if_vlan.c revision 1.101 1 /* $NetBSD: if_vlan.c,v 1.101 2017/10/11 08:10:00 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.101 2017/10/11 08:10:00 msaitoh Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #endif
123
124 #include "ioconf.h"
125
126 #ifdef NET_MPSAFE
127 #define VLAN_MPSAFE 1
128 #endif
129
130 struct vlan_mc_entry {
131 LIST_ENTRY(vlan_mc_entry) mc_entries;
132 /*
133 * A key to identify this entry. The mc_addr below can't be
134 * used since multiple sockaddr may mapped into the same
135 * ether_multi (e.g., AF_UNSPEC).
136 */
137 union {
138 struct ether_multi *mcu_enm;
139 } mc_u;
140 struct sockaddr_storage mc_addr;
141 };
142
143 #define mc_enm mc_u.mcu_enm
144
145
146 struct ifvlan_linkmib {
147 struct ifvlan *ifvm_ifvlan;
148 const struct vlan_multisw *ifvm_msw;
149 int ifvm_encaplen; /* encapsulation length */
150 int ifvm_mtufudge; /* MTU fudged by this much */
151 int ifvm_mintu; /* min transmission unit */
152 uint16_t ifvm_proto; /* encapsulation ethertype */
153 uint16_t ifvm_tag; /* tag to apply on packets */
154 struct ifnet *ifvm_p; /* parent interface of this vlan */
155
156 struct psref_target ifvm_psref;
157 };
158
159 struct ifvlan {
160 union {
161 struct ethercom ifvu_ec;
162 } ifv_u;
163 struct ifvlan_linkmib *ifv_mib; /*
164 * reader must use vlan_getref_linkmib()
165 * instead of direct dereference
166 */
167 kmutex_t ifv_lock; /* writer lock for ifv_mib */
168
169 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
170 LIST_ENTRY(ifvlan) ifv_list;
171 struct pslist_entry ifv_hash;
172 int ifv_flags;
173 };
174
175 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
176
177 #define ifv_ec ifv_u.ifvu_ec
178
179 #define ifv_if ifv_ec.ec_if
180
181 #define ifv_msw ifv_mib.ifvm_msw
182 #define ifv_encaplen ifv_mib.ifvm_encaplen
183 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
184 #define ifv_mintu ifv_mib.ifvm_mintu
185 #define ifv_tag ifv_mib.ifvm_tag
186
187 struct vlan_multisw {
188 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
189 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
190 void (*vmsw_purgemulti)(struct ifvlan *);
191 };
192
193 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
194 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
195 static void vlan_ether_purgemulti(struct ifvlan *);
196
197 const struct vlan_multisw vlan_ether_multisw = {
198 vlan_ether_addmulti,
199 vlan_ether_delmulti,
200 vlan_ether_purgemulti,
201 };
202
203 static int vlan_clone_create(struct if_clone *, int);
204 static int vlan_clone_destroy(struct ifnet *);
205 static int vlan_config(struct ifvlan *, struct ifnet *,
206 uint16_t);
207 static int vlan_ioctl(struct ifnet *, u_long, void *);
208 static void vlan_start(struct ifnet *);
209 static int vlan_transmit(struct ifnet *, struct mbuf *);
210 static void vlan_unconfig(struct ifnet *);
211 static int vlan_unconfig_locked(struct ifvlan *,
212 struct ifvlan_linkmib *);
213 static void vlan_hash_init(void);
214 static int vlan_hash_fini(void);
215 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
216 struct psref *);
217 static void vlan_putref_linkmib(struct ifvlan_linkmib *,
218 struct psref *);
219 static void vlan_linkmib_update(struct ifvlan *,
220 struct ifvlan_linkmib *);
221 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
222 uint16_t, struct psref *);
223 static int tag_hash_func(uint16_t, u_long);
224
225 LIST_HEAD(vlan_ifvlist, ifvlan);
226 static struct {
227 kmutex_t lock;
228 struct vlan_ifvlist list;
229 } ifv_list __cacheline_aligned;
230
231
232 #if !defined(VLAN_TAG_HASH_SIZE)
233 #define VLAN_TAG_HASH_SIZE 32
234 #endif
235 static struct {
236 kmutex_t lock;
237 struct pslist_head *lists;
238 u_long mask;
239 } ifv_hash __cacheline_aligned = {
240 .lists = NULL,
241 .mask = 0,
242 };
243
244 pserialize_t vlan_psz __read_mostly;
245 static struct psref_class *ifvm_psref_class __read_mostly;
246
247 struct if_clone vlan_cloner =
248 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
249
250 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
251 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
252
253 void
254 vlanattach(int n)
255 {
256
257 /*
258 * Nothing to do here, initialization is handled by the
259 * module initialization code in vlaninit() below).
260 */
261 }
262
263 static void
264 vlaninit(void)
265 {
266 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
267 LIST_INIT(&ifv_list.list);
268
269 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
270 vlan_psz = pserialize_create();
271 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
272 if_clone_attach(&vlan_cloner);
273
274 vlan_hash_init();
275 }
276
277 static int
278 vlandetach(void)
279 {
280 int error = 0;
281
282 mutex_enter(&ifv_list.lock);
283 if (!LIST_EMPTY(&ifv_list.list)) {
284 mutex_exit(&ifv_list.lock);
285 return EBUSY;
286 }
287 mutex_exit(&ifv_list.lock);
288
289 error = vlan_hash_fini();
290 if (error != 0)
291 return error;
292
293 if_clone_detach(&vlan_cloner);
294 psref_class_destroy(ifvm_psref_class);
295 pserialize_destroy(vlan_psz);
296 mutex_destroy(&ifv_hash.lock);
297 mutex_destroy(&ifv_list.lock);
298
299 return 0;
300 }
301
302 static void
303 vlan_reset_linkname(struct ifnet *ifp)
304 {
305
306 /*
307 * We start out with a "802.1Q VLAN" type and zero-length
308 * addresses. When we attach to a parent interface, we
309 * inherit its type, address length, address, and data link
310 * type.
311 */
312
313 ifp->if_type = IFT_L2VLAN;
314 ifp->if_addrlen = 0;
315 ifp->if_dlt = DLT_NULL;
316 if_alloc_sadl(ifp);
317 }
318
319 static int
320 vlan_clone_create(struct if_clone *ifc, int unit)
321 {
322 struct ifvlan *ifv;
323 struct ifnet *ifp;
324 struct ifvlan_linkmib *mib;
325
326 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
327 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
328 ifp = &ifv->ifv_if;
329 LIST_INIT(&ifv->ifv_mc_listhead);
330
331 mib->ifvm_ifvlan = ifv;
332 mib->ifvm_p = NULL;
333 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
334
335 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
336 ifv->ifv_mib = mib;
337
338 mutex_enter(&ifv_list.lock);
339 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
340 mutex_exit(&ifv_list.lock);
341
342 if_initname(ifp, ifc->ifc_name, unit);
343 ifp->if_softc = ifv;
344 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
345 #ifdef VLAN_MPSAFE
346 ifp->if_extflags = IFEF_START_MPSAFE;
347 #endif
348 ifp->if_start = vlan_start;
349 ifp->if_transmit = vlan_transmit;
350 ifp->if_ioctl = vlan_ioctl;
351 IFQ_SET_READY(&ifp->if_snd);
352
353 if_initialize(ifp);
354 vlan_reset_linkname(ifp);
355 if_register(ifp);
356
357 return (0);
358 }
359
360 static int
361 vlan_clone_destroy(struct ifnet *ifp)
362 {
363 struct ifvlan *ifv = ifp->if_softc;
364
365 mutex_enter(&ifv_list.lock);
366 LIST_REMOVE(ifv, ifv_list);
367 mutex_exit(&ifv_list.lock);
368
369 vlan_unconfig(ifp);
370 if_detach(ifp);
371
372 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
373 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
374 mutex_destroy(&ifv->ifv_lock);
375 free(ifv, M_DEVBUF);
376
377 return (0);
378 }
379
380 /*
381 * Configure a VLAN interface.
382 */
383 static int
384 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
385 {
386 struct ifnet *ifp = &ifv->ifv_if;
387 struct ifvlan_linkmib *nmib = NULL;
388 struct ifvlan_linkmib *omib = NULL;
389 struct ifvlan_linkmib *checkmib = NULL;
390 struct psref_target *nmib_psref = NULL;
391 int error = 0;
392 int idx;
393 bool omib_cleanup = false;
394 struct psref psref;
395
396 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
397
398 mutex_enter(&ifv->ifv_lock);
399 omib = ifv->ifv_mib;
400
401 if (omib->ifvm_p != NULL) {
402 error = EBUSY;
403 goto done;
404 }
405
406 /* Duplicate check */
407 checkmib = vlan_lookup_tag_psref(p, tag, &psref);
408 if (checkmib != NULL) {
409 vlan_putref_linkmib(checkmib, &psref);
410 error = EEXIST;
411 goto done;
412 }
413
414 *nmib = *omib;
415 nmib_psref = &nmib->ifvm_psref;
416
417 psref_target_init(nmib_psref, ifvm_psref_class);
418
419 switch (p->if_type) {
420 case IFT_ETHER:
421 {
422 struct ethercom *ec = (void *) p;
423 struct vlanidlist *vidmem;
424 nmib->ifvm_msw = &vlan_ether_multisw;
425 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
426 nmib->ifvm_mintu = ETHERMIN;
427
428 if (ec->ec_nvlans++ == 0) {
429 if ((error = ether_enable_vlan_mtu(p)) >= 0) {
430 if (error) {
431 ec->ec_nvlans--;
432 goto done;
433 }
434 nmib->ifvm_mtufudge = 0;
435 } else {
436 /*
437 * Fudge the MTU by the encapsulation size. This
438 * makes us incompatible with strictly compliant
439 * 802.1Q implementations, but allows us to use
440 * the feature with other NetBSD
441 * implementations, which might still be useful.
442 */
443 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
444 }
445 error = 0;
446 }
447 vidmem = kmem_alloc(sizeof(struct vlanidlist), KM_SLEEP);
448 if (vidmem == NULL){
449 ec->ec_nvlans--;
450 error = ENOMEM;
451 goto done;
452 }
453 vidmem->vid = tag;
454 SLIST_INSERT_HEAD(&ec->ec_vids, vidmem, vid_list);
455 /*
456 * If the parent interface can do hardware-assisted
457 * VLAN encapsulation, then propagate its hardware-
458 * assisted checksumming flags and tcp segmentation
459 * offload.
460 */
461 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
462 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
463 ifp->if_capabilities = p->if_capabilities &
464 (IFCAP_TSOv4 | IFCAP_TSOv6 |
465 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
466 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
467 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
468 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
469 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
470 }
471 /*
472 * We inherit the parent's Ethernet address.
473 */
474 ether_ifattach(ifp, CLLADDR(p->if_sadl));
475 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
476 break;
477 }
478
479 default:
480 error = EPROTONOSUPPORT;
481 goto done;
482 }
483
484 nmib->ifvm_p = p;
485 nmib->ifvm_tag = tag;
486 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
487 ifv->ifv_if.if_flags = p->if_flags &
488 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
489
490 /*
491 * Inherit the if_type from the parent. This allows us
492 * to participate in bridges of that type.
493 */
494 ifv->ifv_if.if_type = p->if_type;
495
496 idx = tag_hash_func(tag, ifv_hash.mask);
497
498 mutex_enter(&ifv_hash.lock);
499 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
500 mutex_exit(&ifv_hash.lock);
501
502 vlan_linkmib_update(ifv, nmib);
503 nmib = NULL;
504 nmib_psref = NULL;
505 omib_cleanup = true;
506
507 done:
508 mutex_exit(&ifv->ifv_lock);
509
510 if (nmib_psref)
511 psref_target_destroy(nmib_psref, ifvm_psref_class);
512
513 if (nmib)
514 kmem_free(nmib, sizeof(*nmib));
515
516 if (omib_cleanup)
517 kmem_free(omib, sizeof(*omib));
518
519 return error;
520 }
521
522 /*
523 * Unconfigure a VLAN interface.
524 */
525 static void
526 vlan_unconfig(struct ifnet *ifp)
527 {
528 struct ifvlan *ifv = ifp->if_softc;
529 struct ifvlan_linkmib *nmib = NULL;
530 int error;
531
532 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
533
534 mutex_enter(&ifv->ifv_lock);
535 error = vlan_unconfig_locked(ifv, nmib);
536 mutex_exit(&ifv->ifv_lock);
537
538 if (error)
539 kmem_free(nmib, sizeof(*nmib));
540 }
541 static int
542 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
543 {
544 struct ifnet *p;
545 struct ifnet *ifp = &ifv->ifv_if;
546 struct psref_target *nmib_psref = NULL;
547 struct ifvlan_linkmib *omib;
548 int error = 0;
549
550 KASSERT(mutex_owned(&ifv->ifv_lock));
551
552 omib = ifv->ifv_mib;
553 p = omib->ifvm_p;
554
555 if (p == NULL) {
556 error = -1;
557 goto done;
558 }
559
560 *nmib = *omib;
561 nmib_psref = &nmib->ifvm_psref;
562 psref_target_init(nmib_psref, ifvm_psref_class);
563
564 /*
565 * Since the interface is being unconfigured, we need to empty the
566 * list of multicast groups that we may have joined while we were
567 * alive and remove them from the parent's list also.
568 */
569 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
570
571 /* Disconnect from parent. */
572 switch (p->if_type) {
573 case IFT_ETHER:
574 {
575 struct ethercom *ec = (void *)p;
576 struct vlanidlist *vlanidp, *tmpp;
577
578 SLIST_FOREACH_SAFE(vlanidp, &ec->ec_vids, vid_list, tmpp) {
579 if (vlanidp->vid == nmib->ifvm_tag) {
580 SLIST_REMOVE(&ec->ec_vids, vlanidp, vlanidlist,
581 vid_list);
582 kmem_free(vlanidp, sizeof(*vlanidp));
583 }
584 }
585 if (--ec->ec_nvlans == 0)
586 (void)ether_disable_vlan_mtu(p);
587
588 ether_ifdetach(ifp);
589 /* Restore vlan_ioctl overwritten by ether_ifdetach */
590 ifp->if_ioctl = vlan_ioctl;
591 vlan_reset_linkname(ifp);
592 break;
593 }
594
595 #ifdef DIAGNOSTIC
596 default:
597 panic("vlan_unconfig: impossible");
598 #endif
599 }
600
601 nmib->ifvm_p = NULL;
602 ifv->ifv_if.if_mtu = 0;
603 ifv->ifv_flags = 0;
604
605 mutex_enter(&ifv_hash.lock);
606 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
607 pserialize_perform(vlan_psz);
608 mutex_exit(&ifv_hash.lock);
609
610 vlan_linkmib_update(ifv, nmib);
611
612 mutex_exit(&ifv->ifv_lock);
613
614 nmib_psref = NULL;
615 kmem_free(omib, sizeof(*omib));
616
617 #ifdef INET6
618 /* To delete v6 link local addresses */
619 if (in6_present)
620 in6_ifdetach(ifp);
621 #endif
622
623 if ((ifp->if_flags & IFF_PROMISC) != 0)
624 ifpromisc(ifp, 0);
625 if_down(ifp);
626 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
627 ifp->if_capabilities = 0;
628 mutex_enter(&ifv->ifv_lock);
629 done:
630
631 if (nmib_psref)
632 psref_target_destroy(nmib_psref, ifvm_psref_class);
633
634 return error;
635 }
636
637 static void
638 vlan_hash_init(void)
639 {
640
641 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
642 &ifv_hash.mask);
643 }
644
645 static int
646 vlan_hash_fini(void)
647 {
648 int i;
649
650 mutex_enter(&ifv_hash.lock);
651
652 for (i = 0; i < ifv_hash.mask + 1; i++) {
653 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
654 ifv_hash) != NULL) {
655 mutex_exit(&ifv_hash.lock);
656 return EBUSY;
657 }
658 }
659
660 for (i = 0; i < ifv_hash.mask + 1; i++)
661 PSLIST_DESTROY(&ifv_hash.lists[i]);
662
663 mutex_exit(&ifv_hash.lock);
664
665 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
666
667 ifv_hash.lists = NULL;
668 ifv_hash.mask = 0;
669
670 return 0;
671 }
672
673 static int
674 tag_hash_func(uint16_t tag, u_long mask)
675 {
676 uint32_t hash;
677
678 hash = (tag >> 8) ^ tag;
679 hash = (hash >> 2) ^ hash;
680
681 return hash & mask;
682 }
683
684 static struct ifvlan_linkmib *
685 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
686 {
687 struct ifvlan_linkmib *mib;
688 int s;
689
690 s = pserialize_read_enter();
691 mib = sc->ifv_mib;
692 if (mib == NULL) {
693 pserialize_read_exit(s);
694 return NULL;
695 }
696 membar_datadep_consumer();
697 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
698 pserialize_read_exit(s);
699
700 return mib;
701 }
702
703 static void
704 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
705 {
706 if (mib == NULL)
707 return;
708 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
709 }
710
711 static struct ifvlan_linkmib *
712 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
713 {
714 int idx;
715 int s;
716 struct ifvlan *sc;
717
718 idx = tag_hash_func(tag, ifv_hash.mask);
719
720 s = pserialize_read_enter();
721 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
722 ifv_hash) {
723 struct ifvlan_linkmib *mib = sc->ifv_mib;
724 if (mib == NULL)
725 continue;
726 if (mib->ifvm_tag != tag)
727 continue;
728 if (mib->ifvm_p != ifp)
729 continue;
730
731 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
732 pserialize_read_exit(s);
733 return mib;
734 }
735 pserialize_read_exit(s);
736 return NULL;
737 }
738
739 static void
740 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
741 {
742 struct ifvlan_linkmib *omib = ifv->ifv_mib;
743
744 KASSERT(mutex_owned(&ifv->ifv_lock));
745
746 membar_producer();
747 ifv->ifv_mib = nmib;
748
749 pserialize_perform(vlan_psz);
750 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
751 }
752
753 /*
754 * Called when a parent interface is detaching; destroy any VLAN
755 * configuration for the parent interface.
756 */
757 void
758 vlan_ifdetach(struct ifnet *p)
759 {
760 struct ifvlan *ifv;
761 struct ifvlan_linkmib *mib, **nmibs;
762 struct psref psref;
763 int error;
764 int bound;
765 int i, cnt = 0;
766
767 bound = curlwp_bind();
768 mutex_enter(&ifv_list.lock);
769 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
770 mib = vlan_getref_linkmib(ifv, &psref);
771 if (mib == NULL)
772 continue;
773
774 if (mib->ifvm_p == p)
775 cnt++;
776
777 vlan_putref_linkmib(mib, &psref);
778 }
779 mutex_exit(&ifv_list.lock);
780
781 /*
782 * The value of "cnt" does not increase while ifv_list.lock
783 * and ifv->ifv_lock are released here, because the parent
784 * interface is detaching.
785 */
786 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
787 for (i=0; i < cnt; i++) {
788 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
789 }
790
791 mutex_enter(&ifv_list.lock);
792
793 i = 0;
794 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
795 mutex_enter(&ifv->ifv_lock);
796 if (ifv->ifv_mib->ifvm_p == p) {
797 KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
798 p->if_xname);
799 error = vlan_unconfig_locked(ifv, nmibs[i]);
800 if (!error) {
801 nmibs[i] = NULL;
802 i++;
803 }
804
805 }
806 mutex_exit(&ifv->ifv_lock);
807 }
808
809 mutex_exit(&ifv_list.lock);
810 curlwp_bindx(bound);
811
812 for (i=0; i < cnt; i++) {
813 if (nmibs[i])
814 kmem_free(nmibs[i], sizeof(*nmibs[i]));
815 }
816
817 kmem_free(nmibs, sizeof(*nmibs) * cnt);
818
819 return;
820 }
821
822 static int
823 vlan_set_promisc(struct ifnet *ifp)
824 {
825 struct ifvlan *ifv = ifp->if_softc;
826 struct ifvlan_linkmib *mib;
827 struct psref psref;
828 int error = 0;
829 int bound;
830
831 bound = curlwp_bind();
832 mib = vlan_getref_linkmib(ifv, &psref);
833 if (mib == NULL) {
834 curlwp_bindx(bound);
835 return EBUSY;
836 }
837
838 if ((ifp->if_flags & IFF_PROMISC) != 0) {
839 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
840 error = ifpromisc(mib->ifvm_p, 1);
841 if (error == 0)
842 ifv->ifv_flags |= IFVF_PROMISC;
843 }
844 } else {
845 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
846 error = ifpromisc(mib->ifvm_p, 0);
847 if (error == 0)
848 ifv->ifv_flags &= ~IFVF_PROMISC;
849 }
850 }
851 vlan_putref_linkmib(mib, &psref);
852 curlwp_bindx(bound);
853
854 return (error);
855 }
856
857 static int
858 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
859 {
860 struct lwp *l = curlwp; /* XXX */
861 struct ifvlan *ifv = ifp->if_softc;
862 struct ifaddr *ifa = (struct ifaddr *) data;
863 struct ifreq *ifr = (struct ifreq *) data;
864 struct ifnet *pr;
865 struct ifcapreq *ifcr;
866 struct vlanreq vlr;
867 struct ifvlan_linkmib *mib;
868 struct psref psref;
869 int error = 0;
870 int bound;
871
872 switch (cmd) {
873 case SIOCSIFMTU:
874 bound = curlwp_bind();
875 mib = vlan_getref_linkmib(ifv, &psref);
876 if (mib == NULL) {
877 curlwp_bindx(bound);
878 error = EBUSY;
879 break;
880 }
881
882 if (mib->ifvm_p == NULL) {
883 vlan_putref_linkmib(mib, &psref);
884 curlwp_bindx(bound);
885 error = EINVAL;
886 } else if (
887 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
888 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
889 vlan_putref_linkmib(mib, &psref);
890 curlwp_bindx(bound);
891 error = EINVAL;
892 } else {
893 vlan_putref_linkmib(mib, &psref);
894 curlwp_bindx(bound);
895
896 error = ifioctl_common(ifp, cmd, data);
897 if (error == ENETRESET)
898 error = 0;
899 }
900
901 break;
902
903 case SIOCSETVLAN:
904 if ((error = kauth_authorize_network(l->l_cred,
905 KAUTH_NETWORK_INTERFACE,
906 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
907 NULL)) != 0)
908 break;
909 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
910 break;
911
912 if (vlr.vlr_parent[0] == '\0') {
913 bound = curlwp_bind();
914 mib = vlan_getref_linkmib(ifv, &psref);
915 if (mib == NULL) {
916 curlwp_bindx(bound);
917 error = EBUSY;
918 break;
919 }
920
921 if (mib->ifvm_p != NULL &&
922 (ifp->if_flags & IFF_PROMISC) != 0)
923 error = ifpromisc(mib->ifvm_p, 0);
924
925 vlan_putref_linkmib(mib, &psref);
926 curlwp_bindx(bound);
927
928 vlan_unconfig(ifp);
929 break;
930 }
931 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
932 error = EINVAL; /* check for valid tag */
933 break;
934 }
935 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
936 error = ENOENT;
937 break;
938 }
939 error = vlan_config(ifv, pr, vlr.vlr_tag);
940 if (error != 0) {
941 break;
942 }
943 ifp->if_flags |= IFF_RUNNING;
944
945 /* Update promiscuous mode, if necessary. */
946 vlan_set_promisc(ifp);
947 break;
948
949 case SIOCGETVLAN:
950 memset(&vlr, 0, sizeof(vlr));
951 bound = curlwp_bind();
952 mib = vlan_getref_linkmib(ifv, &psref);
953 if (mib == NULL) {
954 curlwp_bindx(bound);
955 error = EBUSY;
956 break;
957 }
958 if (mib->ifvm_p != NULL) {
959 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
960 mib->ifvm_p->if_xname);
961 vlr.vlr_tag = mib->ifvm_tag;
962 }
963 vlan_putref_linkmib(mib, &psref);
964 curlwp_bindx(bound);
965 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
966 break;
967
968 case SIOCSIFFLAGS:
969 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
970 break;
971 /*
972 * For promiscuous mode, we enable promiscuous mode on
973 * the parent if we need promiscuous on the VLAN interface.
974 */
975 bound = curlwp_bind();
976 mib = vlan_getref_linkmib(ifv, &psref);
977 if (mib == NULL) {
978 curlwp_bindx(bound);
979 error = EBUSY;
980 break;
981 }
982
983 if (mib->ifvm_p != NULL)
984 error = vlan_set_promisc(ifp);
985 vlan_putref_linkmib(mib, &psref);
986 curlwp_bindx(bound);
987 break;
988
989 case SIOCADDMULTI:
990 mutex_enter(&ifv->ifv_lock);
991 mib = ifv->ifv_mib;
992 if (mib == NULL) {
993 error = EBUSY;
994 mutex_exit(&ifv->ifv_lock);
995 break;
996 }
997
998 error = (mib->ifvm_p != NULL) ?
999 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1000 mib = NULL;
1001 mutex_exit(&ifv->ifv_lock);
1002 break;
1003
1004 case SIOCDELMULTI:
1005 mutex_enter(&ifv->ifv_lock);
1006 mib = ifv->ifv_mib;
1007 if (mib == NULL) {
1008 error = EBUSY;
1009 mutex_exit(&ifv->ifv_lock);
1010 break;
1011 }
1012 error = (mib->ifvm_p != NULL) ?
1013 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1014 mib = NULL;
1015 mutex_exit(&ifv->ifv_lock);
1016 break;
1017
1018 case SIOCSIFCAP:
1019 ifcr = data;
1020 /* make sure caps are enabled on parent */
1021 bound = curlwp_bind();
1022 mib = vlan_getref_linkmib(ifv, &psref);
1023 if (mib == NULL) {
1024 curlwp_bindx(bound);
1025 error = EBUSY;
1026 break;
1027 }
1028
1029 if (mib->ifvm_p == NULL) {
1030 vlan_putref_linkmib(mib, &psref);
1031 curlwp_bindx(bound);
1032 error = EINVAL;
1033 break;
1034 }
1035 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1036 ifcr->ifcr_capenable) {
1037 vlan_putref_linkmib(mib, &psref);
1038 curlwp_bindx(bound);
1039 error = EINVAL;
1040 break;
1041 }
1042
1043 vlan_putref_linkmib(mib, &psref);
1044 curlwp_bindx(bound);
1045
1046 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1047 error = 0;
1048 break;
1049 case SIOCINITIFADDR:
1050 bound = curlwp_bind();
1051 mib = vlan_getref_linkmib(ifv, &psref);
1052 if (mib == NULL) {
1053 curlwp_bindx(bound);
1054 error = EBUSY;
1055 break;
1056 }
1057
1058 if (mib->ifvm_p == NULL) {
1059 error = EINVAL;
1060 vlan_putref_linkmib(mib, &psref);
1061 curlwp_bindx(bound);
1062 break;
1063 }
1064 vlan_putref_linkmib(mib, &psref);
1065 curlwp_bindx(bound);
1066
1067 ifp->if_flags |= IFF_UP;
1068 #ifdef INET
1069 if (ifa->ifa_addr->sa_family == AF_INET)
1070 arp_ifinit(ifp, ifa);
1071 #endif
1072 break;
1073
1074 default:
1075 error = ether_ioctl(ifp, cmd, data);
1076 }
1077
1078 return (error);
1079 }
1080
1081 static int
1082 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1083 {
1084 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1085 struct vlan_mc_entry *mc;
1086 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1087 struct ifvlan_linkmib *mib;
1088 int error;
1089
1090 KASSERT(mutex_owned(&ifv->ifv_lock));
1091
1092 if (sa->sa_len > sizeof(struct sockaddr_storage))
1093 return (EINVAL);
1094
1095 error = ether_addmulti(sa, &ifv->ifv_ec);
1096 if (error != ENETRESET)
1097 return (error);
1098
1099 /*
1100 * This is new multicast address. We have to tell parent
1101 * about it. Also, remember this multicast address so that
1102 * we can delete them on unconfigure.
1103 */
1104 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1105 if (mc == NULL) {
1106 error = ENOMEM;
1107 goto alloc_failed;
1108 }
1109
1110 /*
1111 * As ether_addmulti() returns ENETRESET, following two
1112 * statement shouldn't fail.
1113 */
1114 (void)ether_multiaddr(sa, addrlo, addrhi);
1115 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
1116 memcpy(&mc->mc_addr, sa, sa->sa_len);
1117 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1118
1119 mib = ifv->ifv_mib;
1120 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1121
1122 if (error != 0)
1123 goto ioctl_failed;
1124 return (error);
1125
1126 ioctl_failed:
1127 LIST_REMOVE(mc, mc_entries);
1128 free(mc, M_DEVBUF);
1129 alloc_failed:
1130 (void)ether_delmulti(sa, &ifv->ifv_ec);
1131 return (error);
1132 }
1133
1134 static int
1135 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1136 {
1137 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1138 struct ether_multi *enm;
1139 struct vlan_mc_entry *mc;
1140 struct ifvlan_linkmib *mib;
1141 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1142 int error;
1143
1144 KASSERT(mutex_owned(&ifv->ifv_lock));
1145
1146 /*
1147 * Find a key to lookup vlan_mc_entry. We have to do this
1148 * before calling ether_delmulti for obvious reason.
1149 */
1150 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1151 return (error);
1152 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
1153
1154 error = ether_delmulti(sa, &ifv->ifv_ec);
1155 if (error != ENETRESET)
1156 return (error);
1157
1158 /* We no longer use this multicast address. Tell parent so. */
1159 mib = ifv->ifv_mib;
1160 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1161
1162 if (error == 0) {
1163 /* And forget about this address. */
1164 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
1165 mc = LIST_NEXT(mc, mc_entries)) {
1166 if (mc->mc_enm == enm) {
1167 LIST_REMOVE(mc, mc_entries);
1168 free(mc, M_DEVBUF);
1169 break;
1170 }
1171 }
1172 KASSERT(mc != NULL);
1173 } else
1174 (void)ether_addmulti(sa, &ifv->ifv_ec);
1175 return (error);
1176 }
1177
1178 /*
1179 * Delete any multicast address we have asked to add from parent
1180 * interface. Called when the vlan is being unconfigured.
1181 */
1182 static void
1183 vlan_ether_purgemulti(struct ifvlan *ifv)
1184 {
1185 struct vlan_mc_entry *mc;
1186 struct ifvlan_linkmib *mib;
1187
1188 KASSERT(mutex_owned(&ifv->ifv_lock));
1189 mib = ifv->ifv_mib;
1190 if (mib == NULL) {
1191 return;
1192 }
1193
1194 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1195 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1196 (const struct sockaddr *)&mc->mc_addr);
1197 LIST_REMOVE(mc, mc_entries);
1198 free(mc, M_DEVBUF);
1199 }
1200 }
1201
1202 static void
1203 vlan_start(struct ifnet *ifp)
1204 {
1205 struct ifvlan *ifv = ifp->if_softc;
1206 struct ifnet *p;
1207 struct ethercom *ec;
1208 struct mbuf *m;
1209 struct ifvlan_linkmib *mib;
1210 struct psref psref;
1211 int error;
1212
1213 #ifndef NET_MPSAFE
1214 KASSERT(KERNEL_LOCKED_P());
1215 #endif
1216
1217 mib = vlan_getref_linkmib(ifv, &psref);
1218 if (mib == NULL)
1219 return;
1220 p = mib->ifvm_p;
1221 ec = (void *)mib->ifvm_p;
1222
1223 ifp->if_flags |= IFF_OACTIVE;
1224
1225 for (;;) {
1226 IFQ_DEQUEUE(&ifp->if_snd, m);
1227 if (m == NULL)
1228 break;
1229
1230 #ifdef ALTQ
1231 /*
1232 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is defined.
1233 */
1234 KERNEL_LOCK(1, NULL);
1235 /*
1236 * If ALTQ is enabled on the parent interface, do
1237 * classification; the queueing discipline might
1238 * not require classification, but might require
1239 * the address family/header pointer in the pktattr.
1240 */
1241 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1242 switch (p->if_type) {
1243 case IFT_ETHER:
1244 altq_etherclassify(&p->if_snd, m);
1245 break;
1246 #ifdef DIAGNOSTIC
1247 default:
1248 panic("vlan_start: impossible (altq)");
1249 #endif
1250 }
1251 }
1252 KERNEL_UNLOCK_ONE(NULL);
1253 #endif /* ALTQ */
1254
1255 bpf_mtap(ifp, m);
1256 /*
1257 * If the parent can insert the tag itself, just mark
1258 * the tag in the mbuf header.
1259 */
1260 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1261 vlan_set_tag(m, mib->ifvm_tag);
1262 } else {
1263 /*
1264 * insert the tag ourselves
1265 */
1266 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1267 if (m == NULL) {
1268 printf("%s: unable to prepend encap header",
1269 p->if_xname);
1270 ifp->if_oerrors++;
1271 continue;
1272 }
1273
1274 switch (p->if_type) {
1275 case IFT_ETHER:
1276 {
1277 struct ether_vlan_header *evl;
1278
1279 if (m->m_len < sizeof(struct ether_vlan_header))
1280 m = m_pullup(m,
1281 sizeof(struct ether_vlan_header));
1282 if (m == NULL) {
1283 printf("%s: unable to pullup encap "
1284 "header", p->if_xname);
1285 ifp->if_oerrors++;
1286 continue;
1287 }
1288
1289 /*
1290 * Transform the Ethernet header into an
1291 * Ethernet header with 802.1Q encapsulation.
1292 */
1293 memmove(mtod(m, void *),
1294 mtod(m, char *) + mib->ifvm_encaplen,
1295 sizeof(struct ether_header));
1296 evl = mtod(m, struct ether_vlan_header *);
1297 evl->evl_proto = evl->evl_encap_proto;
1298 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1299 evl->evl_tag = htons(mib->ifvm_tag);
1300
1301 /*
1302 * To cater for VLAN-aware layer 2 ethernet
1303 * switches which may need to strip the tag
1304 * before forwarding the packet, make sure
1305 * the packet+tag is at least 68 bytes long.
1306 * This is necessary because our parent will
1307 * only pad to 64 bytes (ETHER_MIN_LEN) and
1308 * some switches will not pad by themselves
1309 * after deleting a tag.
1310 */
1311 if (m->m_pkthdr.len <
1312 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1313 ETHER_VLAN_ENCAP_LEN)) {
1314 m_copyback(m, m->m_pkthdr.len,
1315 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1316 ETHER_VLAN_ENCAP_LEN) -
1317 m->m_pkthdr.len,
1318 vlan_zero_pad_buff);
1319 }
1320 break;
1321 }
1322
1323 #ifdef DIAGNOSTIC
1324 default:
1325 panic("vlan_start: impossible");
1326 #endif
1327 }
1328 }
1329
1330 if ((p->if_flags & IFF_RUNNING) == 0) {
1331 m_freem(m);
1332 continue;
1333 }
1334
1335 error = if_transmit_lock(p, m);
1336 if (error) {
1337 /* mbuf is already freed */
1338 ifp->if_oerrors++;
1339 continue;
1340 }
1341 ifp->if_opackets++;
1342 }
1343
1344 ifp->if_flags &= ~IFF_OACTIVE;
1345
1346 /* Remove reference to mib before release */
1347 p = NULL;
1348 ec = NULL;
1349
1350 vlan_putref_linkmib(mib, &psref);
1351 }
1352
1353 static int
1354 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1355 {
1356 struct ifvlan *ifv = ifp->if_softc;
1357 struct ifnet *p;
1358 struct ethercom *ec;
1359 struct ifvlan_linkmib *mib;
1360 struct psref psref;
1361 int error;
1362 size_t pktlen = m->m_pkthdr.len;
1363 bool mcast = (m->m_flags & M_MCAST) != 0;
1364
1365 mib = vlan_getref_linkmib(ifv, &psref);
1366 if (mib == NULL) {
1367 m_freem(m);
1368 return ENETDOWN;
1369 }
1370
1371 p = mib->ifvm_p;
1372 ec = (void *)mib->ifvm_p;
1373
1374 bpf_mtap(ifp, m);
1375 /*
1376 * If the parent can insert the tag itself, just mark
1377 * the tag in the mbuf header.
1378 */
1379 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1380 vlan_set_tag(m, mib->ifvm_tag);
1381 } else {
1382 /*
1383 * insert the tag ourselves
1384 */
1385 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1386 if (m == NULL) {
1387 printf("%s: unable to prepend encap header",
1388 p->if_xname);
1389 ifp->if_oerrors++;
1390 error = ENOBUFS;
1391 goto out;
1392 }
1393
1394 switch (p->if_type) {
1395 case IFT_ETHER:
1396 {
1397 struct ether_vlan_header *evl;
1398
1399 if (m->m_len < sizeof(struct ether_vlan_header))
1400 m = m_pullup(m,
1401 sizeof(struct ether_vlan_header));
1402 if (m == NULL) {
1403 printf("%s: unable to pullup encap "
1404 "header", p->if_xname);
1405 ifp->if_oerrors++;
1406 error = ENOBUFS;
1407 goto out;
1408 }
1409
1410 /*
1411 * Transform the Ethernet header into an
1412 * Ethernet header with 802.1Q encapsulation.
1413 */
1414 memmove(mtod(m, void *),
1415 mtod(m, char *) + mib->ifvm_encaplen,
1416 sizeof(struct ether_header));
1417 evl = mtod(m, struct ether_vlan_header *);
1418 evl->evl_proto = evl->evl_encap_proto;
1419 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1420 evl->evl_tag = htons(mib->ifvm_tag);
1421
1422 /*
1423 * To cater for VLAN-aware layer 2 ethernet
1424 * switches which may need to strip the tag
1425 * before forwarding the packet, make sure
1426 * the packet+tag is at least 68 bytes long.
1427 * This is necessary because our parent will
1428 * only pad to 64 bytes (ETHER_MIN_LEN) and
1429 * some switches will not pad by themselves
1430 * after deleting a tag.
1431 */
1432 if (m->m_pkthdr.len <
1433 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1434 ETHER_VLAN_ENCAP_LEN)) {
1435 m_copyback(m, m->m_pkthdr.len,
1436 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1437 ETHER_VLAN_ENCAP_LEN) -
1438 m->m_pkthdr.len,
1439 vlan_zero_pad_buff);
1440 }
1441 break;
1442 }
1443
1444 #ifdef DIAGNOSTIC
1445 default:
1446 panic("vlan_transmit: impossible");
1447 #endif
1448 }
1449 }
1450
1451 if ((p->if_flags & IFF_RUNNING) == 0) {
1452 m_freem(m);
1453 error = ENETDOWN;
1454 goto out;
1455 }
1456
1457 error = if_transmit_lock(p, m);
1458 if (error) {
1459 /* mbuf is already freed */
1460 ifp->if_oerrors++;
1461 } else {
1462
1463 ifp->if_opackets++;
1464 ifp->if_obytes += pktlen;
1465 if (mcast)
1466 ifp->if_omcasts++;
1467 }
1468
1469 out:
1470 /* Remove reference to mib before release */
1471 p = NULL;
1472 ec = NULL;
1473
1474 vlan_putref_linkmib(mib, &psref);
1475 return error;
1476 }
1477
1478 /*
1479 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1480 * given source interface and tag, then run the real packet through the
1481 * parent's input routine.
1482 */
1483 void
1484 vlan_input(struct ifnet *ifp, struct mbuf *m)
1485 {
1486 struct ifvlan *ifv;
1487 u_int tag;
1488 struct ifvlan_linkmib *mib;
1489 struct psref psref;
1490 bool have_vtag;
1491
1492 have_vtag = vlan_has_tag(m);
1493 if (have_vtag) {
1494 tag = EVL_VLANOFTAG(vlan_get_tag(m));
1495 m->m_flags &= ~M_VLANTAG;
1496 } else {
1497 switch (ifp->if_type) {
1498 case IFT_ETHER:
1499 {
1500 struct ether_vlan_header *evl;
1501
1502 if (m->m_len < sizeof(struct ether_vlan_header) &&
1503 (m = m_pullup(m,
1504 sizeof(struct ether_vlan_header))) == NULL) {
1505 printf("%s: no memory for VLAN header, "
1506 "dropping packet.\n", ifp->if_xname);
1507 return;
1508 }
1509 evl = mtod(m, struct ether_vlan_header *);
1510 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1511
1512 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1513
1514 /*
1515 * Restore the original ethertype. We'll remove
1516 * the encapsulation after we've found the vlan
1517 * interface corresponding to the tag.
1518 */
1519 evl->evl_encap_proto = evl->evl_proto;
1520 break;
1521 }
1522
1523 default:
1524 tag = (u_int) -1; /* XXX GCC */
1525 #ifdef DIAGNOSTIC
1526 panic("vlan_input: impossible");
1527 #endif
1528 }
1529 }
1530
1531 mib = vlan_lookup_tag_psref(ifp, tag, &psref);
1532 if (mib == NULL) {
1533 m_freem(m);
1534 ifp->if_noproto++;
1535 return;
1536 }
1537
1538 ifv = mib->ifvm_ifvlan;
1539 if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
1540 (IFF_UP|IFF_RUNNING)) {
1541 m_freem(m);
1542 ifp->if_noproto++;
1543 goto out;
1544 }
1545
1546 /*
1547 * Now, remove the encapsulation header. The original
1548 * header has already been fixed up above.
1549 */
1550 if (!have_vtag) {
1551 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1552 mtod(m, void *), sizeof(struct ether_header));
1553 m_adj(m, mib->ifvm_encaplen);
1554 }
1555
1556 m_set_rcvif(m, &ifv->ifv_if);
1557 ifv->ifv_if.if_ipackets++;
1558
1559 m->m_flags &= ~M_PROMISC;
1560 if_input(&ifv->ifv_if, m);
1561 out:
1562 vlan_putref_linkmib(mib, &psref);
1563 }
1564
1565 /*
1566 * Module infrastructure
1567 */
1568 #include "if_module.h"
1569
1570 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
1571