Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.99
      1 /*	$NetBSD: if_tap.c,v 1.99 2017/02/12 09:47:31 skrll Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.99 2017/02/12 09:47:31 skrll Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/atomic.h>
     46 #include <sys/conf.h>
     47 #include <sys/cprng.h>
     48 #include <sys/device.h>
     49 #include <sys/file.h>
     50 #include <sys/filedesc.h>
     51 #include <sys/intr.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/kmem.h>
     55 #include <sys/module.h>
     56 #include <sys/mutex.h>
     57 #include <sys/poll.h>
     58 #include <sys/proc.h>
     59 #include <sys/select.h>
     60 #include <sys/sockio.h>
     61 #include <sys/stat.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/systm.h>
     64 
     65 #include <net/if.h>
     66 #include <net/if_dl.h>
     67 #include <net/if_ether.h>
     68 #include <net/if_media.h>
     69 #include <net/if_tap.h>
     70 #include <net/bpf.h>
     71 
     72 #include <compat/sys/sockio.h>
     73 
     74 #include "ioconf.h"
     75 
     76 /*
     77  * sysctl node management
     78  *
     79  * It's not really possible to use a SYSCTL_SETUP block with
     80  * current module implementation, so it is easier to just define
     81  * our own function.
     82  *
     83  * The handler function is a "helper" in Andrew Brown's sysctl
     84  * framework terminology.  It is used as a gateway for sysctl
     85  * requests over the nodes.
     86  *
     87  * tap_log allows the module to log creations of nodes and
     88  * destroy them all at once using sysctl_teardown.
     89  */
     90 static int	tap_node;
     91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92 static void	sysctl_tap_setup(struct sysctllog **);
     93 
     94 /*
     95  * Since we're an Ethernet device, we need the 2 following
     96  * components: a struct ethercom and a struct ifmedia
     97  * since we don't attach a PHY to ourselves.
     98  * We could emulate one, but there's no real point.
     99  */
    100 
    101 struct tap_softc {
    102 	device_t	sc_dev;
    103 	struct ifmedia	sc_im;
    104 	struct ethercom	sc_ec;
    105 	int		sc_flags;
    106 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    107 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    108 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    109 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    110 	struct selinfo	sc_rsel;
    111 	pid_t		sc_pgid; /* For async. IO */
    112 	kmutex_t	sc_rdlock;
    113 	kmutex_t	sc_kqlock;
    114 	void		*sc_sih;
    115 	struct timespec sc_atime;
    116 	struct timespec sc_mtime;
    117 	struct timespec sc_btime;
    118 };
    119 
    120 /* autoconf(9) glue */
    121 
    122 static int	tap_match(device_t, cfdata_t, void *);
    123 static void	tap_attach(device_t, device_t, void *);
    124 static int	tap_detach(device_t, int);
    125 
    126 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    127     tap_match, tap_attach, tap_detach, NULL);
    128 extern struct cfdriver tap_cd;
    129 
    130 /* Real device access routines */
    131 static int	tap_dev_close(struct tap_softc *);
    132 static int	tap_dev_read(int, struct uio *, int);
    133 static int	tap_dev_write(int, struct uio *, int);
    134 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    135 static int	tap_dev_poll(int, int, struct lwp *);
    136 static int	tap_dev_kqfilter(int, struct knote *);
    137 
    138 /* Fileops access routines */
    139 static int	tap_fops_close(file_t *);
    140 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    141     kauth_cred_t, int);
    142 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    143     kauth_cred_t, int);
    144 static int	tap_fops_ioctl(file_t *, u_long, void *);
    145 static int	tap_fops_poll(file_t *, int);
    146 static int	tap_fops_stat(file_t *, struct stat *);
    147 static int	tap_fops_kqfilter(file_t *, struct knote *);
    148 
    149 static const struct fileops tap_fileops = {
    150 	.fo_read = tap_fops_read,
    151 	.fo_write = tap_fops_write,
    152 	.fo_ioctl = tap_fops_ioctl,
    153 	.fo_fcntl = fnullop_fcntl,
    154 	.fo_poll = tap_fops_poll,
    155 	.fo_stat = tap_fops_stat,
    156 	.fo_close = tap_fops_close,
    157 	.fo_kqfilter = tap_fops_kqfilter,
    158 	.fo_restart = fnullop_restart,
    159 };
    160 
    161 /* Helper for cloning open() */
    162 static int	tap_dev_cloner(struct lwp *);
    163 
    164 /* Character device routines */
    165 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    166 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    167 static int	tap_cdev_read(dev_t, struct uio *, int);
    168 static int	tap_cdev_write(dev_t, struct uio *, int);
    169 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    170 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    171 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    172 
    173 const struct cdevsw tap_cdevsw = {
    174 	.d_open = tap_cdev_open,
    175 	.d_close = tap_cdev_close,
    176 	.d_read = tap_cdev_read,
    177 	.d_write = tap_cdev_write,
    178 	.d_ioctl = tap_cdev_ioctl,
    179 	.d_stop = nostop,
    180 	.d_tty = notty,
    181 	.d_poll = tap_cdev_poll,
    182 	.d_mmap = nommap,
    183 	.d_kqfilter = tap_cdev_kqfilter,
    184 	.d_discard = nodiscard,
    185 	.d_flag = D_OTHER
    186 };
    187 
    188 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    189 
    190 /* kqueue-related routines */
    191 static void	tap_kqdetach(struct knote *);
    192 static int	tap_kqread(struct knote *, long);
    193 
    194 /*
    195  * Those are needed by the if_media interface.
    196  */
    197 
    198 static int	tap_mediachange(struct ifnet *);
    199 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    200 
    201 /*
    202  * Those are needed by the ifnet interface, and would typically be
    203  * there for any network interface driver.
    204  * Some other routines are optional: watchdog and drain.
    205  */
    206 
    207 static void	tap_start(struct ifnet *);
    208 static void	tap_stop(struct ifnet *, int);
    209 static int	tap_init(struct ifnet *);
    210 static int	tap_ioctl(struct ifnet *, u_long, void *);
    211 
    212 /* Internal functions */
    213 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    214 static void	tap_softintr(void *);
    215 
    216 /*
    217  * tap is a clonable interface, although it is highly unrealistic for
    218  * an Ethernet device.
    219  *
    220  * Here are the bits needed for a clonable interface.
    221  */
    222 static int	tap_clone_create(struct if_clone *, int);
    223 static int	tap_clone_destroy(struct ifnet *);
    224 
    225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    226 					tap_clone_create,
    227 					tap_clone_destroy);
    228 
    229 /* Helper functions shared by the two cloning code paths */
    230 static struct tap_softc *	tap_clone_creator(int);
    231 int	tap_clone_destroyer(device_t);
    232 
    233 static struct sysctllog *tap_sysctl_clog;
    234 
    235 #ifdef _MODULE
    236 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    237 #endif
    238 
    239 static u_int tap_count;
    240 
    241 void
    242 tapattach(int n)
    243 {
    244 
    245 	/*
    246 	 * Nothing to do here, initialization is handled by the
    247 	 * module initialization code in tapinit() below).
    248 	 */
    249 }
    250 
    251 static void
    252 tapinit(void)
    253 {
    254 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    255 	if (error) {
    256 		aprint_error("%s: unable to register cfattach\n",
    257 		    tap_cd.cd_name);
    258 		(void)config_cfdriver_detach(&tap_cd);
    259 		return;
    260 	}
    261 
    262 	if_clone_attach(&tap_cloners);
    263 	sysctl_tap_setup(&tap_sysctl_clog);
    264 #ifdef _MODULE
    265 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    266 #endif
    267 }
    268 
    269 static int
    270 tapdetach(void)
    271 {
    272 	int error = 0;
    273 
    274 	if (tap_count != 0)
    275 		return EBUSY;
    276 
    277 #ifdef _MODULE
    278 	if (error == 0)
    279 		error = devsw_detach(NULL, &tap_cdevsw);
    280 #endif
    281 	if (error == 0)
    282 		sysctl_teardown(&tap_sysctl_clog);
    283 	if (error == 0)
    284 		if_clone_detach(&tap_cloners);
    285 
    286 	if (error == 0)
    287 		error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    288 
    289 	return error;
    290 }
    291 
    292 /* Pretty much useless for a pseudo-device */
    293 static int
    294 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    295 {
    296 
    297 	return 1;
    298 }
    299 
    300 void
    301 tap_attach(device_t parent, device_t self, void *aux)
    302 {
    303 	struct tap_softc *sc = device_private(self);
    304 	struct ifnet *ifp;
    305 	const struct sysctlnode *node;
    306 	int error;
    307 	uint8_t enaddr[ETHER_ADDR_LEN] =
    308 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    309 	char enaddrstr[3 * ETHER_ADDR_LEN];
    310 
    311 	sc->sc_dev = self;
    312 	sc->sc_sih = NULL;
    313 	getnanotime(&sc->sc_btime);
    314 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    315 	sc->sc_flags = 0;
    316 	selinit(&sc->sc_rsel);
    317 
    318 	/*
    319 	 * Initialize the two locks for the device.
    320 	 *
    321 	 * We need a lock here because even though the tap device can be
    322 	 * opened only once, the file descriptor might be passed to another
    323 	 * process, say a fork(2)ed child.
    324 	 *
    325 	 * The Giant saves us from most of the hassle, but since the read
    326 	 * operation can sleep, we don't want two processes to wake up at
    327 	 * the same moment and both try and dequeue a single packet.
    328 	 *
    329 	 * The queue for event listeners (used by kqueue(9), see below) has
    330 	 * to be protected too, so use a spin lock.
    331 	 */
    332 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    333 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    334 
    335 	if (!pmf_device_register(self, NULL, NULL))
    336 		aprint_error_dev(self, "couldn't establish power handler\n");
    337 
    338 	/*
    339 	 * In order to obtain unique initial Ethernet address on a host,
    340 	 * do some randomisation.  It's not meant for anything but avoiding
    341 	 * hard-coding an address.
    342 	 */
    343 	cprng_fast(&enaddr[3], 3);
    344 
    345 	aprint_verbose_dev(self, "Ethernet address %s\n",
    346 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    347 
    348 	/*
    349 	 * Why 1000baseT? Why not? You can add more.
    350 	 *
    351 	 * Note that there are 3 steps: init, one or several additions to
    352 	 * list of supported media, and in the end, the selection of one
    353 	 * of them.
    354 	 */
    355 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    356 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    357 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    358 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    359 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    360 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    361 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    362 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    363 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    364 
    365 	/*
    366 	 * One should note that an interface must do multicast in order
    367 	 * to support IPv6.
    368 	 */
    369 	ifp = &sc->sc_ec.ec_if;
    370 	strcpy(ifp->if_xname, device_xname(self));
    371 	ifp->if_softc	= sc;
    372 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    373 	ifp->if_ioctl	= tap_ioctl;
    374 	ifp->if_start	= tap_start;
    375 	ifp->if_stop	= tap_stop;
    376 	ifp->if_init	= tap_init;
    377 	IFQ_SET_READY(&ifp->if_snd);
    378 
    379 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    380 
    381 	/* Those steps are mandatory for an Ethernet driver. */
    382 	if_initialize(ifp);
    383 	ether_ifattach(ifp, enaddr);
    384 	if_register(ifp);
    385 
    386 	/*
    387 	 * Add a sysctl node for that interface.
    388 	 *
    389 	 * The pointer transmitted is not a string, but instead a pointer to
    390 	 * the softc structure, which we can use to build the string value on
    391 	 * the fly in the helper function of the node.  See the comments for
    392 	 * tap_sysctl_handler for details.
    393 	 *
    394 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    395 	 * component.  However, we can allocate a number ourselves, as we are
    396 	 * the only consumer of the net.link.<iface> node.  In this case, the
    397 	 * unit number is conveniently used to number the node.  CTL_CREATE
    398 	 * would just work, too.
    399 	 */
    400 	if ((error = sysctl_createv(NULL, 0, NULL,
    401 	    &node, CTLFLAG_READWRITE,
    402 	    CTLTYPE_STRING, device_xname(self), NULL,
    403 	    tap_sysctl_handler, 0, (void *)sc, 18,
    404 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    405 	    CTL_EOL)) != 0)
    406 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    407 		    error);
    408 }
    409 
    410 /*
    411  * When detaching, we do the inverse of what is done in the attach
    412  * routine, in reversed order.
    413  */
    414 static int
    415 tap_detach(device_t self, int flags)
    416 {
    417 	struct tap_softc *sc = device_private(self);
    418 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    419 	int error;
    420 	int s;
    421 
    422 	sc->sc_flags |= TAP_GOING;
    423 	s = splnet();
    424 	tap_stop(ifp, 1);
    425 	if_down(ifp);
    426 	splx(s);
    427 
    428 	if (sc->sc_sih != NULL) {
    429 		softint_disestablish(sc->sc_sih);
    430 		sc->sc_sih = NULL;
    431 	}
    432 
    433 	/*
    434 	 * Destroying a single leaf is a very straightforward operation using
    435 	 * sysctl_destroyv.  One should be sure to always end the path with
    436 	 * CTL_EOL.
    437 	 */
    438 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    439 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    440 		aprint_error_dev(self,
    441 		    "sysctl_destroyv returned %d, ignoring\n", error);
    442 	ether_ifdetach(ifp);
    443 	if_detach(ifp);
    444 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    445 	seldestroy(&sc->sc_rsel);
    446 	mutex_destroy(&sc->sc_rdlock);
    447 	mutex_destroy(&sc->sc_kqlock);
    448 
    449 	pmf_device_deregister(self);
    450 
    451 	return 0;
    452 }
    453 
    454 /*
    455  * This function is called by the ifmedia layer to notify the driver
    456  * that the user requested a media change.  A real driver would
    457  * reconfigure the hardware.
    458  */
    459 static int
    460 tap_mediachange(struct ifnet *ifp)
    461 {
    462 	return 0;
    463 }
    464 
    465 /*
    466  * Here the user asks for the currently used media.
    467  */
    468 static void
    469 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    470 {
    471 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    472 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    473 }
    474 
    475 /*
    476  * This is the function where we SEND packets.
    477  *
    478  * There is no 'receive' equivalent.  A typical driver will get
    479  * interrupts from the hardware, and from there will inject new packets
    480  * into the network stack.
    481  *
    482  * Once handled, a packet must be freed.  A real driver might not be able
    483  * to fit all the pending packets into the hardware, and is allowed to
    484  * return before having sent all the packets.  It should then use the
    485  * if_flags flag IFF_OACTIVE to notify the upper layer.
    486  *
    487  * There are also other flags one should check, such as IFF_PAUSE.
    488  *
    489  * It is our duty to make packets available to BPF listeners.
    490  *
    491  * You should be aware that this function is called by the Ethernet layer
    492  * at splnet().
    493  *
    494  * When the device is opened, we have to pass the packet(s) to the
    495  * userland.  For that we stay in OACTIVE mode while the userland gets
    496  * the packets, and we send a signal to the processes waiting to read.
    497  *
    498  * wakeup(sc) is the counterpart to the tsleep call in
    499  * tap_dev_read, while selnotify() is used for kevent(2) and
    500  * poll(2) (which includes select(2)) listeners.
    501  */
    502 static void
    503 tap_start(struct ifnet *ifp)
    504 {
    505 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    506 	struct mbuf *m0;
    507 
    508 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    509 		/* Simply drop packets */
    510 		for(;;) {
    511 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    512 			if (m0 == NULL)
    513 				return;
    514 
    515 			ifp->if_opackets++;
    516 			bpf_mtap(ifp, m0);
    517 
    518 			m_freem(m0);
    519 		}
    520 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    521 		ifp->if_flags |= IFF_OACTIVE;
    522 		wakeup(sc);
    523 		selnotify(&sc->sc_rsel, 0, 1);
    524 		if (sc->sc_flags & TAP_ASYNCIO)
    525 			softint_schedule(sc->sc_sih);
    526 	}
    527 }
    528 
    529 static void
    530 tap_softintr(void *cookie)
    531 {
    532 	struct tap_softc *sc;
    533 	struct ifnet *ifp;
    534 	int a, b;
    535 
    536 	sc = cookie;
    537 
    538 	if (sc->sc_flags & TAP_ASYNCIO) {
    539 		ifp = &sc->sc_ec.ec_if;
    540 		if (ifp->if_flags & IFF_RUNNING) {
    541 			a = POLL_IN;
    542 			b = POLLIN|POLLRDNORM;
    543 		} else {
    544 			a = POLL_HUP;
    545 			b = 0;
    546 		}
    547 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    548 	}
    549 }
    550 
    551 /*
    552  * A typical driver will only contain the following handlers for
    553  * ioctl calls, except SIOCSIFPHYADDR.
    554  * The latter is a hack I used to set the Ethernet address of the
    555  * faked device.
    556  *
    557  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    558  * called under splnet().
    559  */
    560 static int
    561 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    562 {
    563 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    564 	struct ifreq *ifr = (struct ifreq *)data;
    565 	int s, error;
    566 
    567 	s = splnet();
    568 
    569 	switch (cmd) {
    570 #ifdef OSIOCSIFMEDIA
    571 	case OSIOCSIFMEDIA:
    572 #endif
    573 	case SIOCSIFMEDIA:
    574 	case SIOCGIFMEDIA:
    575 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    576 		break;
    577 	case SIOCSIFPHYADDR:
    578 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    579 		break;
    580 	default:
    581 		error = ether_ioctl(ifp, cmd, data);
    582 		if (error == ENETRESET)
    583 			error = 0;
    584 		break;
    585 	}
    586 
    587 	splx(s);
    588 
    589 	return error;
    590 }
    591 
    592 /*
    593  * Helper function to set Ethernet address.  This has been replaced by
    594  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    595  */
    596 static int
    597 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    598 {
    599 	const struct sockaddr *sa = &ifra->ifra_addr;
    600 
    601 	if (sa->sa_family != AF_LINK)
    602 		return EINVAL;
    603 
    604 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    605 
    606 	return 0;
    607 }
    608 
    609 /*
    610  * _init() would typically be called when an interface goes up,
    611  * meaning it should configure itself into the state in which it
    612  * can send packets.
    613  */
    614 static int
    615 tap_init(struct ifnet *ifp)
    616 {
    617 	ifp->if_flags |= IFF_RUNNING;
    618 
    619 	tap_start(ifp);
    620 
    621 	return 0;
    622 }
    623 
    624 /*
    625  * _stop() is called when an interface goes down.  It is our
    626  * responsability to validate that state by clearing the
    627  * IFF_RUNNING flag.
    628  *
    629  * We have to wake up all the sleeping processes to have the pending
    630  * read requests cancelled.
    631  */
    632 static void
    633 tap_stop(struct ifnet *ifp, int disable)
    634 {
    635 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    636 
    637 	ifp->if_flags &= ~IFF_RUNNING;
    638 	wakeup(sc);
    639 	selnotify(&sc->sc_rsel, 0, 1);
    640 	if (sc->sc_flags & TAP_ASYNCIO)
    641 		softint_schedule(sc->sc_sih);
    642 }
    643 
    644 /*
    645  * The 'create' command of ifconfig can be used to create
    646  * any numbered instance of a given device.  Thus we have to
    647  * make sure we have enough room in cd_devs to create the
    648  * user-specified instance.  config_attach_pseudo will do this
    649  * for us.
    650  */
    651 static int
    652 tap_clone_create(struct if_clone *ifc, int unit)
    653 {
    654 	if (tap_clone_creator(unit) == NULL) {
    655 		aprint_error("%s%d: unable to attach an instance\n",
    656 		    tap_cd.cd_name, unit);
    657 		return ENXIO;
    658 	}
    659 	atomic_inc_uint(&tap_count);
    660 	return 0;
    661 }
    662 
    663 /*
    664  * tap(4) can be cloned by two ways:
    665  *   using 'ifconfig tap0 create', which will use the network
    666  *     interface cloning API, and call tap_clone_create above.
    667  *   opening the cloning device node, whose minor number is TAP_CLONER.
    668  *     See below for an explanation on how this part work.
    669  */
    670 static struct tap_softc *
    671 tap_clone_creator(int unit)
    672 {
    673 	cfdata_t cf;
    674 
    675 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
    676 	cf->cf_name = tap_cd.cd_name;
    677 	cf->cf_atname = tap_ca.ca_name;
    678 	if (unit == -1) {
    679 		/* let autoconf find the first free one */
    680 		cf->cf_unit = 0;
    681 		cf->cf_fstate = FSTATE_STAR;
    682 	} else {
    683 		cf->cf_unit = unit;
    684 		cf->cf_fstate = FSTATE_NOTFOUND;
    685 	}
    686 
    687 	return device_private(config_attach_pseudo(cf));
    688 }
    689 
    690 /*
    691  * The clean design of if_clone and autoconf(9) makes that part
    692  * really straightforward.  The second argument of config_detach
    693  * means neither QUIET nor FORCED.
    694  */
    695 static int
    696 tap_clone_destroy(struct ifnet *ifp)
    697 {
    698 	struct tap_softc *sc = ifp->if_softc;
    699 	int error = tap_clone_destroyer(sc->sc_dev);
    700 
    701 	if (error == 0)
    702 		atomic_dec_uint(&tap_count);
    703 	return error;
    704 }
    705 
    706 int
    707 tap_clone_destroyer(device_t dev)
    708 {
    709 	cfdata_t cf = device_cfdata(dev);
    710 	int error;
    711 
    712 	if ((error = config_detach(dev, 0)) != 0)
    713 		aprint_error_dev(dev, "unable to detach instance\n");
    714 	kmem_free(cf, sizeof(*cf));
    715 
    716 	return error;
    717 }
    718 
    719 /*
    720  * tap(4) is a bit of an hybrid device.  It can be used in two different
    721  * ways:
    722  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    723  *  2. open /dev/tap, get a new interface created and read/write off it.
    724  *     That interface is destroyed when the process that had it created exits.
    725  *
    726  * The first way is managed by the cdevsw structure, and you access interfaces
    727  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    728  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    729  *
    730  * The second way is the so-called "cloning" device.  It's a special minor
    731  * number (chosen as the maximal number, to allow as much tap devices as
    732  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    733  * call ends in tap_cdev_open.  The actual place where it is handled is
    734  * tap_dev_cloner.
    735  *
    736  * An tap device cannot be opened more than once at a time, so the cdevsw
    737  * part of open() does nothing but noting that the interface is being used and
    738  * hence ready to actually handle packets.
    739  */
    740 
    741 static int
    742 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    743 {
    744 	struct tap_softc *sc;
    745 
    746 	if (minor(dev) == TAP_CLONER)
    747 		return tap_dev_cloner(l);
    748 
    749 	sc = device_lookup_private(&tap_cd, minor(dev));
    750 	if (sc == NULL)
    751 		return ENXIO;
    752 
    753 	/* The device can only be opened once */
    754 	if (sc->sc_flags & TAP_INUSE)
    755 		return EBUSY;
    756 	sc->sc_flags |= TAP_INUSE;
    757 	return 0;
    758 }
    759 
    760 /*
    761  * There are several kinds of cloning devices, and the most simple is the one
    762  * tap(4) uses.  What it does is change the file descriptor with a new one,
    763  * with its own fileops structure (which maps to the various read, write,
    764  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    765  * then actually creates the new tap devices.
    766  *
    767  * Once those two steps are successful, we can re-wire the existing file
    768  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    769  * structure as needed (notably f_devunit gets filled with the fifth parameter
    770  * passed, the unit of the tap device which will allows us identifying the
    771  * device later), and returns EMOVEFD.
    772  *
    773  * That magic value is interpreted by sys_open() which then replaces the
    774  * current file descriptor by the new one (through a magic member of struct
    775  * lwp, l_dupfd).
    776  *
    777  * The tap device is flagged as being busy since it otherwise could be
    778  * externally accessed through the corresponding device node with the cdevsw
    779  * interface.
    780  */
    781 
    782 static int
    783 tap_dev_cloner(struct lwp *l)
    784 {
    785 	struct tap_softc *sc;
    786 	file_t *fp;
    787 	int error, fd;
    788 
    789 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    790 		return error;
    791 
    792 	if ((sc = tap_clone_creator(-1)) == NULL) {
    793 		fd_abort(curproc, fp, fd);
    794 		return ENXIO;
    795 	}
    796 
    797 	sc->sc_flags |= TAP_INUSE;
    798 
    799 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    800 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    801 }
    802 
    803 /*
    804  * While all other operations (read, write, ioctl, poll and kqfilter) are
    805  * really the same whether we are in cdevsw or fileops mode, the close()
    806  * function is slightly different in the two cases.
    807  *
    808  * As for the other, the core of it is shared in tap_dev_close.  What
    809  * it does is sufficient for the cdevsw interface, but the cloning interface
    810  * needs another thing:  the interface is destroyed when the processes that
    811  * created it closes it.
    812  */
    813 static int
    814 tap_cdev_close(dev_t dev, int flags, int fmt,
    815     struct lwp *l)
    816 {
    817 	struct tap_softc *sc =
    818 	    device_lookup_private(&tap_cd, minor(dev));
    819 
    820 	if (sc == NULL)
    821 		return ENXIO;
    822 
    823 	return tap_dev_close(sc);
    824 }
    825 
    826 /*
    827  * It might happen that the administrator used ifconfig to externally destroy
    828  * the interface.  In that case, tap_fops_close will be called while
    829  * tap_detach is already happening.  If we called it again from here, we
    830  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    831  */
    832 static int
    833 tap_fops_close(file_t *fp)
    834 {
    835 	int unit = fp->f_devunit;
    836 	struct tap_softc *sc;
    837 	int error;
    838 
    839 	sc = device_lookup_private(&tap_cd, unit);
    840 	if (sc == NULL)
    841 		return ENXIO;
    842 
    843 	/* tap_dev_close currently always succeeds, but it might not
    844 	 * always be the case. */
    845 	KERNEL_LOCK(1, NULL);
    846 	if ((error = tap_dev_close(sc)) != 0) {
    847 		KERNEL_UNLOCK_ONE(NULL);
    848 		return error;
    849 	}
    850 
    851 	/* Destroy the device now that it is no longer useful,
    852 	 * unless it's already being destroyed. */
    853 	if ((sc->sc_flags & TAP_GOING) != 0) {
    854 		KERNEL_UNLOCK_ONE(NULL);
    855 		return 0;
    856 	}
    857 
    858 	error = tap_clone_destroyer(sc->sc_dev);
    859 	KERNEL_UNLOCK_ONE(NULL);
    860 	return error;
    861 }
    862 
    863 static int
    864 tap_dev_close(struct tap_softc *sc)
    865 {
    866 	struct ifnet *ifp;
    867 	int s;
    868 
    869 	s = splnet();
    870 	/* Let tap_start handle packets again */
    871 	ifp = &sc->sc_ec.ec_if;
    872 	ifp->if_flags &= ~IFF_OACTIVE;
    873 
    874 	/* Purge output queue */
    875 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    876 		struct mbuf *m;
    877 
    878 		for (;;) {
    879 			IFQ_DEQUEUE(&ifp->if_snd, m);
    880 			if (m == NULL)
    881 				break;
    882 
    883 			ifp->if_opackets++;
    884 			bpf_mtap(ifp, m);
    885 			m_freem(m);
    886 		}
    887 	}
    888 	splx(s);
    889 
    890 	if (sc->sc_sih != NULL) {
    891 		softint_disestablish(sc->sc_sih);
    892 		sc->sc_sih = NULL;
    893 	}
    894 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    895 
    896 	return 0;
    897 }
    898 
    899 static int
    900 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    901 {
    902 	return tap_dev_read(minor(dev), uio, flags);
    903 }
    904 
    905 static int
    906 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    907     kauth_cred_t cred, int flags)
    908 {
    909 	int error;
    910 
    911 	KERNEL_LOCK(1, NULL);
    912 	error = tap_dev_read(fp->f_devunit, uio, flags);
    913 	KERNEL_UNLOCK_ONE(NULL);
    914 	return error;
    915 }
    916 
    917 static int
    918 tap_dev_read(int unit, struct uio *uio, int flags)
    919 {
    920 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    921 	struct ifnet *ifp;
    922 	struct mbuf *m, *n;
    923 	int error = 0, s;
    924 
    925 	if (sc == NULL)
    926 		return ENXIO;
    927 
    928 	getnanotime(&sc->sc_atime);
    929 
    930 	ifp = &sc->sc_ec.ec_if;
    931 	if ((ifp->if_flags & IFF_UP) == 0)
    932 		return EHOSTDOWN;
    933 
    934 	/*
    935 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    936 	 */
    937 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    938 		if (!mutex_tryenter(&sc->sc_rdlock))
    939 			return EWOULDBLOCK;
    940 	} else {
    941 		mutex_enter(&sc->sc_rdlock);
    942 	}
    943 
    944 	s = splnet();
    945 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    946 		ifp->if_flags &= ~IFF_OACTIVE;
    947 		/*
    948 		 * We must release the lock before sleeping, and re-acquire it
    949 		 * after.
    950 		 */
    951 		mutex_exit(&sc->sc_rdlock);
    952 		if (sc->sc_flags & TAP_NBIO)
    953 			error = EWOULDBLOCK;
    954 		else
    955 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    956 		splx(s);
    957 
    958 		if (error != 0)
    959 			return error;
    960 		/* The device might have been downed */
    961 		if ((ifp->if_flags & IFF_UP) == 0)
    962 			return EHOSTDOWN;
    963 		if ((sc->sc_flags & TAP_NBIO)) {
    964 			if (!mutex_tryenter(&sc->sc_rdlock))
    965 				return EWOULDBLOCK;
    966 		} else {
    967 			mutex_enter(&sc->sc_rdlock);
    968 		}
    969 		s = splnet();
    970 	}
    971 
    972 	IFQ_DEQUEUE(&ifp->if_snd, m);
    973 	ifp->if_flags &= ~IFF_OACTIVE;
    974 	splx(s);
    975 	if (m == NULL) {
    976 		error = 0;
    977 		goto out;
    978 	}
    979 
    980 	ifp->if_opackets++;
    981 	bpf_mtap(ifp, m);
    982 
    983 	/*
    984 	 * One read is one packet.
    985 	 */
    986 	do {
    987 		error = uiomove(mtod(m, void *),
    988 		    min(m->m_len, uio->uio_resid), uio);
    989 		m = n = m_free(m);
    990 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    991 
    992 	if (m != NULL)
    993 		m_freem(m);
    994 
    995 out:
    996 	mutex_exit(&sc->sc_rdlock);
    997 	return error;
    998 }
    999 
   1000 static int
   1001 tap_fops_stat(file_t *fp, struct stat *st)
   1002 {
   1003 	int error = 0;
   1004 	struct tap_softc *sc;
   1005 	int unit = fp->f_devunit;
   1006 
   1007 	(void)memset(st, 0, sizeof(*st));
   1008 
   1009 	KERNEL_LOCK(1, NULL);
   1010 	sc = device_lookup_private(&tap_cd, unit);
   1011 	if (sc == NULL) {
   1012 		error = ENXIO;
   1013 		goto out;
   1014 	}
   1015 
   1016 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
   1017 	st->st_atimespec = sc->sc_atime;
   1018 	st->st_mtimespec = sc->sc_mtime;
   1019 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
   1020 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1021 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1022 out:
   1023 	KERNEL_UNLOCK_ONE(NULL);
   1024 	return error;
   1025 }
   1026 
   1027 static int
   1028 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1029 {
   1030 	return tap_dev_write(minor(dev), uio, flags);
   1031 }
   1032 
   1033 static int
   1034 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1035     kauth_cred_t cred, int flags)
   1036 {
   1037 	int error;
   1038 
   1039 	KERNEL_LOCK(1, NULL);
   1040 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1041 	KERNEL_UNLOCK_ONE(NULL);
   1042 	return error;
   1043 }
   1044 
   1045 static int
   1046 tap_dev_write(int unit, struct uio *uio, int flags)
   1047 {
   1048 	struct tap_softc *sc =
   1049 	    device_lookup_private(&tap_cd, unit);
   1050 	struct ifnet *ifp;
   1051 	struct mbuf *m, **mp;
   1052 	int error = 0;
   1053 	int s;
   1054 
   1055 	if (sc == NULL)
   1056 		return ENXIO;
   1057 
   1058 	getnanotime(&sc->sc_mtime);
   1059 	ifp = &sc->sc_ec.ec_if;
   1060 
   1061 	/* One write, one packet, that's the rule */
   1062 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1063 	if (m == NULL) {
   1064 		ifp->if_ierrors++;
   1065 		return ENOBUFS;
   1066 	}
   1067 	m->m_pkthdr.len = uio->uio_resid;
   1068 
   1069 	mp = &m;
   1070 	while (error == 0 && uio->uio_resid > 0) {
   1071 		if (*mp != m) {
   1072 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1073 			if (*mp == NULL) {
   1074 				error = ENOBUFS;
   1075 				break;
   1076 			}
   1077 		}
   1078 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1079 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1080 		mp = &(*mp)->m_next;
   1081 	}
   1082 	if (error) {
   1083 		ifp->if_ierrors++;
   1084 		m_freem(m);
   1085 		return error;
   1086 	}
   1087 
   1088 	m_set_rcvif(m, ifp);
   1089 
   1090 	s = splnet();
   1091 	if_input(ifp, m);
   1092 	splx(s);
   1093 
   1094 	return 0;
   1095 }
   1096 
   1097 static int
   1098 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1099     struct lwp *l)
   1100 {
   1101 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1102 }
   1103 
   1104 static int
   1105 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1106 {
   1107 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1108 }
   1109 
   1110 static int
   1111 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1112 {
   1113 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1114 
   1115 	if (sc == NULL)
   1116 		return ENXIO;
   1117 
   1118 	switch (cmd) {
   1119 	case FIONREAD:
   1120 		{
   1121 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1122 			struct mbuf *m;
   1123 			int s;
   1124 
   1125 			s = splnet();
   1126 			IFQ_POLL(&ifp->if_snd, m);
   1127 
   1128 			if (m == NULL)
   1129 				*(int *)data = 0;
   1130 			else
   1131 				*(int *)data = m->m_pkthdr.len;
   1132 			splx(s);
   1133 			return 0;
   1134 		}
   1135 	case TIOCSPGRP:
   1136 	case FIOSETOWN:
   1137 		return fsetown(&sc->sc_pgid, cmd, data);
   1138 	case TIOCGPGRP:
   1139 	case FIOGETOWN:
   1140 		return fgetown(sc->sc_pgid, cmd, data);
   1141 	case FIOASYNC:
   1142 		if (*(int *)data) {
   1143 			if (sc->sc_sih == NULL) {
   1144 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1145 				    tap_softintr, sc);
   1146 				if (sc->sc_sih == NULL)
   1147 					return EBUSY; /* XXX */
   1148 			}
   1149 			sc->sc_flags |= TAP_ASYNCIO;
   1150 		} else {
   1151 			sc->sc_flags &= ~TAP_ASYNCIO;
   1152 			if (sc->sc_sih != NULL) {
   1153 				softint_disestablish(sc->sc_sih);
   1154 				sc->sc_sih = NULL;
   1155 			}
   1156 		}
   1157 		return 0;
   1158 	case FIONBIO:
   1159 		if (*(int *)data)
   1160 			sc->sc_flags |= TAP_NBIO;
   1161 		else
   1162 			sc->sc_flags &= ~TAP_NBIO;
   1163 		return 0;
   1164 #ifdef OTAPGIFNAME
   1165 	case OTAPGIFNAME:
   1166 #endif
   1167 	case TAPGIFNAME:
   1168 		{
   1169 			struct ifreq *ifr = (struct ifreq *)data;
   1170 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1171 
   1172 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1173 			return 0;
   1174 		}
   1175 	default:
   1176 		return ENOTTY;
   1177 	}
   1178 }
   1179 
   1180 static int
   1181 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1182 {
   1183 	return tap_dev_poll(minor(dev), events, l);
   1184 }
   1185 
   1186 static int
   1187 tap_fops_poll(file_t *fp, int events)
   1188 {
   1189 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1190 }
   1191 
   1192 static int
   1193 tap_dev_poll(int unit, int events, struct lwp *l)
   1194 {
   1195 	struct tap_softc *sc =
   1196 	    device_lookup_private(&tap_cd, unit);
   1197 	int revents = 0;
   1198 
   1199 	if (sc == NULL)
   1200 		return POLLERR;
   1201 
   1202 	if (events & (POLLIN|POLLRDNORM)) {
   1203 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1204 		struct mbuf *m;
   1205 		int s;
   1206 
   1207 		s = splnet();
   1208 		IFQ_POLL(&ifp->if_snd, m);
   1209 
   1210 		if (m != NULL)
   1211 			revents |= events & (POLLIN|POLLRDNORM);
   1212 		else {
   1213 			mutex_spin_enter(&sc->sc_kqlock);
   1214 			selrecord(l, &sc->sc_rsel);
   1215 			mutex_spin_exit(&sc->sc_kqlock);
   1216 		}
   1217 		splx(s);
   1218 	}
   1219 	revents |= events & (POLLOUT|POLLWRNORM);
   1220 
   1221 	return revents;
   1222 }
   1223 
   1224 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1225 	tap_kqread };
   1226 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1227 	filt_seltrue };
   1228 
   1229 static int
   1230 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1231 {
   1232 	return tap_dev_kqfilter(minor(dev), kn);
   1233 }
   1234 
   1235 static int
   1236 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1237 {
   1238 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1239 }
   1240 
   1241 static int
   1242 tap_dev_kqfilter(int unit, struct knote *kn)
   1243 {
   1244 	struct tap_softc *sc =
   1245 	    device_lookup_private(&tap_cd, unit);
   1246 
   1247 	if (sc == NULL)
   1248 		return ENXIO;
   1249 
   1250 	KERNEL_LOCK(1, NULL);
   1251 	switch(kn->kn_filter) {
   1252 	case EVFILT_READ:
   1253 		kn->kn_fop = &tap_read_filterops;
   1254 		break;
   1255 	case EVFILT_WRITE:
   1256 		kn->kn_fop = &tap_seltrue_filterops;
   1257 		break;
   1258 	default:
   1259 		KERNEL_UNLOCK_ONE(NULL);
   1260 		return EINVAL;
   1261 	}
   1262 
   1263 	kn->kn_hook = sc;
   1264 	mutex_spin_enter(&sc->sc_kqlock);
   1265 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1266 	mutex_spin_exit(&sc->sc_kqlock);
   1267 	KERNEL_UNLOCK_ONE(NULL);
   1268 	return 0;
   1269 }
   1270 
   1271 static void
   1272 tap_kqdetach(struct knote *kn)
   1273 {
   1274 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1275 
   1276 	KERNEL_LOCK(1, NULL);
   1277 	mutex_spin_enter(&sc->sc_kqlock);
   1278 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1279 	mutex_spin_exit(&sc->sc_kqlock);
   1280 	KERNEL_UNLOCK_ONE(NULL);
   1281 }
   1282 
   1283 static int
   1284 tap_kqread(struct knote *kn, long hint)
   1285 {
   1286 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1287 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1288 	struct mbuf *m;
   1289 	int s, rv;
   1290 
   1291 	KERNEL_LOCK(1, NULL);
   1292 	s = splnet();
   1293 	IFQ_POLL(&ifp->if_snd, m);
   1294 
   1295 	if (m == NULL)
   1296 		kn->kn_data = 0;
   1297 	else
   1298 		kn->kn_data = m->m_pkthdr.len;
   1299 	splx(s);
   1300 	rv = (kn->kn_data != 0 ? 1 : 0);
   1301 	KERNEL_UNLOCK_ONE(NULL);
   1302 	return rv;
   1303 }
   1304 
   1305 /*
   1306  * sysctl management routines
   1307  * You can set the address of an interface through:
   1308  * net.link.tap.tap<number>
   1309  *
   1310  * Note the consistent use of tap_log in order to use
   1311  * sysctl_teardown at unload time.
   1312  *
   1313  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1314  * blocks register a function in a special section of the kernel
   1315  * (called a link set) which is used at init_sysctl() time to cycle
   1316  * through all those functions to create the kernel's sysctl tree.
   1317  *
   1318  * It is not possible to use link sets in a module, so the
   1319  * easiest is to simply call our own setup routine at load time.
   1320  *
   1321  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1322  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1323  * whole kernel sysctl tree is built, it is not possible to add any
   1324  * permanent node.
   1325  *
   1326  * It should be noted that we're not saving the sysctlnode pointer
   1327  * we are returned when creating the "tap" node.  That structure
   1328  * cannot be trusted once out of the calling function, as it might
   1329  * get reused.  So we just save the MIB number, and always give the
   1330  * full path starting from the root for later calls to sysctl_createv
   1331  * and sysctl_destroyv.
   1332  */
   1333 static void
   1334 sysctl_tap_setup(struct sysctllog **clog)
   1335 {
   1336 	const struct sysctlnode *node;
   1337 	int error = 0;
   1338 
   1339 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1340 	    CTLFLAG_PERMANENT,
   1341 	    CTLTYPE_NODE, "link", NULL,
   1342 	    NULL, 0, NULL, 0,
   1343 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1344 		return;
   1345 
   1346 	/*
   1347 	 * The first four parameters of sysctl_createv are for management.
   1348 	 *
   1349 	 * The four that follows, here starting with a '0' for the flags,
   1350 	 * describe the node.
   1351 	 *
   1352 	 * The next series of four set its value, through various possible
   1353 	 * means.
   1354 	 *
   1355 	 * Last but not least, the path to the node is described.  That path
   1356 	 * is relative to the given root (third argument).  Here we're
   1357 	 * starting from the root.
   1358 	 */
   1359 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1360 	    CTLFLAG_PERMANENT,
   1361 	    CTLTYPE_NODE, "tap", NULL,
   1362 	    NULL, 0, NULL, 0,
   1363 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1364 		return;
   1365 	tap_node = node->sysctl_num;
   1366 }
   1367 
   1368 /*
   1369  * The helper functions make Andrew Brown's interface really
   1370  * shine.  It makes possible to create value on the fly whether
   1371  * the sysctl value is read or written.
   1372  *
   1373  * As shown as an example in the man page, the first step is to
   1374  * create a copy of the node to have sysctl_lookup work on it.
   1375  *
   1376  * Here, we have more work to do than just a copy, since we have
   1377  * to create the string.  The first step is to collect the actual
   1378  * value of the node, which is a convenient pointer to the softc
   1379  * of the interface.  From there we create the string and use it
   1380  * as the value, but only for the *copy* of the node.
   1381  *
   1382  * Then we let sysctl_lookup do the magic, which consists in
   1383  * setting oldp and newp as required by the operation.  When the
   1384  * value is read, that means that the string will be copied to
   1385  * the user, and when it is written, the new value will be copied
   1386  * over in the addr array.
   1387  *
   1388  * If newp is NULL, the user was reading the value, so we don't
   1389  * have anything else to do.  If a new value was written, we
   1390  * have to check it.
   1391  *
   1392  * If it is incorrect, we can return an error and leave 'node' as
   1393  * it is:  since it is a copy of the actual node, the change will
   1394  * be forgotten.
   1395  *
   1396  * Upon a correct input, we commit the change to the ifnet
   1397  * structure of our interface.
   1398  */
   1399 static int
   1400 tap_sysctl_handler(SYSCTLFN_ARGS)
   1401 {
   1402 	struct sysctlnode node;
   1403 	struct tap_softc *sc;
   1404 	struct ifnet *ifp;
   1405 	int error;
   1406 	size_t len;
   1407 	char addr[3 * ETHER_ADDR_LEN];
   1408 	uint8_t enaddr[ETHER_ADDR_LEN];
   1409 
   1410 	node = *rnode;
   1411 	sc = node.sysctl_data;
   1412 	ifp = &sc->sc_ec.ec_if;
   1413 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1414 	node.sysctl_data = addr;
   1415 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1416 	if (error || newp == NULL)
   1417 		return error;
   1418 
   1419 	len = strlen(addr);
   1420 	if (len < 11 || len > 17)
   1421 		return EINVAL;
   1422 
   1423 	/* Commit change */
   1424 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1425 		return EINVAL;
   1426 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1427 	return error;
   1428 }
   1429 
   1430 /*
   1431  * Module infrastructure
   1432  */
   1433 #include "if_module.h"
   1434 
   1435 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
   1436