Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.9
      1 /*	$NetBSD: if_tap.c,v 1.9 2005/06/10 10:28:17 bouyer Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.9 2005/06/10 10:28:17 bouyer Exp $");
     47 
     48 #if defined(_KERNEL_OPT)
     49 #include "bpfilter.h"
     50 #endif
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/conf.h>
     57 #include <sys/device.h>
     58 #include <sys/file.h>
     59 #include <sys/filedesc.h>
     60 #include <sys/ksyms.h>
     61 #include <sys/poll.h>
     62 #include <sys/select.h>
     63 #include <sys/sockio.h>
     64 #include <sys/sysctl.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #if NBPFILTER > 0
     72 #include <net/bpf.h>
     73 #endif
     74 
     75 /*
     76  * sysctl node management
     77  *
     78  * It's not really possible to use a SYSCTL_SETUP block with
     79  * current LKM implementation, so it is easier to just define
     80  * our own function.
     81  *
     82  * The handler function is a "helper" in Andrew Brown's sysctl
     83  * framework terminology.  It is used as a gateway for sysctl
     84  * requests over the nodes.
     85  *
     86  * tap_log allows the module to log creations of nodes and
     87  * destroy them all at once using sysctl_teardown.
     88  */
     89 static int tap_node;
     90 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     91 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     92 
     93 /*
     94  * Since we're an Ethernet device, we need the 3 following
     95  * components: a leading struct device, a struct ethercom,
     96  * and also a struct ifmedia since we don't attach a PHY to
     97  * ourselves. We could emulate one, but there's no real
     98  * point.
     99  */
    100 
    101 struct tap_softc {
    102 	struct device	sc_dev;
    103 	struct ifmedia	sc_im;
    104 	struct ethercom	sc_ec;
    105 	int		sc_flags;
    106 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    107 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    108 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    109 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    110 	struct selinfo	sc_rsel;
    111 	pid_t		sc_pgid; /* For async. IO */
    112 	struct lock	sc_rdlock;
    113 	struct simplelock	sc_kqlock;
    114 };
    115 
    116 /* autoconf(9) glue */
    117 
    118 void	tapattach(int);
    119 
    120 static int	tap_match(struct device *, struct cfdata *, void *);
    121 static void	tap_attach(struct device *, struct device *, void *);
    122 static int	tap_detach(struct device*, int);
    123 
    124 /* Ethernet address helper functions */
    125 
    126 static char	*tap_ether_sprintf(char *, const u_char *);
    127 static int	tap_ether_aton(u_char *, char *);
    128 
    129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    130     tap_match, tap_attach, tap_detach, NULL);
    131 extern struct cfdriver tap_cd;
    132 
    133 /* Real device access routines */
    134 static int	tap_dev_close(struct tap_softc *);
    135 static int	tap_dev_read(int, struct uio *, int);
    136 static int	tap_dev_write(int, struct uio *, int);
    137 static int	tap_dev_ioctl(int, u_long, caddr_t, struct proc *);
    138 static int	tap_dev_poll(int, int, struct proc *);
    139 static int	tap_dev_kqfilter(int, struct knote *);
    140 
    141 /* Fileops access routines */
    142 static int	tap_fops_close(struct file *, struct proc *);
    143 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    144     struct ucred *, int);
    145 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    146     struct ucred *, int);
    147 static int	tap_fops_ioctl(struct file *, u_long, void *,
    148     struct proc *);
    149 static int	tap_fops_poll(struct file *, int, struct proc *);
    150 static int	tap_fops_kqfilter(struct file *, struct knote *);
    151 
    152 static const struct fileops tap_fileops = {
    153 	tap_fops_read,
    154 	tap_fops_write,
    155 	tap_fops_ioctl,
    156 	fnullop_fcntl,
    157 	tap_fops_poll,
    158 	fbadop_stat,
    159 	tap_fops_close,
    160 	tap_fops_kqfilter,
    161 };
    162 
    163 /* Helper for cloning open() */
    164 static int	tap_dev_cloner(struct proc *);
    165 
    166 /* Character device routines */
    167 static int	tap_cdev_open(dev_t, int, int, struct proc *);
    168 static int	tap_cdev_close(dev_t, int, int, struct proc *);
    169 static int	tap_cdev_read(dev_t, struct uio *, int);
    170 static int	tap_cdev_write(dev_t, struct uio *, int);
    171 static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct proc *);
    172 static int	tap_cdev_poll(dev_t, int, struct proc *);
    173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174 
    175 const struct cdevsw tap_cdevsw = {
    176 	tap_cdev_open, tap_cdev_close,
    177 	tap_cdev_read, tap_cdev_write,
    178 	tap_cdev_ioctl, nostop, notty,
    179 	tap_cdev_poll, nommap,
    180 	tap_cdev_kqfilter,
    181 };
    182 
    183 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    184 
    185 /* kqueue-related routines */
    186 static void	tap_kqdetach(struct knote *);
    187 static int	tap_kqread(struct knote *, long);
    188 
    189 /*
    190  * Those are needed by the if_media interface.
    191  */
    192 
    193 static int	tap_mediachange(struct ifnet *);
    194 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    195 
    196 /*
    197  * Those are needed by the ifnet interface, and would typically be
    198  * there for any network interface driver.
    199  * Some other routines are optional: watchdog and drain.
    200  */
    201 
    202 static void	tap_start(struct ifnet *);
    203 static void	tap_stop(struct ifnet *, int);
    204 static int	tap_init(struct ifnet *);
    205 static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    206 
    207 /* This is an internal function to keep tap_ioctl readable */
    208 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    209 
    210 /*
    211  * tap is a clonable interface, although it is highly unrealistic for
    212  * an Ethernet device.
    213  *
    214  * Here are the bits needed for a clonable interface.
    215  */
    216 static int	tap_clone_create(struct if_clone *, int);
    217 static int	tap_clone_destroy(struct ifnet *);
    218 
    219 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    220 					tap_clone_create,
    221 					tap_clone_destroy);
    222 
    223 /* Helper functionis shared by the two cloning code paths */
    224 static struct tap_softc *	tap_clone_creator(int);
    225 static int	tap_clone_destroyer(struct device *);
    226 
    227 void
    228 tapattach(int n)
    229 {
    230 	int error;
    231 
    232 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    233 	if (error) {
    234 		aprint_error("%s: unable to register cfattach\n",
    235 		    tap_cd.cd_name);
    236 		(void)config_cfdriver_detach(&tap_cd);
    237 		return;
    238 	}
    239 
    240 	if_clone_attach(&tap_cloners);
    241 }
    242 
    243 /* Pretty much useless for a pseudo-device */
    244 static int
    245 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
    246 {
    247 	return (1);
    248 }
    249 
    250 void
    251 tap_attach(struct device *parent, struct device *self, void *aux)
    252 {
    253 	struct tap_softc *sc = (struct tap_softc *)self;
    254 	struct ifnet *ifp;
    255 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    256 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    257 	char enaddrstr[18];
    258 	uint32_t ui;
    259 	int error;
    260 	struct sysctlnode *node;
    261 
    262 	aprint_normal("%s: faking Ethernet device\n",
    263 	    self->dv_xname);
    264 
    265 	/*
    266 	 * In order to obtain unique initial Ethernet address on a host,
    267 	 * do some randomisation using mono_time.  It's not meant for anything
    268 	 * but avoiding hard-coding an address.
    269 	 */
    270 	ui = (mono_time.tv_sec ^ mono_time.tv_usec) & 0xffffff;
    271 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    272 
    273 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    274 	    tap_ether_sprintf(enaddrstr, enaddr));
    275 
    276 	/*
    277 	 * Why 1000baseT? Why not? You can add more.
    278 	 *
    279 	 * Note that there are 3 steps: init, one or several additions to
    280 	 * list of supported media, and in the end, the selection of one
    281 	 * of them.
    282 	 */
    283 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    284 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    288 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    291 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    292 
    293 	/*
    294 	 * One should note that an interface must do multicast in order
    295 	 * to support IPv6.
    296 	 */
    297 	ifp = &sc->sc_ec.ec_if;
    298 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    299 	ifp->if_softc	= sc;
    300 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    301 	ifp->if_ioctl	= tap_ioctl;
    302 	ifp->if_start	= tap_start;
    303 	ifp->if_stop	= tap_stop;
    304 	ifp->if_init	= tap_init;
    305 	IFQ_SET_READY(&ifp->if_snd);
    306 
    307 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    308 
    309 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    310 	 * being common to all network interface drivers. */
    311 	if_attach(ifp);
    312 	ether_ifattach(ifp, enaddr);
    313 
    314 	sc->sc_flags = 0;
    315 
    316 	/*
    317 	 * Add a sysctl node for that interface.
    318 	 *
    319 	 * The pointer transmitted is not a string, but instead a pointer to
    320 	 * the softc structure, which we can use to build the string value on
    321 	 * the fly in the helper function of the node.  See the comments for
    322 	 * tap_sysctl_handler for details.
    323 	 */
    324 	if ((error = sysctl_createv(NULL, 0, NULL,
    325 	    &node, CTLFLAG_READWRITE,
    326 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    327 	    tap_sysctl_handler, 0, sc, 18,
    328 	    CTL_NET, AF_LINK, tap_node, sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    329 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    330 		    sc->sc_dev.dv_xname, error);
    331 
    332 	/*
    333 	 * Initialize the two locks for the device.
    334 	 *
    335 	 * We need a lock here because even though the tap device can be
    336 	 * opened only once, the file descriptor might be passed to another
    337 	 * process, say a fork(2)ed child.
    338 	 *
    339 	 * The Giant saves us from most of the hassle, but since the read
    340 	 * operation can sleep, we don't want two processes to wake up at
    341 	 * the same moment and both try and dequeue a single packet.
    342 	 *
    343 	 * The queue for event listeners (used by kqueue(9), see below) has
    344 	 * to be protected, too, but we don't need the same level of
    345 	 * complexity for that lock, so a simple spinning lock is fine.
    346 	 */
    347 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    348 	simple_lock_init(&sc->sc_kqlock);
    349 }
    350 
    351 /*
    352  * When detaching, we do the inverse of what is done in the attach
    353  * routine, in reversed order.
    354  */
    355 static int
    356 tap_detach(struct device* self, int flags)
    357 {
    358 	struct tap_softc *sc = (struct tap_softc *)self;
    359 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    360 	int error, s;
    361 
    362 	/*
    363 	 * Some processes might be sleeping on "tap", so we have to make
    364 	 * them release their hold on the device.
    365 	 *
    366 	 * The LK_DRAIN operation will wait for every locked process to
    367 	 * release their hold.
    368 	 */
    369 	sc->sc_flags |= TAP_GOING;
    370 	s = splnet();
    371 	tap_stop(ifp, 1);
    372 	if_down(ifp);
    373 	splx(s);
    374 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    375 
    376 	/*
    377 	 * Destroying a single leaf is a very straightforward operation using
    378 	 * sysctl_destroyv.  One should be sure to always end the path with
    379 	 * CTL_EOL.
    380 	 */
    381 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    382 	    sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    383 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    384 		    sc->sc_dev.dv_xname, error);
    385 	ether_ifdetach(ifp);
    386 	if_detach(ifp);
    387 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    388 
    389 	return (0);
    390 }
    391 
    392 /*
    393  * This function is called by the ifmedia layer to notify the driver
    394  * that the user requested a media change.  A real driver would
    395  * reconfigure the hardware.
    396  */
    397 static int
    398 tap_mediachange(struct ifnet *ifp)
    399 {
    400 	return (0);
    401 }
    402 
    403 /*
    404  * Here the user asks for the currently used media.
    405  */
    406 static void
    407 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    408 {
    409 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    410 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    411 }
    412 
    413 /*
    414  * This is the function where we SEND packets.
    415  *
    416  * There is no 'receive' equivalent.  A typical driver will get
    417  * interrupts from the hardware, and from there will inject new packets
    418  * into the network stack.
    419  *
    420  * Once handled, a packet must be freed.  A real driver might not be able
    421  * to fit all the pending packets into the hardware, and is allowed to
    422  * return before having sent all the packets.  It should then use the
    423  * if_flags flag IFF_OACTIVE to notify the upper layer.
    424  *
    425  * There are also other flags one should check, such as IFF_PAUSE.
    426  *
    427  * It is our duty to make packets available to BPF listeners.
    428  *
    429  * You should be aware that this function is called by the Ethernet layer
    430  * at splnet().
    431  *
    432  * When the device is opened, we have to pass the packet(s) to the
    433  * userland.  For that we stay in OACTIVE mode while the userland gets
    434  * the packets, and we send a signal to the processes waiting to read.
    435  *
    436  * wakeup(sc) is the counterpart to the tsleep call in
    437  * tap_dev_read, while selnotify() is used for kevent(2) and
    438  * poll(2) (which includes select(2)) listeners.
    439  */
    440 static void
    441 tap_start(struct ifnet *ifp)
    442 {
    443 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    444 	struct mbuf *m0;
    445 
    446 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    447 		/* Simply drop packets */
    448 		for(;;) {
    449 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    450 			if (m0 == NULL)
    451 				return;
    452 
    453 			ifp->if_opackets++;
    454 #if NBPFILTER > 0
    455 			if (ifp->if_bpf)
    456 				bpf_mtap(ifp->if_bpf, m0);
    457 #endif
    458 
    459 			m_freem(m0);
    460 		}
    461 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    462 		ifp->if_flags |= IFF_OACTIVE;
    463 		wakeup(sc);
    464 		selnotify(&sc->sc_rsel, 1);
    465 		if (sc->sc_flags & TAP_ASYNCIO)
    466 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    467 			    POLLIN|POLLRDNORM, NULL);
    468 	}
    469 }
    470 
    471 /*
    472  * A typical driver will only contain the following handlers for
    473  * ioctl calls, except SIOCSIFPHYADDR.
    474  * The latter is a hack I used to set the Ethernet address of the
    475  * faked device.
    476  *
    477  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    478  * called under splnet().
    479  */
    480 static int
    481 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    482 {
    483 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    484 	struct ifreq *ifr = (struct ifreq *)data;
    485 	int s, error;
    486 
    487 	s = splnet();
    488 
    489 	switch (cmd) {
    490 	case SIOCSIFMEDIA:
    491 	case SIOCGIFMEDIA:
    492 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    493 		break;
    494 	case SIOCSIFPHYADDR:
    495 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    496 		break;
    497 	default:
    498 		error = ether_ioctl(ifp, cmd, data);
    499 		if (error == ENETRESET)
    500 			error = 0;
    501 		break;
    502 	}
    503 
    504 	splx(s);
    505 
    506 	return (error);
    507 }
    508 
    509 /*
    510  * Helper function to set Ethernet address.  This shouldn't be done there,
    511  * and should actually be available to all Ethernet drivers, real or not.
    512  */
    513 static int
    514 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    515 {
    516 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    517 
    518 	if (sa->sa_family != AF_LINK)
    519 		return (EINVAL);
    520 
    521 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    522 
    523 	return (0);
    524 }
    525 
    526 /*
    527  * _init() would typically be called when an interface goes up,
    528  * meaning it should configure itself into the state in which it
    529  * can send packets.
    530  */
    531 static int
    532 tap_init(struct ifnet *ifp)
    533 {
    534 	ifp->if_flags |= IFF_RUNNING;
    535 
    536 	tap_start(ifp);
    537 
    538 	return (0);
    539 }
    540 
    541 /*
    542  * _stop() is called when an interface goes down.  It is our
    543  * responsability to validate that state by clearing the
    544  * IFF_RUNNING flag.
    545  *
    546  * We have to wake up all the sleeping processes to have the pending
    547  * read requests cancelled.
    548  */
    549 static void
    550 tap_stop(struct ifnet *ifp, int disable)
    551 {
    552 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    553 
    554 	ifp->if_flags &= ~IFF_RUNNING;
    555 	wakeup(sc);
    556 	selnotify(&sc->sc_rsel, 1);
    557 	if (sc->sc_flags & TAP_ASYNCIO)
    558 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    559 }
    560 
    561 /*
    562  * The 'create' command of ifconfig can be used to create
    563  * any numbered instance of a given device.  Thus we have to
    564  * make sure we have enough room in cd_devs to create the
    565  * user-specified instance.  config_attach_pseudo will do this
    566  * for us.
    567  */
    568 static int
    569 tap_clone_create(struct if_clone *ifc, int unit)
    570 {
    571 	if (tap_clone_creator(unit) == NULL) {
    572 		aprint_error("%s%d: unable to attach an instance\n",
    573                     tap_cd.cd_name, unit);
    574 		return (ENXIO);
    575 	}
    576 
    577 	return (0);
    578 }
    579 
    580 /*
    581  * tap(4) can be cloned by two ways:
    582  *   using 'ifconfig tap0 create', which will use the network
    583  *     interface cloning API, and call tap_clone_create above.
    584  *   opening the cloning device node, whose minor number is TAP_CLONER.
    585  *     See below for an explanation on how this part work.
    586  *
    587  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    588  * autoconf(9) choose a unit number for us.  This is what happens when
    589  * the cloner is openend, while the ifcloner interface creates a device
    590  * with a specific unit number.
    591  */
    592 static struct tap_softc *
    593 tap_clone_creator(int unit)
    594 {
    595 	struct cfdata *cf;
    596 
    597 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    598 	cf->cf_name = tap_cd.cd_name;
    599 	cf->cf_atname = tap_ca.ca_name;
    600 	cf->cf_unit = unit;
    601 	cf->cf_fstate = FSTATE_STAR;
    602 
    603 	return (struct tap_softc *)config_attach_pseudo(cf);
    604 }
    605 
    606 /*
    607  * The clean design of if_clone and autoconf(9) makes that part
    608  * really straightforward.  The second argument of config_detach
    609  * means neither QUIET nor FORCED.
    610  */
    611 static int
    612 tap_clone_destroy(struct ifnet *ifp)
    613 {
    614 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    615 }
    616 
    617 static int
    618 tap_clone_destroyer(struct device *dev)
    619 {
    620 	struct cfdata *cf = dev->dv_cfdata;
    621 	int error;
    622 
    623 	if ((error = config_detach(dev, 0)) != 0)
    624 		aprint_error("%s: unable to detach instance\n",
    625 		    dev->dv_xname);
    626 	free(cf, M_DEVBUF);
    627 
    628 	return (error);
    629 }
    630 
    631 /*
    632  * tap(4) is a bit of an hybrid device.  It can be used in two different
    633  * ways:
    634  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    635  *  2. open /dev/tap, get a new interface created and read/write off it.
    636  *     That interface is destroyed when the process that had it created exits.
    637  *
    638  * The first way is managed by the cdevsw structure, and you access interfaces
    639  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    640  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    641  *
    642  * The second way is the so-called "cloning" device.  It's a special minor
    643  * number (chosen as the maximal number, to allow as much tap devices as
    644  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    645  * call ends in tap_cdev_open.  The actual place where it is handled is
    646  * tap_dev_cloner.
    647  *
    648  * An tap device cannot be opened more than once at a time, so the cdevsw
    649  * part of open() does nothing but noting that the interface is being used and
    650  * hence ready to actually handle packets.
    651  */
    652 
    653 static int
    654 tap_cdev_open(dev_t dev, int flags, int fmt, struct proc *p)
    655 {
    656 	struct tap_softc *sc;
    657 
    658 	if (minor(dev) == TAP_CLONER)
    659 		return tap_dev_cloner(p);
    660 
    661 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    662 	if (sc == NULL)
    663 		return (ENXIO);
    664 
    665 	/* The device can only be opened once */
    666 	if (sc->sc_flags & TAP_INUSE)
    667 		return (EBUSY);
    668 	sc->sc_flags |= TAP_INUSE;
    669 	return (0);
    670 }
    671 
    672 /*
    673  * There are several kinds of cloning devices, and the most simple is the one
    674  * tap(4) uses.  What it does is change the file descriptor with a new one,
    675  * with its own fileops structure (which maps to the various read, write,
    676  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    677  * then actually creates the new tap devices.
    678  *
    679  * Once those two steps are successful, we can re-wire the existing file
    680  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    681  * structure as needed (notably f_data gets filled with the fifth parameter
    682  * passed, the unit of the tap device which will allows us identifying the
    683  * device later), and returns EMOVEFD.
    684  *
    685  * That magic value is interpreted by sys_open() which then replaces the
    686  * current file descriptor by the new one (through a magic member of struct
    687  * proc, p_dupfd).
    688  *
    689  * The tap device is flagged as being busy since it otherwise could be
    690  * externally accessed through the corresponding device node with the cdevsw
    691  * interface.
    692  */
    693 
    694 static int
    695 tap_dev_cloner(struct proc *p)
    696 {
    697 	struct tap_softc *sc;
    698 	struct file *fp;
    699 	int error, fd;
    700 
    701 	if ((error = falloc(p, &fp, &fd)) != 0)
    702 		return (error);
    703 
    704 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    705 		FILE_UNUSE(fp, p);
    706 		ffree(fp);
    707 		return (ENXIO);
    708 	}
    709 
    710 	sc->sc_flags |= TAP_INUSE;
    711 
    712 	return fdclone(p, fp, fd, FREAD|FWRITE, &tap_fileops,
    713 	    (void *)(intptr_t)sc->sc_dev.dv_unit);
    714 }
    715 
    716 /*
    717  * While all other operations (read, write, ioctl, poll and kqfilter) are
    718  * really the same whether we are in cdevsw or fileops mode, the close()
    719  * function is slightly different in the two cases.
    720  *
    721  * As for the other, the core of it is shared in tap_dev_close.  What
    722  * it does is sufficient for the cdevsw interface, but the cloning interface
    723  * needs another thing:  the interface is destroyed when the processes that
    724  * created it closes it.
    725  */
    726 static int
    727 tap_cdev_close(dev_t dev, int flags, int fmt, struct proc *p)
    728 {
    729 	struct tap_softc *sc =
    730 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    731 
    732 	if (sc == NULL)
    733 		return (ENXIO);
    734 
    735 	return tap_dev_close(sc);
    736 }
    737 
    738 /*
    739  * It might happen that the administrator used ifconfig to externally destroy
    740  * the interface.  In that case, tap_fops_close will be called while
    741  * tap_detach is already happening.  If we called it again from here, we
    742  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    743  */
    744 static int
    745 tap_fops_close(struct file *fp, struct proc *p)
    746 {
    747 	int unit = (intptr_t)fp->f_data;
    748 	struct tap_softc *sc;
    749 	int error;
    750 
    751 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    752 	if (sc == NULL)
    753 		return (ENXIO);
    754 
    755 	/* tap_dev_close currently always succeeds, but it might not
    756 	 * always be the case. */
    757 	if ((error = tap_dev_close(sc)) != 0)
    758 		return (error);
    759 
    760 	/* Destroy the device now that it is no longer useful,
    761 	 * unless it's already being destroyed. */
    762 	if ((sc->sc_flags & TAP_GOING) != 0)
    763 		return (0);
    764 
    765 	return tap_clone_destroyer((struct device *)sc);
    766 }
    767 
    768 static int
    769 tap_dev_close(struct tap_softc *sc)
    770 {
    771 	struct ifnet *ifp;
    772 	int s;
    773 
    774 	s = splnet();
    775 	/* Let tap_start handle packets again */
    776 	ifp = &sc->sc_ec.ec_if;
    777 	ifp->if_flags &= ~IFF_OACTIVE;
    778 
    779 	/* Purge output queue */
    780 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    781 		struct mbuf *m;
    782 
    783 		for (;;) {
    784 			IFQ_DEQUEUE(&ifp->if_snd, m);
    785 			if (m == NULL)
    786 				break;
    787 
    788 			ifp->if_opackets++;
    789 #if NBPFILTER > 0
    790 			if (ifp->if_bpf)
    791 				bpf_mtap(ifp->if_bpf, m);
    792 #endif
    793 		}
    794 	}
    795 	splx(s);
    796 
    797 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    798 
    799 	return (0);
    800 }
    801 
    802 static int
    803 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    804 {
    805 	return tap_dev_read(minor(dev), uio, flags);
    806 }
    807 
    808 static int
    809 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    810     struct ucred *cred, int flags)
    811 {
    812 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    813 }
    814 
    815 static int
    816 tap_dev_read(int unit, struct uio *uio, int flags)
    817 {
    818 	struct tap_softc *sc =
    819 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    820 	struct ifnet *ifp;
    821 	struct mbuf *m, *n;
    822 	int error = 0, s;
    823 
    824 	if (sc == NULL)
    825 		return (ENXIO);
    826 
    827 	ifp = &sc->sc_ec.ec_if;
    828 	if ((ifp->if_flags & IFF_UP) == 0)
    829 		return (EHOSTDOWN);
    830 
    831 	/*
    832 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    833 	 */
    834 	if ((sc->sc_flags & TAP_NBIO) &&
    835 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    836 		return (EWOULDBLOCK);
    837 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    838 	if (error != 0)
    839 		return (error);
    840 
    841 	s = splnet();
    842 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    843 		ifp->if_flags &= ~IFF_OACTIVE;
    844 		splx(s);
    845 		/*
    846 		 * We must release the lock before sleeping, and re-acquire it
    847 		 * after.
    848 		 */
    849 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    850 		if (sc->sc_flags & TAP_NBIO)
    851 			error = EWOULDBLOCK;
    852 		else
    853 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    854 
    855 		if (error != 0)
    856 			return (error);
    857 		/* The device might have been downed */
    858 		if ((ifp->if_flags & IFF_UP) == 0)
    859 			return (EHOSTDOWN);
    860 		if ((sc->sc_flags & TAP_NBIO) &&
    861 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    862 			return (EWOULDBLOCK);
    863 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    864 		if (error != 0)
    865 			return (error);
    866 		s = splnet();
    867 	}
    868 
    869 	IFQ_DEQUEUE(&ifp->if_snd, m);
    870 	ifp->if_flags &= ~IFF_OACTIVE;
    871 	splx(s);
    872 	if (m == NULL) {
    873 		error = 0;
    874 		goto out;
    875 	}
    876 
    877 	ifp->if_opackets++;
    878 #if NBPFILTER > 0
    879 	if (ifp->if_bpf)
    880 		bpf_mtap(ifp->if_bpf, m);
    881 #endif
    882 
    883 	/*
    884 	 * One read is one packet.
    885 	 */
    886 	do {
    887 		error = uiomove(mtod(m, caddr_t),
    888 		    min(m->m_len, uio->uio_resid), uio);
    889 		MFREE(m, n);
    890 		m = n;
    891 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    892 
    893 	if (m != NULL)
    894 		m_freem(m);
    895 
    896 out:
    897 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    898 	return (error);
    899 }
    900 
    901 static int
    902 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    903 {
    904 	return tap_dev_write(minor(dev), uio, flags);
    905 }
    906 
    907 static int
    908 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    909     struct ucred *cred, int flags)
    910 {
    911 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    912 }
    913 
    914 static int
    915 tap_dev_write(int unit, struct uio *uio, int flags)
    916 {
    917 	struct tap_softc *sc =
    918 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    919 	struct ifnet *ifp;
    920 	struct mbuf *m, **mp;
    921 	int error = 0;
    922 	int s;
    923 
    924 	if (sc == NULL)
    925 		return (ENXIO);
    926 
    927 	ifp = &sc->sc_ec.ec_if;
    928 
    929 	/* One write, one packet, that's the rule */
    930 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    931 	if (m == NULL) {
    932 		ifp->if_ierrors++;
    933 		return (ENOBUFS);
    934 	}
    935 	m->m_pkthdr.len = uio->uio_resid;
    936 
    937 	mp = &m;
    938 	while (error == 0 && uio->uio_resid > 0) {
    939 		if (*mp != m) {
    940 			MGET(*mp, M_DONTWAIT, MT_DATA);
    941 			if (*mp == NULL) {
    942 				error = ENOBUFS;
    943 				break;
    944 			}
    945 		}
    946 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    947 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    948 		mp = &(*mp)->m_next;
    949 	}
    950 	if (error) {
    951 		ifp->if_ierrors++;
    952 		m_freem(m);
    953 		return (error);
    954 	}
    955 
    956 	ifp->if_ipackets++;
    957 	m->m_pkthdr.rcvif = ifp;
    958 
    959 #if NBPFILTER > 0
    960 	if (ifp->if_bpf)
    961 		bpf_mtap(ifp->if_bpf, m);
    962 #endif
    963 	s =splnet();
    964 	(*ifp->if_input)(ifp, m);
    965 	splx(s);
    966 
    967 	return (0);
    968 }
    969 
    970 static int
    971 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    972     struct proc *p)
    973 {
    974 	return tap_dev_ioctl(minor(dev), cmd, data, p);
    975 }
    976 
    977 static int
    978 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct proc *p)
    979 {
    980 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, p);
    981 }
    982 
    983 static int
    984 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct proc *p)
    985 {
    986 	struct tap_softc *sc =
    987 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    988 	int error = 0;
    989 
    990 	if (sc == NULL)
    991 		return (ENXIO);
    992 
    993 	switch (cmd) {
    994 	case FIONREAD:
    995 		{
    996 			struct ifnet *ifp = &sc->sc_ec.ec_if;
    997 			struct mbuf *m;
    998 			int s;
    999 
   1000 			s = splnet();
   1001 			IFQ_POLL(&ifp->if_snd, m);
   1002 
   1003 			if (m == NULL)
   1004 				*(int *)data = 0;
   1005 			else
   1006 				*(int *)data = m->m_pkthdr.len;
   1007 			splx(s);
   1008 		} break;
   1009 	case TIOCSPGRP:
   1010 	case FIOSETOWN:
   1011 		error = fsetown(p, &sc->sc_pgid, cmd, data);
   1012 		break;
   1013 	case TIOCGPGRP:
   1014 	case FIOGETOWN:
   1015 		error = fgetown(p, sc->sc_pgid, cmd, data);
   1016 		break;
   1017 	case FIOASYNC:
   1018 		if (*(int *)data)
   1019 			sc->sc_flags |= TAP_ASYNCIO;
   1020 		else
   1021 			sc->sc_flags &= ~TAP_ASYNCIO;
   1022 		break;
   1023 	case FIONBIO:
   1024 		if (*(int *)data)
   1025 			sc->sc_flags |= TAP_NBIO;
   1026 		else
   1027 			sc->sc_flags &= ~TAP_NBIO;
   1028 		break;
   1029 	case TAPGIFNAME:
   1030 		{
   1031 			struct ifreq *ifr = (struct ifreq *)data;
   1032 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1033 
   1034 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1035 		} break;
   1036 	default:
   1037 		error = ENOTTY;
   1038 		break;
   1039 	}
   1040 
   1041 	return (0);
   1042 }
   1043 
   1044 static int
   1045 tap_cdev_poll(dev_t dev, int events, struct proc *p)
   1046 {
   1047 	return tap_dev_poll(minor(dev), events, p);
   1048 }
   1049 
   1050 static int
   1051 tap_fops_poll(struct file *fp, int events, struct proc *p)
   1052 {
   1053 	return tap_dev_poll((intptr_t)fp->f_data, events, p);
   1054 }
   1055 
   1056 static int
   1057 tap_dev_poll(int unit, int events, struct proc *p)
   1058 {
   1059 	struct tap_softc *sc =
   1060 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1061 	int revents = 0;
   1062 
   1063 	if (sc == NULL)
   1064 		return (ENXIO);
   1065 
   1066 	if (events & (POLLIN|POLLRDNORM)) {
   1067 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1068 		struct mbuf *m;
   1069 		int s;
   1070 
   1071 		s = splnet();
   1072 		IFQ_POLL(&ifp->if_snd, m);
   1073 		splx(s);
   1074 
   1075 		if (m != NULL)
   1076 			revents |= events & (POLLIN|POLLRDNORM);
   1077 		else {
   1078 			simple_lock(&sc->sc_kqlock);
   1079 			selrecord(p, &sc->sc_rsel);
   1080 			simple_unlock(&sc->sc_kqlock);
   1081 		}
   1082 	}
   1083 	revents |= events & (POLLOUT|POLLWRNORM);
   1084 
   1085 	return (revents);
   1086 }
   1087 
   1088 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1089 	tap_kqread };
   1090 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1091 	filt_seltrue };
   1092 
   1093 static int
   1094 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1095 {
   1096 	return tap_dev_kqfilter(minor(dev), kn);
   1097 }
   1098 
   1099 static int
   1100 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1101 {
   1102 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1103 }
   1104 
   1105 static int
   1106 tap_dev_kqfilter(int unit, struct knote *kn)
   1107 {
   1108 	struct tap_softc *sc =
   1109 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1110 
   1111 	if (sc == NULL)
   1112 		return (ENXIO);
   1113 
   1114 	switch(kn->kn_filter) {
   1115 	case EVFILT_READ:
   1116 		kn->kn_fop = &tap_read_filterops;
   1117 		break;
   1118 	case EVFILT_WRITE:
   1119 		kn->kn_fop = &tap_seltrue_filterops;
   1120 		break;
   1121 	default:
   1122 		return (1);
   1123 	}
   1124 
   1125 	kn->kn_hook = sc;
   1126 	simple_lock(&sc->sc_kqlock);
   1127 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1128 	simple_unlock(&sc->sc_kqlock);
   1129 	return (0);
   1130 }
   1131 
   1132 static void
   1133 tap_kqdetach(struct knote *kn)
   1134 {
   1135 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1136 
   1137 	simple_lock(&sc->sc_kqlock);
   1138 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1139 	simple_unlock(&sc->sc_kqlock);
   1140 }
   1141 
   1142 static int
   1143 tap_kqread(struct knote *kn, long hint)
   1144 {
   1145 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1146 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1147 	struct mbuf *m;
   1148 	int s;
   1149 
   1150 	s = splnet();
   1151 	IFQ_POLL(&ifp->if_snd, m);
   1152 
   1153 	if (m == NULL)
   1154 		kn->kn_data = 0;
   1155 	else
   1156 		kn->kn_data = m->m_pkthdr.len;
   1157 	splx(s);
   1158 	return (kn->kn_data != 0 ? 1 : 0);
   1159 }
   1160 
   1161 /*
   1162  * sysctl management routines
   1163  * You can set the address of an interface through:
   1164  * net.link.tap.tap<number>
   1165  *
   1166  * Note the consistent use of tap_log in order to use
   1167  * sysctl_teardown at unload time.
   1168  *
   1169  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1170  * blocks register a function in a special section of the kernel
   1171  * (called a link set) which is used at init_sysctl() time to cycle
   1172  * through all those functions to create the kernel's sysctl tree.
   1173  *
   1174  * It is not (currently) possible to use link sets in a LKM, so the
   1175  * easiest is to simply call our own setup routine at load time.
   1176  *
   1177  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1178  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1179  * whole kernel sysctl tree is built, it is not possible to add any
   1180  * permanent node.
   1181  *
   1182  * It should be noted that we're not saving the sysctlnode pointer
   1183  * we are returned when creating the "tap" node.  That structure
   1184  * cannot be trusted once out of the calling function, as it might
   1185  * get reused.  So we just save the MIB number, and always give the
   1186  * full path starting from the root for later calls to sysctl_createv
   1187  * and sysctl_destroyv.
   1188  */
   1189 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1190 {
   1191 	struct sysctlnode *node;
   1192 	int error = 0;
   1193 
   1194 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1195 	    CTLFLAG_PERMANENT,
   1196 	    CTLTYPE_NODE, "net", NULL,
   1197 	    NULL, 0, NULL, 0,
   1198 	    CTL_NET, CTL_EOL)) != 0)
   1199 		return;
   1200 
   1201 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1202 	    CTLFLAG_PERMANENT,
   1203 	    CTLTYPE_NODE, "link", NULL,
   1204 	    NULL, 0, NULL, 0,
   1205 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1206 		return;
   1207 
   1208 	/*
   1209 	 * The first four parameters of sysctl_createv are for management.
   1210 	 *
   1211 	 * The four that follows, here starting with a '0' for the flags,
   1212 	 * describe the node.
   1213 	 *
   1214 	 * The next series of four set its value, through various possible
   1215 	 * means.
   1216 	 *
   1217 	 * Last but not least, the path to the node is described.  That path
   1218 	 * is relative to the given root (third argument).  Here we're
   1219 	 * starting from the root.
   1220 	 */
   1221 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1222 	    CTLFLAG_PERMANENT,
   1223 	    CTLTYPE_NODE, "tap", NULL,
   1224 	    NULL, 0, NULL, 0,
   1225 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1226 		return;
   1227 	tap_node = node->sysctl_num;
   1228 }
   1229 
   1230 /*
   1231  * The helper functions make Andrew Brown's interface really
   1232  * shine.  It makes possible to create value on the fly whether
   1233  * the sysctl value is read or written.
   1234  *
   1235  * As shown as an example in the man page, the first step is to
   1236  * create a copy of the node to have sysctl_lookup work on it.
   1237  *
   1238  * Here, we have more work to do than just a copy, since we have
   1239  * to create the string.  The first step is to collect the actual
   1240  * value of the node, which is a convenient pointer to the softc
   1241  * of the interface.  From there we create the string and use it
   1242  * as the value, but only for the *copy* of the node.
   1243  *
   1244  * Then we let sysctl_lookup do the magic, which consists in
   1245  * setting oldp and newp as required by the operation.  When the
   1246  * value is read, that means that the string will be copied to
   1247  * the user, and when it is written, the new value will be copied
   1248  * over in the addr array.
   1249  *
   1250  * If newp is NULL, the user was reading the value, so we don't
   1251  * have anything else to do.  If a new value was written, we
   1252  * have to check it.
   1253  *
   1254  * If it is incorrect, we can return an error and leave 'node' as
   1255  * it is:  since it is a copy of the actual node, the change will
   1256  * be forgotten.
   1257  *
   1258  * Upon a correct input, we commit the change to the ifnet
   1259  * structure of our interface.
   1260  */
   1261 static int
   1262 tap_sysctl_handler(SYSCTLFN_ARGS)
   1263 {
   1264 	struct sysctlnode node;
   1265 	struct tap_softc *sc;
   1266 	struct ifnet *ifp;
   1267 	int error;
   1268 	size_t len;
   1269 	char addr[18];
   1270 
   1271 	node = *rnode;
   1272 	sc = node.sysctl_data;
   1273 	ifp = &sc->sc_ec.ec_if;
   1274 	(void)tap_ether_sprintf(addr, LLADDR(ifp->if_sadl));
   1275 	node.sysctl_data = addr;
   1276 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1277 	if (error || newp == NULL)
   1278 		return (error);
   1279 
   1280 	len = strlen(addr);
   1281 	if (len < 11 || len > 17)
   1282 		return (EINVAL);
   1283 
   1284 	/* Commit change */
   1285 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1286 		return (EINVAL);
   1287 	return (error);
   1288 }
   1289 
   1290 /*
   1291  * ether_aton implementation, not using a static buffer.
   1292  */
   1293 static int
   1294 tap_ether_aton(u_char *dest, char *str)
   1295 {
   1296 	int i;
   1297 	char *cp = str;
   1298 	u_char val[6];
   1299 
   1300 #define	set_value			\
   1301 	if (*cp > '9' && *cp < 'a')	\
   1302 		*cp -= 'A' - 10;	\
   1303 	else if (*cp > '9')		\
   1304 		*cp -= 'a' - 10;	\
   1305 	else				\
   1306 		*cp -= '0'
   1307 
   1308 	for (i = 0; i < 6; i++, cp++) {
   1309 		if (!isxdigit(*cp))
   1310 			return (1);
   1311 		set_value;
   1312 		val[i] = *cp++;
   1313 		if (isxdigit(*cp)) {
   1314 			set_value;
   1315 			val[i] *= 16;
   1316 			val[i] += *cp++;
   1317 		}
   1318 		if (*cp == ':' || i == 5)
   1319 			continue;
   1320 		else
   1321 			return (1);
   1322 	}
   1323 	memcpy(dest, val, 6);
   1324 	return (0);
   1325 }
   1326 
   1327 /*
   1328  * ether_sprintf made thread-safer.
   1329  *
   1330  * Copied over from sys/net/if_ethersubr.c, with a change to avoid the use
   1331  * of a static buffer.
   1332  */
   1333 
   1334 /*
   1335  * Copyright (c) 1982, 1989, 1993
   1336  *      The Regents of the University of California.  All rights reserved.
   1337  *
   1338  * Redistribution and use in source and binary forms, with or without
   1339  * modification, are permitted provided that the following conditions
   1340  * are met:
   1341  * 1. Redistributions of source code must retain the above copyright
   1342  *    notice, this list of conditions and the following disclaimer.
   1343  * 2. Redistributions in binary form must reproduce the above copyright
   1344  *    notice, this list of conditions and the following disclaimer in the
   1345  *    documentation and/or other materials provided with the distribution.
   1346  * 3. Neither the name of the University nor the names of its contributors
   1347  *    may be used to endorse or promote products derived from this software
   1348  *    without specific prior written permission.
   1349  *
   1350  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   1351  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   1352  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   1353  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   1354  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   1355  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   1356  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   1357  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   1358  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   1359  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   1360  * SUCH DAMAGE.
   1361  *
   1362  *      @(#)if_ethersubr.c      8.2 (Berkeley) 4/4/96
   1363  */
   1364 
   1365 static char *
   1366 tap_ether_sprintf(char *dest, const u_char *ap)
   1367 {
   1368 	char *cp = dest;
   1369 	int i;
   1370 
   1371 	for (i = 0; i < 6; i++) {
   1372 		*cp++ = hexdigits[*ap >> 4];
   1373 		*cp++ = hexdigits[*ap++ & 0xf];
   1374 		*cp++ = ':';
   1375 	}
   1376 	*--cp = 0;
   1377 	return (dest);
   1378 }
   1379