if_tap.c revision 1.99 1 /* $NetBSD: if_tap.c,v 1.99 2017/02/12 09:47:31 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.99 2017/02/12 09:47:31 skrll Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/atomic.h>
46 #include <sys/conf.h>
47 #include <sys/cprng.h>
48 #include <sys/device.h>
49 #include <sys/file.h>
50 #include <sys/filedesc.h>
51 #include <sys/intr.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/module.h>
56 #include <sys/mutex.h>
57 #include <sys/poll.h>
58 #include <sys/proc.h>
59 #include <sys/select.h>
60 #include <sys/sockio.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_media.h>
69 #include <net/if_tap.h>
70 #include <net/bpf.h>
71
72 #include <compat/sys/sockio.h>
73
74 #include "ioconf.h"
75
76 /*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current module implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology. It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90 static int tap_node;
91 static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 static void sysctl_tap_setup(struct sysctllog **);
93
94 /*
95 * Since we're an Ethernet device, we need the 2 following
96 * components: a struct ethercom and a struct ifmedia
97 * since we don't attach a PHY to ourselves.
98 * We could emulate one, but there's no real point.
99 */
100
101 struct tap_softc {
102 device_t sc_dev;
103 struct ifmedia sc_im;
104 struct ethercom sc_ec;
105 int sc_flags;
106 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
107 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
108 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
109 #define TAP_GOING 0x00000008 /* interface is being destroyed */
110 struct selinfo sc_rsel;
111 pid_t sc_pgid; /* For async. IO */
112 kmutex_t sc_rdlock;
113 kmutex_t sc_kqlock;
114 void *sc_sih;
115 struct timespec sc_atime;
116 struct timespec sc_mtime;
117 struct timespec sc_btime;
118 };
119
120 /* autoconf(9) glue */
121
122 static int tap_match(device_t, cfdata_t, void *);
123 static void tap_attach(device_t, device_t, void *);
124 static int tap_detach(device_t, int);
125
126 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
127 tap_match, tap_attach, tap_detach, NULL);
128 extern struct cfdriver tap_cd;
129
130 /* Real device access routines */
131 static int tap_dev_close(struct tap_softc *);
132 static int tap_dev_read(int, struct uio *, int);
133 static int tap_dev_write(int, struct uio *, int);
134 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
135 static int tap_dev_poll(int, int, struct lwp *);
136 static int tap_dev_kqfilter(int, struct knote *);
137
138 /* Fileops access routines */
139 static int tap_fops_close(file_t *);
140 static int tap_fops_read(file_t *, off_t *, struct uio *,
141 kauth_cred_t, int);
142 static int tap_fops_write(file_t *, off_t *, struct uio *,
143 kauth_cred_t, int);
144 static int tap_fops_ioctl(file_t *, u_long, void *);
145 static int tap_fops_poll(file_t *, int);
146 static int tap_fops_stat(file_t *, struct stat *);
147 static int tap_fops_kqfilter(file_t *, struct knote *);
148
149 static const struct fileops tap_fileops = {
150 .fo_read = tap_fops_read,
151 .fo_write = tap_fops_write,
152 .fo_ioctl = tap_fops_ioctl,
153 .fo_fcntl = fnullop_fcntl,
154 .fo_poll = tap_fops_poll,
155 .fo_stat = tap_fops_stat,
156 .fo_close = tap_fops_close,
157 .fo_kqfilter = tap_fops_kqfilter,
158 .fo_restart = fnullop_restart,
159 };
160
161 /* Helper for cloning open() */
162 static int tap_dev_cloner(struct lwp *);
163
164 /* Character device routines */
165 static int tap_cdev_open(dev_t, int, int, struct lwp *);
166 static int tap_cdev_close(dev_t, int, int, struct lwp *);
167 static int tap_cdev_read(dev_t, struct uio *, int);
168 static int tap_cdev_write(dev_t, struct uio *, int);
169 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
170 static int tap_cdev_poll(dev_t, int, struct lwp *);
171 static int tap_cdev_kqfilter(dev_t, struct knote *);
172
173 const struct cdevsw tap_cdevsw = {
174 .d_open = tap_cdev_open,
175 .d_close = tap_cdev_close,
176 .d_read = tap_cdev_read,
177 .d_write = tap_cdev_write,
178 .d_ioctl = tap_cdev_ioctl,
179 .d_stop = nostop,
180 .d_tty = notty,
181 .d_poll = tap_cdev_poll,
182 .d_mmap = nommap,
183 .d_kqfilter = tap_cdev_kqfilter,
184 .d_discard = nodiscard,
185 .d_flag = D_OTHER
186 };
187
188 #define TAP_CLONER 0xfffff /* Maximal minor value */
189
190 /* kqueue-related routines */
191 static void tap_kqdetach(struct knote *);
192 static int tap_kqread(struct knote *, long);
193
194 /*
195 * Those are needed by the if_media interface.
196 */
197
198 static int tap_mediachange(struct ifnet *);
199 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
200
201 /*
202 * Those are needed by the ifnet interface, and would typically be
203 * there for any network interface driver.
204 * Some other routines are optional: watchdog and drain.
205 */
206
207 static void tap_start(struct ifnet *);
208 static void tap_stop(struct ifnet *, int);
209 static int tap_init(struct ifnet *);
210 static int tap_ioctl(struct ifnet *, u_long, void *);
211
212 /* Internal functions */
213 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
214 static void tap_softintr(void *);
215
216 /*
217 * tap is a clonable interface, although it is highly unrealistic for
218 * an Ethernet device.
219 *
220 * Here are the bits needed for a clonable interface.
221 */
222 static int tap_clone_create(struct if_clone *, int);
223 static int tap_clone_destroy(struct ifnet *);
224
225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226 tap_clone_create,
227 tap_clone_destroy);
228
229 /* Helper functions shared by the two cloning code paths */
230 static struct tap_softc * tap_clone_creator(int);
231 int tap_clone_destroyer(device_t);
232
233 static struct sysctllog *tap_sysctl_clog;
234
235 #ifdef _MODULE
236 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
237 #endif
238
239 static u_int tap_count;
240
241 void
242 tapattach(int n)
243 {
244
245 /*
246 * Nothing to do here, initialization is handled by the
247 * module initialization code in tapinit() below).
248 */
249 }
250
251 static void
252 tapinit(void)
253 {
254 int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
255 if (error) {
256 aprint_error("%s: unable to register cfattach\n",
257 tap_cd.cd_name);
258 (void)config_cfdriver_detach(&tap_cd);
259 return;
260 }
261
262 if_clone_attach(&tap_cloners);
263 sysctl_tap_setup(&tap_sysctl_clog);
264 #ifdef _MODULE
265 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
266 #endif
267 }
268
269 static int
270 tapdetach(void)
271 {
272 int error = 0;
273
274 if (tap_count != 0)
275 return EBUSY;
276
277 #ifdef _MODULE
278 if (error == 0)
279 error = devsw_detach(NULL, &tap_cdevsw);
280 #endif
281 if (error == 0)
282 sysctl_teardown(&tap_sysctl_clog);
283 if (error == 0)
284 if_clone_detach(&tap_cloners);
285
286 if (error == 0)
287 error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
288
289 return error;
290 }
291
292 /* Pretty much useless for a pseudo-device */
293 static int
294 tap_match(device_t parent, cfdata_t cfdata, void *arg)
295 {
296
297 return 1;
298 }
299
300 void
301 tap_attach(device_t parent, device_t self, void *aux)
302 {
303 struct tap_softc *sc = device_private(self);
304 struct ifnet *ifp;
305 const struct sysctlnode *node;
306 int error;
307 uint8_t enaddr[ETHER_ADDR_LEN] =
308 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
309 char enaddrstr[3 * ETHER_ADDR_LEN];
310
311 sc->sc_dev = self;
312 sc->sc_sih = NULL;
313 getnanotime(&sc->sc_btime);
314 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
315 sc->sc_flags = 0;
316 selinit(&sc->sc_rsel);
317
318 /*
319 * Initialize the two locks for the device.
320 *
321 * We need a lock here because even though the tap device can be
322 * opened only once, the file descriptor might be passed to another
323 * process, say a fork(2)ed child.
324 *
325 * The Giant saves us from most of the hassle, but since the read
326 * operation can sleep, we don't want two processes to wake up at
327 * the same moment and both try and dequeue a single packet.
328 *
329 * The queue for event listeners (used by kqueue(9), see below) has
330 * to be protected too, so use a spin lock.
331 */
332 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
333 mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
334
335 if (!pmf_device_register(self, NULL, NULL))
336 aprint_error_dev(self, "couldn't establish power handler\n");
337
338 /*
339 * In order to obtain unique initial Ethernet address on a host,
340 * do some randomisation. It's not meant for anything but avoiding
341 * hard-coding an address.
342 */
343 cprng_fast(&enaddr[3], 3);
344
345 aprint_verbose_dev(self, "Ethernet address %s\n",
346 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
347
348 /*
349 * Why 1000baseT? Why not? You can add more.
350 *
351 * Note that there are 3 steps: init, one or several additions to
352 * list of supported media, and in the end, the selection of one
353 * of them.
354 */
355 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
356 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
357 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
358 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
359 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
360 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
361 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
362 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
363 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
364
365 /*
366 * One should note that an interface must do multicast in order
367 * to support IPv6.
368 */
369 ifp = &sc->sc_ec.ec_if;
370 strcpy(ifp->if_xname, device_xname(self));
371 ifp->if_softc = sc;
372 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 ifp->if_ioctl = tap_ioctl;
374 ifp->if_start = tap_start;
375 ifp->if_stop = tap_stop;
376 ifp->if_init = tap_init;
377 IFQ_SET_READY(&ifp->if_snd);
378
379 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
380
381 /* Those steps are mandatory for an Ethernet driver. */
382 if_initialize(ifp);
383 ether_ifattach(ifp, enaddr);
384 if_register(ifp);
385
386 /*
387 * Add a sysctl node for that interface.
388 *
389 * The pointer transmitted is not a string, but instead a pointer to
390 * the softc structure, which we can use to build the string value on
391 * the fly in the helper function of the node. See the comments for
392 * tap_sysctl_handler for details.
393 *
394 * Usually sysctl_createv is called with CTL_CREATE as the before-last
395 * component. However, we can allocate a number ourselves, as we are
396 * the only consumer of the net.link.<iface> node. In this case, the
397 * unit number is conveniently used to number the node. CTL_CREATE
398 * would just work, too.
399 */
400 if ((error = sysctl_createv(NULL, 0, NULL,
401 &node, CTLFLAG_READWRITE,
402 CTLTYPE_STRING, device_xname(self), NULL,
403 tap_sysctl_handler, 0, (void *)sc, 18,
404 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
405 CTL_EOL)) != 0)
406 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
407 error);
408 }
409
410 /*
411 * When detaching, we do the inverse of what is done in the attach
412 * routine, in reversed order.
413 */
414 static int
415 tap_detach(device_t self, int flags)
416 {
417 struct tap_softc *sc = device_private(self);
418 struct ifnet *ifp = &sc->sc_ec.ec_if;
419 int error;
420 int s;
421
422 sc->sc_flags |= TAP_GOING;
423 s = splnet();
424 tap_stop(ifp, 1);
425 if_down(ifp);
426 splx(s);
427
428 if (sc->sc_sih != NULL) {
429 softint_disestablish(sc->sc_sih);
430 sc->sc_sih = NULL;
431 }
432
433 /*
434 * Destroying a single leaf is a very straightforward operation using
435 * sysctl_destroyv. One should be sure to always end the path with
436 * CTL_EOL.
437 */
438 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
439 device_unit(sc->sc_dev), CTL_EOL)) != 0)
440 aprint_error_dev(self,
441 "sysctl_destroyv returned %d, ignoring\n", error);
442 ether_ifdetach(ifp);
443 if_detach(ifp);
444 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
445 seldestroy(&sc->sc_rsel);
446 mutex_destroy(&sc->sc_rdlock);
447 mutex_destroy(&sc->sc_kqlock);
448
449 pmf_device_deregister(self);
450
451 return 0;
452 }
453
454 /*
455 * This function is called by the ifmedia layer to notify the driver
456 * that the user requested a media change. A real driver would
457 * reconfigure the hardware.
458 */
459 static int
460 tap_mediachange(struct ifnet *ifp)
461 {
462 return 0;
463 }
464
465 /*
466 * Here the user asks for the currently used media.
467 */
468 static void
469 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
470 {
471 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
472 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
473 }
474
475 /*
476 * This is the function where we SEND packets.
477 *
478 * There is no 'receive' equivalent. A typical driver will get
479 * interrupts from the hardware, and from there will inject new packets
480 * into the network stack.
481 *
482 * Once handled, a packet must be freed. A real driver might not be able
483 * to fit all the pending packets into the hardware, and is allowed to
484 * return before having sent all the packets. It should then use the
485 * if_flags flag IFF_OACTIVE to notify the upper layer.
486 *
487 * There are also other flags one should check, such as IFF_PAUSE.
488 *
489 * It is our duty to make packets available to BPF listeners.
490 *
491 * You should be aware that this function is called by the Ethernet layer
492 * at splnet().
493 *
494 * When the device is opened, we have to pass the packet(s) to the
495 * userland. For that we stay in OACTIVE mode while the userland gets
496 * the packets, and we send a signal to the processes waiting to read.
497 *
498 * wakeup(sc) is the counterpart to the tsleep call in
499 * tap_dev_read, while selnotify() is used for kevent(2) and
500 * poll(2) (which includes select(2)) listeners.
501 */
502 static void
503 tap_start(struct ifnet *ifp)
504 {
505 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
506 struct mbuf *m0;
507
508 if ((sc->sc_flags & TAP_INUSE) == 0) {
509 /* Simply drop packets */
510 for(;;) {
511 IFQ_DEQUEUE(&ifp->if_snd, m0);
512 if (m0 == NULL)
513 return;
514
515 ifp->if_opackets++;
516 bpf_mtap(ifp, m0);
517
518 m_freem(m0);
519 }
520 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
521 ifp->if_flags |= IFF_OACTIVE;
522 wakeup(sc);
523 selnotify(&sc->sc_rsel, 0, 1);
524 if (sc->sc_flags & TAP_ASYNCIO)
525 softint_schedule(sc->sc_sih);
526 }
527 }
528
529 static void
530 tap_softintr(void *cookie)
531 {
532 struct tap_softc *sc;
533 struct ifnet *ifp;
534 int a, b;
535
536 sc = cookie;
537
538 if (sc->sc_flags & TAP_ASYNCIO) {
539 ifp = &sc->sc_ec.ec_if;
540 if (ifp->if_flags & IFF_RUNNING) {
541 a = POLL_IN;
542 b = POLLIN|POLLRDNORM;
543 } else {
544 a = POLL_HUP;
545 b = 0;
546 }
547 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
548 }
549 }
550
551 /*
552 * A typical driver will only contain the following handlers for
553 * ioctl calls, except SIOCSIFPHYADDR.
554 * The latter is a hack I used to set the Ethernet address of the
555 * faked device.
556 *
557 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
558 * called under splnet().
559 */
560 static int
561 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
562 {
563 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
564 struct ifreq *ifr = (struct ifreq *)data;
565 int s, error;
566
567 s = splnet();
568
569 switch (cmd) {
570 #ifdef OSIOCSIFMEDIA
571 case OSIOCSIFMEDIA:
572 #endif
573 case SIOCSIFMEDIA:
574 case SIOCGIFMEDIA:
575 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
576 break;
577 case SIOCSIFPHYADDR:
578 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
579 break;
580 default:
581 error = ether_ioctl(ifp, cmd, data);
582 if (error == ENETRESET)
583 error = 0;
584 break;
585 }
586
587 splx(s);
588
589 return error;
590 }
591
592 /*
593 * Helper function to set Ethernet address. This has been replaced by
594 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
595 */
596 static int
597 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
598 {
599 const struct sockaddr *sa = &ifra->ifra_addr;
600
601 if (sa->sa_family != AF_LINK)
602 return EINVAL;
603
604 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
605
606 return 0;
607 }
608
609 /*
610 * _init() would typically be called when an interface goes up,
611 * meaning it should configure itself into the state in which it
612 * can send packets.
613 */
614 static int
615 tap_init(struct ifnet *ifp)
616 {
617 ifp->if_flags |= IFF_RUNNING;
618
619 tap_start(ifp);
620
621 return 0;
622 }
623
624 /*
625 * _stop() is called when an interface goes down. It is our
626 * responsability to validate that state by clearing the
627 * IFF_RUNNING flag.
628 *
629 * We have to wake up all the sleeping processes to have the pending
630 * read requests cancelled.
631 */
632 static void
633 tap_stop(struct ifnet *ifp, int disable)
634 {
635 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
636
637 ifp->if_flags &= ~IFF_RUNNING;
638 wakeup(sc);
639 selnotify(&sc->sc_rsel, 0, 1);
640 if (sc->sc_flags & TAP_ASYNCIO)
641 softint_schedule(sc->sc_sih);
642 }
643
644 /*
645 * The 'create' command of ifconfig can be used to create
646 * any numbered instance of a given device. Thus we have to
647 * make sure we have enough room in cd_devs to create the
648 * user-specified instance. config_attach_pseudo will do this
649 * for us.
650 */
651 static int
652 tap_clone_create(struct if_clone *ifc, int unit)
653 {
654 if (tap_clone_creator(unit) == NULL) {
655 aprint_error("%s%d: unable to attach an instance\n",
656 tap_cd.cd_name, unit);
657 return ENXIO;
658 }
659 atomic_inc_uint(&tap_count);
660 return 0;
661 }
662
663 /*
664 * tap(4) can be cloned by two ways:
665 * using 'ifconfig tap0 create', which will use the network
666 * interface cloning API, and call tap_clone_create above.
667 * opening the cloning device node, whose minor number is TAP_CLONER.
668 * See below for an explanation on how this part work.
669 */
670 static struct tap_softc *
671 tap_clone_creator(int unit)
672 {
673 cfdata_t cf;
674
675 cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
676 cf->cf_name = tap_cd.cd_name;
677 cf->cf_atname = tap_ca.ca_name;
678 if (unit == -1) {
679 /* let autoconf find the first free one */
680 cf->cf_unit = 0;
681 cf->cf_fstate = FSTATE_STAR;
682 } else {
683 cf->cf_unit = unit;
684 cf->cf_fstate = FSTATE_NOTFOUND;
685 }
686
687 return device_private(config_attach_pseudo(cf));
688 }
689
690 /*
691 * The clean design of if_clone and autoconf(9) makes that part
692 * really straightforward. The second argument of config_detach
693 * means neither QUIET nor FORCED.
694 */
695 static int
696 tap_clone_destroy(struct ifnet *ifp)
697 {
698 struct tap_softc *sc = ifp->if_softc;
699 int error = tap_clone_destroyer(sc->sc_dev);
700
701 if (error == 0)
702 atomic_dec_uint(&tap_count);
703 return error;
704 }
705
706 int
707 tap_clone_destroyer(device_t dev)
708 {
709 cfdata_t cf = device_cfdata(dev);
710 int error;
711
712 if ((error = config_detach(dev, 0)) != 0)
713 aprint_error_dev(dev, "unable to detach instance\n");
714 kmem_free(cf, sizeof(*cf));
715
716 return error;
717 }
718
719 /*
720 * tap(4) is a bit of an hybrid device. It can be used in two different
721 * ways:
722 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
723 * 2. open /dev/tap, get a new interface created and read/write off it.
724 * That interface is destroyed when the process that had it created exits.
725 *
726 * The first way is managed by the cdevsw structure, and you access interfaces
727 * through a (major, minor) mapping: tap4 is obtained by the minor number
728 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
729 *
730 * The second way is the so-called "cloning" device. It's a special minor
731 * number (chosen as the maximal number, to allow as much tap devices as
732 * possible). The user first opens the cloner (e.g., /dev/tap), and that
733 * call ends in tap_cdev_open. The actual place where it is handled is
734 * tap_dev_cloner.
735 *
736 * An tap device cannot be opened more than once at a time, so the cdevsw
737 * part of open() does nothing but noting that the interface is being used and
738 * hence ready to actually handle packets.
739 */
740
741 static int
742 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
743 {
744 struct tap_softc *sc;
745
746 if (minor(dev) == TAP_CLONER)
747 return tap_dev_cloner(l);
748
749 sc = device_lookup_private(&tap_cd, minor(dev));
750 if (sc == NULL)
751 return ENXIO;
752
753 /* The device can only be opened once */
754 if (sc->sc_flags & TAP_INUSE)
755 return EBUSY;
756 sc->sc_flags |= TAP_INUSE;
757 return 0;
758 }
759
760 /*
761 * There are several kinds of cloning devices, and the most simple is the one
762 * tap(4) uses. What it does is change the file descriptor with a new one,
763 * with its own fileops structure (which maps to the various read, write,
764 * ioctl functions). It starts allocating a new file descriptor with falloc,
765 * then actually creates the new tap devices.
766 *
767 * Once those two steps are successful, we can re-wire the existing file
768 * descriptor to its new self. This is done with fdclone(): it fills the fp
769 * structure as needed (notably f_devunit gets filled with the fifth parameter
770 * passed, the unit of the tap device which will allows us identifying the
771 * device later), and returns EMOVEFD.
772 *
773 * That magic value is interpreted by sys_open() which then replaces the
774 * current file descriptor by the new one (through a magic member of struct
775 * lwp, l_dupfd).
776 *
777 * The tap device is flagged as being busy since it otherwise could be
778 * externally accessed through the corresponding device node with the cdevsw
779 * interface.
780 */
781
782 static int
783 tap_dev_cloner(struct lwp *l)
784 {
785 struct tap_softc *sc;
786 file_t *fp;
787 int error, fd;
788
789 if ((error = fd_allocfile(&fp, &fd)) != 0)
790 return error;
791
792 if ((sc = tap_clone_creator(-1)) == NULL) {
793 fd_abort(curproc, fp, fd);
794 return ENXIO;
795 }
796
797 sc->sc_flags |= TAP_INUSE;
798
799 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
800 (void *)(intptr_t)device_unit(sc->sc_dev));
801 }
802
803 /*
804 * While all other operations (read, write, ioctl, poll and kqfilter) are
805 * really the same whether we are in cdevsw or fileops mode, the close()
806 * function is slightly different in the two cases.
807 *
808 * As for the other, the core of it is shared in tap_dev_close. What
809 * it does is sufficient for the cdevsw interface, but the cloning interface
810 * needs another thing: the interface is destroyed when the processes that
811 * created it closes it.
812 */
813 static int
814 tap_cdev_close(dev_t dev, int flags, int fmt,
815 struct lwp *l)
816 {
817 struct tap_softc *sc =
818 device_lookup_private(&tap_cd, minor(dev));
819
820 if (sc == NULL)
821 return ENXIO;
822
823 return tap_dev_close(sc);
824 }
825
826 /*
827 * It might happen that the administrator used ifconfig to externally destroy
828 * the interface. In that case, tap_fops_close will be called while
829 * tap_detach is already happening. If we called it again from here, we
830 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
831 */
832 static int
833 tap_fops_close(file_t *fp)
834 {
835 int unit = fp->f_devunit;
836 struct tap_softc *sc;
837 int error;
838
839 sc = device_lookup_private(&tap_cd, unit);
840 if (sc == NULL)
841 return ENXIO;
842
843 /* tap_dev_close currently always succeeds, but it might not
844 * always be the case. */
845 KERNEL_LOCK(1, NULL);
846 if ((error = tap_dev_close(sc)) != 0) {
847 KERNEL_UNLOCK_ONE(NULL);
848 return error;
849 }
850
851 /* Destroy the device now that it is no longer useful,
852 * unless it's already being destroyed. */
853 if ((sc->sc_flags & TAP_GOING) != 0) {
854 KERNEL_UNLOCK_ONE(NULL);
855 return 0;
856 }
857
858 error = tap_clone_destroyer(sc->sc_dev);
859 KERNEL_UNLOCK_ONE(NULL);
860 return error;
861 }
862
863 static int
864 tap_dev_close(struct tap_softc *sc)
865 {
866 struct ifnet *ifp;
867 int s;
868
869 s = splnet();
870 /* Let tap_start handle packets again */
871 ifp = &sc->sc_ec.ec_if;
872 ifp->if_flags &= ~IFF_OACTIVE;
873
874 /* Purge output queue */
875 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
876 struct mbuf *m;
877
878 for (;;) {
879 IFQ_DEQUEUE(&ifp->if_snd, m);
880 if (m == NULL)
881 break;
882
883 ifp->if_opackets++;
884 bpf_mtap(ifp, m);
885 m_freem(m);
886 }
887 }
888 splx(s);
889
890 if (sc->sc_sih != NULL) {
891 softint_disestablish(sc->sc_sih);
892 sc->sc_sih = NULL;
893 }
894 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
895
896 return 0;
897 }
898
899 static int
900 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
901 {
902 return tap_dev_read(minor(dev), uio, flags);
903 }
904
905 static int
906 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
907 kauth_cred_t cred, int flags)
908 {
909 int error;
910
911 KERNEL_LOCK(1, NULL);
912 error = tap_dev_read(fp->f_devunit, uio, flags);
913 KERNEL_UNLOCK_ONE(NULL);
914 return error;
915 }
916
917 static int
918 tap_dev_read(int unit, struct uio *uio, int flags)
919 {
920 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
921 struct ifnet *ifp;
922 struct mbuf *m, *n;
923 int error = 0, s;
924
925 if (sc == NULL)
926 return ENXIO;
927
928 getnanotime(&sc->sc_atime);
929
930 ifp = &sc->sc_ec.ec_if;
931 if ((ifp->if_flags & IFF_UP) == 0)
932 return EHOSTDOWN;
933
934 /*
935 * In the TAP_NBIO case, we have to make sure we won't be sleeping
936 */
937 if ((sc->sc_flags & TAP_NBIO) != 0) {
938 if (!mutex_tryenter(&sc->sc_rdlock))
939 return EWOULDBLOCK;
940 } else {
941 mutex_enter(&sc->sc_rdlock);
942 }
943
944 s = splnet();
945 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
946 ifp->if_flags &= ~IFF_OACTIVE;
947 /*
948 * We must release the lock before sleeping, and re-acquire it
949 * after.
950 */
951 mutex_exit(&sc->sc_rdlock);
952 if (sc->sc_flags & TAP_NBIO)
953 error = EWOULDBLOCK;
954 else
955 error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
956 splx(s);
957
958 if (error != 0)
959 return error;
960 /* The device might have been downed */
961 if ((ifp->if_flags & IFF_UP) == 0)
962 return EHOSTDOWN;
963 if ((sc->sc_flags & TAP_NBIO)) {
964 if (!mutex_tryenter(&sc->sc_rdlock))
965 return EWOULDBLOCK;
966 } else {
967 mutex_enter(&sc->sc_rdlock);
968 }
969 s = splnet();
970 }
971
972 IFQ_DEQUEUE(&ifp->if_snd, m);
973 ifp->if_flags &= ~IFF_OACTIVE;
974 splx(s);
975 if (m == NULL) {
976 error = 0;
977 goto out;
978 }
979
980 ifp->if_opackets++;
981 bpf_mtap(ifp, m);
982
983 /*
984 * One read is one packet.
985 */
986 do {
987 error = uiomove(mtod(m, void *),
988 min(m->m_len, uio->uio_resid), uio);
989 m = n = m_free(m);
990 } while (m != NULL && uio->uio_resid > 0 && error == 0);
991
992 if (m != NULL)
993 m_freem(m);
994
995 out:
996 mutex_exit(&sc->sc_rdlock);
997 return error;
998 }
999
1000 static int
1001 tap_fops_stat(file_t *fp, struct stat *st)
1002 {
1003 int error = 0;
1004 struct tap_softc *sc;
1005 int unit = fp->f_devunit;
1006
1007 (void)memset(st, 0, sizeof(*st));
1008
1009 KERNEL_LOCK(1, NULL);
1010 sc = device_lookup_private(&tap_cd, unit);
1011 if (sc == NULL) {
1012 error = ENXIO;
1013 goto out;
1014 }
1015
1016 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1017 st->st_atimespec = sc->sc_atime;
1018 st->st_mtimespec = sc->sc_mtime;
1019 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1020 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1021 st->st_gid = kauth_cred_getegid(fp->f_cred);
1022 out:
1023 KERNEL_UNLOCK_ONE(NULL);
1024 return error;
1025 }
1026
1027 static int
1028 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1029 {
1030 return tap_dev_write(minor(dev), uio, flags);
1031 }
1032
1033 static int
1034 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1035 kauth_cred_t cred, int flags)
1036 {
1037 int error;
1038
1039 KERNEL_LOCK(1, NULL);
1040 error = tap_dev_write(fp->f_devunit, uio, flags);
1041 KERNEL_UNLOCK_ONE(NULL);
1042 return error;
1043 }
1044
1045 static int
1046 tap_dev_write(int unit, struct uio *uio, int flags)
1047 {
1048 struct tap_softc *sc =
1049 device_lookup_private(&tap_cd, unit);
1050 struct ifnet *ifp;
1051 struct mbuf *m, **mp;
1052 int error = 0;
1053 int s;
1054
1055 if (sc == NULL)
1056 return ENXIO;
1057
1058 getnanotime(&sc->sc_mtime);
1059 ifp = &sc->sc_ec.ec_if;
1060
1061 /* One write, one packet, that's the rule */
1062 MGETHDR(m, M_DONTWAIT, MT_DATA);
1063 if (m == NULL) {
1064 ifp->if_ierrors++;
1065 return ENOBUFS;
1066 }
1067 m->m_pkthdr.len = uio->uio_resid;
1068
1069 mp = &m;
1070 while (error == 0 && uio->uio_resid > 0) {
1071 if (*mp != m) {
1072 MGET(*mp, M_DONTWAIT, MT_DATA);
1073 if (*mp == NULL) {
1074 error = ENOBUFS;
1075 break;
1076 }
1077 }
1078 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1079 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1080 mp = &(*mp)->m_next;
1081 }
1082 if (error) {
1083 ifp->if_ierrors++;
1084 m_freem(m);
1085 return error;
1086 }
1087
1088 m_set_rcvif(m, ifp);
1089
1090 s = splnet();
1091 if_input(ifp, m);
1092 splx(s);
1093
1094 return 0;
1095 }
1096
1097 static int
1098 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1099 struct lwp *l)
1100 {
1101 return tap_dev_ioctl(minor(dev), cmd, data, l);
1102 }
1103
1104 static int
1105 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1106 {
1107 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1108 }
1109
1110 static int
1111 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1112 {
1113 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1114
1115 if (sc == NULL)
1116 return ENXIO;
1117
1118 switch (cmd) {
1119 case FIONREAD:
1120 {
1121 struct ifnet *ifp = &sc->sc_ec.ec_if;
1122 struct mbuf *m;
1123 int s;
1124
1125 s = splnet();
1126 IFQ_POLL(&ifp->if_snd, m);
1127
1128 if (m == NULL)
1129 *(int *)data = 0;
1130 else
1131 *(int *)data = m->m_pkthdr.len;
1132 splx(s);
1133 return 0;
1134 }
1135 case TIOCSPGRP:
1136 case FIOSETOWN:
1137 return fsetown(&sc->sc_pgid, cmd, data);
1138 case TIOCGPGRP:
1139 case FIOGETOWN:
1140 return fgetown(sc->sc_pgid, cmd, data);
1141 case FIOASYNC:
1142 if (*(int *)data) {
1143 if (sc->sc_sih == NULL) {
1144 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1145 tap_softintr, sc);
1146 if (sc->sc_sih == NULL)
1147 return EBUSY; /* XXX */
1148 }
1149 sc->sc_flags |= TAP_ASYNCIO;
1150 } else {
1151 sc->sc_flags &= ~TAP_ASYNCIO;
1152 if (sc->sc_sih != NULL) {
1153 softint_disestablish(sc->sc_sih);
1154 sc->sc_sih = NULL;
1155 }
1156 }
1157 return 0;
1158 case FIONBIO:
1159 if (*(int *)data)
1160 sc->sc_flags |= TAP_NBIO;
1161 else
1162 sc->sc_flags &= ~TAP_NBIO;
1163 return 0;
1164 #ifdef OTAPGIFNAME
1165 case OTAPGIFNAME:
1166 #endif
1167 case TAPGIFNAME:
1168 {
1169 struct ifreq *ifr = (struct ifreq *)data;
1170 struct ifnet *ifp = &sc->sc_ec.ec_if;
1171
1172 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1173 return 0;
1174 }
1175 default:
1176 return ENOTTY;
1177 }
1178 }
1179
1180 static int
1181 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1182 {
1183 return tap_dev_poll(minor(dev), events, l);
1184 }
1185
1186 static int
1187 tap_fops_poll(file_t *fp, int events)
1188 {
1189 return tap_dev_poll(fp->f_devunit, events, curlwp);
1190 }
1191
1192 static int
1193 tap_dev_poll(int unit, int events, struct lwp *l)
1194 {
1195 struct tap_softc *sc =
1196 device_lookup_private(&tap_cd, unit);
1197 int revents = 0;
1198
1199 if (sc == NULL)
1200 return POLLERR;
1201
1202 if (events & (POLLIN|POLLRDNORM)) {
1203 struct ifnet *ifp = &sc->sc_ec.ec_if;
1204 struct mbuf *m;
1205 int s;
1206
1207 s = splnet();
1208 IFQ_POLL(&ifp->if_snd, m);
1209
1210 if (m != NULL)
1211 revents |= events & (POLLIN|POLLRDNORM);
1212 else {
1213 mutex_spin_enter(&sc->sc_kqlock);
1214 selrecord(l, &sc->sc_rsel);
1215 mutex_spin_exit(&sc->sc_kqlock);
1216 }
1217 splx(s);
1218 }
1219 revents |= events & (POLLOUT|POLLWRNORM);
1220
1221 return revents;
1222 }
1223
1224 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1225 tap_kqread };
1226 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1227 filt_seltrue };
1228
1229 static int
1230 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1231 {
1232 return tap_dev_kqfilter(minor(dev), kn);
1233 }
1234
1235 static int
1236 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1237 {
1238 return tap_dev_kqfilter(fp->f_devunit, kn);
1239 }
1240
1241 static int
1242 tap_dev_kqfilter(int unit, struct knote *kn)
1243 {
1244 struct tap_softc *sc =
1245 device_lookup_private(&tap_cd, unit);
1246
1247 if (sc == NULL)
1248 return ENXIO;
1249
1250 KERNEL_LOCK(1, NULL);
1251 switch(kn->kn_filter) {
1252 case EVFILT_READ:
1253 kn->kn_fop = &tap_read_filterops;
1254 break;
1255 case EVFILT_WRITE:
1256 kn->kn_fop = &tap_seltrue_filterops;
1257 break;
1258 default:
1259 KERNEL_UNLOCK_ONE(NULL);
1260 return EINVAL;
1261 }
1262
1263 kn->kn_hook = sc;
1264 mutex_spin_enter(&sc->sc_kqlock);
1265 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1266 mutex_spin_exit(&sc->sc_kqlock);
1267 KERNEL_UNLOCK_ONE(NULL);
1268 return 0;
1269 }
1270
1271 static void
1272 tap_kqdetach(struct knote *kn)
1273 {
1274 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1275
1276 KERNEL_LOCK(1, NULL);
1277 mutex_spin_enter(&sc->sc_kqlock);
1278 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1279 mutex_spin_exit(&sc->sc_kqlock);
1280 KERNEL_UNLOCK_ONE(NULL);
1281 }
1282
1283 static int
1284 tap_kqread(struct knote *kn, long hint)
1285 {
1286 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1287 struct ifnet *ifp = &sc->sc_ec.ec_if;
1288 struct mbuf *m;
1289 int s, rv;
1290
1291 KERNEL_LOCK(1, NULL);
1292 s = splnet();
1293 IFQ_POLL(&ifp->if_snd, m);
1294
1295 if (m == NULL)
1296 kn->kn_data = 0;
1297 else
1298 kn->kn_data = m->m_pkthdr.len;
1299 splx(s);
1300 rv = (kn->kn_data != 0 ? 1 : 0);
1301 KERNEL_UNLOCK_ONE(NULL);
1302 return rv;
1303 }
1304
1305 /*
1306 * sysctl management routines
1307 * You can set the address of an interface through:
1308 * net.link.tap.tap<number>
1309 *
1310 * Note the consistent use of tap_log in order to use
1311 * sysctl_teardown at unload time.
1312 *
1313 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1314 * blocks register a function in a special section of the kernel
1315 * (called a link set) which is used at init_sysctl() time to cycle
1316 * through all those functions to create the kernel's sysctl tree.
1317 *
1318 * It is not possible to use link sets in a module, so the
1319 * easiest is to simply call our own setup routine at load time.
1320 *
1321 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1322 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1323 * whole kernel sysctl tree is built, it is not possible to add any
1324 * permanent node.
1325 *
1326 * It should be noted that we're not saving the sysctlnode pointer
1327 * we are returned when creating the "tap" node. That structure
1328 * cannot be trusted once out of the calling function, as it might
1329 * get reused. So we just save the MIB number, and always give the
1330 * full path starting from the root for later calls to sysctl_createv
1331 * and sysctl_destroyv.
1332 */
1333 static void
1334 sysctl_tap_setup(struct sysctllog **clog)
1335 {
1336 const struct sysctlnode *node;
1337 int error = 0;
1338
1339 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1340 CTLFLAG_PERMANENT,
1341 CTLTYPE_NODE, "link", NULL,
1342 NULL, 0, NULL, 0,
1343 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1344 return;
1345
1346 /*
1347 * The first four parameters of sysctl_createv are for management.
1348 *
1349 * The four that follows, here starting with a '0' for the flags,
1350 * describe the node.
1351 *
1352 * The next series of four set its value, through various possible
1353 * means.
1354 *
1355 * Last but not least, the path to the node is described. That path
1356 * is relative to the given root (third argument). Here we're
1357 * starting from the root.
1358 */
1359 if ((error = sysctl_createv(clog, 0, NULL, &node,
1360 CTLFLAG_PERMANENT,
1361 CTLTYPE_NODE, "tap", NULL,
1362 NULL, 0, NULL, 0,
1363 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1364 return;
1365 tap_node = node->sysctl_num;
1366 }
1367
1368 /*
1369 * The helper functions make Andrew Brown's interface really
1370 * shine. It makes possible to create value on the fly whether
1371 * the sysctl value is read or written.
1372 *
1373 * As shown as an example in the man page, the first step is to
1374 * create a copy of the node to have sysctl_lookup work on it.
1375 *
1376 * Here, we have more work to do than just a copy, since we have
1377 * to create the string. The first step is to collect the actual
1378 * value of the node, which is a convenient pointer to the softc
1379 * of the interface. From there we create the string and use it
1380 * as the value, but only for the *copy* of the node.
1381 *
1382 * Then we let sysctl_lookup do the magic, which consists in
1383 * setting oldp and newp as required by the operation. When the
1384 * value is read, that means that the string will be copied to
1385 * the user, and when it is written, the new value will be copied
1386 * over in the addr array.
1387 *
1388 * If newp is NULL, the user was reading the value, so we don't
1389 * have anything else to do. If a new value was written, we
1390 * have to check it.
1391 *
1392 * If it is incorrect, we can return an error and leave 'node' as
1393 * it is: since it is a copy of the actual node, the change will
1394 * be forgotten.
1395 *
1396 * Upon a correct input, we commit the change to the ifnet
1397 * structure of our interface.
1398 */
1399 static int
1400 tap_sysctl_handler(SYSCTLFN_ARGS)
1401 {
1402 struct sysctlnode node;
1403 struct tap_softc *sc;
1404 struct ifnet *ifp;
1405 int error;
1406 size_t len;
1407 char addr[3 * ETHER_ADDR_LEN];
1408 uint8_t enaddr[ETHER_ADDR_LEN];
1409
1410 node = *rnode;
1411 sc = node.sysctl_data;
1412 ifp = &sc->sc_ec.ec_if;
1413 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1414 node.sysctl_data = addr;
1415 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1416 if (error || newp == NULL)
1417 return error;
1418
1419 len = strlen(addr);
1420 if (len < 11 || len > 17)
1421 return EINVAL;
1422
1423 /* Commit change */
1424 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1425 return EINVAL;
1426 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1427 return error;
1428 }
1429
1430 /*
1431 * Module infrastructure
1432 */
1433 #include "if_module.h"
1434
1435 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1436