * the only consumer of the net.link.<iface> node.  In this case, the
    363 	 * unit number is conveniently used to number the node.  CTL_CREATE
    364 	 * would just work, too.
    365 	 */
    366 	if ((error = sysctl_createv(NULL, 0, NULL,
    367 	    &node, CTLFLAG_READWRITE,
    368 	    CTLTYPE_STRING, device_xname(self), NULL,
    369 	    tap_sysctl_handler, 0, (void *)sc, 18,
    370 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    371 	    CTL_EOL)) != 0)
    372 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    373 		    error);
    374 #endif
    375 }
    376 
    377 /*
    378  * When detaching, we do the inverse of what is done in the attach
    379  * routine, in reversed order.
    380  */
    381 static int
    382 tap_detach(device_t self, int flags)
    383 {
    384 	struct tap_softc *sc = device_private(self);
    385 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    386 #if defined(COMPAT_40) || defined(MODULAR)
    387 	int error;
    388 #endif
    389 	int s;
    390 
    391 	sc->sc_flags |= TAP_GOING;
    392 	s = splnet();
    393 	tap_stop(ifp, 1);
    394 	if_down(ifp);
    395 	splx(s);
    396 
    397 	if (sc->sc_sih != NULL) {
    398 		softint_disestablish(sc->sc_sih);
    399 		sc->sc_sih = NULL;
    400 	}
    401 
    402 #if defined(COMPAT_40) || defined(MODULAR)
    403 	/*
    404 	 * Destroying a single leaf is a very straightforward operation using
    405 	 * sysctl_destroyv.  One should be sure to always end the path with
    406 	 * CTL_EOL.
    407 	 */
    408 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    409 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    410 		aprint_error_dev(self,
    411 		    "sysctl_destroyv returned %d, ignoring\n", error);
    412 #endif
    413 	ether_ifdetach(ifp);
    414 	if_detach(ifp);
    415 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    416 	seldestroy(&sc->sc_rsel);
    417 	mutex_destroy(&sc->sc_rdlock);
    418 	mutex_destroy(&sc->sc_kqlock);
    419 
    420 	pmf_device_deregister(self);
    421 
    422 	return (0);
    423 }
    424 
    425 /*
    426  * This function is called by the ifmedia layer to notify the driver
    427  * that the user requested a media change.  A real driver would
    428  * reconfigure the hardware.
    429  */
    430 static int
    431 tap_mediachange(struct ifnet *ifp)
    432 {
    433 	return (0);
    434 }
    435 
    436 /*
    437  * Here the user asks for the currently used media.
    438  */
    439 static void
    440 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    441 {
    442 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    443 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    444 }
    445 
    446 /*
    447  * This is the function where we SEND packets.
    448  *
    449  * There is no 'receive' equivalent.  A typical driver will get
    450  * interrupts from the hardware, and from there will inject new packets
    451  * into the network stack.
    452  *
    453  * Once handled, a packet must be freed.  A real driver might not be able
    454  * to fit all the pending packets into the hardware, and is allowed to
    455  * return before having sent all the packets.  It should then use the
    456  * if_flags flag IFF_OACTIVE to notify the upper layer.
    457  *
    458  * There are also other flags one should check, such as IFF_PAUSE.
    459  *
    460  * It is our duty to make packets available to BPF listeners.
    461  *
    462  * You should be aware that this function is called by the Ethernet layer
    463  * at splnet().
    464  *
    465  * When the device is opened, we have to pass the packet(s) to the
    466  * userland.  For that we stay in OACTIVE mode while the userland gets
    467  * the packets, and we send a signal to the processes waiting to read.
    468  *
    469  * wakeup(sc) is the counterpart to the tsleep call in
    470  * tap_dev_read, while selnotify() is used for kevent(2) and
    471  * poll(2) (which includes select(2)) listeners.
    472  */
    473 static void
    474 tap_start(struct ifnet *ifp)
    475 {
    476 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    477 	struct mbuf *m0;
    478 
    479 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    480 		/* Simply drop packets */
    481 		for(;;) {
    482 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    483 			if (m0 == NULL)
    484 				return;
    485 
    486 			ifp->if_opackets++;
    487 			bpf_mtap(ifp, m0);
    488 
    489 			m_freem(m0);
    490 		}
    491 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    492 		ifp->if_flags |= IFF_OACTIVE;
    493 		wakeup(sc);
    494 		selnotify(&sc->sc_rsel, 0, 1);
    495 		if (sc->sc_flags & TAP_ASYNCIO)
    496 			softint_schedule(sc->sc_sih);
    497 	}
    498 }
    499 
    500 static void
    501 tap_softintr(void *cookie)
    502 {
    503 	struct tap_softc *sc;
    504 	struct ifnet *ifp;
    505 	int a, b;
    506 
    507 	sc = cookie;
    508 
    509 	if (sc->sc_flags & TAP_ASYNCIO) {
    510 		ifp = &sc->sc_ec.ec_if;
    511 		if (ifp->if_flags & IFF_RUNNING) {
    512 			a = POLL_IN;
    513 			b = POLLIN|POLLRDNORM;
    514 		} else {
    515 			a = POLL_HUP;
    516 			b = 0;
    517 		}
    518 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    519 	}
    520 }
    521 
    522 /*
    523  * A typical driver will only contain the following handlers for
    524  * ioctl calls, except SIOCSIFPHYADDR.
    525  * The latter is a hack I used to set the Ethernet address of the
    526  * faked device.
    527  *
    528  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    529  * called under splnet().
    530  */
    531 static int
    532 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    533 {
    534 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    535 	struct ifreq *ifr = (struct ifreq *)data;
    536 	int s, error;
    537 
    538 	s = splnet();
    539 
    540 	switch (cmd) {
    541 #ifdef OSIOCSIFMEDIA
    542 	case OSIOCSIFMEDIA:
    543 #endif
    544 	case SIOCSIFMEDIA:
    545 	case SIOCGIFMEDIA:
    546 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    547 		break;
    548 #if defined(COMPAT_40) || defined(MODULAR)
    549 	case SIOCSIFPHYADDR:
    550 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    551 		break;
    552 #endif
    553 	default:
    554 		error = ether_ioctl(ifp, cmd, data);
    555 		if (error == ENETRESET)
    556 			error = 0;
    557 		break;
    558 	}
    559 
    560 	splx(s);
    561 
    562 	return (error);
    563 }
    564 
    565 #if defined(COMPAT_40) || defined(MODULAR)
    566 /*
    567  * Helper function to set Ethernet address.  This has been replaced by
    568  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    569  */
    570 static int
    571 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    572 {
    573 	const struct sockaddr *sa = &ifra->ifra_addr;
    574 
    575 	if (sa->sa_family != AF_LINK)
    576 		return (EINVAL);
    577 
    578 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    579 
    580 	return (0);
    581 }
    582 #endif
    583 
    584 /*
    585  * _init() would typically be called when an interface goes up,
    586  * meaning it should configure itself into the state in which it
    587  * can send packets.
    588  */
    589 static int
    590 tap_init(struct ifnet *ifp)
    591 {
    592 	ifp->if_flags |= IFF_RUNNING;
    593 
    594 	tap_start(ifp);
    595 
    596 	return (0);
    597 }
    598 
    599 /*
    600  * _stop() is called when an interface goes down.  It is our
    601  * responsability to validate that state by clearing the
    602  * IFF_RUNNING flag.
    603  *
    604  * We have to wake up all the sleeping processes to have the pending
    605  * read requests cancelled.
    606  */
    607 static void
    608 tap_stop(struct ifnet *ifp, int disable)
    609 {
    610 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    611 
    612 	ifp->if_flags &= ~IFF_RUNNING;
    613 	wakeup(sc);
    614 	selnotify(&sc->sc_rsel, 0, 1);
    615 	if (sc->sc_flags & TAP_ASYNCIO)
    616 		softint_schedule(sc->sc_sih);
    617 }
    618 
    619 /*
    620  * The 'create' command of ifconfig can be used to create
    621  * any numbered instance of a given device.  Thus we have to
    622  * make sure we have enough room in cd_devs to create the
    623  * user-specified instance.  config_attach_pseudo will do this
    624  * for us.
    625  */
    626 static int
    627 tap_clone_create(struct if_clone *ifc, int unit)
    628 {
    629 	if (tap_clone_creator(unit) == NULL) {
    630 		aprint_error("%s%d: unable to attach an instance\n",
    631                     tap_cd.cd_name, unit);
    632 		return (ENXIO);
    633 	}
    634 
    635 	return (0);
    636 }
    637 
    638 /*
    639  * tap(4) can be cloned by two ways:
    640  *   using 'ifconfig tap0 create', which will use the network
    641  *     interface cloning API, and call tap_clone_create above.
    642  *   opening the cloning device node, whose minor number is TAP_CLONER.
    643  *     See below for an explanation on how this part work.
    644  */
    645 static struct tap_softc *
    646 tap_clone_creator(int unit)
    647 {
    648 	struct cfdata *cf;
    649 
    650 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    651 	cf->cf_name = tap_cd.cd_name;
    652 	cf->cf_atname = tap_ca.ca_name;
    653 	if (unit == -1) {
    654 		/* let autoconf find the first free one */
    655 		cf->cf_unit = 0;
    656 		cf->cf_fstate = FSTATE_STAR;
    657 	} else {
    658 		cf->cf_unit = unit;
    659 		cf->cf_fstate = FSTATE_NOTFOUND;
    660 	}
    661 
    662 	return device_private(config_attach_pseudo(cf));
    663 }
    664 
    665 /*
    666  * The clean design of if_clone and autoconf(9) makes that part
    667  * really straightforward.  The second argument of config_detach
    668  * means neither QUIET nor FORCED.
    669  */
    670 static int
    671 tap_clone_destroy(struct ifnet *ifp)
    672 {
    673 	struct tap_softc *sc = ifp->if_softc;
    674 
    675 	return tap_clone_destroyer(sc->sc_dev);
    676 }
    677 
    678 int
    679 tap_clone_destroyer(device_t dev)
    680 {
    681 	cfdata_t cf = device_cfdata(dev);
    682 	int error;
    683 
    684 	if ((error = config_detach(dev, 0)) != 0)
    685 		aprint_error_dev(dev, "unable to detach instance\n");
    686 	free(cf, M_DEVBUF);
    687 
    688 	return (error);
    689 }
    690 
    691 /*
    692  * tap(4) is a bit of an hybrid device.  It can be used in two different
    693  * ways:
    694  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    695  *  2. open /dev/tap, get a new interface created and read/write off it.
    696  *     That interface is destroyed when the process that had it created exits.
    697  *
    698  * The first way is managed by the cdevsw structure, and you access interfaces
    699  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    700  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    701  *
    702  * The second way is the so-called "cloning" device.  It's a special minor
    703  * number (chosen as the maximal number, to allow as much tap devices as
    704  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    705  * call ends in tap_cdev_open.  The actual place where it is handled is
    706  * tap_dev_cloner.
    707  *
    708  * An tap device cannot be opened more than once at a time, so the cdevsw
    709  * part of open() does nothing but noting that the interface is being used and
    710  * hence ready to actually handle packets.
    711  */
    712 
    713 static int
    714 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    715 {
    716 	struct tap_softc *sc;
    717 
    718 	if (minor(dev) == TAP_CLONER)
    719 		return tap_dev_cloner(l);
    720 
    721 	sc = device_lookup_private(&tap_cd, minor(dev));
    722 	if (sc == NULL)
    723 		return (ENXIO);
    724 
    725 	/* The device can only be opened once */
    726 	if (sc->sc_flags & TAP_INUSE)
    727 		return (EBUSY);
    728 	sc->sc_flags |= TAP_INUSE;
    729 	return (0);
    730 }
    731 
    732 /*
    733  * There are several kinds of cloning devices, and the most simple is the one
    734  * tap(4) uses.  What it does is change the file descriptor with a new one,
    735  * with its own fileops structure (which maps to the various read, write,
    736  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    737  * then actually creates the new tap devices.
    738  *
    739  * Once those two steps are successful, we can re-wire the existing file
    740  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    741  * structure as needed (notably f_devunit gets filled with the fifth parameter
    742  * passed, the unit of the tap device which will allows us identifying the
    743  * device later), and returns EMOVEFD.
    744  *
    745  * That magic value is interpreted by sys_open() which then replaces the
    746  * current file descriptor by the new one (through a magic member of struct
    747  * lwp, l_dupfd).
    748  *
    749  * The tap device is flagged as being busy since it otherwise could be
    750  * externally accessed through the corresponding device node with the cdevsw
    751  * interface.
    752  */
    753 
    754 static int
    755 tap_dev_cloner(struct lwp *l)
    756 {
    757 	struct tap_softc *sc;
    758 	file_t *fp;
    759 	int error, fd;
    760 
    761 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    762 		return (error);
    763 
    764 	if ((sc = tap_clone_creator(-1)) == NULL) {
    765 		fd_abort(curproc, fp, fd);
    766 		return (ENXIO);
    767 	}
    768 
    769 	sc->sc_flags |= TAP_INUSE;
    770 
    771 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    772 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    773 }
    774 
    775 /*
    776  * While all other operations (read, write, ioctl, poll and kqfilter) are
    777  * really the same whether we are in cdevsw or fileops mode, the close()
    778  * function is slightly different in the two cases.
    779  *
    780  * As for the other, the core of it is shared in tap_dev_close.  What
    781  * it does is sufficient for the cdevsw interface, but the cloning interface
    782  * needs another thing:  the interface is destroyed when the processes that
    783  * created it closes it.
    784  */
    785 static int
    786 tap_cdev_close(dev_t dev, int flags, int fmt,
    787     struct lwp *l)
    788 {
    789 	struct tap_softc *sc =
    790 	    device_lookup_private(&tap_cd, minor(dev));
    791 
    792 	if (sc == NULL)
    793 		return (ENXIO);
    794 
    795 	return tap_dev_close(sc);
    796 }
    797 
    798 /*
    799  * It might happen that the administrator used ifconfig to externally destroy
    800  * the interface.  In that case, tap_fops_close will be called while
    801  * tap_detach is already happening.  If we called it again from here, we
    802  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    803  */
    804 static int
    805 tap_fops_close(file_t *fp)
    806 {
    807 	int unit = fp->f_devunit;
    808 	struct tap_softc *sc;
    809 	int error;
    810 
    811 	sc = device_lookup_private(&tap_cd, unit);
    812 	if (sc == NULL)
    813 		return (ENXIO);
    814 
    815 	/* tap_dev_close currently always succeeds, but it might not
    816 	 * always be the case. */
    817 	KERNEL_LOCK(1, NULL);
    818 	if ((error = tap_dev_close(sc)) != 0) {
    819 		KERNEL_UNLOCK_ONE(NULL);
    820 		return (error);
    821 	}
    822 
    823 	/* Destroy the device now that it is no longer useful,
    824 	 * unless it's already being destroyed. */
    825 	if ((sc->sc_flags & TAP_GOING) != 0) {
    826 		KERNEL_UNLOCK_ONE(NULL);
    827 		return (0);
    828 	}
    829 
    830 	error = tap_clone_destroyer(sc->sc_dev);
    831 	KERNEL_UNLOCK_ONE(NULL);
    832 	return error;
    833 }
    834 
    835 static int
    836 tap_dev_close(struct tap_softc *sc)
    837 {
    838 	struct ifnet *ifp;
    839 	int s;
    840 
    841 	s = splnet();
    842 	/* Let tap_start handle packets again */
    843 	ifp = &sc->sc_ec.ec_if;
    844 	ifp->if_flags &= ~IFF_OACTIVE;
    845 
    846 	/* Purge output queue */
    847 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    848 		struct mbuf *m;
    849 
    850 		for (;;) {
    851 			IFQ_DEQUEUE(&ifp->if_snd, m);
    852 			if (m == NULL)
    853 				break;
    854 
    855 			ifp->if_opackets++;
    856 			bpf_mtap(ifp, m);
    857 			m_freem(m);
    858 		}
    859 	}
    860 	splx(s);
    861 
    862 	if (sc->sc_sih != NULL) {
    863 		softint_disestablish(sc->sc_sih);
    864 		sc->sc_sih = NULL;
    865 	}
    866 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    867 
    868 	return (0);
    869 }
    870 
    871 static int
    872 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    873 {
    874 	return tap_dev_read(minor(dev), uio, flags);
    875 }
    876 
    877 static int
    878 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    879     kauth_cred_t cred, int flags)
    880 {
    881 	int error;
    882 
    883 	KERNEL_LOCK(1, NULL);
    884 	error = tap_dev_read(fp->f_devunit, uio, flags);
    885 	KERNEL_UNLOCK_ONE(NULL);
    886 	return error;
    887 }
    888 
    889 static int
    890 tap_dev_read(int unit, struct uio *uio, int flags)
    891 {
    892 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    893 	struct ifnet *ifp;
    894 	struct mbuf *m, *n;
    895 	int error = 0, s;
    896 
    897 	if (sc == NULL)
    898 		return (ENXIO);
    899 
    900 	getnanotime(&sc->sc_atime);
    901 
    902 	ifp = &sc->sc_ec.ec_if;
    903 	if ((ifp->if_flags & IFF_UP) == 0)
    904 		return (EHOSTDOWN);
    905 
    906 	/*
    907 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    908 	 */
    909 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    910 		if (!mutex_tryenter(&sc->sc_rdlock))
    911 			return (EWOULDBLOCK);
    912 	} else {
    913 		mutex_enter(&sc->sc_rdlock);
    914 	}
    915 
    916 	s = splnet();
    917 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    918 		ifp->if_flags &= ~IFF_OACTIVE;
    919 		/*
    920 		 * We must release the lock before sleeping, and re-acquire it
    921 		 * after.
    922 		 */
    923 		mutex_exit(&sc->sc_rdlock);
    924 		if (sc->sc_flags & TAP_NBIO)
    925 			error = EWOULDBLOCK;
    926 		else
    927 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    928 		splx(s);
    929 
    930 		if (error != 0)
    931 			return (error);
    932 		/* The device might have been downed */
    933 		if ((ifp->if_flags & IFF_UP) == 0)
    934 			return (EHOSTDOWN);
    935 		if ((sc->sc_flags & TAP_NBIO)) {
    936 			if (!mutex_tryenter(&sc->sc_rdlock))
    937 				return (EWOULDBLOCK);
    938 		} else {
    939 			mutex_enter(&sc->sc_rdlock);
    940 		}
    941 		s = splnet();
    942 	}
    943 
    944 	IFQ_DEQUEUE(&ifp->if_snd, m);
    945 	ifp->if_flags &= ~IFF_OACTIVE;
    946 	splx(s);
    947 	if (m == NULL) {
    948 		error = 0;
    949 		goto out;
    950 	}
    951 
    952 	ifp->if_opackets++;
    953 	bpf_mtap(ifp, m);
    954 
    955 	/*
    956 	 * One read is one packet.
    957 	 */
    958 	do {
    959 		error = uiomove(mtod(m, void *),
    960 		    min(m->m_len, uio->uio_resid), uio);
    961 		m = n = m_free(m);
    962 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    963 
    964 	if (m != NULL)
    965 		m_freem(m);
    966 
    967 out:
    968 	mutex_exit(&sc->sc_rdlock);
    969 	return (error);
    970 }
    971 
    972 static int
    973 tap_fops_stat(file_t *fp, struct stat *st)
    974 {
    975 	int error = 0;
    976 	struct tap_softc *sc;
    977 	int unit = fp->f_devunit;
    978 
    979 	(void)memset(st, 0, sizeof(*st));
    980 
    981 	KERNEL_LOCK(1, NULL);
    982 	sc = device_lookup_private(&tap_cd, unit);
    983 	if (sc == NULL) {
    984 		error = ENXIO;
    985 		goto out;
    986 	}
    987 
    988 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    989 	st->st_atimespec = sc->sc_atime;
    990 	st->st_mtimespec = sc->sc_mtime;
    991 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    992 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    993 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    994 out:
    995 	KERNEL_UNLOCK_ONE(NULL);
    996 	return error;
    997 }
    998 
    999 static int
   1000 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1001 {
   1002 	return tap_dev_write(minor(dev), uio, flags);
   1003 }
   1004 
   1005 static int
   1006 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1007     kauth_cred_t cred, int flags)
   1008 {
   1009 	int error;
   1010 
   1011 	KERNEL_LOCK(1, NULL);
   1012 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1013 	KERNEL_UNLOCK_ONE(NULL);
   1014 	return error;
   1015 }
   1016 
   1017 static int
   1018 tap_dev_write(int unit, struct uio *uio, int flags)
   1019 {
   1020 	struct tap_softc *sc =
   1021 	    device_lookup_private(&tap_cd, unit);
   1022 	struct ifnet *ifp;
   1023 	struct mbuf *m, **mp;
   1024 	int error = 0;
   1025 	int s;
   1026 
   1027 	if (sc == NULL)
   1028 		return (ENXIO);
   1029 
   1030 	getnanotime(&sc->sc_mtime);
   1031 	ifp = &sc->sc_ec.ec_if;
   1032 
   1033 	/* One write, one packet, that's the rule */
   1034 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1035 	if (m == NULL) {
   1036 		ifp->if_ierrors++;
   1037 		return (ENOBUFS);
   1038 	}
   1039 	m->m_pkthdr.len = uio->uio_resid;
   1040 
   1041 	mp = &m;
   1042 	while (error == 0 && uio->uio_resid > 0) {
   1043 		if (*mp != m) {
   1044 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1045 			if (*mp == NULL) {
   1046 				error = ENOBUFS;
   1047 				break;
   1048 			}
   1049 		}
   1050 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1051 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1052 		mp = &(*mp)->m_next;
   1053 	}
   1054 	if (error) {
   1055 		ifp->if_ierrors++;
   1056 		m_freem(m);
   1057 		return (error);
   1058 	}
   1059 
   1060 	ifp->if_ipackets++;
   1061 	m_set_rcvif(m, ifp);
   1062 
   1063 	bpf_mtap(ifp, m);
   1064 	s = splnet();
   1065 	if_input(ifp, m);
   1066 	splx(s);
   1067 
   1068 	return (0);
   1069 }
   1070 
   1071 static int
   1072 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1073     struct lwp *l)
   1074 {
   1075 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1076 }
   1077 
   1078 static int
   1079 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1080 {
   1081 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1082 }
   1083 
   1084 static int
   1085 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1086 {
   1087 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1088 
   1089 	if (sc == NULL)
   1090 		return ENXIO;
   1091 
   1092 	switch (cmd) {
   1093 	case FIONREAD:
   1094 		{
   1095 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1096 			struct mbuf *m;
   1097 			int s;
   1098 
   1099 			s = splnet();
   1100 			IFQ_POLL(&ifp->if_snd, m);
   1101 
   1102 			if (m == NULL)
   1103 				*(int *)data = 0;
   1104 			else
   1105 				*(int *)data = m->m_pkthdr.len;
   1106 			splx(s);
   1107 			return 0;
   1108 		}
   1109 	case TIOCSPGRP:
   1110 	case FIOSETOWN:
   1111 		return fsetown(&sc->sc_pgid, cmd, data);
   1112 	case TIOCGPGRP:
   1113 	case FIOGETOWN:
   1114 		return fgetown(sc->sc_pgid, cmd, data);
   1115 	case FIOASYNC:
   1116 		if (*(int *)data) {
   1117 			if (sc->sc_sih == NULL) {
   1118 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1119 				    tap_softintr, sc);
   1120 				if (sc->sc_sih == NULL)
   1121 					return EBUSY; /* XXX */
   1122 			}
   1123 			sc->sc_flags |= TAP_ASYNCIO;
   1124 		} else {
   1125 			sc->sc_flags &= ~TAP_ASYNCIO;
   1126 			if (sc->sc_sih != NULL) {
   1127 				softint_disestablish(sc->sc_sih);
   1128 				sc->sc_sih = NULL;
   1129 			}
   1130 		}
   1131 		return 0;
   1132 	case FIONBIO:
   1133 		if (*(int *)data)
   1134 			sc->sc_flags |= TAP_NBIO;
   1135 		else
   1136 			sc->sc_flags &= ~TAP_NBIO;
   1137 		return 0;
   1138 #ifdef OTAPGIFNAME
   1139 	case OTAPGIFNAME:
   1140 #endif
   1141 	case TAPGIFNAME:
   1142 		{
   1143 			struct ifreq *ifr = (struct ifreq *)data;
   1144 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1145 
   1146 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1147 			return 0;
   1148 		}
   1149 	default:
   1150 		return ENOTTY;
   1151 	}
   1152 }
   1153 
   1154 static int
   1155 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1156 {
   1157 	return tap_dev_poll(minor(dev), events, l);
   1158 }
   1159 
   1160 static int
   1161 tap_fops_poll(file_t *fp, int events)
   1162 {
   1163 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1164 }
   1165 
   1166 static int
   1167 tap_dev_poll(int unit, int events, struct lwp *l)
   1168 {
   1169 	struct tap_softc *sc =
   1170 	    device_lookup_private(&tap_cd, unit);
   1171 	int revents = 0;
   1172 
   1173 	if (sc == NULL)
   1174 		return POLLERR;
   1175 
   1176 	if (events & (POLLIN|POLLRDNORM)) {
   1177 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1178 		struct mbuf *m;
   1179 		int s;
   1180 
   1181 		s = splnet();
   1182 		IFQ_POLL(&ifp->if_snd, m);
   1183 
   1184 		if (m != NULL)
   1185 			revents |= events & (POLLIN|POLLRDNORM);
   1186 		else {
   1187 			mutex_spin_enter(&sc->sc_kqlock);
   1188 			selrecord(l, &sc->sc_rsel);
   1189 			mutex_spin_exit(&sc->sc_kqlock);
   1190 		}
   1191 		splx(s);
   1192 	}
   1193 	revents |= events & (POLLOUT|POLLWRNORM);
   1194 
   1195 	return (revents);
   1196 }
   1197 
   1198 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1199 	tap_kqread };
   1200 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1201 	filt_seltrue };
   1202 
   1203 static int
   1204 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1205 {
   1206 	return tap_dev_kqfilter(minor(dev), kn);
   1207 }
   1208 
   1209 static int
   1210 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1211 {
   1212 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1213 }
   1214 
   1215 static int
   1216 tap_dev_kqfilter(int unit, struct knote *kn)
   1217 {
   1218 	struct tap_softc *sc =
   1219 	    device_lookup_private(&tap_cd, unit);
   1220 
   1221 	if (sc == NULL)
   1222 		return (ENXIO);
   1223 
   1224 	KERNEL_LOCK(1, NULL);
   1225 	switch(kn->kn_filter) {
   1226 	case EVFILT_READ:
   1227 		kn->kn_fop = &tap_read_filterops;
   1228 		break;
   1229 	case EVFILT_WRITE:
   1230 		kn->kn_fop = &tap_seltrue_filterops;
   1231 		break;
   1232 	default:
   1233 		KERNEL_UNLOCK_ONE(NULL);
   1234 		return (EINVAL);
   1235 	}
   1236 
   1237 	kn->kn_hook = sc;
   1238 	mutex_spin_enter(&sc->sc_kqlock);
   1239 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1240 	mutex_spin_exit(&sc->sc_kqlock);
   1241 	KERNEL_UNLOCK_ONE(NULL);
   1242 	return (0);
   1243 }
   1244 
   1245 static void
   1246 tap_kqdetach(struct knote *kn)
   1247 {
   1248 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1249 
   1250 	KERNEL_LOCK(1, NULL);
   1251 	mutex_spin_enter(&sc->sc_kqlock);
   1252 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1253 	mutex_spin_exit(&sc->sc_kqlock);
   1254 	KERNEL_UNLOCK_ONE(NULL);
   1255 }
   1256 
   1257 static int
   1258 tap_kqread(struct knote *kn, long hint)
   1259 {
   1260 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1261 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1262 	struct mbuf *m;
   1263 	int s, rv;
   1264 
   1265 	KERNEL_LOCK(1, NULL);
   1266 	s = splnet();
   1267 	IFQ_POLL(&ifp->if_snd, m);
   1268 
   1269 	if (m == NULL)
   1270 		kn->kn_data = 0;
   1271 	else
   1272 		kn->kn_data = m->m_pkthdr.len;
   1273 	splx(s);
   1274 	rv = (kn->kn_data != 0 ? 1 : 0);
   1275 	KERNEL_UNLOCK_ONE(NULL);
   1276 	return rv;
   1277 }
   1278 
   1279 #if defined(COMPAT_40) || defined(MODULAR)
   1280 /*
   1281  * sysctl management routines
   1282  * You can set the address of an interface through:
   1283  * net.link.tap.tap<number>
   1284  *
   1285  * Note the consistent use of tap_log in order to use
   1286  * sysctl_teardown at unload time.
   1287  *
   1288  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1289  * blocks register a function in a special section of the kernel
   1290  * (called a link set) which is used at init_sysctl() time to cycle
   1291  * through all those functions to create the kernel's sysctl tree.
   1292  *
   1293  * It is not possible to use link sets in a module, so the
   1294  * easiest is to simply call our own setup routine at load time.
   1295  *
   1296  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1297  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1298  * whole kernel sysctl tree is built, it is not possible to add any
   1299  * permanent node.
   1300  *
   1301  * It should be noted that we're not saving the sysctlnode pointer
   1302  * we are returned when creating the "tap" node.  That structure
   1303  * cannot be trusted once out of the calling function, as it might
   1304  * get reused.  So we just save the MIB number, and always give the
   1305  * full path starting from the root for later calls to sysctl_createv
   1306  * and sysctl_destroyv.
   1307  */
   1308 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1309 {
   1310 	const struct sysctlnode *node;
   1311 	int error = 0;
   1312 
   1313 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1314 	    CTLFLAG_PERMANENT,
   1315 	    CTLTYPE_NODE, "link", NULL,
   1316 	    NULL, 0, NULL, 0,
   1317 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1318 		return;
   1319 
   1320 	/*
   1321 	 * The first four parameters of sysctl_createv are for management.
   1322 	 *
   1323 	 * The four that follows, here starting with a '0' for the flags,
   1324 	 * describe the node.
   1325 	 *
   1326 	 * The next series of four set its value, through various possible
   1327 	 * means.
   1328 	 *
   1329 	 * Last but not least, the path to the node is described.  That path
   1330 	 * is relative to the given root (third argument).  Here we're
   1331 	 * starting from the root.
   1332 	 */
   1333 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1334 	    CTLFLAG_PERMANENT,
   1335 	    CTLTYPE_NODE, "tap", NULL,
   1336 	    NULL, 0, NULL, 0,
   1337 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1338 		return;
   1339 	tap_node = node->sysctl_num;
   1340 }
   1341 
   1342 /*
   1343  * The helper functions make Andrew Brown's interface really
   1344  * shine.  It makes possible to create value on the fly whether
   1345  * the sysctl value is read or written.
   1346  *
   1347  * As shown as an example in the man page, the first step is to
   1348  * create a copy of the node to have sysctl_lookup work on it.
   1349  *
   1350  * Here, we have more work to do than just a copy, since we have
   1351  * to create the string.  The first step is to collect the actual
   1352  * value of the node, which is a convenient pointer to the softc
   1353  * of the interface.  From there we create the string and use it
   1354  * as the value, but only for the *copy* of the node.
   1355  *
   1356  * Then we let sysctl_lookup do the magic, which consists in
   1357  * setting oldp and newp as required by the operation.  When the
   1358  * value is read, that means that the string will be copied to
   1359  * the user, and when it is written, the new value will be copied
   1360  * over in the addr array.
   1361  *
   1362  * If newp is NULL, the user was reading the value, so we don't
   1363  * have anything else to do.  If a new value was written, we
   1364  * have to check it.
   1365  *
   1366  * If it is incorrect, we can return an error and leave 'node' as
   1367  * it is:  since it is a copy of the actual node, the change will
   1368  * be forgotten.
   1369  *
   1370  * Upon a correct input, we commit the change to the ifnet
   1371  * structure of our interface.
   1372  */
   1373 static int
   1374 tap_sysctl_handler(SYSCTLFN_ARGS)
   1375 {
   1376 	struct sysctlnode node;
   1377 	struct tap_softc *sc;
   1378 	struct ifnet *ifp;
   1379 	int error;
   1380 	size_t len;
   1381 	char addr[3 * ETHER_ADDR_LEN];
   1382 	uint8_t enaddr[ETHER_ADDR_LEN];
   1383 
   1384 	node = *rnode;
   1385 	sc = node.sysctl_data;
   1386 	ifp = &sc->sc_ec.ec_if;
   1387 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1388 	node.sysctl_data = addr;
   1389 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1390 	if (error || newp == NULL)
   1391 		return (error);
   1392 
   1393 	len = strlen(addr);
   1394 	if (len < 11 || len > 17)
   1395 		return (EINVAL);
   1396 
   1397 	/* Commit change */
   1398 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1399 		return (EINVAL);
   1400 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1401 	return (error);
   1402 }
   1403 #endif
   1404