Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.85
      1 /*	$NetBSD: if_tap.c,v 1.85 2016/08/07 17:38:34 christos Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.85 2016/08/07 17:38:34 christos Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/conf.h>
     49 #include <sys/cprng.h>
     50 #include <sys/device.h>
     51 #include <sys/file.h>
     52 #include <sys/filedesc.h>
     53 #include <sys/poll.h>
     54 #include <sys/proc.h>
     55 #include <sys/select.h>
     56 #include <sys/sockio.h>
     57 #if defined(COMPAT_40) || defined(MODULAR)
     58 #include <sys/sysctl.h>
     59 #endif
     60 #include <sys/kauth.h>
     61 #include <sys/mutex.h>
     62 #include <sys/intr.h>
     63 #include <sys/stat.h>
     64 #include <sys/device.h>
     65 #include <sys/module.h>
     66 #include <sys/atomic.h>
     67 
     68 #include <net/if.h>
     69 #include <net/if_dl.h>
     70 #include <net/if_ether.h>
     71 #include <net/if_media.h>
     72 #include <net/if_tap.h>
     73 #include <net/bpf.h>
     74 
     75 #include <compat/sys/sockio.h>
     76 
     77 #include "ioconf.h"
     78 
     79 #if defined(COMPAT_40) || defined(MODULAR)
     80 /*
     81  * sysctl node management
     82  *
     83  * It's not really possible to use a SYSCTL_SETUP block with
     84  * current module implementation, so it is easier to just define
     85  * our own function.
     86  *
     87  * The handler function is a "helper" in Andrew Brown's sysctl
     88  * framework terminology.  It is used as a gateway for sysctl
     89  * requests over the nodes.
     90  *
     91  * tap_log allows the module to log creations of nodes and
     92  * destroy them all at once using sysctl_teardown.
     93  */
     94 static int tap_node;
     95 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     96 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     97 #endif
     98 
     99 /*
    100  * Since we're an Ethernet device, we need the 2 following
    101  * components: a struct ethercom and a struct ifmedia
    102  * since we don't attach a PHY to ourselves.
    103  * We could emulate one, but there's no real point.
    104  */
    105 
    106 struct tap_softc {
    107 	device_t	sc_dev;
    108 	struct ifmedia	sc_im;
    109 	struct ethercom	sc_ec;
    110 	int		sc_flags;
    111 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    112 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    113 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    114 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    115 	struct selinfo	sc_rsel;
    116 	pid_t		sc_pgid; /* For async. IO */
    117 	kmutex_t	sc_rdlock;
    118 	kmutex_t	sc_kqlock;
    119 	void		*sc_sih;
    120 	struct timespec sc_atime;
    121 	struct timespec sc_mtime;
    122 	struct timespec sc_btime;
    123 };
    124 
    125 /* autoconf(9) glue */
    126 
    127 static int	tap_match(device_t, cfdata_t, void *);
    128 static void	tap_attach(device_t, device_t, void *);
    129 static int	tap_detach(device_t, int);
    130 
    131 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    132     tap_match, tap_attach, tap_detach, NULL);
    133 extern struct cfdriver tap_cd;
    134 
    135 /* Real device access routines */
    136 static int	tap_dev_close(struct tap_softc *);
    137 static int	tap_dev_read(int, struct uio *, int);
    138 static int	tap_dev_write(int, struct uio *, int);
    139 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    140 static int	tap_dev_poll(int, int, struct lwp *);
    141 static int	tap_dev_kqfilter(int, struct knote *);
    142 
    143 /* Fileops access routines */
    144 static int	tap_fops_close(file_t *);
    145 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    146     kauth_cred_t, int);
    147 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    148     kauth_cred_t, int);
    149 static int	tap_fops_ioctl(file_t *, u_long, void *);
    150 static int	tap_fops_poll(file_t *, int);
    151 static int	tap_fops_stat(file_t *, struct stat *);
    152 static int	tap_fops_kqfilter(file_t *, struct knote *);
    153 
    154 static const struct fileops tap_fileops = {
    155 	.fo_read = tap_fops_read,
    156 	.fo_write = tap_fops_write,
    157 	.fo_ioctl = tap_fops_ioctl,
    158 	.fo_fcntl = fnullop_fcntl,
    159 	.fo_poll = tap_fops_poll,
    160 	.fo_stat = tap_fops_stat,
    161 	.fo_close = tap_fops_close,
    162 	.fo_kqfilter = tap_fops_kqfilter,
    163 	.fo_restart = fnullop_restart,
    164 };
    165 
    166 /* Helper for cloning open() */
    167 static int	tap_dev_cloner(struct lwp *);
    168 
    169 /* Character device routines */
    170 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    171 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    172 static int	tap_cdev_read(dev_t, struct uio *, int);
    173 static int	tap_cdev_write(dev_t, struct uio *, int);
    174 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    175 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    176 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    177 
    178 const struct cdevsw tap_cdevsw = {
    179 	.d_open = tap_cdev_open,
    180 	.d_close = tap_cdev_close,
    181 	.d_read = tap_cdev_read,
    182 	.d_write = tap_cdev_write,
    183 	.d_ioctl = tap_cdev_ioctl,
    184 	.d_stop = nostop,
    185 	.d_tty = notty,
    186 	.d_poll = tap_cdev_poll,
    187 	.d_mmap = nommap,
    188 	.d_kqfilter = tap_cdev_kqfilter,
    189 	.d_discard = nodiscard,
    190 	.d_flag = D_OTHER
    191 };
    192 
    193 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    194 
    195 /* kqueue-related routines */
    196 static void	tap_kqdetach(struct knote *);
    197 static int	tap_kqread(struct knote *, long);
    198 
    199 /*
    200  * Those are needed by the if_media interface.
    201  */
    202 
    203 static int	tap_mediachange(struct ifnet *);
    204 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    205 
    206 /*
    207  * Those are needed by the ifnet interface, and would typically be
    208  * there for any network interface driver.
    209  * Some other routines are optional: watchdog and drain.
    210  */
    211 
    212 static void	tap_start(struct ifnet *);
    213 static void	tap_stop(struct ifnet *, int);
    214 static int	tap_init(struct ifnet *);
    215 static int	tap_ioctl(struct ifnet *, u_long, void *);
    216 
    217 /* Internal functions */
    218 #if defined(COMPAT_40) || defined(MODULAR)
    219 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    220 #endif
    221 static void	tap_softintr(void *);
    222 
    223 /*
    224  * tap is a clonable interface, although it is highly unrealistic for
    225  * an Ethernet device.
    226  *
    227  * Here are the bits needed for a clonable interface.
    228  */
    229 static int	tap_clone_create(struct if_clone *, int);
    230 static int	tap_clone_destroy(struct ifnet *);
    231 
    232 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    233 					tap_clone_create,
    234 					tap_clone_destroy);
    235 
    236 /* Helper functionis shared by the two cloning code paths */
    237 static struct tap_softc *	tap_clone_creator(int);
    238 int	tap_clone_destroyer(device_t);
    239 
    240 static u_int tap_count;
    241 
    242 void
    243 tapattach(int n)
    244 {
    245 
    246 	/*
    247 	 * Nothing to do here, initialization is handled by the
    248 	 * module initialization code in tapinit() below).
    249 	 */
    250 }
    251 
    252 static void
    253 tapinit(void)
    254 {
    255 	if_clone_attach(&tap_cloners);
    256 }
    257 
    258 static int
    259 tapdetach(void)
    260 {
    261 	int error = 0;
    262 
    263 	if (tap_count != 0)
    264 		error = EBUSY;
    265 
    266 	if (error == 0)
    267 		if_clone_detach(&tap_cloners);
    268 
    269 	return error;
    270 }
    271 
    272 /* Pretty much useless for a pseudo-device */
    273 static int
    274 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    275 {
    276 
    277 	return (1);
    278 }
    279 
    280 void
    281 tap_attach(device_t parent, device_t self, void *aux)
    282 {
    283 	struct tap_softc *sc = device_private(self);
    284 	struct ifnet *ifp;
    285 #if defined(COMPAT_40) || defined(MODULAR)
    286 	const struct sysctlnode *node;
    287 	int error;
    288 #endif
    289 	uint8_t enaddr[ETHER_ADDR_LEN] =
    290 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    291 	char enaddrstr[3 * ETHER_ADDR_LEN];
    292 
    293 	sc->sc_dev = self;
    294 	sc->sc_sih = NULL;
    295 	getnanotime(&sc->sc_btime);
    296 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    297 	sc->sc_flags = 0;
    298 	selinit(&sc->sc_rsel);
    299 
    300 	/*
    301 	 * Initialize the two locks for the device.
    302 	 *
    303 	 * We need a lock here because even though the tap device can be
    304 	 * opened only once, the file descriptor might be passed to another
    305 	 * process, say a fork(2)ed child.
    306 	 *
    307 	 * The Giant saves us from most of the hassle, but since the read
    308 	 * operation can sleep, we don't want two processes to wake up at
    309 	 * the same moment and both try and dequeue a single packet.
    310 	 *
    311 	 * The queue for event listeners (used by kqueue(9), see below) has
    312 	 * to be protected too, so use a spin lock.
    313 	 */
    314 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    315 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    316 
    317 	if (!pmf_device_register(self, NULL, NULL))
    318 		aprint_error_dev(self, "couldn't establish power handler\n");
    319 
    320 	/*
    321 	 * In order to obtain unique initial Ethernet address on a host,
    322 	 * do some randomisation.  It's not meant for anything but avoiding
    323 	 * hard-coding an address.
    324 	 */
    325 	cprng_fast(&enaddr[3], 3);
    326 
    327 	aprint_verbose_dev(self, "Ethernet address %s\n",
    328 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    329 
    330 	/*
    331 	 * Why 1000baseT? Why not? You can add more.
    332 	 *
    333 	 * Note that there are 3 steps: init, one or several additions to
    334 	 * list of supported media, and in the end, the selection of one
    335 	 * of them.
    336 	 */
    337 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    338 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    339 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    340 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    341 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    342 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    343 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    344 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    345 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    346 
    347 	/*
    348 	 * One should note that an interface must do multicast in order
    349 	 * to support IPv6.
    350 	 */
    351 	ifp = &sc->sc_ec.ec_if;
    352 	strcpy(ifp->if_xname, device_xname(self));
    353 	ifp->if_softc	= sc;
    354 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    355 	ifp->if_ioctl	= tap_ioctl;
    356 	ifp->if_start	= tap_start;
    357 	ifp->if_stop	= tap_stop;
    358 	ifp->if_init	= tap_init;
    359 	IFQ_SET_READY(&ifp->if_snd);
    360 
    361 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    362 
    363 	/* Those steps are mandatory for an Ethernet driver. */
    364 	if_initialize(ifp);
    365 	ether_ifattach(ifp, enaddr);
    366 	if_register(ifp);
    367 
    368 #if defined(COMPAT_40) || defined(MODULAR)
    369 	/*
    370 	 * Add a sysctl node for that interface.
    371 	 *
    372 	 * The pointer transmitted is not a string, but instead a pointer to
    373 	 * the softc structure, which we can use to build the string value on
    374 	 * the fly in the helper function of the node.  See the comments for
    375 	 * tap_sysctl_handler for details.
    376 	 *
    377 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    378 	 * component.  However, we can allocate a number ourselves, as we are
    379 	 * the only consumer of the net.link.<iface> node.  In this case, the
    380 	 * unit number is conveniently used to number the node.  CTL_CREATE
    381 	 * would just work, too.
    382 	 */
    383 	if ((error = sysctl_createv(NULL, 0, NULL,
    384 	    &node, CTLFLAG_READWRITE,
    385 	    CTLTYPE_STRING, device_xname(self), NULL,
    386 	    tap_sysctl_handler, 0, (void *)sc, 18,
    387 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    388 	    CTL_EOL)) != 0)
    389 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    390 		    error);
    391 #endif
    392 }
    393 
    394 /*
    395  * When detaching, we do the inverse of what is done in the attach
    396  * routine, in reversed order.
    397  */
    398 static int
    399 tap_detach(device_t self, int flags)
    400 {
    401 	struct tap_softc *sc = device_private(self);
    402 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    403 #if defined(COMPAT_40) || defined(MODULAR)
    404 	int error;
    405 #endif
    406 	int s;
    407 
    408 	sc->sc_flags |= TAP_GOING;
    409 	s = splnet();
    410 	tap_stop(ifp, 1);
    411 	if_down(ifp);
    412 	splx(s);
    413 
    414 	if (sc->sc_sih != NULL) {
    415 		softint_disestablish(sc->sc_sih);
    416 		sc->sc_sih = NULL;
    417 	}
    418 
    419 #if defined(COMPAT_40) || defined(MODULAR)
    420 	/*
    421 	 * Destroying a single leaf is a very straightforward operation using
    422 	 * sysctl_destroyv.  One should be sure to always end the path with
    423 	 * CTL_EOL.
    424 	 */
    425 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    426 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    427 		aprint_error_dev(self,
    428 		    "sysctl_destroyv returned %d, ignoring\n", error);
    429 #endif
    430 	ether_ifdetach(ifp);
    431 	if_detach(ifp);
    432 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    433 	seldestroy(&sc->sc_rsel);
    434 	mutex_destroy(&sc->sc_rdlock);
    435 	mutex_destroy(&sc->sc_kqlock);
    436 
    437 	pmf_device_deregister(self);
    438 
    439 	return (0);
    440 }
    441 
    442 /*
    443  * This function is called by the ifmedia layer to notify the driver
    444  * that the user requested a media change.  A real driver would
    445  * reconfigure the hardware.
    446  */
    447 static int
    448 tap_mediachange(struct ifnet *ifp)
    449 {
    450 	return (0);
    451 }
    452 
    453 /*
    454  * Here the user asks for the currently used media.
    455  */
    456 static void
    457 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    458 {
    459 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    460 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    461 }
    462 
    463 /*
    464  * This is the function where we SEND packets.
    465  *
    466  * There is no 'receive' equivalent.  A typical driver will get
    467  * interrupts from the hardware, and from there will inject new packets
    468  * into the network stack.
    469  *
    470  * Once handled, a packet must be freed.  A real driver might not be able
    471  * to fit all the pending packets into the hardware, and is allowed to
    472  * return before having sent all the packets.  It should then use the
    473  * if_flags flag IFF_OACTIVE to notify the upper layer.
    474  *
    475  * There are also other flags one should check, such as IFF_PAUSE.
    476  *
    477  * It is our duty to make packets available to BPF listeners.
    478  *
    479  * You should be aware that this function is called by the Ethernet layer
    480  * at splnet().
    481  *
    482  * When the device is opened, we have to pass the packet(s) to the
    483  * userland.  For that we stay in OACTIVE mode while the userland gets
    484  * the packets, and we send a signal to the processes waiting to read.
    485  *
    486  * wakeup(sc) is the counterpart to the tsleep call in
    487  * tap_dev_read, while selnotify() is used for kevent(2) and
    488  * poll(2) (which includes select(2)) listeners.
    489  */
    490 static void
    491 tap_start(struct ifnet *ifp)
    492 {
    493 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    494 	struct mbuf *m0;
    495 
    496 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    497 		/* Simply drop packets */
    498 		for(;;) {
    499 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    500 			if (m0 == NULL)
    501 				return;
    502 
    503 			ifp->if_opackets++;
    504 			bpf_mtap(ifp, m0);
    505 
    506 			m_freem(m0);
    507 		}
    508 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    509 		ifp->if_flags |= IFF_OACTIVE;
    510 		wakeup(sc);
    511 		selnotify(&sc->sc_rsel, 0, 1);
    512 		if (sc->sc_flags & TAP_ASYNCIO)
    513 			softint_schedule(sc->sc_sih);
    514 	}
    515 }
    516 
    517 static void
    518 tap_softintr(void *cookie)
    519 {
    520 	struct tap_softc *sc;
    521 	struct ifnet *ifp;
    522 	int a, b;
    523 
    524 	sc = cookie;
    525 
    526 	if (sc->sc_flags & TAP_ASYNCIO) {
    527 		ifp = &sc->sc_ec.ec_if;
    528 		if (ifp->if_flags & IFF_RUNNING) {
    529 			a = POLL_IN;
    530 			b = POLLIN|POLLRDNORM;
    531 		} else {
    532 			a = POLL_HUP;
    533 			b = 0;
    534 		}
    535 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    536 	}
    537 }
    538 
    539 /*
    540  * A typical driver will only contain the following handlers for
    541  * ioctl calls, except SIOCSIFPHYADDR.
    542  * The latter is a hack I used to set the Ethernet address of the
    543  * faked device.
    544  *
    545  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    546  * called under splnet().
    547  */
    548 static int
    549 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    550 {
    551 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    552 	struct ifreq *ifr = (struct ifreq *)data;
    553 	int s, error;
    554 
    555 	s = splnet();
    556 
    557 	switch (cmd) {
    558 #ifdef OSIOCSIFMEDIA
    559 	case OSIOCSIFMEDIA:
    560 #endif
    561 	case SIOCSIFMEDIA:
    562 	case SIOCGIFMEDIA:
    563 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    564 		break;
    565 #if defined(COMPAT_40) || defined(MODULAR)
    566 	case SIOCSIFPHYADDR:
    567 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    568 		break;
    569 #endif
    570 	default:
    571 		error = ether_ioctl(ifp, cmd, data);
    572 		if (error == ENETRESET)
    573 			error = 0;
    574 		break;
    575 	}
    576 
    577 	splx(s);
    578 
    579 	return (error);
    580 }
    581 
    582 #if defined(COMPAT_40) || defined(MODULAR)
    583 /*
    584  * Helper function to set Ethernet address.  This has been replaced by
    585  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    586  */
    587 static int
    588 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    589 {
    590 	const struct sockaddr *sa = &ifra->ifra_addr;
    591 
    592 	if (sa->sa_family != AF_LINK)
    593 		return (EINVAL);
    594 
    595 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    596 
    597 	return (0);
    598 }
    599 #endif
    600 
    601 /*
    602  * _init() would typically be called when an interface goes up,
    603  * meaning it should configure itself into the state in which it
    604  * can send packets.
    605  */
    606 static int
    607 tap_init(struct ifnet *ifp)
    608 {
    609 	ifp->if_flags |= IFF_RUNNING;
    610 
    611 	tap_start(ifp);
    612 
    613 	return (0);
    614 }
    615 
    616 /*
    617  * _stop() is called when an interface goes down.  It is our
    618  * responsability to validate that state by clearing the
    619  * IFF_RUNNING flag.
    620  *
    621  * We have to wake up all the sleeping processes to have the pending
    622  * read requests cancelled.
    623  */
    624 static void
    625 tap_stop(struct ifnet *ifp, int disable)
    626 {
    627 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    628 
    629 	ifp->if_flags &= ~IFF_RUNNING;
    630 	wakeup(sc);
    631 	selnotify(&sc->sc_rsel, 0, 1);
    632 	if (sc->sc_flags & TAP_ASYNCIO)
    633 		softint_schedule(sc->sc_sih);
    634 }
    635 
    636 /*
    637  * The 'create' command of ifconfig can be used to create
    638  * any numbered instance of a given device.  Thus we have to
    639  * make sure we have enough room in cd_devs to create the
    640  * user-specified instance.  config_attach_pseudo will do this
    641  * for us.
    642  */
    643 static int
    644 tap_clone_create(struct if_clone *ifc, int unit)
    645 {
    646 	if (tap_clone_creator(unit) == NULL) {
    647 		aprint_error("%s%d: unable to attach an instance\n",
    648                     tap_cd.cd_name, unit);
    649 		return (ENXIO);
    650 	}
    651 	atomic_inc_uint(&tap_count);
    652 	return (0);
    653 }
    654 
    655 /*
    656  * tap(4) can be cloned by two ways:
    657  *   using 'ifconfig tap0 create', which will use the network
    658  *     interface cloning API, and call tap_clone_create above.
    659  *   opening the cloning device node, whose minor number is TAP_CLONER.
    660  *     See below for an explanation on how this part work.
    661  */
    662 static struct tap_softc *
    663 tap_clone_creator(int unit)
    664 {
    665 	struct cfdata *cf;
    666 
    667 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    668 	cf->cf_name = tap_cd.cd_name;
    669 	cf->cf_atname = tap_ca.ca_name;
    670 	if (unit == -1) {
    671 		/* let autoconf find the first free one */
    672 		cf->cf_unit = 0;
    673 		cf->cf_fstate = FSTATE_STAR;
    674 	} else {
    675 		cf->cf_unit = unit;
    676 		cf->cf_fstate = FSTATE_NOTFOUND;
    677 	}
    678 
    679 	return device_private(config_attach_pseudo(cf));
    680 }
    681 
    682 /*
    683  * The clean design of if_clone and autoconf(9) makes that part
    684  * really straightforward.  The second argument of config_detach
    685  * means neither QUIET nor FORCED.
    686  */
    687 static int
    688 tap_clone_destroy(struct ifnet *ifp)
    689 {
    690 	struct tap_softc *sc = ifp->if_softc;
    691 	int error = tap_clone_destroyer(sc->sc_dev);
    692 
    693 	if (error == 0)
    694 		atomic_inc_uint(&tap_count);
    695 	return error;
    696 }
    697 
    698 int
    699 tap_clone_destroyer(device_t dev)
    700 {
    701 	cfdata_t cf = device_cfdata(dev);
    702 	int error;
    703 
    704 	if ((error = config_detach(dev, 0)) != 0)
    705 		aprint_error_dev(dev, "unable to detach instance\n");
    706 	free(cf, M_DEVBUF);
    707 
    708 	return (error);
    709 }
    710 
    711 /*
    712  * tap(4) is a bit of an hybrid device.  It can be used in two different
    713  * ways:
    714  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    715  *  2. open /dev/tap, get a new interface created and read/write off it.
    716  *     That interface is destroyed when the process that had it created exits.
    717  *
    718  * The first way is managed by the cdevsw structure, and you access interfaces
    719  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    720  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    721  *
    722  * The second way is the so-called "cloning" device.  It's a special minor
    723  * number (chosen as the maximal number, to allow as much tap devices as
    724  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    725  * call ends in tap_cdev_open.  The actual place where it is handled is
    726  * tap_dev_cloner.
    727  *
    728  * An tap device cannot be opened more than once at a time, so the cdevsw
    729  * part of open() does nothing but noting that the interface is being used and
    730  * hence ready to actually handle packets.
    731  */
    732 
    733 static int
    734 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    735 {
    736 	struct tap_softc *sc;
    737 
    738 	if (minor(dev) == TAP_CLONER)
    739 		return tap_dev_cloner(l);
    740 
    741 	sc = device_lookup_private(&tap_cd, minor(dev));
    742 	if (sc == NULL)
    743 		return (ENXIO);
    744 
    745 	/* The device can only be opened once */
    746 	if (sc->sc_flags & TAP_INUSE)
    747 		return (EBUSY);
    748 	sc->sc_flags |= TAP_INUSE;
    749 	return (0);
    750 }
    751 
    752 /*
    753  * There are several kinds of cloning devices, and the most simple is the one
    754  * tap(4) uses.  What it does is change the file descriptor with a new one,
    755  * with its own fileops structure (which maps to the various read, write,
    756  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    757  * then actually creates the new tap devices.
    758  *
    759  * Once those two steps are successful, we can re-wire the existing file
    760  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    761  * structure as needed (notably f_devunit gets filled with the fifth parameter
    762  * passed, the unit of the tap device which will allows us identifying the
    763  * device later), and returns EMOVEFD.
    764  *
    765  * That magic value is interpreted by sys_open() which then replaces the
    766  * current file descriptor by the new one (through a magic member of struct
    767  * lwp, l_dupfd).
    768  *
    769  * The tap device is flagged as being busy since it otherwise could be
    770  * externally accessed through the corresponding device node with the cdevsw
    771  * interface.
    772  */
    773 
    774 static int
    775 tap_dev_cloner(struct lwp *l)
    776 {
    777 	struct tap_softc *sc;
    778 	file_t *fp;
    779 	int error, fd;
    780 
    781 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    782 		return (error);
    783 
    784 	if ((sc = tap_clone_creator(-1)) == NULL) {
    785 		fd_abort(curproc, fp, fd);
    786 		return (ENXIO);
    787 	}
    788 
    789 	sc->sc_flags |= TAP_INUSE;
    790 
    791 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    792 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    793 }
    794 
    795 /*
    796  * While all other operations (read, write, ioctl, poll and kqfilter) are
    797  * really the same whether we are in cdevsw or fileops mode, the close()
    798  * function is slightly different in the two cases.
    799  *
    800  * As for the other, the core of it is shared in tap_dev_close.  What
    801  * it does is sufficient for the cdevsw interface, but the cloning interface
    802  * needs another thing:  the interface is destroyed when the processes that
    803  * created it closes it.
    804  */
    805 static int
    806 tap_cdev_close(dev_t dev, int flags, int fmt,
    807     struct lwp *l)
    808 {
    809 	struct tap_softc *sc =
    810 	    device_lookup_private(&tap_cd, minor(dev));
    811 
    812 	if (sc == NULL)
    813 		return (ENXIO);
    814 
    815 	return tap_dev_close(sc);
    816 }
    817 
    818 /*
    819  * It might happen that the administrator used ifconfig to externally destroy
    820  * the interface.  In that case, tap_fops_close will be called while
    821  * tap_detach is already happening.  If we called it again from here, we
    822  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    823  */
    824 static int
    825 tap_fops_close(file_t *fp)
    826 {
    827 	int unit = fp->f_devunit;
    828 	struct tap_softc *sc;
    829 	int error;
    830 
    831 	sc = device_lookup_private(&tap_cd, unit);
    832 	if (sc == NULL)
    833 		return (ENXIO);
    834 
    835 	/* tap_dev_close currently always succeeds, but it might not
    836 	 * always be the case. */
    837 	KERNEL_LOCK(1, NULL);
    838 	if ((error = tap_dev_close(sc)) != 0) {
    839 		KERNEL_UNLOCK_ONE(NULL);
    840 		return (error);
    841 	}
    842 
    843 	/* Destroy the device now that it is no longer useful,
    844 	 * unless it's already being destroyed. */
    845 	if ((sc->sc_flags & TAP_GOING) != 0) {
    846 		KERNEL_UNLOCK_ONE(NULL);
    847 		return (0);
    848 	}
    849 
    850 	error = tap_clone_destroyer(sc->sc_dev);
    851 	KERNEL_UNLOCK_ONE(NULL);
    852 	return error;
    853 }
    854 
    855 static int
    856 tap_dev_close(struct tap_softc *sc)
    857 {
    858 	struct ifnet *ifp;
    859 	int s;
    860 
    861 	s = splnet();
    862 	/* Let tap_start handle packets again */
    863 	ifp = &sc->sc_ec.ec_if;
    864 	ifp->if_flags &= ~IFF_OACTIVE;
    865 
    866 	/* Purge output queue */
    867 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    868 		struct mbuf *m;
    869 
    870 		for (;;) {
    871 			IFQ_DEQUEUE(&ifp->if_snd, m);
    872 			if (m == NULL)
    873 				break;
    874 
    875 			ifp->if_opackets++;
    876 			bpf_mtap(ifp, m);
    877 			m_freem(m);
    878 		}
    879 	}
    880 	splx(s);
    881 
    882 	if (sc->sc_sih != NULL) {
    883 		softint_disestablish(sc->sc_sih);
    884 		sc->sc_sih = NULL;
    885 	}
    886 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    887 
    888 	return (0);
    889 }
    890 
    891 static int
    892 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    893 {
    894 	return tap_dev_read(minor(dev), uio, flags);
    895 }
    896 
    897 static int
    898 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    899     kauth_cred_t cred, int flags)
    900 {
    901 	int error;
    902 
    903 	KERNEL_LOCK(1, NULL);
    904 	error = tap_dev_read(fp->f_devunit, uio, flags);
    905 	KERNEL_UNLOCK_ONE(NULL);
    906 	return error;
    907 }
    908 
    909 static int
    910 tap_dev_read(int unit, struct uio *uio, int flags)
    911 {
    912 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    913 	struct ifnet *ifp;
    914 	struct mbuf *m, *n;
    915 	int error = 0, s;
    916 
    917 	if (sc == NULL)
    918 		return (ENXIO);
    919 
    920 	getnanotime(&sc->sc_atime);
    921 
    922 	ifp = &sc->sc_ec.ec_if;
    923 	if ((ifp->if_flags & IFF_UP) == 0)
    924 		return (EHOSTDOWN);
    925 
    926 	/*
    927 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    928 	 */
    929 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    930 		if (!mutex_tryenter(&sc->sc_rdlock))
    931 			return (EWOULDBLOCK);
    932 	} else {
    933 		mutex_enter(&sc->sc_rdlock);
    934 	}
    935 
    936 	s = splnet();
    937 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    938 		ifp->if_flags &= ~IFF_OACTIVE;
    939 		/*
    940 		 * We must release the lock before sleeping, and re-acquire it
    941 		 * after.
    942 		 */
    943 		mutex_exit(&sc->sc_rdlock);
    944 		if (sc->sc_flags & TAP_NBIO)
    945 			error = EWOULDBLOCK;
    946 		else
    947 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    948 		splx(s);
    949 
    950 		if (error != 0)
    951 			return (error);
    952 		/* The device might have been downed */
    953 		if ((ifp->if_flags & IFF_UP) == 0)
    954 			return (EHOSTDOWN);
    955 		if ((sc->sc_flags & TAP_NBIO)) {
    956 			if (!mutex_tryenter(&sc->sc_rdlock))
    957 				return (EWOULDBLOCK);
    958 		} else {
    959 			mutex_enter(&sc->sc_rdlock);
    960 		}
    961 		s = splnet();
    962 	}
    963 
    964 	IFQ_DEQUEUE(&ifp->if_snd, m);
    965 	ifp->if_flags &= ~IFF_OACTIVE;
    966 	splx(s);
    967 	if (m == NULL) {
    968 		error = 0;
    969 		goto out;
    970 	}
    971 
    972 	ifp->if_opackets++;
    973 	bpf_mtap(ifp, m);
    974 
    975 	/*
    976 	 * One read is one packet.
    977 	 */
    978 	do {
    979 		error = uiomove(mtod(m, void *),
    980 		    min(m->m_len, uio->uio_resid), uio);
    981 		MFREE(m, n);
    982 		m = n;
    983 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    984 
    985 	if (m != NULL)
    986 		m_freem(m);
    987 
    988 out:
    989 	mutex_exit(&sc->sc_rdlock);
    990 	return (error);
    991 }
    992 
    993 static int
    994 tap_fops_stat(file_t *fp, struct stat *st)
    995 {
    996 	int error = 0;
    997 	struct tap_softc *sc;
    998 	int unit = fp->f_devunit;
    999 
   1000 	(void)memset(st, 0, sizeof(*st));
   1001 
   1002 	KERNEL_LOCK(1, NULL);
   1003 	sc = device_lookup_private(&tap_cd, unit);
   1004 	if (sc == NULL) {
   1005 		error = ENXIO;
   1006 		goto out;
   1007 	}
   1008 
   1009 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
   1010 	st->st_atimespec = sc->sc_atime;
   1011 	st->st_mtimespec = sc->sc_mtime;
   1012 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
   1013 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1014 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1015 out:
   1016 	KERNEL_UNLOCK_ONE(NULL);
   1017 	return error;
   1018 }
   1019 
   1020 static int
   1021 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1022 {
   1023 	return tap_dev_write(minor(dev), uio, flags);
   1024 }
   1025 
   1026 static int
   1027 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1028     kauth_cred_t cred, int flags)
   1029 {
   1030 	int error;
   1031 
   1032 	KERNEL_LOCK(1, NULL);
   1033 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1034 	KERNEL_UNLOCK_ONE(NULL);
   1035 	return error;
   1036 }
   1037 
   1038 static int
   1039 tap_dev_write(int unit, struct uio *uio, int flags)
   1040 {
   1041 	struct tap_softc *sc =
   1042 	    device_lookup_private(&tap_cd, unit);
   1043 	struct ifnet *ifp;
   1044 	struct mbuf *m, **mp;
   1045 	int error = 0;
   1046 	int s;
   1047 
   1048 	if (sc == NULL)
   1049 		return (ENXIO);
   1050 
   1051 	getnanotime(&sc->sc_mtime);
   1052 	ifp = &sc->sc_ec.ec_if;
   1053 
   1054 	/* One write, one packet, that's the rule */
   1055 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1056 	if (m == NULL) {
   1057 		ifp->if_ierrors++;
   1058 		return (ENOBUFS);
   1059 	}
   1060 	m->m_pkthdr.len = uio->uio_resid;
   1061 
   1062 	mp = &m;
   1063 	while (error == 0 && uio->uio_resid > 0) {
   1064 		if (*mp != m) {
   1065 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1066 			if (*mp == NULL) {
   1067 				error = ENOBUFS;
   1068 				break;
   1069 			}
   1070 		}
   1071 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1072 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1073 		mp = &(*mp)->m_next;
   1074 	}
   1075 	if (error) {
   1076 		ifp->if_ierrors++;
   1077 		m_freem(m);
   1078 		return (error);
   1079 	}
   1080 
   1081 	ifp->if_ipackets++;
   1082 	m_set_rcvif(m, ifp);
   1083 
   1084 	bpf_mtap(ifp, m);
   1085 	s = splnet();
   1086 	if_input(ifp, m);
   1087 	splx(s);
   1088 
   1089 	return (0);
   1090 }
   1091 
   1092 static int
   1093 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1094     struct lwp *l)
   1095 {
   1096 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1097 }
   1098 
   1099 static int
   1100 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1101 {
   1102 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1103 }
   1104 
   1105 static int
   1106 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1107 {
   1108 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1109 
   1110 	if (sc == NULL)
   1111 		return ENXIO;
   1112 
   1113 	switch (cmd) {
   1114 	case FIONREAD:
   1115 		{
   1116 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1117 			struct mbuf *m;
   1118 			int s;
   1119 
   1120 			s = splnet();
   1121 			IFQ_POLL(&ifp->if_snd, m);
   1122 
   1123 			if (m == NULL)
   1124 				*(int *)data = 0;
   1125 			else
   1126 				*(int *)data = m->m_pkthdr.len;
   1127 			splx(s);
   1128 			return 0;
   1129 		}
   1130 	case TIOCSPGRP:
   1131 	case FIOSETOWN:
   1132 		return fsetown(&sc->sc_pgid, cmd, data);
   1133 	case TIOCGPGRP:
   1134 	case FIOGETOWN:
   1135 		return fgetown(sc->sc_pgid, cmd, data);
   1136 	case FIOASYNC:
   1137 		if (*(int *)data) {
   1138 			if (sc->sc_sih == NULL) {
   1139 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1140 				    tap_softintr, sc);
   1141 				if (sc->sc_sih == NULL)
   1142 					return EBUSY; /* XXX */
   1143 			}
   1144 			sc->sc_flags |= TAP_ASYNCIO;
   1145 		} else {
   1146 			sc->sc_flags &= ~TAP_ASYNCIO;
   1147 			if (sc->sc_sih != NULL) {
   1148 				softint_disestablish(sc->sc_sih);
   1149 				sc->sc_sih = NULL;
   1150 			}
   1151 		}
   1152 		return 0;
   1153 	case FIONBIO:
   1154 		if (*(int *)data)
   1155 			sc->sc_flags |= TAP_NBIO;
   1156 		else
   1157 			sc->sc_flags &= ~TAP_NBIO;
   1158 		return 0;
   1159 #ifdef OTAPGIFNAME
   1160 	case OTAPGIFNAME:
   1161 #endif
   1162 	case TAPGIFNAME:
   1163 		{
   1164 			struct ifreq *ifr = (struct ifreq *)data;
   1165 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1166 
   1167 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1168 			return 0;
   1169 		}
   1170 	default:
   1171 		return ENOTTY;
   1172 	}
   1173 }
   1174 
   1175 static int
   1176 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1177 {
   1178 	return tap_dev_poll(minor(dev), events, l);
   1179 }
   1180 
   1181 static int
   1182 tap_fops_poll(file_t *fp, int events)
   1183 {
   1184 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1185 }
   1186 
   1187 static int
   1188 tap_dev_poll(int unit, int events, struct lwp *l)
   1189 {
   1190 	struct tap_softc *sc =
   1191 	    device_lookup_private(&tap_cd, unit);
   1192 	int revents = 0;
   1193 
   1194 	if (sc == NULL)
   1195 		return POLLERR;
   1196 
   1197 	if (events & (POLLIN|POLLRDNORM)) {
   1198 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1199 		struct mbuf *m;
   1200 		int s;
   1201 
   1202 		s = splnet();
   1203 		IFQ_POLL(&ifp->if_snd, m);
   1204 
   1205 		if (m != NULL)
   1206 			revents |= events & (POLLIN|POLLRDNORM);
   1207 		else {
   1208 			mutex_spin_enter(&sc->sc_kqlock);
   1209 			selrecord(l, &sc->sc_rsel);
   1210 			mutex_spin_exit(&sc->sc_kqlock);
   1211 		}
   1212 		splx(s);
   1213 	}
   1214 	revents |= events & (POLLOUT|POLLWRNORM);
   1215 
   1216 	return (revents);
   1217 }
   1218 
   1219 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1220 	tap_kqread };
   1221 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1222 	filt_seltrue };
   1223 
   1224 static int
   1225 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1226 {
   1227 	return tap_dev_kqfilter(minor(dev), kn);
   1228 }
   1229 
   1230 static int
   1231 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1232 {
   1233 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1234 }
   1235 
   1236 static int
   1237 tap_dev_kqfilter(int unit, struct knote *kn)
   1238 {
   1239 	struct tap_softc *sc =
   1240 	    device_lookup_private(&tap_cd, unit);
   1241 
   1242 	if (sc == NULL)
   1243 		return (ENXIO);
   1244 
   1245 	KERNEL_LOCK(1, NULL);
   1246 	switch(kn->kn_filter) {
   1247 	case EVFILT_READ:
   1248 		kn->kn_fop = &tap_read_filterops;
   1249 		break;
   1250 	case EVFILT_WRITE:
   1251 		kn->kn_fop = &tap_seltrue_filterops;
   1252 		break;
   1253 	default:
   1254 		KERNEL_UNLOCK_ONE(NULL);
   1255 		return (EINVAL);
   1256 	}
   1257 
   1258 	kn->kn_hook = sc;
   1259 	mutex_spin_enter(&sc->sc_kqlock);
   1260 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1261 	mutex_spin_exit(&sc->sc_kqlock);
   1262 	KERNEL_UNLOCK_ONE(NULL);
   1263 	return (0);
   1264 }
   1265 
   1266 static void
   1267 tap_kqdetach(struct knote *kn)
   1268 {
   1269 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1270 
   1271 	KERNEL_LOCK(1, NULL);
   1272 	mutex_spin_enter(&sc->sc_kqlock);
   1273 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1274 	mutex_spin_exit(&sc->sc_kqlock);
   1275 	KERNEL_UNLOCK_ONE(NULL);
   1276 }
   1277 
   1278 static int
   1279 tap_kqread(struct knote *kn, long hint)
   1280 {
   1281 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1282 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1283 	struct mbuf *m;
   1284 	int s, rv;
   1285 
   1286 	KERNEL_LOCK(1, NULL);
   1287 	s = splnet();
   1288 	IFQ_POLL(&ifp->if_snd, m);
   1289 
   1290 	if (m == NULL)
   1291 		kn->kn_data = 0;
   1292 	else
   1293 		kn->kn_data = m->m_pkthdr.len;
   1294 	splx(s);
   1295 	rv = (kn->kn_data != 0 ? 1 : 0);
   1296 	KERNEL_UNLOCK_ONE(NULL);
   1297 	return rv;
   1298 }
   1299 
   1300 #if defined(COMPAT_40) || defined(MODULAR)
   1301 /*
   1302  * sysctl management routines
   1303  * You can set the address of an interface through:
   1304  * net.link.tap.tap<number>
   1305  *
   1306  * Note the consistent use of tap_log in order to use
   1307  * sysctl_teardown at unload time.
   1308  *
   1309  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1310  * blocks register a function in a special section of the kernel
   1311  * (called a link set) which is used at init_sysctl() time to cycle
   1312  * through all those functions to create the kernel's sysctl tree.
   1313  *
   1314  * It is not possible to use link sets in a module, so the
   1315  * easiest is to simply call our own setup routine at load time.
   1316  *
   1317  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1318  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1319  * whole kernel sysctl tree is built, it is not possible to add any
   1320  * permanent node.
   1321  *
   1322  * It should be noted that we're not saving the sysctlnode pointer
   1323  * we are returned when creating the "tap" node.  That structure
   1324  * cannot be trusted once out of the calling function, as it might
   1325  * get reused.  So we just save the MIB number, and always give the
   1326  * full path starting from the root for later calls to sysctl_createv
   1327  * and sysctl_destroyv.
   1328  */
   1329 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1330 {
   1331 	const struct sysctlnode *node;
   1332 	int error = 0;
   1333 
   1334 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1335 	    CTLFLAG_PERMANENT,
   1336 	    CTLTYPE_NODE, "link", NULL,
   1337 	    NULL, 0, NULL, 0,
   1338 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1339 		return;
   1340 
   1341 	/*
   1342 	 * The first four parameters of sysctl_createv are for management.
   1343 	 *
   1344 	 * The four that follows, here starting with a '0' for the flags,
   1345 	 * describe the node.
   1346 	 *
   1347 	 * The next series of four set its value, through various possible
   1348 	 * means.
   1349 	 *
   1350 	 * Last but not least, the path to the node is described.  That path
   1351 	 * is relative to the given root (third argument).  Here we're
   1352 	 * starting from the root.
   1353 	 */
   1354 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1355 	    CTLFLAG_PERMANENT,
   1356 	    CTLTYPE_NODE, "tap", NULL,
   1357 	    NULL, 0, NULL, 0,
   1358 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1359 		return;
   1360 	tap_node = node->sysctl_num;
   1361 }
   1362 
   1363 /*
   1364  * The helper functions make Andrew Brown's interface really
   1365  * shine.  It makes possible to create value on the fly whether
   1366  * the sysctl value is read or written.
   1367  *
   1368  * As shown as an example in the man page, the first step is to
   1369  * create a copy of the node to have sysctl_lookup work on it.
   1370  *
   1371  * Here, we have more work to do than just a copy, since we have
   1372  * to create the string.  The first step is to collect the actual
   1373  * value of the node, which is a convenient pointer to the softc
   1374  * of the interface.  From there we create the string and use it
   1375  * as the value, but only for the *copy* of the node.
   1376  *
   1377  * Then we let sysctl_lookup do the magic, which consists in
   1378  * setting oldp and newp as required by the operation.  When the
   1379  * value is read, that means that the string will be copied to
   1380  * the user, and when it is written, the new value will be copied
   1381  * over in the addr array.
   1382  *
   1383  * If newp is NULL, the user was reading the value, so we don't
   1384  * have anything else to do.  If a new value was written, we
   1385  * have to check it.
   1386  *
   1387  * If it is incorrect, we can return an error and leave 'node' as
   1388  * it is:  since it is a copy of the actual node, the change will
   1389  * be forgotten.
   1390  *
   1391  * Upon a correct input, we commit the change to the ifnet
   1392  * structure of our interface.
   1393  */
   1394 static int
   1395 tap_sysctl_handler(SYSCTLFN_ARGS)
   1396 {
   1397 	struct sysctlnode node;
   1398 	struct tap_softc *sc;
   1399 	struct ifnet *ifp;
   1400 	int error;
   1401 	size_t len;
   1402 	char addr[3 * ETHER_ADDR_LEN];
   1403 	uint8_t enaddr[ETHER_ADDR_LEN];
   1404 
   1405 	node = *rnode;
   1406 	sc = node.sysctl_data;
   1407 	ifp = &sc->sc_ec.ec_if;
   1408 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1409 	node.sysctl_data = addr;
   1410 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1411 	if (error || newp == NULL)
   1412 		return (error);
   1413 
   1414 	len = strlen(addr);
   1415 	if (len < 11 || len > 17)
   1416 		return (EINVAL);
   1417 
   1418 	/* Commit change */
   1419 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1420 		return (EINVAL);
   1421 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1422 	return (error);
   1423 }
   1424 #endif
   1425 
   1426 /*
   1427  * Module infrastructure
   1428  */
   1429 #include "if_module.h"
   1430 
   1431 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
   1432