if_vlan.c revision 1.108 1 /* $NetBSD: if_vlan.c,v 1.108 2017/11/22 02:35:24 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.108 2017/11/22 02:35:24 msaitoh Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mbuf.h>
91 #include <sys/queue.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/systm.h>
95 #include <sys/proc.h>
96 #include <sys/kauth.h>
97 #include <sys/mutex.h>
98 #include <sys/kmem.h>
99 #include <sys/cpu.h>
100 #include <sys/pserialize.h>
101 #include <sys/psref.h>
102 #include <sys/pslist.h>
103 #include <sys/atomic.h>
104 #include <sys/device.h>
105 #include <sys/module.h>
106
107 #include <net/bpf.h>
108 #include <net/if.h>
109 #include <net/if_dl.h>
110 #include <net/if_types.h>
111 #include <net/if_ether.h>
112 #include <net/if_vlanvar.h>
113
114 #ifdef INET
115 #include <netinet/in.h>
116 #include <netinet/if_inarp.h>
117 #endif
118 #ifdef INET6
119 #include <netinet6/in6_ifattach.h>
120 #include <netinet6/in6_var.h>
121 #endif
122
123 #include "ioconf.h"
124
125 struct vlan_mc_entry {
126 LIST_ENTRY(vlan_mc_entry) mc_entries;
127 /*
128 * A key to identify this entry. The mc_addr below can't be
129 * used since multiple sockaddr may mapped into the same
130 * ether_multi (e.g., AF_UNSPEC).
131 */
132 union {
133 struct ether_multi *mcu_enm;
134 } mc_u;
135 struct sockaddr_storage mc_addr;
136 };
137
138 #define mc_enm mc_u.mcu_enm
139
140
141 struct ifvlan_linkmib {
142 struct ifvlan *ifvm_ifvlan;
143 const struct vlan_multisw *ifvm_msw;
144 int ifvm_encaplen; /* encapsulation length */
145 int ifvm_mtufudge; /* MTU fudged by this much */
146 int ifvm_mintu; /* min transmission unit */
147 uint16_t ifvm_proto; /* encapsulation ethertype */
148 uint16_t ifvm_tag; /* tag to apply on packets */
149 struct ifnet *ifvm_p; /* parent interface of this vlan */
150
151 struct psref_target ifvm_psref;
152 };
153
154 struct ifvlan {
155 union {
156 struct ethercom ifvu_ec;
157 } ifv_u;
158 struct ifvlan_linkmib *ifv_mib; /*
159 * reader must use vlan_getref_linkmib()
160 * instead of direct dereference
161 */
162 kmutex_t ifv_lock; /* writer lock for ifv_mib */
163
164 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
165 LIST_ENTRY(ifvlan) ifv_list;
166 struct pslist_entry ifv_hash;
167 int ifv_flags;
168 };
169
170 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
171
172 #define ifv_ec ifv_u.ifvu_ec
173
174 #define ifv_if ifv_ec.ec_if
175
176 #define ifv_msw ifv_mib.ifvm_msw
177 #define ifv_encaplen ifv_mib.ifvm_encaplen
178 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
179 #define ifv_mintu ifv_mib.ifvm_mintu
180 #define ifv_tag ifv_mib.ifvm_tag
181
182 struct vlan_multisw {
183 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
184 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
185 void (*vmsw_purgemulti)(struct ifvlan *);
186 };
187
188 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
189 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
190 static void vlan_ether_purgemulti(struct ifvlan *);
191
192 const struct vlan_multisw vlan_ether_multisw = {
193 vlan_ether_addmulti,
194 vlan_ether_delmulti,
195 vlan_ether_purgemulti,
196 };
197
198 static int vlan_clone_create(struct if_clone *, int);
199 static int vlan_clone_destroy(struct ifnet *);
200 static int vlan_config(struct ifvlan *, struct ifnet *,
201 uint16_t);
202 static int vlan_ioctl(struct ifnet *, u_long, void *);
203 static void vlan_start(struct ifnet *);
204 static int vlan_transmit(struct ifnet *, struct mbuf *);
205 static void vlan_unconfig(struct ifnet *);
206 static int vlan_unconfig_locked(struct ifvlan *,
207 struct ifvlan_linkmib *);
208 static void vlan_hash_init(void);
209 static int vlan_hash_fini(void);
210 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
211 struct psref *);
212 static void vlan_putref_linkmib(struct ifvlan_linkmib *,
213 struct psref *);
214 static void vlan_linkmib_update(struct ifvlan *,
215 struct ifvlan_linkmib *);
216 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
217 uint16_t, struct psref *);
218 static int tag_hash_func(uint16_t, u_long);
219
220 LIST_HEAD(vlan_ifvlist, ifvlan);
221 static struct {
222 kmutex_t lock;
223 struct vlan_ifvlist list;
224 } ifv_list __cacheline_aligned;
225
226
227 #if !defined(VLAN_TAG_HASH_SIZE)
228 #define VLAN_TAG_HASH_SIZE 32
229 #endif
230 static struct {
231 kmutex_t lock;
232 struct pslist_head *lists;
233 u_long mask;
234 } ifv_hash __cacheline_aligned = {
235 .lists = NULL,
236 .mask = 0,
237 };
238
239 pserialize_t vlan_psz __read_mostly;
240 static struct psref_class *ifvm_psref_class __read_mostly;
241
242 struct if_clone vlan_cloner =
243 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
244
245 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
246 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
247
248 void
249 vlanattach(int n)
250 {
251
252 /*
253 * Nothing to do here, initialization is handled by the
254 * module initialization code in vlaninit() below).
255 */
256 }
257
258 static void
259 vlaninit(void)
260 {
261 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
262 LIST_INIT(&ifv_list.list);
263
264 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
265 vlan_psz = pserialize_create();
266 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
267 if_clone_attach(&vlan_cloner);
268
269 vlan_hash_init();
270 }
271
272 static int
273 vlandetach(void)
274 {
275 int error = 0;
276
277 mutex_enter(&ifv_list.lock);
278 if (!LIST_EMPTY(&ifv_list.list)) {
279 mutex_exit(&ifv_list.lock);
280 return EBUSY;
281 }
282 mutex_exit(&ifv_list.lock);
283
284 error = vlan_hash_fini();
285 if (error != 0)
286 return error;
287
288 if_clone_detach(&vlan_cloner);
289 psref_class_destroy(ifvm_psref_class);
290 pserialize_destroy(vlan_psz);
291 mutex_destroy(&ifv_hash.lock);
292 mutex_destroy(&ifv_list.lock);
293
294 return 0;
295 }
296
297 static void
298 vlan_reset_linkname(struct ifnet *ifp)
299 {
300
301 /*
302 * We start out with a "802.1Q VLAN" type and zero-length
303 * addresses. When we attach to a parent interface, we
304 * inherit its type, address length, address, and data link
305 * type.
306 */
307
308 ifp->if_type = IFT_L2VLAN;
309 ifp->if_addrlen = 0;
310 ifp->if_dlt = DLT_NULL;
311 if_alloc_sadl(ifp);
312 }
313
314 static int
315 vlan_clone_create(struct if_clone *ifc, int unit)
316 {
317 struct ifvlan *ifv;
318 struct ifnet *ifp;
319 struct ifvlan_linkmib *mib;
320 int rv;
321
322 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
323 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
324 ifp = &ifv->ifv_if;
325 LIST_INIT(&ifv->ifv_mc_listhead);
326
327 mib->ifvm_ifvlan = ifv;
328 mib->ifvm_p = NULL;
329 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
330
331 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
332 ifv->ifv_mib = mib;
333
334 mutex_enter(&ifv_list.lock);
335 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
336 mutex_exit(&ifv_list.lock);
337
338 if_initname(ifp, ifc->ifc_name, unit);
339 ifp->if_softc = ifv;
340 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
341 ifp->if_extflags = IFEF_MPSAFE | IFEF_NO_LINK_STATE_CHANGE;
342 ifp->if_start = vlan_start;
343 ifp->if_transmit = vlan_transmit;
344 ifp->if_ioctl = vlan_ioctl;
345 IFQ_SET_READY(&ifp->if_snd);
346
347 rv = if_initialize(ifp);
348 if (rv != 0) {
349 aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
350 rv);
351 goto fail;
352 }
353
354 vlan_reset_linkname(ifp);
355 if_register(ifp);
356 return 0;
357
358 fail:
359 mutex_enter(&ifv_list.lock);
360 LIST_REMOVE(ifv, ifv_list);
361 mutex_exit(&ifv_list.lock);
362
363 mutex_destroy(&ifv->ifv_lock);
364 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
365 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
366 free(ifv, M_DEVBUF);
367
368 return rv;
369 }
370
371 static int
372 vlan_clone_destroy(struct ifnet *ifp)
373 {
374 struct ifvlan *ifv = ifp->if_softc;
375
376 mutex_enter(&ifv_list.lock);
377 LIST_REMOVE(ifv, ifv_list);
378 mutex_exit(&ifv_list.lock);
379
380 vlan_unconfig(ifp);
381 if_detach(ifp);
382
383 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
384 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
385 mutex_destroy(&ifv->ifv_lock);
386 free(ifv, M_DEVBUF);
387
388 return (0);
389 }
390
391 /*
392 * Configure a VLAN interface.
393 */
394 static int
395 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
396 {
397 struct ifnet *ifp = &ifv->ifv_if;
398 struct ifvlan_linkmib *nmib = NULL;
399 struct ifvlan_linkmib *omib = NULL;
400 struct ifvlan_linkmib *checkmib = NULL;
401 struct psref_target *nmib_psref = NULL;
402 uint16_t vid = EVL_VLANOFTAG(tag);
403 int error = 0;
404 int idx;
405 bool omib_cleanup = false;
406 struct psref psref;
407
408 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
409
410 mutex_enter(&ifv->ifv_lock);
411 omib = ifv->ifv_mib;
412
413 if (omib->ifvm_p != NULL) {
414 error = EBUSY;
415 goto done;
416 }
417
418 /* Duplicate check */
419 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
420 if (checkmib != NULL) {
421 vlan_putref_linkmib(checkmib, &psref);
422 error = EEXIST;
423 goto done;
424 }
425
426 *nmib = *omib;
427 nmib_psref = &nmib->ifvm_psref;
428
429 psref_target_init(nmib_psref, ifvm_psref_class);
430
431 switch (p->if_type) {
432 case IFT_ETHER:
433 {
434 struct ethercom *ec = (void *) p;
435 nmib->ifvm_msw = &vlan_ether_multisw;
436 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
437 nmib->ifvm_mintu = ETHERMIN;
438
439 if (ec->ec_nvlans++ == 0) {
440 if ((error = ether_enable_vlan_mtu(p)) >= 0) {
441 if (error) {
442 ec->ec_nvlans--;
443 goto done;
444 }
445 nmib->ifvm_mtufudge = 0;
446 } else {
447 /*
448 * Fudge the MTU by the encapsulation size. This
449 * makes us incompatible with strictly compliant
450 * 802.1Q implementations, but allows us to use
451 * the feature with other NetBSD
452 * implementations, which might still be useful.
453 */
454 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
455 }
456 error = 0;
457 }
458
459 /*
460 * If the parent interface can do hardware-assisted
461 * VLAN encapsulation, then propagate its hardware-
462 * assisted checksumming flags and tcp segmentation
463 * offload.
464 */
465 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
466 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
467 ifp->if_capabilities = p->if_capabilities &
468 (IFCAP_TSOv4 | IFCAP_TSOv6 |
469 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
470 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
471 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
472 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
473 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
474 }
475 /*
476 * We inherit the parent's Ethernet address.
477 */
478 ether_ifattach(ifp, CLLADDR(p->if_sadl));
479 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
480 break;
481 }
482
483 default:
484 error = EPROTONOSUPPORT;
485 goto done;
486 }
487
488 nmib->ifvm_p = p;
489 nmib->ifvm_tag = vid;
490 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
491 ifv->ifv_if.if_flags = p->if_flags &
492 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
493
494 /*
495 * Inherit the if_type from the parent. This allows us
496 * to participate in bridges of that type.
497 */
498 ifv->ifv_if.if_type = p->if_type;
499
500 PSLIST_ENTRY_INIT(ifv, ifv_hash);
501 idx = tag_hash_func(vid, ifv_hash.mask);
502
503 mutex_enter(&ifv_hash.lock);
504 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
505 mutex_exit(&ifv_hash.lock);
506
507 vlan_linkmib_update(ifv, nmib);
508 nmib = NULL;
509 nmib_psref = NULL;
510 omib_cleanup = true;
511
512 done:
513 mutex_exit(&ifv->ifv_lock);
514
515 if (nmib_psref)
516 psref_target_destroy(nmib_psref, ifvm_psref_class);
517
518 if (nmib)
519 kmem_free(nmib, sizeof(*nmib));
520
521 if (omib_cleanup)
522 kmem_free(omib, sizeof(*omib));
523
524 return error;
525 }
526
527 /*
528 * Unconfigure a VLAN interface.
529 */
530 static void
531 vlan_unconfig(struct ifnet *ifp)
532 {
533 struct ifvlan *ifv = ifp->if_softc;
534 struct ifvlan_linkmib *nmib = NULL;
535 int error;
536
537 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
538
539 mutex_enter(&ifv->ifv_lock);
540 error = vlan_unconfig_locked(ifv, nmib);
541 mutex_exit(&ifv->ifv_lock);
542
543 if (error)
544 kmem_free(nmib, sizeof(*nmib));
545 }
546 static int
547 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
548 {
549 struct ifnet *p;
550 struct ifnet *ifp = &ifv->ifv_if;
551 struct psref_target *nmib_psref = NULL;
552 struct ifvlan_linkmib *omib;
553 int error = 0;
554
555 KASSERT(mutex_owned(&ifv->ifv_lock));
556
557 omib = ifv->ifv_mib;
558 p = omib->ifvm_p;
559
560 if (p == NULL) {
561 error = -1;
562 goto done;
563 }
564
565 *nmib = *omib;
566 nmib_psref = &nmib->ifvm_psref;
567 psref_target_init(nmib_psref, ifvm_psref_class);
568
569 /*
570 * Since the interface is being unconfigured, we need to empty the
571 * list of multicast groups that we may have joined while we were
572 * alive and remove them from the parent's list also.
573 */
574 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
575
576 /* Disconnect from parent. */
577 switch (p->if_type) {
578 case IFT_ETHER:
579 {
580 struct ethercom *ec = (void *)p;
581 if (--ec->ec_nvlans == 0)
582 (void)ether_disable_vlan_mtu(p);
583
584 ether_ifdetach(ifp);
585 /* Restore vlan_ioctl overwritten by ether_ifdetach */
586 ifp->if_ioctl = vlan_ioctl;
587 vlan_reset_linkname(ifp);
588 break;
589 }
590
591 #ifdef DIAGNOSTIC
592 default:
593 panic("vlan_unconfig: impossible");
594 #endif
595 }
596
597 nmib->ifvm_p = NULL;
598 ifv->ifv_if.if_mtu = 0;
599 ifv->ifv_flags = 0;
600
601 mutex_enter(&ifv_hash.lock);
602 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
603 pserialize_perform(vlan_psz);
604 mutex_exit(&ifv_hash.lock);
605 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
606
607 vlan_linkmib_update(ifv, nmib);
608
609 mutex_exit(&ifv->ifv_lock);
610
611 nmib_psref = NULL;
612 kmem_free(omib, sizeof(*omib));
613
614 #ifdef INET6
615 /* To delete v6 link local addresses */
616 if (in6_present)
617 in6_ifdetach(ifp);
618 #endif
619
620 if ((ifp->if_flags & IFF_PROMISC) != 0)
621 ifpromisc(ifp, 0);
622 if_down(ifp);
623 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
624 ifp->if_capabilities = 0;
625 mutex_enter(&ifv->ifv_lock);
626 done:
627
628 if (nmib_psref)
629 psref_target_destroy(nmib_psref, ifvm_psref_class);
630
631 return error;
632 }
633
634 static void
635 vlan_hash_init(void)
636 {
637
638 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
639 &ifv_hash.mask);
640 }
641
642 static int
643 vlan_hash_fini(void)
644 {
645 int i;
646
647 mutex_enter(&ifv_hash.lock);
648
649 for (i = 0; i < ifv_hash.mask + 1; i++) {
650 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
651 ifv_hash) != NULL) {
652 mutex_exit(&ifv_hash.lock);
653 return EBUSY;
654 }
655 }
656
657 for (i = 0; i < ifv_hash.mask + 1; i++)
658 PSLIST_DESTROY(&ifv_hash.lists[i]);
659
660 mutex_exit(&ifv_hash.lock);
661
662 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
663
664 ifv_hash.lists = NULL;
665 ifv_hash.mask = 0;
666
667 return 0;
668 }
669
670 static int
671 tag_hash_func(uint16_t tag, u_long mask)
672 {
673 uint32_t hash;
674
675 hash = (tag >> 8) ^ tag;
676 hash = (hash >> 2) ^ hash;
677
678 return hash & mask;
679 }
680
681 static struct ifvlan_linkmib *
682 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
683 {
684 struct ifvlan_linkmib *mib;
685 int s;
686
687 s = pserialize_read_enter();
688 mib = sc->ifv_mib;
689 if (mib == NULL) {
690 pserialize_read_exit(s);
691 return NULL;
692 }
693 membar_datadep_consumer();
694 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
695 pserialize_read_exit(s);
696
697 return mib;
698 }
699
700 static void
701 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
702 {
703 if (mib == NULL)
704 return;
705 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
706 }
707
708 static struct ifvlan_linkmib *
709 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
710 {
711 int idx;
712 int s;
713 struct ifvlan *sc;
714
715 idx = tag_hash_func(tag, ifv_hash.mask);
716
717 s = pserialize_read_enter();
718 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
719 ifv_hash) {
720 struct ifvlan_linkmib *mib = sc->ifv_mib;
721 if (mib == NULL)
722 continue;
723 if (mib->ifvm_tag != tag)
724 continue;
725 if (mib->ifvm_p != ifp)
726 continue;
727
728 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
729 pserialize_read_exit(s);
730 return mib;
731 }
732 pserialize_read_exit(s);
733 return NULL;
734 }
735
736 static void
737 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
738 {
739 struct ifvlan_linkmib *omib = ifv->ifv_mib;
740
741 KASSERT(mutex_owned(&ifv->ifv_lock));
742
743 membar_producer();
744 ifv->ifv_mib = nmib;
745
746 pserialize_perform(vlan_psz);
747 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
748 }
749
750 /*
751 * Called when a parent interface is detaching; destroy any VLAN
752 * configuration for the parent interface.
753 */
754 void
755 vlan_ifdetach(struct ifnet *p)
756 {
757 struct ifvlan *ifv;
758 struct ifvlan_linkmib *mib, **nmibs;
759 struct psref psref;
760 int error;
761 int bound;
762 int i, cnt = 0;
763
764 bound = curlwp_bind();
765 mutex_enter(&ifv_list.lock);
766 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
767 mib = vlan_getref_linkmib(ifv, &psref);
768 if (mib == NULL)
769 continue;
770
771 if (mib->ifvm_p == p)
772 cnt++;
773
774 vlan_putref_linkmib(mib, &psref);
775 }
776 mutex_exit(&ifv_list.lock);
777
778 /*
779 * The value of "cnt" does not increase while ifv_list.lock
780 * and ifv->ifv_lock are released here, because the parent
781 * interface is detaching.
782 */
783 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
784 for (i=0; i < cnt; i++) {
785 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
786 }
787
788 mutex_enter(&ifv_list.lock);
789
790 i = 0;
791 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
792 mutex_enter(&ifv->ifv_lock);
793 if (ifv->ifv_mib->ifvm_p == p) {
794 KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
795 p->if_xname);
796 error = vlan_unconfig_locked(ifv, nmibs[i]);
797 if (!error) {
798 nmibs[i] = NULL;
799 i++;
800 }
801
802 }
803 mutex_exit(&ifv->ifv_lock);
804 }
805
806 mutex_exit(&ifv_list.lock);
807 curlwp_bindx(bound);
808
809 for (i=0; i < cnt; i++) {
810 if (nmibs[i])
811 kmem_free(nmibs[i], sizeof(*nmibs[i]));
812 }
813
814 kmem_free(nmibs, sizeof(*nmibs) * cnt);
815
816 return;
817 }
818
819 static int
820 vlan_set_promisc(struct ifnet *ifp)
821 {
822 struct ifvlan *ifv = ifp->if_softc;
823 struct ifvlan_linkmib *mib;
824 struct psref psref;
825 int error = 0;
826 int bound;
827
828 bound = curlwp_bind();
829 mib = vlan_getref_linkmib(ifv, &psref);
830 if (mib == NULL) {
831 curlwp_bindx(bound);
832 return EBUSY;
833 }
834
835 if ((ifp->if_flags & IFF_PROMISC) != 0) {
836 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
837 error = ifpromisc(mib->ifvm_p, 1);
838 if (error == 0)
839 ifv->ifv_flags |= IFVF_PROMISC;
840 }
841 } else {
842 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
843 error = ifpromisc(mib->ifvm_p, 0);
844 if (error == 0)
845 ifv->ifv_flags &= ~IFVF_PROMISC;
846 }
847 }
848 vlan_putref_linkmib(mib, &psref);
849 curlwp_bindx(bound);
850
851 return (error);
852 }
853
854 static int
855 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
856 {
857 struct lwp *l = curlwp; /* XXX */
858 struct ifvlan *ifv = ifp->if_softc;
859 struct ifaddr *ifa = (struct ifaddr *) data;
860 struct ifreq *ifr = (struct ifreq *) data;
861 struct ifnet *pr;
862 struct ifcapreq *ifcr;
863 struct vlanreq vlr;
864 struct ifvlan_linkmib *mib;
865 struct psref psref;
866 int error = 0;
867 int bound;
868
869 switch (cmd) {
870 case SIOCSIFMTU:
871 bound = curlwp_bind();
872 mib = vlan_getref_linkmib(ifv, &psref);
873 if (mib == NULL) {
874 curlwp_bindx(bound);
875 error = EBUSY;
876 break;
877 }
878
879 if (mib->ifvm_p == NULL) {
880 vlan_putref_linkmib(mib, &psref);
881 curlwp_bindx(bound);
882 error = EINVAL;
883 } else if (
884 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
885 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
886 vlan_putref_linkmib(mib, &psref);
887 curlwp_bindx(bound);
888 error = EINVAL;
889 } else {
890 vlan_putref_linkmib(mib, &psref);
891 curlwp_bindx(bound);
892
893 error = ifioctl_common(ifp, cmd, data);
894 if (error == ENETRESET)
895 error = 0;
896 }
897
898 break;
899
900 case SIOCSETVLAN:
901 if ((error = kauth_authorize_network(l->l_cred,
902 KAUTH_NETWORK_INTERFACE,
903 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
904 NULL)) != 0)
905 break;
906 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
907 break;
908
909 if (vlr.vlr_parent[0] == '\0') {
910 bound = curlwp_bind();
911 mib = vlan_getref_linkmib(ifv, &psref);
912 if (mib == NULL) {
913 curlwp_bindx(bound);
914 error = EBUSY;
915 break;
916 }
917
918 if (mib->ifvm_p != NULL &&
919 (ifp->if_flags & IFF_PROMISC) != 0)
920 error = ifpromisc(mib->ifvm_p, 0);
921
922 vlan_putref_linkmib(mib, &psref);
923 curlwp_bindx(bound);
924
925 vlan_unconfig(ifp);
926 break;
927 }
928 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
929 error = EINVAL; /* check for valid tag */
930 break;
931 }
932 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
933 error = ENOENT;
934 break;
935 }
936 error = vlan_config(ifv, pr, vlr.vlr_tag);
937 if (error != 0) {
938 break;
939 }
940 ifp->if_flags |= IFF_RUNNING;
941
942 /* Update promiscuous mode, if necessary. */
943 vlan_set_promisc(ifp);
944 break;
945
946 case SIOCGETVLAN:
947 memset(&vlr, 0, sizeof(vlr));
948 bound = curlwp_bind();
949 mib = vlan_getref_linkmib(ifv, &psref);
950 if (mib == NULL) {
951 curlwp_bindx(bound);
952 error = EBUSY;
953 break;
954 }
955 if (mib->ifvm_p != NULL) {
956 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
957 mib->ifvm_p->if_xname);
958 vlr.vlr_tag = mib->ifvm_tag;
959 }
960 vlan_putref_linkmib(mib, &psref);
961 curlwp_bindx(bound);
962 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
963 break;
964
965 case SIOCSIFFLAGS:
966 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
967 break;
968 /*
969 * For promiscuous mode, we enable promiscuous mode on
970 * the parent if we need promiscuous on the VLAN interface.
971 */
972 bound = curlwp_bind();
973 mib = vlan_getref_linkmib(ifv, &psref);
974 if (mib == NULL) {
975 curlwp_bindx(bound);
976 error = EBUSY;
977 break;
978 }
979
980 if (mib->ifvm_p != NULL)
981 error = vlan_set_promisc(ifp);
982 vlan_putref_linkmib(mib, &psref);
983 curlwp_bindx(bound);
984 break;
985
986 case SIOCADDMULTI:
987 mutex_enter(&ifv->ifv_lock);
988 mib = ifv->ifv_mib;
989 if (mib == NULL) {
990 error = EBUSY;
991 mutex_exit(&ifv->ifv_lock);
992 break;
993 }
994
995 error = (mib->ifvm_p != NULL) ?
996 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
997 mib = NULL;
998 mutex_exit(&ifv->ifv_lock);
999 break;
1000
1001 case SIOCDELMULTI:
1002 mutex_enter(&ifv->ifv_lock);
1003 mib = ifv->ifv_mib;
1004 if (mib == NULL) {
1005 error = EBUSY;
1006 mutex_exit(&ifv->ifv_lock);
1007 break;
1008 }
1009 error = (mib->ifvm_p != NULL) ?
1010 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1011 mib = NULL;
1012 mutex_exit(&ifv->ifv_lock);
1013 break;
1014
1015 case SIOCSIFCAP:
1016 ifcr = data;
1017 /* make sure caps are enabled on parent */
1018 bound = curlwp_bind();
1019 mib = vlan_getref_linkmib(ifv, &psref);
1020 if (mib == NULL) {
1021 curlwp_bindx(bound);
1022 error = EBUSY;
1023 break;
1024 }
1025
1026 if (mib->ifvm_p == NULL) {
1027 vlan_putref_linkmib(mib, &psref);
1028 curlwp_bindx(bound);
1029 error = EINVAL;
1030 break;
1031 }
1032 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1033 ifcr->ifcr_capenable) {
1034 vlan_putref_linkmib(mib, &psref);
1035 curlwp_bindx(bound);
1036 error = EINVAL;
1037 break;
1038 }
1039
1040 vlan_putref_linkmib(mib, &psref);
1041 curlwp_bindx(bound);
1042
1043 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1044 error = 0;
1045 break;
1046 case SIOCINITIFADDR:
1047 bound = curlwp_bind();
1048 mib = vlan_getref_linkmib(ifv, &psref);
1049 if (mib == NULL) {
1050 curlwp_bindx(bound);
1051 error = EBUSY;
1052 break;
1053 }
1054
1055 if (mib->ifvm_p == NULL) {
1056 error = EINVAL;
1057 vlan_putref_linkmib(mib, &psref);
1058 curlwp_bindx(bound);
1059 break;
1060 }
1061 vlan_putref_linkmib(mib, &psref);
1062 curlwp_bindx(bound);
1063
1064 ifp->if_flags |= IFF_UP;
1065 #ifdef INET
1066 if (ifa->ifa_addr->sa_family == AF_INET)
1067 arp_ifinit(ifp, ifa);
1068 #endif
1069 break;
1070
1071 default:
1072 error = ether_ioctl(ifp, cmd, data);
1073 }
1074
1075 return (error);
1076 }
1077
1078 static int
1079 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1080 {
1081 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1082 struct vlan_mc_entry *mc;
1083 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1084 struct ifvlan_linkmib *mib;
1085 int error;
1086
1087 KASSERT(mutex_owned(&ifv->ifv_lock));
1088
1089 if (sa->sa_len > sizeof(struct sockaddr_storage))
1090 return (EINVAL);
1091
1092 error = ether_addmulti(sa, &ifv->ifv_ec);
1093 if (error != ENETRESET)
1094 return (error);
1095
1096 /*
1097 * This is new multicast address. We have to tell parent
1098 * about it. Also, remember this multicast address so that
1099 * we can delete them on unconfigure.
1100 */
1101 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1102 if (mc == NULL) {
1103 error = ENOMEM;
1104 goto alloc_failed;
1105 }
1106
1107 /*
1108 * As ether_addmulti() returns ENETRESET, following two
1109 * statement shouldn't fail.
1110 */
1111 (void)ether_multiaddr(sa, addrlo, addrhi);
1112 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
1113 memcpy(&mc->mc_addr, sa, sa->sa_len);
1114 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1115
1116 mib = ifv->ifv_mib;
1117 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1118
1119 if (error != 0)
1120 goto ioctl_failed;
1121 return (error);
1122
1123 ioctl_failed:
1124 LIST_REMOVE(mc, mc_entries);
1125 free(mc, M_DEVBUF);
1126 alloc_failed:
1127 (void)ether_delmulti(sa, &ifv->ifv_ec);
1128 return (error);
1129 }
1130
1131 static int
1132 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1133 {
1134 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1135 struct ether_multi *enm;
1136 struct vlan_mc_entry *mc;
1137 struct ifvlan_linkmib *mib;
1138 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1139 int error;
1140
1141 KASSERT(mutex_owned(&ifv->ifv_lock));
1142
1143 /*
1144 * Find a key to lookup vlan_mc_entry. We have to do this
1145 * before calling ether_delmulti for obvious reason.
1146 */
1147 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1148 return (error);
1149 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
1150
1151 error = ether_delmulti(sa, &ifv->ifv_ec);
1152 if (error != ENETRESET)
1153 return (error);
1154
1155 /* We no longer use this multicast address. Tell parent so. */
1156 mib = ifv->ifv_mib;
1157 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1158
1159 if (error == 0) {
1160 /* And forget about this address. */
1161 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
1162 mc = LIST_NEXT(mc, mc_entries)) {
1163 if (mc->mc_enm == enm) {
1164 LIST_REMOVE(mc, mc_entries);
1165 free(mc, M_DEVBUF);
1166 break;
1167 }
1168 }
1169 KASSERT(mc != NULL);
1170 } else
1171 (void)ether_addmulti(sa, &ifv->ifv_ec);
1172 return (error);
1173 }
1174
1175 /*
1176 * Delete any multicast address we have asked to add from parent
1177 * interface. Called when the vlan is being unconfigured.
1178 */
1179 static void
1180 vlan_ether_purgemulti(struct ifvlan *ifv)
1181 {
1182 struct vlan_mc_entry *mc;
1183 struct ifvlan_linkmib *mib;
1184
1185 KASSERT(mutex_owned(&ifv->ifv_lock));
1186 mib = ifv->ifv_mib;
1187 if (mib == NULL) {
1188 return;
1189 }
1190
1191 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1192 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1193 (const struct sockaddr *)&mc->mc_addr);
1194 LIST_REMOVE(mc, mc_entries);
1195 free(mc, M_DEVBUF);
1196 }
1197 }
1198
1199 static void
1200 vlan_start(struct ifnet *ifp)
1201 {
1202 struct ifvlan *ifv = ifp->if_softc;
1203 struct ifnet *p;
1204 struct ethercom *ec;
1205 struct mbuf *m;
1206 struct ifvlan_linkmib *mib;
1207 struct psref psref;
1208 int error;
1209
1210 mib = vlan_getref_linkmib(ifv, &psref);
1211 if (mib == NULL)
1212 return;
1213 p = mib->ifvm_p;
1214 ec = (void *)mib->ifvm_p;
1215
1216 ifp->if_flags |= IFF_OACTIVE;
1217
1218 for (;;) {
1219 IFQ_DEQUEUE(&ifp->if_snd, m);
1220 if (m == NULL)
1221 break;
1222
1223 #ifdef ALTQ
1224 /*
1225 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is defined.
1226 */
1227 KERNEL_LOCK(1, NULL);
1228 /*
1229 * If ALTQ is enabled on the parent interface, do
1230 * classification; the queueing discipline might
1231 * not require classification, but might require
1232 * the address family/header pointer in the pktattr.
1233 */
1234 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1235 switch (p->if_type) {
1236 case IFT_ETHER:
1237 altq_etherclassify(&p->if_snd, m);
1238 break;
1239 #ifdef DIAGNOSTIC
1240 default:
1241 panic("vlan_start: impossible (altq)");
1242 #endif
1243 }
1244 }
1245 KERNEL_UNLOCK_ONE(NULL);
1246 #endif /* ALTQ */
1247
1248 bpf_mtap(ifp, m);
1249 /*
1250 * If the parent can insert the tag itself, just mark
1251 * the tag in the mbuf header.
1252 */
1253 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1254 vlan_set_tag(m, mib->ifvm_tag);
1255 } else {
1256 /*
1257 * insert the tag ourselves
1258 */
1259 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1260 if (m == NULL) {
1261 printf("%s: unable to prepend encap header",
1262 p->if_xname);
1263 ifp->if_oerrors++;
1264 continue;
1265 }
1266
1267 switch (p->if_type) {
1268 case IFT_ETHER:
1269 {
1270 struct ether_vlan_header *evl;
1271
1272 if (m->m_len < sizeof(struct ether_vlan_header))
1273 m = m_pullup(m,
1274 sizeof(struct ether_vlan_header));
1275 if (m == NULL) {
1276 printf("%s: unable to pullup encap "
1277 "header", p->if_xname);
1278 ifp->if_oerrors++;
1279 continue;
1280 }
1281
1282 /*
1283 * Transform the Ethernet header into an
1284 * Ethernet header with 802.1Q encapsulation.
1285 */
1286 memmove(mtod(m, void *),
1287 mtod(m, char *) + mib->ifvm_encaplen,
1288 sizeof(struct ether_header));
1289 evl = mtod(m, struct ether_vlan_header *);
1290 evl->evl_proto = evl->evl_encap_proto;
1291 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1292 evl->evl_tag = htons(mib->ifvm_tag);
1293
1294 /*
1295 * To cater for VLAN-aware layer 2 ethernet
1296 * switches which may need to strip the tag
1297 * before forwarding the packet, make sure
1298 * the packet+tag is at least 68 bytes long.
1299 * This is necessary because our parent will
1300 * only pad to 64 bytes (ETHER_MIN_LEN) and
1301 * some switches will not pad by themselves
1302 * after deleting a tag.
1303 */
1304 if (m->m_pkthdr.len <
1305 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1306 ETHER_VLAN_ENCAP_LEN)) {
1307 m_copyback(m, m->m_pkthdr.len,
1308 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1309 ETHER_VLAN_ENCAP_LEN) -
1310 m->m_pkthdr.len,
1311 vlan_zero_pad_buff);
1312 }
1313 break;
1314 }
1315
1316 #ifdef DIAGNOSTIC
1317 default:
1318 panic("vlan_start: impossible");
1319 #endif
1320 }
1321 }
1322
1323 if ((p->if_flags & IFF_RUNNING) == 0) {
1324 m_freem(m);
1325 continue;
1326 }
1327
1328 error = if_transmit_lock(p, m);
1329 if (error) {
1330 /* mbuf is already freed */
1331 ifp->if_oerrors++;
1332 continue;
1333 }
1334 ifp->if_opackets++;
1335 }
1336
1337 ifp->if_flags &= ~IFF_OACTIVE;
1338
1339 /* Remove reference to mib before release */
1340 p = NULL;
1341 ec = NULL;
1342
1343 vlan_putref_linkmib(mib, &psref);
1344 }
1345
1346 static int
1347 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1348 {
1349 struct ifvlan *ifv = ifp->if_softc;
1350 struct ifnet *p;
1351 struct ethercom *ec;
1352 struct ifvlan_linkmib *mib;
1353 struct psref psref;
1354 int error;
1355 size_t pktlen = m->m_pkthdr.len;
1356 bool mcast = (m->m_flags & M_MCAST) != 0;
1357
1358 mib = vlan_getref_linkmib(ifv, &psref);
1359 if (mib == NULL) {
1360 m_freem(m);
1361 return ENETDOWN;
1362 }
1363
1364 p = mib->ifvm_p;
1365 ec = (void *)mib->ifvm_p;
1366
1367 bpf_mtap(ifp, m);
1368 /*
1369 * If the parent can insert the tag itself, just mark
1370 * the tag in the mbuf header.
1371 */
1372 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1373 vlan_set_tag(m, mib->ifvm_tag);
1374 } else {
1375 /*
1376 * insert the tag ourselves
1377 */
1378 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1379 if (m == NULL) {
1380 printf("%s: unable to prepend encap header",
1381 p->if_xname);
1382 ifp->if_oerrors++;
1383 error = ENOBUFS;
1384 goto out;
1385 }
1386
1387 switch (p->if_type) {
1388 case IFT_ETHER:
1389 {
1390 struct ether_vlan_header *evl;
1391
1392 if (m->m_len < sizeof(struct ether_vlan_header))
1393 m = m_pullup(m,
1394 sizeof(struct ether_vlan_header));
1395 if (m == NULL) {
1396 printf("%s: unable to pullup encap "
1397 "header", p->if_xname);
1398 ifp->if_oerrors++;
1399 error = ENOBUFS;
1400 goto out;
1401 }
1402
1403 /*
1404 * Transform the Ethernet header into an
1405 * Ethernet header with 802.1Q encapsulation.
1406 */
1407 memmove(mtod(m, void *),
1408 mtod(m, char *) + mib->ifvm_encaplen,
1409 sizeof(struct ether_header));
1410 evl = mtod(m, struct ether_vlan_header *);
1411 evl->evl_proto = evl->evl_encap_proto;
1412 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1413 evl->evl_tag = htons(mib->ifvm_tag);
1414
1415 /*
1416 * To cater for VLAN-aware layer 2 ethernet
1417 * switches which may need to strip the tag
1418 * before forwarding the packet, make sure
1419 * the packet+tag is at least 68 bytes long.
1420 * This is necessary because our parent will
1421 * only pad to 64 bytes (ETHER_MIN_LEN) and
1422 * some switches will not pad by themselves
1423 * after deleting a tag.
1424 */
1425 if (m->m_pkthdr.len <
1426 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1427 ETHER_VLAN_ENCAP_LEN)) {
1428 m_copyback(m, m->m_pkthdr.len,
1429 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1430 ETHER_VLAN_ENCAP_LEN) -
1431 m->m_pkthdr.len,
1432 vlan_zero_pad_buff);
1433 }
1434 break;
1435 }
1436
1437 #ifdef DIAGNOSTIC
1438 default:
1439 panic("vlan_transmit: impossible");
1440 #endif
1441 }
1442 }
1443
1444 if ((p->if_flags & IFF_RUNNING) == 0) {
1445 m_freem(m);
1446 error = ENETDOWN;
1447 goto out;
1448 }
1449
1450 error = if_transmit_lock(p, m);
1451 if (error) {
1452 /* mbuf is already freed */
1453 ifp->if_oerrors++;
1454 } else {
1455
1456 ifp->if_opackets++;
1457 ifp->if_obytes += pktlen;
1458 if (mcast)
1459 ifp->if_omcasts++;
1460 }
1461
1462 out:
1463 /* Remove reference to mib before release */
1464 p = NULL;
1465 ec = NULL;
1466
1467 vlan_putref_linkmib(mib, &psref);
1468 return error;
1469 }
1470
1471 /*
1472 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1473 * given source interface and tag, then run the real packet through the
1474 * parent's input routine.
1475 */
1476 void
1477 vlan_input(struct ifnet *ifp, struct mbuf *m)
1478 {
1479 struct ifvlan *ifv;
1480 uint16_t vid;
1481 struct ifvlan_linkmib *mib;
1482 struct psref psref;
1483 bool have_vtag;
1484
1485 have_vtag = vlan_has_tag(m);
1486 if (have_vtag) {
1487 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1488 m->m_flags &= ~M_VLANTAG;
1489 } else {
1490 switch (ifp->if_type) {
1491 case IFT_ETHER:
1492 {
1493 struct ether_vlan_header *evl;
1494
1495 if (m->m_len < sizeof(struct ether_vlan_header) &&
1496 (m = m_pullup(m,
1497 sizeof(struct ether_vlan_header))) == NULL) {
1498 printf("%s: no memory for VLAN header, "
1499 "dropping packet.\n", ifp->if_xname);
1500 return;
1501 }
1502 evl = mtod(m, struct ether_vlan_header *);
1503 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1504
1505 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1506
1507 /*
1508 * Restore the original ethertype. We'll remove
1509 * the encapsulation after we've found the vlan
1510 * interface corresponding to the tag.
1511 */
1512 evl->evl_encap_proto = evl->evl_proto;
1513 break;
1514 }
1515
1516 default:
1517 vid = (uint16_t) -1; /* XXX GCC */
1518 #ifdef DIAGNOSTIC
1519 panic("vlan_input: impossible");
1520 #endif
1521 }
1522 }
1523
1524 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1525 if (mib == NULL) {
1526 m_freem(m);
1527 ifp->if_noproto++;
1528 return;
1529 }
1530
1531 ifv = mib->ifvm_ifvlan;
1532 if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
1533 (IFF_UP|IFF_RUNNING)) {
1534 m_freem(m);
1535 ifp->if_noproto++;
1536 goto out;
1537 }
1538
1539 /*
1540 * Now, remove the encapsulation header. The original
1541 * header has already been fixed up above.
1542 */
1543 if (!have_vtag) {
1544 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1545 mtod(m, void *), sizeof(struct ether_header));
1546 m_adj(m, mib->ifvm_encaplen);
1547 }
1548
1549 m_set_rcvif(m, &ifv->ifv_if);
1550 ifv->ifv_if.if_ipackets++;
1551
1552 m->m_flags &= ~M_PROMISC;
1553 if_input(&ifv->ifv_if, m);
1554 out:
1555 vlan_putref_linkmib(mib, &psref);
1556 }
1557
1558 /*
1559 * Module infrastructure
1560 */
1561 #include "if_module.h"
1562
1563 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
1564