if_tap.c revision 1.89 1 /* $NetBSD: if_tap.c,v 1.89 2016/08/08 09:51:39 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.89 2016/08/08 09:51:39 pgoyette Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/intr.h>
63 #include <sys/stat.h>
64 #include <sys/device.h>
65 #include <sys/module.h>
66 #include <sys/atomic.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_ether.h>
71 #include <net/if_media.h>
72 #include <net/if_tap.h>
73 #include <net/bpf.h>
74
75 #include <compat/sys/sockio.h>
76
77 #include "ioconf.h"
78
79 #if defined(COMPAT_40) || defined(MODULAR)
80 /*
81 * sysctl node management
82 *
83 * It's not really possible to use a SYSCTL_SETUP block with
84 * current module implementation, so it is easier to just define
85 * our own function.
86 *
87 * The handler function is a "helper" in Andrew Brown's sysctl
88 * framework terminology. It is used as a gateway for sysctl
89 * requests over the nodes.
90 *
91 * tap_log allows the module to log creations of nodes and
92 * destroy them all at once using sysctl_teardown.
93 */
94 static int tap_node;
95 static int tap_sysctl_handler(SYSCTLFN_PROTO);
96 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
97 #endif
98
99 /*
100 * Since we're an Ethernet device, we need the 2 following
101 * components: a struct ethercom and a struct ifmedia
102 * since we don't attach a PHY to ourselves.
103 * We could emulate one, but there's no real point.
104 */
105
106 struct tap_softc {
107 device_t sc_dev;
108 struct ifmedia sc_im;
109 struct ethercom sc_ec;
110 int sc_flags;
111 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
112 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
113 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
114 #define TAP_GOING 0x00000008 /* interface is being destroyed */
115 struct selinfo sc_rsel;
116 pid_t sc_pgid; /* For async. IO */
117 kmutex_t sc_rdlock;
118 kmutex_t sc_kqlock;
119 void *sc_sih;
120 struct timespec sc_atime;
121 struct timespec sc_mtime;
122 struct timespec sc_btime;
123 };
124
125 /* autoconf(9) glue */
126
127 static int tap_match(device_t, cfdata_t, void *);
128 static void tap_attach(device_t, device_t, void *);
129 static int tap_detach(device_t, int);
130
131 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
132 tap_match, tap_attach, tap_detach, NULL);
133 extern struct cfdriver tap_cd;
134
135 /* Real device access routines */
136 static int tap_dev_close(struct tap_softc *);
137 static int tap_dev_read(int, struct uio *, int);
138 static int tap_dev_write(int, struct uio *, int);
139 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
140 static int tap_dev_poll(int, int, struct lwp *);
141 static int tap_dev_kqfilter(int, struct knote *);
142
143 /* Fileops access routines */
144 static int tap_fops_close(file_t *);
145 static int tap_fops_read(file_t *, off_t *, struct uio *,
146 kauth_cred_t, int);
147 static int tap_fops_write(file_t *, off_t *, struct uio *,
148 kauth_cred_t, int);
149 static int tap_fops_ioctl(file_t *, u_long, void *);
150 static int tap_fops_poll(file_t *, int);
151 static int tap_fops_stat(file_t *, struct stat *);
152 static int tap_fops_kqfilter(file_t *, struct knote *);
153
154 static const struct fileops tap_fileops = {
155 .fo_read = tap_fops_read,
156 .fo_write = tap_fops_write,
157 .fo_ioctl = tap_fops_ioctl,
158 .fo_fcntl = fnullop_fcntl,
159 .fo_poll = tap_fops_poll,
160 .fo_stat = tap_fops_stat,
161 .fo_close = tap_fops_close,
162 .fo_kqfilter = tap_fops_kqfilter,
163 .fo_restart = fnullop_restart,
164 };
165
166 /* Helper for cloning open() */
167 static int tap_dev_cloner(struct lwp *);
168
169 /* Character device routines */
170 static int tap_cdev_open(dev_t, int, int, struct lwp *);
171 static int tap_cdev_close(dev_t, int, int, struct lwp *);
172 static int tap_cdev_read(dev_t, struct uio *, int);
173 static int tap_cdev_write(dev_t, struct uio *, int);
174 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
175 static int tap_cdev_poll(dev_t, int, struct lwp *);
176 static int tap_cdev_kqfilter(dev_t, struct knote *);
177
178 const struct cdevsw tap_cdevsw = {
179 .d_open = tap_cdev_open,
180 .d_close = tap_cdev_close,
181 .d_read = tap_cdev_read,
182 .d_write = tap_cdev_write,
183 .d_ioctl = tap_cdev_ioctl,
184 .d_stop = nostop,
185 .d_tty = notty,
186 .d_poll = tap_cdev_poll,
187 .d_mmap = nommap,
188 .d_kqfilter = tap_cdev_kqfilter,
189 .d_discard = nodiscard,
190 .d_flag = D_OTHER
191 };
192
193 #define TAP_CLONER 0xfffff /* Maximal minor value */
194
195 /* kqueue-related routines */
196 static void tap_kqdetach(struct knote *);
197 static int tap_kqread(struct knote *, long);
198
199 /*
200 * Those are needed by the if_media interface.
201 */
202
203 static int tap_mediachange(struct ifnet *);
204 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
205
206 /*
207 * Those are needed by the ifnet interface, and would typically be
208 * there for any network interface driver.
209 * Some other routines are optional: watchdog and drain.
210 */
211
212 static void tap_start(struct ifnet *);
213 static void tap_stop(struct ifnet *, int);
214 static int tap_init(struct ifnet *);
215 static int tap_ioctl(struct ifnet *, u_long, void *);
216
217 /* Internal functions */
218 #if defined(COMPAT_40) || defined(MODULAR)
219 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
220 #endif
221 static void tap_softintr(void *);
222
223 /*
224 * tap is a clonable interface, although it is highly unrealistic for
225 * an Ethernet device.
226 *
227 * Here are the bits needed for a clonable interface.
228 */
229 static int tap_clone_create(struct if_clone *, int);
230 static int tap_clone_destroy(struct ifnet *);
231
232 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
233 tap_clone_create,
234 tap_clone_destroy);
235
236 /* Helper functionis shared by the two cloning code paths */
237 static struct tap_softc * tap_clone_creator(int);
238 int tap_clone_destroyer(device_t);
239
240 #ifdef _MODULE
241 static struct sysctllog *tap_sysctl_clog;
242
243 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
244
245 #endif
246
247 static u_int tap_count;
248
249 void
250 tapattach(int n)
251 {
252
253 /*
254 * Nothing to do here, initialization is handled by the
255 * module initialization code in tapinit() below).
256 */
257 }
258
259 static void
260 tapinit(void)
261 {
262 if_clone_attach(&tap_cloners);
263 #ifdef _MODULE
264 sysctl_tap_setup(&tap_sysctl_clog);
265 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
266 #endif
267 }
268
269 static int
270 tapdetach(void)
271 {
272 int error = 0;
273
274 if (tap_count != 0)
275 return EBUSY;
276
277 #ifdef _MODULE
278 error = devsw_detach(NULL, &tap_cdevsw);
279 if (error == 0)
280 sysctl_teardown(&tap_sysctl_clog);
281 #endif
282 if (error == 0)
283 if_clone_detach(&tap_cloners);
284
285 return error;
286 }
287
288 /* Pretty much useless for a pseudo-device */
289 static int
290 tap_match(device_t parent, cfdata_t cfdata, void *arg)
291 {
292
293 return (1);
294 }
295
296 void
297 tap_attach(device_t parent, device_t self, void *aux)
298 {
299 struct tap_softc *sc = device_private(self);
300 struct ifnet *ifp;
301 #if defined(COMPAT_40) || defined(MODULAR)
302 const struct sysctlnode *node;
303 int error;
304 #endif
305 uint8_t enaddr[ETHER_ADDR_LEN] =
306 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
307 char enaddrstr[3 * ETHER_ADDR_LEN];
308
309 sc->sc_dev = self;
310 sc->sc_sih = NULL;
311 getnanotime(&sc->sc_btime);
312 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
313 sc->sc_flags = 0;
314 selinit(&sc->sc_rsel);
315
316 /*
317 * Initialize the two locks for the device.
318 *
319 * We need a lock here because even though the tap device can be
320 * opened only once, the file descriptor might be passed to another
321 * process, say a fork(2)ed child.
322 *
323 * The Giant saves us from most of the hassle, but since the read
324 * operation can sleep, we don't want two processes to wake up at
325 * the same moment and both try and dequeue a single packet.
326 *
327 * The queue for event listeners (used by kqueue(9), see below) has
328 * to be protected too, so use a spin lock.
329 */
330 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
331 mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
332
333 if (!pmf_device_register(self, NULL, NULL))
334 aprint_error_dev(self, "couldn't establish power handler\n");
335
336 /*
337 * In order to obtain unique initial Ethernet address on a host,
338 * do some randomisation. It's not meant for anything but avoiding
339 * hard-coding an address.
340 */
341 cprng_fast(&enaddr[3], 3);
342
343 aprint_verbose_dev(self, "Ethernet address %s\n",
344 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
345
346 /*
347 * Why 1000baseT? Why not? You can add more.
348 *
349 * Note that there are 3 steps: init, one or several additions to
350 * list of supported media, and in the end, the selection of one
351 * of them.
352 */
353 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
354 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
355 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
356 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
357 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
358 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
359 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
360 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
361 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
362
363 /*
364 * One should note that an interface must do multicast in order
365 * to support IPv6.
366 */
367 ifp = &sc->sc_ec.ec_if;
368 strcpy(ifp->if_xname, device_xname(self));
369 ifp->if_softc = sc;
370 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
371 ifp->if_ioctl = tap_ioctl;
372 ifp->if_start = tap_start;
373 ifp->if_stop = tap_stop;
374 ifp->if_init = tap_init;
375 IFQ_SET_READY(&ifp->if_snd);
376
377 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
378
379 /* Those steps are mandatory for an Ethernet driver. */
380 if_initialize(ifp);
381 ether_ifattach(ifp, enaddr);
382 if_register(ifp);
383
384 #if defined(COMPAT_40) || defined(MODULAR)
385 /*
386 * Add a sysctl node for that interface.
387 *
388 * The pointer transmitted is not a string, but instead a pointer to
389 * the softc structure, which we can use to build the string value on
390 * the fly in the helper function of the node. See the comments for
391 * tap_sysctl_handler for details.
392 *
393 * Usually sysctl_createv is called with CTL_CREATE as the before-last
394 * component. However, we can allocate a number ourselves, as we are
395 * the only consumer of the net.link.<iface> node. In this case, the
396 * unit number is conveniently used to number the node. CTL_CREATE
397 * would just work, too.
398 */
399 if ((error = sysctl_createv(NULL, 0, NULL,
400 &node, CTLFLAG_READWRITE,
401 CTLTYPE_STRING, device_xname(self), NULL,
402 tap_sysctl_handler, 0, (void *)sc, 18,
403 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
404 CTL_EOL)) != 0)
405 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
406 error);
407 #endif
408 }
409
410 /*
411 * When detaching, we do the inverse of what is done in the attach
412 * routine, in reversed order.
413 */
414 static int
415 tap_detach(device_t self, int flags)
416 {
417 struct tap_softc *sc = device_private(self);
418 struct ifnet *ifp = &sc->sc_ec.ec_if;
419 #if defined(COMPAT_40) || defined(MODULAR)
420 int error;
421 #endif
422 int s;
423
424 sc->sc_flags |= TAP_GOING;
425 s = splnet();
426 tap_stop(ifp, 1);
427 if_down(ifp);
428 splx(s);
429
430 if (sc->sc_sih != NULL) {
431 softint_disestablish(sc->sc_sih);
432 sc->sc_sih = NULL;
433 }
434
435 #if defined(COMPAT_40) || defined(MODULAR)
436 /*
437 * Destroying a single leaf is a very straightforward operation using
438 * sysctl_destroyv. One should be sure to always end the path with
439 * CTL_EOL.
440 */
441 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
442 device_unit(sc->sc_dev), CTL_EOL)) != 0)
443 aprint_error_dev(self,
444 "sysctl_destroyv returned %d, ignoring\n", error);
445 #endif
446 ether_ifdetach(ifp);
447 if_detach(ifp);
448 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
449 seldestroy(&sc->sc_rsel);
450 mutex_destroy(&sc->sc_rdlock);
451 mutex_destroy(&sc->sc_kqlock);
452
453 pmf_device_deregister(self);
454
455 return (0);
456 }
457
458 /*
459 * This function is called by the ifmedia layer to notify the driver
460 * that the user requested a media change. A real driver would
461 * reconfigure the hardware.
462 */
463 static int
464 tap_mediachange(struct ifnet *ifp)
465 {
466 return (0);
467 }
468
469 /*
470 * Here the user asks for the currently used media.
471 */
472 static void
473 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
474 {
475 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
476 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
477 }
478
479 /*
480 * This is the function where we SEND packets.
481 *
482 * There is no 'receive' equivalent. A typical driver will get
483 * interrupts from the hardware, and from there will inject new packets
484 * into the network stack.
485 *
486 * Once handled, a packet must be freed. A real driver might not be able
487 * to fit all the pending packets into the hardware, and is allowed to
488 * return before having sent all the packets. It should then use the
489 * if_flags flag IFF_OACTIVE to notify the upper layer.
490 *
491 * There are also other flags one should check, such as IFF_PAUSE.
492 *
493 * It is our duty to make packets available to BPF listeners.
494 *
495 * You should be aware that this function is called by the Ethernet layer
496 * at splnet().
497 *
498 * When the device is opened, we have to pass the packet(s) to the
499 * userland. For that we stay in OACTIVE mode while the userland gets
500 * the packets, and we send a signal to the processes waiting to read.
501 *
502 * wakeup(sc) is the counterpart to the tsleep call in
503 * tap_dev_read, while selnotify() is used for kevent(2) and
504 * poll(2) (which includes select(2)) listeners.
505 */
506 static void
507 tap_start(struct ifnet *ifp)
508 {
509 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
510 struct mbuf *m0;
511
512 if ((sc->sc_flags & TAP_INUSE) == 0) {
513 /* Simply drop packets */
514 for(;;) {
515 IFQ_DEQUEUE(&ifp->if_snd, m0);
516 if (m0 == NULL)
517 return;
518
519 ifp->if_opackets++;
520 bpf_mtap(ifp, m0);
521
522 m_freem(m0);
523 }
524 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
525 ifp->if_flags |= IFF_OACTIVE;
526 wakeup(sc);
527 selnotify(&sc->sc_rsel, 0, 1);
528 if (sc->sc_flags & TAP_ASYNCIO)
529 softint_schedule(sc->sc_sih);
530 }
531 }
532
533 static void
534 tap_softintr(void *cookie)
535 {
536 struct tap_softc *sc;
537 struct ifnet *ifp;
538 int a, b;
539
540 sc = cookie;
541
542 if (sc->sc_flags & TAP_ASYNCIO) {
543 ifp = &sc->sc_ec.ec_if;
544 if (ifp->if_flags & IFF_RUNNING) {
545 a = POLL_IN;
546 b = POLLIN|POLLRDNORM;
547 } else {
548 a = POLL_HUP;
549 b = 0;
550 }
551 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
552 }
553 }
554
555 /*
556 * A typical driver will only contain the following handlers for
557 * ioctl calls, except SIOCSIFPHYADDR.
558 * The latter is a hack I used to set the Ethernet address of the
559 * faked device.
560 *
561 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
562 * called under splnet().
563 */
564 static int
565 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
566 {
567 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
568 struct ifreq *ifr = (struct ifreq *)data;
569 int s, error;
570
571 s = splnet();
572
573 switch (cmd) {
574 #ifdef OSIOCSIFMEDIA
575 case OSIOCSIFMEDIA:
576 #endif
577 case SIOCSIFMEDIA:
578 case SIOCGIFMEDIA:
579 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
580 break;
581 #if defined(COMPAT_40) || defined(MODULAR)
582 case SIOCSIFPHYADDR:
583 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
584 break;
585 #endif
586 default:
587 error = ether_ioctl(ifp, cmd, data);
588 if (error == ENETRESET)
589 error = 0;
590 break;
591 }
592
593 splx(s);
594
595 return (error);
596 }
597
598 #if defined(COMPAT_40) || defined(MODULAR)
599 /*
600 * Helper function to set Ethernet address. This has been replaced by
601 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
602 */
603 static int
604 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
605 {
606 const struct sockaddr *sa = &ifra->ifra_addr;
607
608 if (sa->sa_family != AF_LINK)
609 return (EINVAL);
610
611 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
612
613 return (0);
614 }
615 #endif
616
617 /*
618 * _init() would typically be called when an interface goes up,
619 * meaning it should configure itself into the state in which it
620 * can send packets.
621 */
622 static int
623 tap_init(struct ifnet *ifp)
624 {
625 ifp->if_flags |= IFF_RUNNING;
626
627 tap_start(ifp);
628
629 return (0);
630 }
631
632 /*
633 * _stop() is called when an interface goes down. It is our
634 * responsability to validate that state by clearing the
635 * IFF_RUNNING flag.
636 *
637 * We have to wake up all the sleeping processes to have the pending
638 * read requests cancelled.
639 */
640 static void
641 tap_stop(struct ifnet *ifp, int disable)
642 {
643 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
644
645 ifp->if_flags &= ~IFF_RUNNING;
646 wakeup(sc);
647 selnotify(&sc->sc_rsel, 0, 1);
648 if (sc->sc_flags & TAP_ASYNCIO)
649 softint_schedule(sc->sc_sih);
650 }
651
652 /*
653 * The 'create' command of ifconfig can be used to create
654 * any numbered instance of a given device. Thus we have to
655 * make sure we have enough room in cd_devs to create the
656 * user-specified instance. config_attach_pseudo will do this
657 * for us.
658 */
659 static int
660 tap_clone_create(struct if_clone *ifc, int unit)
661 {
662 if (tap_clone_creator(unit) == NULL) {
663 aprint_error("%s%d: unable to attach an instance\n",
664 tap_cd.cd_name, unit);
665 return (ENXIO);
666 }
667 atomic_inc_uint(&tap_count);
668 return (0);
669 }
670
671 /*
672 * tap(4) can be cloned by two ways:
673 * using 'ifconfig tap0 create', which will use the network
674 * interface cloning API, and call tap_clone_create above.
675 * opening the cloning device node, whose minor number is TAP_CLONER.
676 * See below for an explanation on how this part work.
677 */
678 static struct tap_softc *
679 tap_clone_creator(int unit)
680 {
681 struct cfdata *cf;
682
683 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
684 cf->cf_name = tap_cd.cd_name;
685 cf->cf_atname = tap_ca.ca_name;
686 if (unit == -1) {
687 /* let autoconf find the first free one */
688 cf->cf_unit = 0;
689 cf->cf_fstate = FSTATE_STAR;
690 } else {
691 cf->cf_unit = unit;
692 cf->cf_fstate = FSTATE_NOTFOUND;
693 }
694
695 return device_private(config_attach_pseudo(cf));
696 }
697
698 /*
699 * The clean design of if_clone and autoconf(9) makes that part
700 * really straightforward. The second argument of config_detach
701 * means neither QUIET nor FORCED.
702 */
703 static int
704 tap_clone_destroy(struct ifnet *ifp)
705 {
706 struct tap_softc *sc = ifp->if_softc;
707 int error = tap_clone_destroyer(sc->sc_dev);
708
709 if (error == 0)
710 atomic_inc_uint(&tap_count);
711 return error;
712 }
713
714 int
715 tap_clone_destroyer(device_t dev)
716 {
717 cfdata_t cf = device_cfdata(dev);
718 int error;
719
720 if ((error = config_detach(dev, 0)) != 0)
721 aprint_error_dev(dev, "unable to detach instance\n");
722 free(cf, M_DEVBUF);
723
724 return (error);
725 }
726
727 /*
728 * tap(4) is a bit of an hybrid device. It can be used in two different
729 * ways:
730 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
731 * 2. open /dev/tap, get a new interface created and read/write off it.
732 * That interface is destroyed when the process that had it created exits.
733 *
734 * The first way is managed by the cdevsw structure, and you access interfaces
735 * through a (major, minor) mapping: tap4 is obtained by the minor number
736 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
737 *
738 * The second way is the so-called "cloning" device. It's a special minor
739 * number (chosen as the maximal number, to allow as much tap devices as
740 * possible). The user first opens the cloner (e.g., /dev/tap), and that
741 * call ends in tap_cdev_open. The actual place where it is handled is
742 * tap_dev_cloner.
743 *
744 * An tap device cannot be opened more than once at a time, so the cdevsw
745 * part of open() does nothing but noting that the interface is being used and
746 * hence ready to actually handle packets.
747 */
748
749 static int
750 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
751 {
752 struct tap_softc *sc;
753
754 if (minor(dev) == TAP_CLONER)
755 return tap_dev_cloner(l);
756
757 sc = device_lookup_private(&tap_cd, minor(dev));
758 if (sc == NULL)
759 return (ENXIO);
760
761 /* The device can only be opened once */
762 if (sc->sc_flags & TAP_INUSE)
763 return (EBUSY);
764 sc->sc_flags |= TAP_INUSE;
765 return (0);
766 }
767
768 /*
769 * There are several kinds of cloning devices, and the most simple is the one
770 * tap(4) uses. What it does is change the file descriptor with a new one,
771 * with its own fileops structure (which maps to the various read, write,
772 * ioctl functions). It starts allocating a new file descriptor with falloc,
773 * then actually creates the new tap devices.
774 *
775 * Once those two steps are successful, we can re-wire the existing file
776 * descriptor to its new self. This is done with fdclone(): it fills the fp
777 * structure as needed (notably f_devunit gets filled with the fifth parameter
778 * passed, the unit of the tap device which will allows us identifying the
779 * device later), and returns EMOVEFD.
780 *
781 * That magic value is interpreted by sys_open() which then replaces the
782 * current file descriptor by the new one (through a magic member of struct
783 * lwp, l_dupfd).
784 *
785 * The tap device is flagged as being busy since it otherwise could be
786 * externally accessed through the corresponding device node with the cdevsw
787 * interface.
788 */
789
790 static int
791 tap_dev_cloner(struct lwp *l)
792 {
793 struct tap_softc *sc;
794 file_t *fp;
795 int error, fd;
796
797 if ((error = fd_allocfile(&fp, &fd)) != 0)
798 return (error);
799
800 if ((sc = tap_clone_creator(-1)) == NULL) {
801 fd_abort(curproc, fp, fd);
802 return (ENXIO);
803 }
804
805 sc->sc_flags |= TAP_INUSE;
806
807 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
808 (void *)(intptr_t)device_unit(sc->sc_dev));
809 }
810
811 /*
812 * While all other operations (read, write, ioctl, poll and kqfilter) are
813 * really the same whether we are in cdevsw or fileops mode, the close()
814 * function is slightly different in the two cases.
815 *
816 * As for the other, the core of it is shared in tap_dev_close. What
817 * it does is sufficient for the cdevsw interface, but the cloning interface
818 * needs another thing: the interface is destroyed when the processes that
819 * created it closes it.
820 */
821 static int
822 tap_cdev_close(dev_t dev, int flags, int fmt,
823 struct lwp *l)
824 {
825 struct tap_softc *sc =
826 device_lookup_private(&tap_cd, minor(dev));
827
828 if (sc == NULL)
829 return (ENXIO);
830
831 return tap_dev_close(sc);
832 }
833
834 /*
835 * It might happen that the administrator used ifconfig to externally destroy
836 * the interface. In that case, tap_fops_close will be called while
837 * tap_detach is already happening. If we called it again from here, we
838 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
839 */
840 static int
841 tap_fops_close(file_t *fp)
842 {
843 int unit = fp->f_devunit;
844 struct tap_softc *sc;
845 int error;
846
847 sc = device_lookup_private(&tap_cd, unit);
848 if (sc == NULL)
849 return (ENXIO);
850
851 /* tap_dev_close currently always succeeds, but it might not
852 * always be the case. */
853 KERNEL_LOCK(1, NULL);
854 if ((error = tap_dev_close(sc)) != 0) {
855 KERNEL_UNLOCK_ONE(NULL);
856 return (error);
857 }
858
859 /* Destroy the device now that it is no longer useful,
860 * unless it's already being destroyed. */
861 if ((sc->sc_flags & TAP_GOING) != 0) {
862 KERNEL_UNLOCK_ONE(NULL);
863 return (0);
864 }
865
866 error = tap_clone_destroyer(sc->sc_dev);
867 KERNEL_UNLOCK_ONE(NULL);
868 return error;
869 }
870
871 static int
872 tap_dev_close(struct tap_softc *sc)
873 {
874 struct ifnet *ifp;
875 int s;
876
877 s = splnet();
878 /* Let tap_start handle packets again */
879 ifp = &sc->sc_ec.ec_if;
880 ifp->if_flags &= ~IFF_OACTIVE;
881
882 /* Purge output queue */
883 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
884 struct mbuf *m;
885
886 for (;;) {
887 IFQ_DEQUEUE(&ifp->if_snd, m);
888 if (m == NULL)
889 break;
890
891 ifp->if_opackets++;
892 bpf_mtap(ifp, m);
893 m_freem(m);
894 }
895 }
896 splx(s);
897
898 if (sc->sc_sih != NULL) {
899 softint_disestablish(sc->sc_sih);
900 sc->sc_sih = NULL;
901 }
902 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
903
904 return (0);
905 }
906
907 static int
908 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
909 {
910 return tap_dev_read(minor(dev), uio, flags);
911 }
912
913 static int
914 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
915 kauth_cred_t cred, int flags)
916 {
917 int error;
918
919 KERNEL_LOCK(1, NULL);
920 error = tap_dev_read(fp->f_devunit, uio, flags);
921 KERNEL_UNLOCK_ONE(NULL);
922 return error;
923 }
924
925 static int
926 tap_dev_read(int unit, struct uio *uio, int flags)
927 {
928 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
929 struct ifnet *ifp;
930 struct mbuf *m, *n;
931 int error = 0, s;
932
933 if (sc == NULL)
934 return (ENXIO);
935
936 getnanotime(&sc->sc_atime);
937
938 ifp = &sc->sc_ec.ec_if;
939 if ((ifp->if_flags & IFF_UP) == 0)
940 return (EHOSTDOWN);
941
942 /*
943 * In the TAP_NBIO case, we have to make sure we won't be sleeping
944 */
945 if ((sc->sc_flags & TAP_NBIO) != 0) {
946 if (!mutex_tryenter(&sc->sc_rdlock))
947 return (EWOULDBLOCK);
948 } else {
949 mutex_enter(&sc->sc_rdlock);
950 }
951
952 s = splnet();
953 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
954 ifp->if_flags &= ~IFF_OACTIVE;
955 /*
956 * We must release the lock before sleeping, and re-acquire it
957 * after.
958 */
959 mutex_exit(&sc->sc_rdlock);
960 if (sc->sc_flags & TAP_NBIO)
961 error = EWOULDBLOCK;
962 else
963 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
964 splx(s);
965
966 if (error != 0)
967 return (error);
968 /* The device might have been downed */
969 if ((ifp->if_flags & IFF_UP) == 0)
970 return (EHOSTDOWN);
971 if ((sc->sc_flags & TAP_NBIO)) {
972 if (!mutex_tryenter(&sc->sc_rdlock))
973 return (EWOULDBLOCK);
974 } else {
975 mutex_enter(&sc->sc_rdlock);
976 }
977 s = splnet();
978 }
979
980 IFQ_DEQUEUE(&ifp->if_snd, m);
981 ifp->if_flags &= ~IFF_OACTIVE;
982 splx(s);
983 if (m == NULL) {
984 error = 0;
985 goto out;
986 }
987
988 ifp->if_opackets++;
989 bpf_mtap(ifp, m);
990
991 /*
992 * One read is one packet.
993 */
994 do {
995 error = uiomove(mtod(m, void *),
996 min(m->m_len, uio->uio_resid), uio);
997 MFREE(m, n);
998 m = n;
999 } while (m != NULL && uio->uio_resid > 0 && error == 0);
1000
1001 if (m != NULL)
1002 m_freem(m);
1003
1004 out:
1005 mutex_exit(&sc->sc_rdlock);
1006 return (error);
1007 }
1008
1009 static int
1010 tap_fops_stat(file_t *fp, struct stat *st)
1011 {
1012 int error = 0;
1013 struct tap_softc *sc;
1014 int unit = fp->f_devunit;
1015
1016 (void)memset(st, 0, sizeof(*st));
1017
1018 KERNEL_LOCK(1, NULL);
1019 sc = device_lookup_private(&tap_cd, unit);
1020 if (sc == NULL) {
1021 error = ENXIO;
1022 goto out;
1023 }
1024
1025 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1026 st->st_atimespec = sc->sc_atime;
1027 st->st_mtimespec = sc->sc_mtime;
1028 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1029 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1030 st->st_gid = kauth_cred_getegid(fp->f_cred);
1031 out:
1032 KERNEL_UNLOCK_ONE(NULL);
1033 return error;
1034 }
1035
1036 static int
1037 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1038 {
1039 return tap_dev_write(minor(dev), uio, flags);
1040 }
1041
1042 static int
1043 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1044 kauth_cred_t cred, int flags)
1045 {
1046 int error;
1047
1048 KERNEL_LOCK(1, NULL);
1049 error = tap_dev_write(fp->f_devunit, uio, flags);
1050 KERNEL_UNLOCK_ONE(NULL);
1051 return error;
1052 }
1053
1054 static int
1055 tap_dev_write(int unit, struct uio *uio, int flags)
1056 {
1057 struct tap_softc *sc =
1058 device_lookup_private(&tap_cd, unit);
1059 struct ifnet *ifp;
1060 struct mbuf *m, **mp;
1061 int error = 0;
1062 int s;
1063
1064 if (sc == NULL)
1065 return (ENXIO);
1066
1067 getnanotime(&sc->sc_mtime);
1068 ifp = &sc->sc_ec.ec_if;
1069
1070 /* One write, one packet, that's the rule */
1071 MGETHDR(m, M_DONTWAIT, MT_DATA);
1072 if (m == NULL) {
1073 ifp->if_ierrors++;
1074 return (ENOBUFS);
1075 }
1076 m->m_pkthdr.len = uio->uio_resid;
1077
1078 mp = &m;
1079 while (error == 0 && uio->uio_resid > 0) {
1080 if (*mp != m) {
1081 MGET(*mp, M_DONTWAIT, MT_DATA);
1082 if (*mp == NULL) {
1083 error = ENOBUFS;
1084 break;
1085 }
1086 }
1087 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1088 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1089 mp = &(*mp)->m_next;
1090 }
1091 if (error) {
1092 ifp->if_ierrors++;
1093 m_freem(m);
1094 return (error);
1095 }
1096
1097 ifp->if_ipackets++;
1098 m_set_rcvif(m, ifp);
1099
1100 bpf_mtap(ifp, m);
1101 s = splnet();
1102 if_input(ifp, m);
1103 splx(s);
1104
1105 return (0);
1106 }
1107
1108 static int
1109 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1110 struct lwp *l)
1111 {
1112 return tap_dev_ioctl(minor(dev), cmd, data, l);
1113 }
1114
1115 static int
1116 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1117 {
1118 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1119 }
1120
1121 static int
1122 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1123 {
1124 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1125
1126 if (sc == NULL)
1127 return ENXIO;
1128
1129 switch (cmd) {
1130 case FIONREAD:
1131 {
1132 struct ifnet *ifp = &sc->sc_ec.ec_if;
1133 struct mbuf *m;
1134 int s;
1135
1136 s = splnet();
1137 IFQ_POLL(&ifp->if_snd, m);
1138
1139 if (m == NULL)
1140 *(int *)data = 0;
1141 else
1142 *(int *)data = m->m_pkthdr.len;
1143 splx(s);
1144 return 0;
1145 }
1146 case TIOCSPGRP:
1147 case FIOSETOWN:
1148 return fsetown(&sc->sc_pgid, cmd, data);
1149 case TIOCGPGRP:
1150 case FIOGETOWN:
1151 return fgetown(sc->sc_pgid, cmd, data);
1152 case FIOASYNC:
1153 if (*(int *)data) {
1154 if (sc->sc_sih == NULL) {
1155 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1156 tap_softintr, sc);
1157 if (sc->sc_sih == NULL)
1158 return EBUSY; /* XXX */
1159 }
1160 sc->sc_flags |= TAP_ASYNCIO;
1161 } else {
1162 sc->sc_flags &= ~TAP_ASYNCIO;
1163 if (sc->sc_sih != NULL) {
1164 softint_disestablish(sc->sc_sih);
1165 sc->sc_sih = NULL;
1166 }
1167 }
1168 return 0;
1169 case FIONBIO:
1170 if (*(int *)data)
1171 sc->sc_flags |= TAP_NBIO;
1172 else
1173 sc->sc_flags &= ~TAP_NBIO;
1174 return 0;
1175 #ifdef OTAPGIFNAME
1176 case OTAPGIFNAME:
1177 #endif
1178 case TAPGIFNAME:
1179 {
1180 struct ifreq *ifr = (struct ifreq *)data;
1181 struct ifnet *ifp = &sc->sc_ec.ec_if;
1182
1183 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1184 return 0;
1185 }
1186 default:
1187 return ENOTTY;
1188 }
1189 }
1190
1191 static int
1192 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1193 {
1194 return tap_dev_poll(minor(dev), events, l);
1195 }
1196
1197 static int
1198 tap_fops_poll(file_t *fp, int events)
1199 {
1200 return tap_dev_poll(fp->f_devunit, events, curlwp);
1201 }
1202
1203 static int
1204 tap_dev_poll(int unit, int events, struct lwp *l)
1205 {
1206 struct tap_softc *sc =
1207 device_lookup_private(&tap_cd, unit);
1208 int revents = 0;
1209
1210 if (sc == NULL)
1211 return POLLERR;
1212
1213 if (events & (POLLIN|POLLRDNORM)) {
1214 struct ifnet *ifp = &sc->sc_ec.ec_if;
1215 struct mbuf *m;
1216 int s;
1217
1218 s = splnet();
1219 IFQ_POLL(&ifp->if_snd, m);
1220
1221 if (m != NULL)
1222 revents |= events & (POLLIN|POLLRDNORM);
1223 else {
1224 mutex_spin_enter(&sc->sc_kqlock);
1225 selrecord(l, &sc->sc_rsel);
1226 mutex_spin_exit(&sc->sc_kqlock);
1227 }
1228 splx(s);
1229 }
1230 revents |= events & (POLLOUT|POLLWRNORM);
1231
1232 return (revents);
1233 }
1234
1235 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1236 tap_kqread };
1237 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1238 filt_seltrue };
1239
1240 static int
1241 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1242 {
1243 return tap_dev_kqfilter(minor(dev), kn);
1244 }
1245
1246 static int
1247 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1248 {
1249 return tap_dev_kqfilter(fp->f_devunit, kn);
1250 }
1251
1252 static int
1253 tap_dev_kqfilter(int unit, struct knote *kn)
1254 {
1255 struct tap_softc *sc =
1256 device_lookup_private(&tap_cd, unit);
1257
1258 if (sc == NULL)
1259 return (ENXIO);
1260
1261 KERNEL_LOCK(1, NULL);
1262 switch(kn->kn_filter) {
1263 case EVFILT_READ:
1264 kn->kn_fop = &tap_read_filterops;
1265 break;
1266 case EVFILT_WRITE:
1267 kn->kn_fop = &tap_seltrue_filterops;
1268 break;
1269 default:
1270 KERNEL_UNLOCK_ONE(NULL);
1271 return (EINVAL);
1272 }
1273
1274 kn->kn_hook = sc;
1275 mutex_spin_enter(&sc->sc_kqlock);
1276 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1277 mutex_spin_exit(&sc->sc_kqlock);
1278 KERNEL_UNLOCK_ONE(NULL);
1279 return (0);
1280 }
1281
1282 static void
1283 tap_kqdetach(struct knote *kn)
1284 {
1285 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1286
1287 KERNEL_LOCK(1, NULL);
1288 mutex_spin_enter(&sc->sc_kqlock);
1289 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1290 mutex_spin_exit(&sc->sc_kqlock);
1291 KERNEL_UNLOCK_ONE(NULL);
1292 }
1293
1294 static int
1295 tap_kqread(struct knote *kn, long hint)
1296 {
1297 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1298 struct ifnet *ifp = &sc->sc_ec.ec_if;
1299 struct mbuf *m;
1300 int s, rv;
1301
1302 KERNEL_LOCK(1, NULL);
1303 s = splnet();
1304 IFQ_POLL(&ifp->if_snd, m);
1305
1306 if (m == NULL)
1307 kn->kn_data = 0;
1308 else
1309 kn->kn_data = m->m_pkthdr.len;
1310 splx(s);
1311 rv = (kn->kn_data != 0 ? 1 : 0);
1312 KERNEL_UNLOCK_ONE(NULL);
1313 return rv;
1314 }
1315
1316 #if defined(COMPAT_40) || defined(MODULAR)
1317 /*
1318 * sysctl management routines
1319 * You can set the address of an interface through:
1320 * net.link.tap.tap<number>
1321 *
1322 * Note the consistent use of tap_log in order to use
1323 * sysctl_teardown at unload time.
1324 *
1325 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1326 * blocks register a function in a special section of the kernel
1327 * (called a link set) which is used at init_sysctl() time to cycle
1328 * through all those functions to create the kernel's sysctl tree.
1329 *
1330 * It is not possible to use link sets in a module, so the
1331 * easiest is to simply call our own setup routine at load time.
1332 *
1333 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1334 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1335 * whole kernel sysctl tree is built, it is not possible to add any
1336 * permanent node.
1337 *
1338 * It should be noted that we're not saving the sysctlnode pointer
1339 * we are returned when creating the "tap" node. That structure
1340 * cannot be trusted once out of the calling function, as it might
1341 * get reused. So we just save the MIB number, and always give the
1342 * full path starting from the root for later calls to sysctl_createv
1343 * and sysctl_destroyv.
1344 */
1345 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1346 {
1347 const struct sysctlnode *node;
1348 int error = 0;
1349
1350 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1351 CTLFLAG_PERMANENT,
1352 CTLTYPE_NODE, "link", NULL,
1353 NULL, 0, NULL, 0,
1354 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1355 return;
1356
1357 /*
1358 * The first four parameters of sysctl_createv are for management.
1359 *
1360 * The four that follows, here starting with a '0' for the flags,
1361 * describe the node.
1362 *
1363 * The next series of four set its value, through various possible
1364 * means.
1365 *
1366 * Last but not least, the path to the node is described. That path
1367 * is relative to the given root (third argument). Here we're
1368 * starting from the root.
1369 */
1370 if ((error = sysctl_createv(clog, 0, NULL, &node,
1371 CTLFLAG_PERMANENT,
1372 CTLTYPE_NODE, "tap", NULL,
1373 NULL, 0, NULL, 0,
1374 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1375 return;
1376 tap_node = node->sysctl_num;
1377 }
1378
1379 /*
1380 * The helper functions make Andrew Brown's interface really
1381 * shine. It makes possible to create value on the fly whether
1382 * the sysctl value is read or written.
1383 *
1384 * As shown as an example in the man page, the first step is to
1385 * create a copy of the node to have sysctl_lookup work on it.
1386 *
1387 * Here, we have more work to do than just a copy, since we have
1388 * to create the string. The first step is to collect the actual
1389 * value of the node, which is a convenient pointer to the softc
1390 * of the interface. From there we create the string and use it
1391 * as the value, but only for the *copy* of the node.
1392 *
1393 * Then we let sysctl_lookup do the magic, which consists in
1394 * setting oldp and newp as required by the operation. When the
1395 * value is read, that means that the string will be copied to
1396 * the user, and when it is written, the new value will be copied
1397 * over in the addr array.
1398 *
1399 * If newp is NULL, the user was reading the value, so we don't
1400 * have anything else to do. If a new value was written, we
1401 * have to check it.
1402 *
1403 * If it is incorrect, we can return an error and leave 'node' as
1404 * it is: since it is a copy of the actual node, the change will
1405 * be forgotten.
1406 *
1407 * Upon a correct input, we commit the change to the ifnet
1408 * structure of our interface.
1409 */
1410 static int
1411 tap_sysctl_handler(SYSCTLFN_ARGS)
1412 {
1413 struct sysctlnode node;
1414 struct tap_softc *sc;
1415 struct ifnet *ifp;
1416 int error;
1417 size_t len;
1418 char addr[3 * ETHER_ADDR_LEN];
1419 uint8_t enaddr[ETHER_ADDR_LEN];
1420
1421 node = *rnode;
1422 sc = node.sysctl_data;
1423 ifp = &sc->sc_ec.ec_if;
1424 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1425 node.sysctl_data = addr;
1426 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1427 if (error || newp == NULL)
1428 return (error);
1429
1430 len = strlen(addr);
1431 if (len < 11 || len > 17)
1432 return (EINVAL);
1433
1434 /* Commit change */
1435 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1436 return (EINVAL);
1437 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1438 return (error);
1439 }
1440 #endif
1441
1442 /*
1443 * Module infrastructure
1444 */
1445 #include "if_module.h"
1446
1447 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1448