if_tap.c revision 1.87 1 /* $NetBSD: if_tap.c,v 1.87 2016/08/08 09:23:13 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.87 2016/08/08 09:23:13 pgoyette Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/intr.h>
63 #include <sys/stat.h>
64 #include <sys/device.h>
65 #include <sys/module.h>
66 #include <sys/atomic.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_ether.h>
71 #include <net/if_media.h>
72 #include <net/if_tap.h>
73 #include <net/bpf.h>
74
75 #include <compat/sys/sockio.h>
76
77 #include "ioconf.h"
78
79 #if defined(COMPAT_40) || defined(MODULAR)
80 /*
81 * sysctl node management
82 *
83 * It's not really possible to use a SYSCTL_SETUP block with
84 * current module implementation, so it is easier to just define
85 * our own function.
86 *
87 * The handler function is a "helper" in Andrew Brown's sysctl
88 * framework terminology. It is used as a gateway for sysctl
89 * requests over the nodes.
90 *
91 * tap_log allows the module to log creations of nodes and
92 * destroy them all at once using sysctl_teardown.
93 */
94 static int tap_node;
95 static int tap_sysctl_handler(SYSCTLFN_PROTO);
96 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
97 #endif
98
99 /*
100 * Since we're an Ethernet device, we need the 2 following
101 * components: a struct ethercom and a struct ifmedia
102 * since we don't attach a PHY to ourselves.
103 * We could emulate one, but there's no real point.
104 */
105
106 struct tap_softc {
107 device_t sc_dev;
108 struct ifmedia sc_im;
109 struct ethercom sc_ec;
110 int sc_flags;
111 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
112 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
113 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
114 #define TAP_GOING 0x00000008 /* interface is being destroyed */
115 struct selinfo sc_rsel;
116 pid_t sc_pgid; /* For async. IO */
117 kmutex_t sc_rdlock;
118 kmutex_t sc_kqlock;
119 void *sc_sih;
120 struct timespec sc_atime;
121 struct timespec sc_mtime;
122 struct timespec sc_btime;
123 };
124
125 /* autoconf(9) glue */
126
127 static int tap_match(device_t, cfdata_t, void *);
128 static void tap_attach(device_t, device_t, void *);
129 static int tap_detach(device_t, int);
130
131 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
132 tap_match, tap_attach, tap_detach, NULL);
133 extern struct cfdriver tap_cd;
134
135 /* Real device access routines */
136 static int tap_dev_close(struct tap_softc *);
137 static int tap_dev_read(int, struct uio *, int);
138 static int tap_dev_write(int, struct uio *, int);
139 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
140 static int tap_dev_poll(int, int, struct lwp *);
141 static int tap_dev_kqfilter(int, struct knote *);
142
143 /* Fileops access routines */
144 static int tap_fops_close(file_t *);
145 static int tap_fops_read(file_t *, off_t *, struct uio *,
146 kauth_cred_t, int);
147 static int tap_fops_write(file_t *, off_t *, struct uio *,
148 kauth_cred_t, int);
149 static int tap_fops_ioctl(file_t *, u_long, void *);
150 static int tap_fops_poll(file_t *, int);
151 static int tap_fops_stat(file_t *, struct stat *);
152 static int tap_fops_kqfilter(file_t *, struct knote *);
153
154 static const struct fileops tap_fileops = {
155 .fo_read = tap_fops_read,
156 .fo_write = tap_fops_write,
157 .fo_ioctl = tap_fops_ioctl,
158 .fo_fcntl = fnullop_fcntl,
159 .fo_poll = tap_fops_poll,
160 .fo_stat = tap_fops_stat,
161 .fo_close = tap_fops_close,
162 .fo_kqfilter = tap_fops_kqfilter,
163 .fo_restart = fnullop_restart,
164 };
165
166 /* Helper for cloning open() */
167 static int tap_dev_cloner(struct lwp *);
168
169 /* Character device routines */
170 static int tap_cdev_open(dev_t, int, int, struct lwp *);
171 static int tap_cdev_close(dev_t, int, int, struct lwp *);
172 static int tap_cdev_read(dev_t, struct uio *, int);
173 static int tap_cdev_write(dev_t, struct uio *, int);
174 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
175 static int tap_cdev_poll(dev_t, int, struct lwp *);
176 static int tap_cdev_kqfilter(dev_t, struct knote *);
177
178 const struct cdevsw tap_cdevsw = {
179 .d_open = tap_cdev_open,
180 .d_close = tap_cdev_close,
181 .d_read = tap_cdev_read,
182 .d_write = tap_cdev_write,
183 .d_ioctl = tap_cdev_ioctl,
184 .d_stop = nostop,
185 .d_tty = notty,
186 .d_poll = tap_cdev_poll,
187 .d_mmap = nommap,
188 .d_kqfilter = tap_cdev_kqfilter,
189 .d_discard = nodiscard,
190 .d_flag = D_OTHER
191 };
192
193 #define TAP_CLONER 0xfffff /* Maximal minor value */
194
195 /* kqueue-related routines */
196 static void tap_kqdetach(struct knote *);
197 static int tap_kqread(struct knote *, long);
198
199 /*
200 * Those are needed by the if_media interface.
201 */
202
203 static int tap_mediachange(struct ifnet *);
204 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
205
206 /*
207 * Those are needed by the ifnet interface, and would typically be
208 * there for any network interface driver.
209 * Some other routines are optional: watchdog and drain.
210 */
211
212 static void tap_start(struct ifnet *);
213 static void tap_stop(struct ifnet *, int);
214 static int tap_init(struct ifnet *);
215 static int tap_ioctl(struct ifnet *, u_long, void *);
216
217 /* Internal functions */
218 #if defined(COMPAT_40) || defined(MODULAR)
219 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
220 #endif
221 static void tap_softintr(void *);
222
223 /*
224 * tap is a clonable interface, although it is highly unrealistic for
225 * an Ethernet device.
226 *
227 * Here are the bits needed for a clonable interface.
228 */
229 static int tap_clone_create(struct if_clone *, int);
230 static int tap_clone_destroy(struct ifnet *);
231
232 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
233 tap_clone_create,
234 tap_clone_destroy);
235
236 /* Helper functionis shared by the two cloning code paths */
237 static struct tap_softc * tap_clone_creator(int);
238 int tap_clone_destroyer(device_t);
239
240 #ifdef _MODULE
241 static struct sysctllog *tap_sysctl_clog;
242
243 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
244
245 #endif
246
247 static u_int tap_count;
248
249 void
250 tapattach(int n)
251 {
252
253 /*
254 * Nothing to do here, initialization is handled by the
255 * module initialization code in tapinit() below).
256 */
257 }
258
259 static void
260 tapinit(void)
261 {
262 if_clone_attach(&tap_cloners);
263 #ifdef _MODULE
264 sysctl_tap_setup(&tap_sysctl_clog);
265 devsw_attach("tap", NULL, &tap_bmajor, tap_cdevsw, &tap_cmajor);
266 #endif
267 }
268
269 static int
270 tapdetach(void)
271 {
272 int error = 0;
273
274 if (tap_count != 0)
275 error = EBUSY;
276
277 if (error == 0)
278 devsw_detach(NULL, &tap_cdevsw);
279
280 if (error == 0)
281 if_clone_detach(&tap_cloners);
282
283 #ifdef _MODULE
284 sysctl_teardown(&tap_sysctl_clog);
285 #endif
286 return error;
287 }
288
289 /* Pretty much useless for a pseudo-device */
290 static int
291 tap_match(device_t parent, cfdata_t cfdata, void *arg)
292 {
293
294 return (1);
295 }
296
297 void
298 tap_attach(device_t parent, device_t self, void *aux)
299 {
300 struct tap_softc *sc = device_private(self);
301 struct ifnet *ifp;
302 #if defined(COMPAT_40) || defined(MODULAR)
303 const struct sysctlnode *node;
304 int error;
305 #endif
306 uint8_t enaddr[ETHER_ADDR_LEN] =
307 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
308 char enaddrstr[3 * ETHER_ADDR_LEN];
309
310 sc->sc_dev = self;
311 sc->sc_sih = NULL;
312 getnanotime(&sc->sc_btime);
313 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
314 sc->sc_flags = 0;
315 selinit(&sc->sc_rsel);
316
317 /*
318 * Initialize the two locks for the device.
319 *
320 * We need a lock here because even though the tap device can be
321 * opened only once, the file descriptor might be passed to another
322 * process, say a fork(2)ed child.
323 *
324 * The Giant saves us from most of the hassle, but since the read
325 * operation can sleep, we don't want two processes to wake up at
326 * the same moment and both try and dequeue a single packet.
327 *
328 * The queue for event listeners (used by kqueue(9), see below) has
329 * to be protected too, so use a spin lock.
330 */
331 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
332 mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
333
334 if (!pmf_device_register(self, NULL, NULL))
335 aprint_error_dev(self, "couldn't establish power handler\n");
336
337 /*
338 * In order to obtain unique initial Ethernet address on a host,
339 * do some randomisation. It's not meant for anything but avoiding
340 * hard-coding an address.
341 */
342 cprng_fast(&enaddr[3], 3);
343
344 aprint_verbose_dev(self, "Ethernet address %s\n",
345 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
346
347 /*
348 * Why 1000baseT? Why not? You can add more.
349 *
350 * Note that there are 3 steps: init, one or several additions to
351 * list of supported media, and in the end, the selection of one
352 * of them.
353 */
354 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
355 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
356 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
357 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
358 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
359 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
360 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
361 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
362 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
363
364 /*
365 * One should note that an interface must do multicast in order
366 * to support IPv6.
367 */
368 ifp = &sc->sc_ec.ec_if;
369 strcpy(ifp->if_xname, device_xname(self));
370 ifp->if_softc = sc;
371 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
372 ifp->if_ioctl = tap_ioctl;
373 ifp->if_start = tap_start;
374 ifp->if_stop = tap_stop;
375 ifp->if_init = tap_init;
376 IFQ_SET_READY(&ifp->if_snd);
377
378 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
379
380 /* Those steps are mandatory for an Ethernet driver. */
381 if_initialize(ifp);
382 ether_ifattach(ifp, enaddr);
383 if_register(ifp);
384
385 #if defined(COMPAT_40) || defined(MODULAR)
386 /*
387 * Add a sysctl node for that interface.
388 *
389 * The pointer transmitted is not a string, but instead a pointer to
390 * the softc structure, which we can use to build the string value on
391 * the fly in the helper function of the node. See the comments for
392 * tap_sysctl_handler for details.
393 *
394 * Usually sysctl_createv is called with CTL_CREATE as the before-last
395 * component. However, we can allocate a number ourselves, as we are
396 * the only consumer of the net.link.<iface> node. In this case, the
397 * unit number is conveniently used to number the node. CTL_CREATE
398 * would just work, too.
399 */
400 if ((error = sysctl_createv(NULL, 0, NULL,
401 &node, CTLFLAG_READWRITE,
402 CTLTYPE_STRING, device_xname(self), NULL,
403 tap_sysctl_handler, 0, (void *)sc, 18,
404 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
405 CTL_EOL)) != 0)
406 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
407 error);
408 #endif
409 }
410
411 /*
412 * When detaching, we do the inverse of what is done in the attach
413 * routine, in reversed order.
414 */
415 static int
416 tap_detach(device_t self, int flags)
417 {
418 struct tap_softc *sc = device_private(self);
419 struct ifnet *ifp = &sc->sc_ec.ec_if;
420 #if defined(COMPAT_40) || defined(MODULAR)
421 int error;
422 #endif
423 int s;
424
425 sc->sc_flags |= TAP_GOING;
426 s = splnet();
427 tap_stop(ifp, 1);
428 if_down(ifp);
429 splx(s);
430
431 if (sc->sc_sih != NULL) {
432 softint_disestablish(sc->sc_sih);
433 sc->sc_sih = NULL;
434 }
435
436 #if defined(COMPAT_40) || defined(MODULAR)
437 /*
438 * Destroying a single leaf is a very straightforward operation using
439 * sysctl_destroyv. One should be sure to always end the path with
440 * CTL_EOL.
441 */
442 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
443 device_unit(sc->sc_dev), CTL_EOL)) != 0)
444 aprint_error_dev(self,
445 "sysctl_destroyv returned %d, ignoring\n", error);
446 #endif
447 ether_ifdetach(ifp);
448 if_detach(ifp);
449 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
450 seldestroy(&sc->sc_rsel);
451 mutex_destroy(&sc->sc_rdlock);
452 mutex_destroy(&sc->sc_kqlock);
453
454 pmf_device_deregister(self);
455
456 return (0);
457 }
458
459 /*
460 * This function is called by the ifmedia layer to notify the driver
461 * that the user requested a media change. A real driver would
462 * reconfigure the hardware.
463 */
464 static int
465 tap_mediachange(struct ifnet *ifp)
466 {
467 return (0);
468 }
469
470 /*
471 * Here the user asks for the currently used media.
472 */
473 static void
474 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
475 {
476 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
477 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
478 }
479
480 /*
481 * This is the function where we SEND packets.
482 *
483 * There is no 'receive' equivalent. A typical driver will get
484 * interrupts from the hardware, and from there will inject new packets
485 * into the network stack.
486 *
487 * Once handled, a packet must be freed. A real driver might not be able
488 * to fit all the pending packets into the hardware, and is allowed to
489 * return before having sent all the packets. It should then use the
490 * if_flags flag IFF_OACTIVE to notify the upper layer.
491 *
492 * There are also other flags one should check, such as IFF_PAUSE.
493 *
494 * It is our duty to make packets available to BPF listeners.
495 *
496 * You should be aware that this function is called by the Ethernet layer
497 * at splnet().
498 *
499 * When the device is opened, we have to pass the packet(s) to the
500 * userland. For that we stay in OACTIVE mode while the userland gets
501 * the packets, and we send a signal to the processes waiting to read.
502 *
503 * wakeup(sc) is the counterpart to the tsleep call in
504 * tap_dev_read, while selnotify() is used for kevent(2) and
505 * poll(2) (which includes select(2)) listeners.
506 */
507 static void
508 tap_start(struct ifnet *ifp)
509 {
510 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
511 struct mbuf *m0;
512
513 if ((sc->sc_flags & TAP_INUSE) == 0) {
514 /* Simply drop packets */
515 for(;;) {
516 IFQ_DEQUEUE(&ifp->if_snd, m0);
517 if (m0 == NULL)
518 return;
519
520 ifp->if_opackets++;
521 bpf_mtap(ifp, m0);
522
523 m_freem(m0);
524 }
525 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
526 ifp->if_flags |= IFF_OACTIVE;
527 wakeup(sc);
528 selnotify(&sc->sc_rsel, 0, 1);
529 if (sc->sc_flags & TAP_ASYNCIO)
530 softint_schedule(sc->sc_sih);
531 }
532 }
533
534 static void
535 tap_softintr(void *cookie)
536 {
537 struct tap_softc *sc;
538 struct ifnet *ifp;
539 int a, b;
540
541 sc = cookie;
542
543 if (sc->sc_flags & TAP_ASYNCIO) {
544 ifp = &sc->sc_ec.ec_if;
545 if (ifp->if_flags & IFF_RUNNING) {
546 a = POLL_IN;
547 b = POLLIN|POLLRDNORM;
548 } else {
549 a = POLL_HUP;
550 b = 0;
551 }
552 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
553 }
554 }
555
556 /*
557 * A typical driver will only contain the following handlers for
558 * ioctl calls, except SIOCSIFPHYADDR.
559 * The latter is a hack I used to set the Ethernet address of the
560 * faked device.
561 *
562 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
563 * called under splnet().
564 */
565 static int
566 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
567 {
568 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
569 struct ifreq *ifr = (struct ifreq *)data;
570 int s, error;
571
572 s = splnet();
573
574 switch (cmd) {
575 #ifdef OSIOCSIFMEDIA
576 case OSIOCSIFMEDIA:
577 #endif
578 case SIOCSIFMEDIA:
579 case SIOCGIFMEDIA:
580 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
581 break;
582 #if defined(COMPAT_40) || defined(MODULAR)
583 case SIOCSIFPHYADDR:
584 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
585 break;
586 #endif
587 default:
588 error = ether_ioctl(ifp, cmd, data);
589 if (error == ENETRESET)
590 error = 0;
591 break;
592 }
593
594 splx(s);
595
596 return (error);
597 }
598
599 #if defined(COMPAT_40) || defined(MODULAR)
600 /*
601 * Helper function to set Ethernet address. This has been replaced by
602 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
603 */
604 static int
605 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
606 {
607 const struct sockaddr *sa = &ifra->ifra_addr;
608
609 if (sa->sa_family != AF_LINK)
610 return (EINVAL);
611
612 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
613
614 return (0);
615 }
616 #endif
617
618 /*
619 * _init() would typically be called when an interface goes up,
620 * meaning it should configure itself into the state in which it
621 * can send packets.
622 */
623 static int
624 tap_init(struct ifnet *ifp)
625 {
626 ifp->if_flags |= IFF_RUNNING;
627
628 tap_start(ifp);
629
630 return (0);
631 }
632
633 /*
634 * _stop() is called when an interface goes down. It is our
635 * responsability to validate that state by clearing the
636 * IFF_RUNNING flag.
637 *
638 * We have to wake up all the sleeping processes to have the pending
639 * read requests cancelled.
640 */
641 static void
642 tap_stop(struct ifnet *ifp, int disable)
643 {
644 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
645
646 ifp->if_flags &= ~IFF_RUNNING;
647 wakeup(sc);
648 selnotify(&sc->sc_rsel, 0, 1);
649 if (sc->sc_flags & TAP_ASYNCIO)
650 softint_schedule(sc->sc_sih);
651 }
652
653 /*
654 * The 'create' command of ifconfig can be used to create
655 * any numbered instance of a given device. Thus we have to
656 * make sure we have enough room in cd_devs to create the
657 * user-specified instance. config_attach_pseudo will do this
658 * for us.
659 */
660 static int
661 tap_clone_create(struct if_clone *ifc, int unit)
662 {
663 if (tap_clone_creator(unit) == NULL) {
664 aprint_error("%s%d: unable to attach an instance\n",
665 tap_cd.cd_name, unit);
666 return (ENXIO);
667 }
668 atomic_inc_uint(&tap_count);
669 return (0);
670 }
671
672 /*
673 * tap(4) can be cloned by two ways:
674 * using 'ifconfig tap0 create', which will use the network
675 * interface cloning API, and call tap_clone_create above.
676 * opening the cloning device node, whose minor number is TAP_CLONER.
677 * See below for an explanation on how this part work.
678 */
679 static struct tap_softc *
680 tap_clone_creator(int unit)
681 {
682 struct cfdata *cf;
683
684 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
685 cf->cf_name = tap_cd.cd_name;
686 cf->cf_atname = tap_ca.ca_name;
687 if (unit == -1) {
688 /* let autoconf find the first free one */
689 cf->cf_unit = 0;
690 cf->cf_fstate = FSTATE_STAR;
691 } else {
692 cf->cf_unit = unit;
693 cf->cf_fstate = FSTATE_NOTFOUND;
694 }
695
696 return device_private(config_attach_pseudo(cf));
697 }
698
699 /*
700 * The clean design of if_clone and autoconf(9) makes that part
701 * really straightforward. The second argument of config_detach
702 * means neither QUIET nor FORCED.
703 */
704 static int
705 tap_clone_destroy(struct ifnet *ifp)
706 {
707 struct tap_softc *sc = ifp->if_softc;
708 int error = tap_clone_destroyer(sc->sc_dev);
709
710 if (error == 0)
711 atomic_inc_uint(&tap_count);
712 return error;
713 }
714
715 int
716 tap_clone_destroyer(device_t dev)
717 {
718 cfdata_t cf = device_cfdata(dev);
719 int error;
720
721 if ((error = config_detach(dev, 0)) != 0)
722 aprint_error_dev(dev, "unable to detach instance\n");
723 free(cf, M_DEVBUF);
724
725 return (error);
726 }
727
728 /*
729 * tap(4) is a bit of an hybrid device. It can be used in two different
730 * ways:
731 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
732 * 2. open /dev/tap, get a new interface created and read/write off it.
733 * That interface is destroyed when the process that had it created exits.
734 *
735 * The first way is managed by the cdevsw structure, and you access interfaces
736 * through a (major, minor) mapping: tap4 is obtained by the minor number
737 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
738 *
739 * The second way is the so-called "cloning" device. It's a special minor
740 * number (chosen as the maximal number, to allow as much tap devices as
741 * possible). The user first opens the cloner (e.g., /dev/tap), and that
742 * call ends in tap_cdev_open. The actual place where it is handled is
743 * tap_dev_cloner.
744 *
745 * An tap device cannot be opened more than once at a time, so the cdevsw
746 * part of open() does nothing but noting that the interface is being used and
747 * hence ready to actually handle packets.
748 */
749
750 static int
751 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
752 {
753 struct tap_softc *sc;
754
755 if (minor(dev) == TAP_CLONER)
756 return tap_dev_cloner(l);
757
758 sc = device_lookup_private(&tap_cd, minor(dev));
759 if (sc == NULL)
760 return (ENXIO);
761
762 /* The device can only be opened once */
763 if (sc->sc_flags & TAP_INUSE)
764 return (EBUSY);
765 sc->sc_flags |= TAP_INUSE;
766 return (0);
767 }
768
769 /*
770 * There are several kinds of cloning devices, and the most simple is the one
771 * tap(4) uses. What it does is change the file descriptor with a new one,
772 * with its own fileops structure (which maps to the various read, write,
773 * ioctl functions). It starts allocating a new file descriptor with falloc,
774 * then actually creates the new tap devices.
775 *
776 * Once those two steps are successful, we can re-wire the existing file
777 * descriptor to its new self. This is done with fdclone(): it fills the fp
778 * structure as needed (notably f_devunit gets filled with the fifth parameter
779 * passed, the unit of the tap device which will allows us identifying the
780 * device later), and returns EMOVEFD.
781 *
782 * That magic value is interpreted by sys_open() which then replaces the
783 * current file descriptor by the new one (through a magic member of struct
784 * lwp, l_dupfd).
785 *
786 * The tap device is flagged as being busy since it otherwise could be
787 * externally accessed through the corresponding device node with the cdevsw
788 * interface.
789 */
790
791 static int
792 tap_dev_cloner(struct lwp *l)
793 {
794 struct tap_softc *sc;
795 file_t *fp;
796 int error, fd;
797
798 if ((error = fd_allocfile(&fp, &fd)) != 0)
799 return (error);
800
801 if ((sc = tap_clone_creator(-1)) == NULL) {
802 fd_abort(curproc, fp, fd);
803 return (ENXIO);
804 }
805
806 sc->sc_flags |= TAP_INUSE;
807
808 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
809 (void *)(intptr_t)device_unit(sc->sc_dev));
810 }
811
812 /*
813 * While all other operations (read, write, ioctl, poll and kqfilter) are
814 * really the same whether we are in cdevsw or fileops mode, the close()
815 * function is slightly different in the two cases.
816 *
817 * As for the other, the core of it is shared in tap_dev_close. What
818 * it does is sufficient for the cdevsw interface, but the cloning interface
819 * needs another thing: the interface is destroyed when the processes that
820 * created it closes it.
821 */
822 static int
823 tap_cdev_close(dev_t dev, int flags, int fmt,
824 struct lwp *l)
825 {
826 struct tap_softc *sc =
827 device_lookup_private(&tap_cd, minor(dev));
828
829 if (sc == NULL)
830 return (ENXIO);
831
832 return tap_dev_close(sc);
833 }
834
835 /*
836 * It might happen that the administrator used ifconfig to externally destroy
837 * the interface. In that case, tap_fops_close will be called while
838 * tap_detach is already happening. If we called it again from here, we
839 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
840 */
841 static int
842 tap_fops_close(file_t *fp)
843 {
844 int unit = fp->f_devunit;
845 struct tap_softc *sc;
846 int error;
847
848 sc = device_lookup_private(&tap_cd, unit);
849 if (sc == NULL)
850 return (ENXIO);
851
852 /* tap_dev_close currently always succeeds, but it might not
853 * always be the case. */
854 KERNEL_LOCK(1, NULL);
855 if ((error = tap_dev_close(sc)) != 0) {
856 KERNEL_UNLOCK_ONE(NULL);
857 return (error);
858 }
859
860 /* Destroy the device now that it is no longer useful,
861 * unless it's already being destroyed. */
862 if ((sc->sc_flags & TAP_GOING) != 0) {
863 KERNEL_UNLOCK_ONE(NULL);
864 return (0);
865 }
866
867 error = tap_clone_destroyer(sc->sc_dev);
868 KERNEL_UNLOCK_ONE(NULL);
869 return error;
870 }
871
872 static int
873 tap_dev_close(struct tap_softc *sc)
874 {
875 struct ifnet *ifp;
876 int s;
877
878 s = splnet();
879 /* Let tap_start handle packets again */
880 ifp = &sc->sc_ec.ec_if;
881 ifp->if_flags &= ~IFF_OACTIVE;
882
883 /* Purge output queue */
884 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
885 struct mbuf *m;
886
887 for (;;) {
888 IFQ_DEQUEUE(&ifp->if_snd, m);
889 if (m == NULL)
890 break;
891
892 ifp->if_opackets++;
893 bpf_mtap(ifp, m);
894 m_freem(m);
895 }
896 }
897 splx(s);
898
899 if (sc->sc_sih != NULL) {
900 softint_disestablish(sc->sc_sih);
901 sc->sc_sih = NULL;
902 }
903 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
904
905 return (0);
906 }
907
908 static int
909 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
910 {
911 return tap_dev_read(minor(dev), uio, flags);
912 }
913
914 static int
915 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
916 kauth_cred_t cred, int flags)
917 {
918 int error;
919
920 KERNEL_LOCK(1, NULL);
921 error = tap_dev_read(fp->f_devunit, uio, flags);
922 KERNEL_UNLOCK_ONE(NULL);
923 return error;
924 }
925
926 static int
927 tap_dev_read(int unit, struct uio *uio, int flags)
928 {
929 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
930 struct ifnet *ifp;
931 struct mbuf *m, *n;
932 int error = 0, s;
933
934 if (sc == NULL)
935 return (ENXIO);
936
937 getnanotime(&sc->sc_atime);
938
939 ifp = &sc->sc_ec.ec_if;
940 if ((ifp->if_flags & IFF_UP) == 0)
941 return (EHOSTDOWN);
942
943 /*
944 * In the TAP_NBIO case, we have to make sure we won't be sleeping
945 */
946 if ((sc->sc_flags & TAP_NBIO) != 0) {
947 if (!mutex_tryenter(&sc->sc_rdlock))
948 return (EWOULDBLOCK);
949 } else {
950 mutex_enter(&sc->sc_rdlock);
951 }
952
953 s = splnet();
954 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
955 ifp->if_flags &= ~IFF_OACTIVE;
956 /*
957 * We must release the lock before sleeping, and re-acquire it
958 * after.
959 */
960 mutex_exit(&sc->sc_rdlock);
961 if (sc->sc_flags & TAP_NBIO)
962 error = EWOULDBLOCK;
963 else
964 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
965 splx(s);
966
967 if (error != 0)
968 return (error);
969 /* The device might have been downed */
970 if ((ifp->if_flags & IFF_UP) == 0)
971 return (EHOSTDOWN);
972 if ((sc->sc_flags & TAP_NBIO)) {
973 if (!mutex_tryenter(&sc->sc_rdlock))
974 return (EWOULDBLOCK);
975 } else {
976 mutex_enter(&sc->sc_rdlock);
977 }
978 s = splnet();
979 }
980
981 IFQ_DEQUEUE(&ifp->if_snd, m);
982 ifp->if_flags &= ~IFF_OACTIVE;
983 splx(s);
984 if (m == NULL) {
985 error = 0;
986 goto out;
987 }
988
989 ifp->if_opackets++;
990 bpf_mtap(ifp, m);
991
992 /*
993 * One read is one packet.
994 */
995 do {
996 error = uiomove(mtod(m, void *),
997 min(m->m_len, uio->uio_resid), uio);
998 MFREE(m, n);
999 m = n;
1000 } while (m != NULL && uio->uio_resid > 0 && error == 0);
1001
1002 if (m != NULL)
1003 m_freem(m);
1004
1005 out:
1006 mutex_exit(&sc->sc_rdlock);
1007 return (error);
1008 }
1009
1010 static int
1011 tap_fops_stat(file_t *fp, struct stat *st)
1012 {
1013 int error = 0;
1014 struct tap_softc *sc;
1015 int unit = fp->f_devunit;
1016
1017 (void)memset(st, 0, sizeof(*st));
1018
1019 KERNEL_LOCK(1, NULL);
1020 sc = device_lookup_private(&tap_cd, unit);
1021 if (sc == NULL) {
1022 error = ENXIO;
1023 goto out;
1024 }
1025
1026 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1027 st->st_atimespec = sc->sc_atime;
1028 st->st_mtimespec = sc->sc_mtime;
1029 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1030 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1031 st->st_gid = kauth_cred_getegid(fp->f_cred);
1032 out:
1033 KERNEL_UNLOCK_ONE(NULL);
1034 return error;
1035 }
1036
1037 static int
1038 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1039 {
1040 return tap_dev_write(minor(dev), uio, flags);
1041 }
1042
1043 static int
1044 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1045 kauth_cred_t cred, int flags)
1046 {
1047 int error;
1048
1049 KERNEL_LOCK(1, NULL);
1050 error = tap_dev_write(fp->f_devunit, uio, flags);
1051 KERNEL_UNLOCK_ONE(NULL);
1052 return error;
1053 }
1054
1055 static int
1056 tap_dev_write(int unit, struct uio *uio, int flags)
1057 {
1058 struct tap_softc *sc =
1059 device_lookup_private(&tap_cd, unit);
1060 struct ifnet *ifp;
1061 struct mbuf *m, **mp;
1062 int error = 0;
1063 int s;
1064
1065 if (sc == NULL)
1066 return (ENXIO);
1067
1068 getnanotime(&sc->sc_mtime);
1069 ifp = &sc->sc_ec.ec_if;
1070
1071 /* One write, one packet, that's the rule */
1072 MGETHDR(m, M_DONTWAIT, MT_DATA);
1073 if (m == NULL) {
1074 ifp->if_ierrors++;
1075 return (ENOBUFS);
1076 }
1077 m->m_pkthdr.len = uio->uio_resid;
1078
1079 mp = &m;
1080 while (error == 0 && uio->uio_resid > 0) {
1081 if (*mp != m) {
1082 MGET(*mp, M_DONTWAIT, MT_DATA);
1083 if (*mp == NULL) {
1084 error = ENOBUFS;
1085 break;
1086 }
1087 }
1088 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1089 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1090 mp = &(*mp)->m_next;
1091 }
1092 if (error) {
1093 ifp->if_ierrors++;
1094 m_freem(m);
1095 return (error);
1096 }
1097
1098 ifp->if_ipackets++;
1099 m_set_rcvif(m, ifp);
1100
1101 bpf_mtap(ifp, m);
1102 s = splnet();
1103 if_input(ifp, m);
1104 splx(s);
1105
1106 return (0);
1107 }
1108
1109 static int
1110 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1111 struct lwp *l)
1112 {
1113 return tap_dev_ioctl(minor(dev), cmd, data, l);
1114 }
1115
1116 static int
1117 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1118 {
1119 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1120 }
1121
1122 static int
1123 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1124 {
1125 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1126
1127 if (sc == NULL)
1128 return ENXIO;
1129
1130 switch (cmd) {
1131 case FIONREAD:
1132 {
1133 struct ifnet *ifp = &sc->sc_ec.ec_if;
1134 struct mbuf *m;
1135 int s;
1136
1137 s = splnet();
1138 IFQ_POLL(&ifp->if_snd, m);
1139
1140 if (m == NULL)
1141 *(int *)data = 0;
1142 else
1143 *(int *)data = m->m_pkthdr.len;
1144 splx(s);
1145 return 0;
1146 }
1147 case TIOCSPGRP:
1148 case FIOSETOWN:
1149 return fsetown(&sc->sc_pgid, cmd, data);
1150 case TIOCGPGRP:
1151 case FIOGETOWN:
1152 return fgetown(sc->sc_pgid, cmd, data);
1153 case FIOASYNC:
1154 if (*(int *)data) {
1155 if (sc->sc_sih == NULL) {
1156 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1157 tap_softintr, sc);
1158 if (sc->sc_sih == NULL)
1159 return EBUSY; /* XXX */
1160 }
1161 sc->sc_flags |= TAP_ASYNCIO;
1162 } else {
1163 sc->sc_flags &= ~TAP_ASYNCIO;
1164 if (sc->sc_sih != NULL) {
1165 softint_disestablish(sc->sc_sih);
1166 sc->sc_sih = NULL;
1167 }
1168 }
1169 return 0;
1170 case FIONBIO:
1171 if (*(int *)data)
1172 sc->sc_flags |= TAP_NBIO;
1173 else
1174 sc->sc_flags &= ~TAP_NBIO;
1175 return 0;
1176 #ifdef OTAPGIFNAME
1177 case OTAPGIFNAME:
1178 #endif
1179 case TAPGIFNAME:
1180 {
1181 struct ifreq *ifr = (struct ifreq *)data;
1182 struct ifnet *ifp = &sc->sc_ec.ec_if;
1183
1184 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1185 return 0;
1186 }
1187 default:
1188 return ENOTTY;
1189 }
1190 }
1191
1192 static int
1193 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1194 {
1195 return tap_dev_poll(minor(dev), events, l);
1196 }
1197
1198 static int
1199 tap_fops_poll(file_t *fp, int events)
1200 {
1201 return tap_dev_poll(fp->f_devunit, events, curlwp);
1202 }
1203
1204 static int
1205 tap_dev_poll(int unit, int events, struct lwp *l)
1206 {
1207 struct tap_softc *sc =
1208 device_lookup_private(&tap_cd, unit);
1209 int revents = 0;
1210
1211 if (sc == NULL)
1212 return POLLERR;
1213
1214 if (events & (POLLIN|POLLRDNORM)) {
1215 struct ifnet *ifp = &sc->sc_ec.ec_if;
1216 struct mbuf *m;
1217 int s;
1218
1219 s = splnet();
1220 IFQ_POLL(&ifp->if_snd, m);
1221
1222 if (m != NULL)
1223 revents |= events & (POLLIN|POLLRDNORM);
1224 else {
1225 mutex_spin_enter(&sc->sc_kqlock);
1226 selrecord(l, &sc->sc_rsel);
1227 mutex_spin_exit(&sc->sc_kqlock);
1228 }
1229 splx(s);
1230 }
1231 revents |= events & (POLLOUT|POLLWRNORM);
1232
1233 return (revents);
1234 }
1235
1236 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1237 tap_kqread };
1238 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1239 filt_seltrue };
1240
1241 static int
1242 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1243 {
1244 return tap_dev_kqfilter(minor(dev), kn);
1245 }
1246
1247 static int
1248 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1249 {
1250 return tap_dev_kqfilter(fp->f_devunit, kn);
1251 }
1252
1253 static int
1254 tap_dev_kqfilter(int unit, struct knote *kn)
1255 {
1256 struct tap_softc *sc =
1257 device_lookup_private(&tap_cd, unit);
1258
1259 if (sc == NULL)
1260 return (ENXIO);
1261
1262 KERNEL_LOCK(1, NULL);
1263 switch(kn->kn_filter) {
1264 case EVFILT_READ:
1265 kn->kn_fop = &tap_read_filterops;
1266 break;
1267 case EVFILT_WRITE:
1268 kn->kn_fop = &tap_seltrue_filterops;
1269 break;
1270 default:
1271 KERNEL_UNLOCK_ONE(NULL);
1272 return (EINVAL);
1273 }
1274
1275 kn->kn_hook = sc;
1276 mutex_spin_enter(&sc->sc_kqlock);
1277 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1278 mutex_spin_exit(&sc->sc_kqlock);
1279 KERNEL_UNLOCK_ONE(NULL);
1280 return (0);
1281 }
1282
1283 static void
1284 tap_kqdetach(struct knote *kn)
1285 {
1286 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1287
1288 KERNEL_LOCK(1, NULL);
1289 mutex_spin_enter(&sc->sc_kqlock);
1290 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1291 mutex_spin_exit(&sc->sc_kqlock);
1292 KERNEL_UNLOCK_ONE(NULL);
1293 }
1294
1295 static int
1296 tap_kqread(struct knote *kn, long hint)
1297 {
1298 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1299 struct ifnet *ifp = &sc->sc_ec.ec_if;
1300 struct mbuf *m;
1301 int s, rv;
1302
1303 KERNEL_LOCK(1, NULL);
1304 s = splnet();
1305 IFQ_POLL(&ifp->if_snd, m);
1306
1307 if (m == NULL)
1308 kn->kn_data = 0;
1309 else
1310 kn->kn_data = m->m_pkthdr.len;
1311 splx(s);
1312 rv = (kn->kn_data != 0 ? 1 : 0);
1313 KERNEL_UNLOCK_ONE(NULL);
1314 return rv;
1315 }
1316
1317 #if defined(COMPAT_40) || defined(MODULAR)
1318 /*
1319 * sysctl management routines
1320 * You can set the address of an interface through:
1321 * net.link.tap.tap<number>
1322 *
1323 * Note the consistent use of tap_log in order to use
1324 * sysctl_teardown at unload time.
1325 *
1326 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1327 * blocks register a function in a special section of the kernel
1328 * (called a link set) which is used at init_sysctl() time to cycle
1329 * through all those functions to create the kernel's sysctl tree.
1330 *
1331 * It is not possible to use link sets in a module, so the
1332 * easiest is to simply call our own setup routine at load time.
1333 *
1334 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1335 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1336 * whole kernel sysctl tree is built, it is not possible to add any
1337 * permanent node.
1338 *
1339 * It should be noted that we're not saving the sysctlnode pointer
1340 * we are returned when creating the "tap" node. That structure
1341 * cannot be trusted once out of the calling function, as it might
1342 * get reused. So we just save the MIB number, and always give the
1343 * full path starting from the root for later calls to sysctl_createv
1344 * and sysctl_destroyv.
1345 */
1346 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1347 {
1348 const struct sysctlnode *node;
1349 int error = 0;
1350
1351 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1352 CTLFLAG_PERMANENT,
1353 CTLTYPE_NODE, "link", NULL,
1354 NULL, 0, NULL, 0,
1355 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1356 return;
1357
1358 /*
1359 * The first four parameters of sysctl_createv are for management.
1360 *
1361 * The four that follows, here starting with a '0' for the flags,
1362 * describe the node.
1363 *
1364 * The next series of four set its value, through various possible
1365 * means.
1366 *
1367 * Last but not least, the path to the node is described. That path
1368 * is relative to the given root (third argument). Here we're
1369 * starting from the root.
1370 */
1371 if ((error = sysctl_createv(clog, 0, NULL, &node,
1372 CTLFLAG_PERMANENT,
1373 CTLTYPE_NODE, "tap", NULL,
1374 NULL, 0, NULL, 0,
1375 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1376 return;
1377 tap_node = node->sysctl_num;
1378 }
1379
1380 /*
1381 * The helper functions make Andrew Brown's interface really
1382 * shine. It makes possible to create value on the fly whether
1383 * the sysctl value is read or written.
1384 *
1385 * As shown as an example in the man page, the first step is to
1386 * create a copy of the node to have sysctl_lookup work on it.
1387 *
1388 * Here, we have more work to do than just a copy, since we have
1389 * to create the string. The first step is to collect the actual
1390 * value of the node, which is a convenient pointer to the softc
1391 * of the interface. From there we create the string and use it
1392 * as the value, but only for the *copy* of the node.
1393 *
1394 * Then we let sysctl_lookup do the magic, which consists in
1395 * setting oldp and newp as required by the operation. When the
1396 * value is read, that means that the string will be copied to
1397 * the user, and when it is written, the new value will be copied
1398 * over in the addr array.
1399 *
1400 * If newp is NULL, the user was reading the value, so we don't
1401 * have anything else to do. If a new value was written, we
1402 * have to check it.
1403 *
1404 * If it is incorrect, we can return an error and leave 'node' as
1405 * it is: since it is a copy of the actual node, the change will
1406 * be forgotten.
1407 *
1408 * Upon a correct input, we commit the change to the ifnet
1409 * structure of our interface.
1410 */
1411 static int
1412 tap_sysctl_handler(SYSCTLFN_ARGS)
1413 {
1414 struct sysctlnode node;
1415 struct tap_softc *sc;
1416 struct ifnet *ifp;
1417 int error;
1418 size_t len;
1419 char addr[3 * ETHER_ADDR_LEN];
1420 uint8_t enaddr[ETHER_ADDR_LEN];
1421
1422 node = *rnode;
1423 sc = node.sysctl_data;
1424 ifp = &sc->sc_ec.ec_if;
1425 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1426 node.sysctl_data = addr;
1427 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1428 if (error || newp == NULL)
1429 return (error);
1430
1431 len = strlen(addr);
1432 if (len < 11 || len > 17)
1433 return (EINVAL);
1434
1435 /* Commit change */
1436 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1437 return (EINVAL);
1438 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1439 return (error);
1440 }
1441 #endif
1442
1443 /*
1444 * Module infrastructure
1445 */
1446 #include "if_module.h"
1447
1448 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1449