if_vlan.c revision 1.115 1 /* $NetBSD: if_vlan.c,v 1.115 2017/12/06 05:59:59 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.115 2017/12/06 05:59:59 ozaki-r Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mbuf.h>
91 #include <sys/queue.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/systm.h>
95 #include <sys/proc.h>
96 #include <sys/kauth.h>
97 #include <sys/mutex.h>
98 #include <sys/kmem.h>
99 #include <sys/cpu.h>
100 #include <sys/pserialize.h>
101 #include <sys/psref.h>
102 #include <sys/pslist.h>
103 #include <sys/atomic.h>
104 #include <sys/device.h>
105 #include <sys/module.h>
106
107 #include <net/bpf.h>
108 #include <net/if.h>
109 #include <net/if_dl.h>
110 #include <net/if_types.h>
111 #include <net/if_ether.h>
112 #include <net/if_vlanvar.h>
113
114 #ifdef INET
115 #include <netinet/in.h>
116 #include <netinet/if_inarp.h>
117 #endif
118 #ifdef INET6
119 #include <netinet6/in6_ifattach.h>
120 #include <netinet6/in6_var.h>
121 #endif
122
123 #include "ioconf.h"
124
125 struct vlan_mc_entry {
126 LIST_ENTRY(vlan_mc_entry) mc_entries;
127 /*
128 * A key to identify this entry. The mc_addr below can't be
129 * used since multiple sockaddr may mapped into the same
130 * ether_multi (e.g., AF_UNSPEC).
131 */
132 union {
133 struct ether_multi *mcu_enm;
134 } mc_u;
135 struct sockaddr_storage mc_addr;
136 };
137
138 #define mc_enm mc_u.mcu_enm
139
140
141 struct ifvlan_linkmib {
142 struct ifvlan *ifvm_ifvlan;
143 const struct vlan_multisw *ifvm_msw;
144 int ifvm_encaplen; /* encapsulation length */
145 int ifvm_mtufudge; /* MTU fudged by this much */
146 int ifvm_mintu; /* min transmission unit */
147 uint16_t ifvm_proto; /* encapsulation ethertype */
148 uint16_t ifvm_tag; /* tag to apply on packets */
149 struct ifnet *ifvm_p; /* parent interface of this vlan */
150
151 struct psref_target ifvm_psref;
152 };
153
154 struct ifvlan {
155 union {
156 struct ethercom ifvu_ec;
157 } ifv_u;
158 struct ifvlan_linkmib *ifv_mib; /*
159 * reader must use vlan_getref_linkmib()
160 * instead of direct dereference
161 */
162 kmutex_t ifv_lock; /* writer lock for ifv_mib */
163
164 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
165 LIST_ENTRY(ifvlan) ifv_list;
166 struct pslist_entry ifv_hash;
167 int ifv_flags;
168 };
169
170 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
171
172 #define ifv_ec ifv_u.ifvu_ec
173
174 #define ifv_if ifv_ec.ec_if
175
176 #define ifv_msw ifv_mib.ifvm_msw
177 #define ifv_encaplen ifv_mib.ifvm_encaplen
178 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
179 #define ifv_mintu ifv_mib.ifvm_mintu
180 #define ifv_tag ifv_mib.ifvm_tag
181
182 struct vlan_multisw {
183 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
184 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
185 void (*vmsw_purgemulti)(struct ifvlan *);
186 };
187
188 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
189 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
190 static void vlan_ether_purgemulti(struct ifvlan *);
191
192 const struct vlan_multisw vlan_ether_multisw = {
193 vlan_ether_addmulti,
194 vlan_ether_delmulti,
195 vlan_ether_purgemulti,
196 };
197
198 static int vlan_clone_create(struct if_clone *, int);
199 static int vlan_clone_destroy(struct ifnet *);
200 static int vlan_config(struct ifvlan *, struct ifnet *,
201 uint16_t);
202 static int vlan_ioctl(struct ifnet *, u_long, void *);
203 static void vlan_start(struct ifnet *);
204 static int vlan_transmit(struct ifnet *, struct mbuf *);
205 static void vlan_unconfig(struct ifnet *);
206 static int vlan_unconfig_locked(struct ifvlan *,
207 struct ifvlan_linkmib *);
208 static void vlan_hash_init(void);
209 static int vlan_hash_fini(void);
210 static int vlan_tag_hash(uint16_t, u_long);
211 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
212 struct psref *);
213 static void vlan_putref_linkmib(struct ifvlan_linkmib *,
214 struct psref *);
215 static void vlan_linkmib_update(struct ifvlan *,
216 struct ifvlan_linkmib *);
217 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
218 uint16_t, struct psref *);
219
220 LIST_HEAD(vlan_ifvlist, ifvlan);
221 static struct {
222 kmutex_t lock;
223 struct vlan_ifvlist list;
224 } ifv_list __cacheline_aligned;
225
226
227 #if !defined(VLAN_TAG_HASH_SIZE)
228 #define VLAN_TAG_HASH_SIZE 32
229 #endif
230 static struct {
231 kmutex_t lock;
232 struct pslist_head *lists;
233 u_long mask;
234 } ifv_hash __cacheline_aligned = {
235 .lists = NULL,
236 .mask = 0,
237 };
238
239 pserialize_t vlan_psz __read_mostly;
240 static struct psref_class *ifvm_psref_class __read_mostly;
241
242 struct if_clone vlan_cloner =
243 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
244
245 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
246 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
247
248 static inline int
249 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
250 {
251 int e;
252 KERNEL_LOCK_UNLESS_NET_MPSAFE();
253 e = ifpromisc(ifp, pswitch);
254 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
255 return e;
256 }
257
258 static inline int
259 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
260 {
261 int e;
262 KERNEL_LOCK_UNLESS_NET_MPSAFE();
263 e = ifpromisc_locked(ifp, pswitch);
264 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
265 return e;
266 }
267
268 void
269 vlanattach(int n)
270 {
271
272 /*
273 * Nothing to do here, initialization is handled by the
274 * module initialization code in vlaninit() below).
275 */
276 }
277
278 static void
279 vlaninit(void)
280 {
281 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
282 LIST_INIT(&ifv_list.list);
283
284 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
285 vlan_psz = pserialize_create();
286 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
287 if_clone_attach(&vlan_cloner);
288
289 vlan_hash_init();
290 }
291
292 static int
293 vlandetach(void)
294 {
295 int error = 0;
296
297 mutex_enter(&ifv_list.lock);
298 if (!LIST_EMPTY(&ifv_list.list)) {
299 mutex_exit(&ifv_list.lock);
300 return EBUSY;
301 }
302 mutex_exit(&ifv_list.lock);
303
304 error = vlan_hash_fini();
305 if (error != 0)
306 return error;
307
308 if_clone_detach(&vlan_cloner);
309 psref_class_destroy(ifvm_psref_class);
310 pserialize_destroy(vlan_psz);
311 mutex_destroy(&ifv_hash.lock);
312 mutex_destroy(&ifv_list.lock);
313
314 return 0;
315 }
316
317 static void
318 vlan_reset_linkname(struct ifnet *ifp)
319 {
320
321 /*
322 * We start out with a "802.1Q VLAN" type and zero-length
323 * addresses. When we attach to a parent interface, we
324 * inherit its type, address length, address, and data link
325 * type.
326 */
327
328 ifp->if_type = IFT_L2VLAN;
329 ifp->if_addrlen = 0;
330 ifp->if_dlt = DLT_NULL;
331 if_alloc_sadl(ifp);
332 }
333
334 static int
335 vlan_clone_create(struct if_clone *ifc, int unit)
336 {
337 struct ifvlan *ifv;
338 struct ifnet *ifp;
339 struct ifvlan_linkmib *mib;
340 int rv;
341
342 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
343 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
344 ifp = &ifv->ifv_if;
345 LIST_INIT(&ifv->ifv_mc_listhead);
346
347 mib->ifvm_ifvlan = ifv;
348 mib->ifvm_p = NULL;
349 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
350
351 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
352 ifv->ifv_mib = mib;
353
354 mutex_enter(&ifv_list.lock);
355 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
356 mutex_exit(&ifv_list.lock);
357
358 if_initname(ifp, ifc->ifc_name, unit);
359 ifp->if_softc = ifv;
360 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
361 ifp->if_extflags = IFEF_MPSAFE | IFEF_NO_LINK_STATE_CHANGE;
362 ifp->if_start = vlan_start;
363 ifp->if_transmit = vlan_transmit;
364 ifp->if_ioctl = vlan_ioctl;
365 IFQ_SET_READY(&ifp->if_snd);
366
367 rv = if_initialize(ifp);
368 if (rv != 0) {
369 aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
370 rv);
371 goto fail;
372 }
373
374 vlan_reset_linkname(ifp);
375 if_register(ifp);
376 return 0;
377
378 fail:
379 mutex_enter(&ifv_list.lock);
380 LIST_REMOVE(ifv, ifv_list);
381 mutex_exit(&ifv_list.lock);
382
383 mutex_destroy(&ifv->ifv_lock);
384 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
385 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
386 free(ifv, M_DEVBUF);
387
388 return rv;
389 }
390
391 static int
392 vlan_clone_destroy(struct ifnet *ifp)
393 {
394 struct ifvlan *ifv = ifp->if_softc;
395
396 mutex_enter(&ifv_list.lock);
397 LIST_REMOVE(ifv, ifv_list);
398 mutex_exit(&ifv_list.lock);
399
400 mutex_enter(ifp->if_ioctl_lock);
401 vlan_unconfig(ifp);
402 mutex_exit(ifp->if_ioctl_lock);
403 if_detach(ifp);
404
405 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
406 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
407 mutex_destroy(&ifv->ifv_lock);
408 free(ifv, M_DEVBUF);
409
410 return (0);
411 }
412
413 /*
414 * Configure a VLAN interface.
415 */
416 static int
417 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
418 {
419 struct ifnet *ifp = &ifv->ifv_if;
420 struct ifvlan_linkmib *nmib = NULL;
421 struct ifvlan_linkmib *omib = NULL;
422 struct ifvlan_linkmib *checkmib = NULL;
423 struct psref_target *nmib_psref = NULL;
424 uint16_t vid = EVL_VLANOFTAG(tag);
425 int error = 0;
426 int idx;
427 bool omib_cleanup = false;
428 struct psref psref;
429
430 /* VLAN ID 0 and 4095 are reserved in the spec */
431 if ((vid == 0) || (vid == 0xfff))
432 return EINVAL;
433
434 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
435
436 mutex_enter(&ifv->ifv_lock);
437 omib = ifv->ifv_mib;
438
439 if (omib->ifvm_p != NULL) {
440 error = EBUSY;
441 goto done;
442 }
443
444 /* Duplicate check */
445 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
446 if (checkmib != NULL) {
447 vlan_putref_linkmib(checkmib, &psref);
448 error = EEXIST;
449 goto done;
450 }
451
452 *nmib = *omib;
453 nmib_psref = &nmib->ifvm_psref;
454
455 psref_target_init(nmib_psref, ifvm_psref_class);
456
457 switch (p->if_type) {
458 case IFT_ETHER:
459 {
460 struct ethercom *ec = (void *) p;
461 nmib->ifvm_msw = &vlan_ether_multisw;
462 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
463 nmib->ifvm_mintu = ETHERMIN;
464
465 if (ec->ec_nvlans++ == 0) {
466 error = if_enable_vlan_mtu(p);
467 if (error >= 0) {
468 if (error) {
469 ec->ec_nvlans--;
470 goto done;
471 }
472 nmib->ifvm_mtufudge = 0;
473 } else {
474 /*
475 * Fudge the MTU by the encapsulation size. This
476 * makes us incompatible with strictly compliant
477 * 802.1Q implementations, but allows us to use
478 * the feature with other NetBSD
479 * implementations, which might still be useful.
480 */
481 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
482 }
483 error = 0;
484 }
485
486 /*
487 * If the parent interface can do hardware-assisted
488 * VLAN encapsulation, then propagate its hardware-
489 * assisted checksumming flags and tcp segmentation
490 * offload.
491 */
492 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
493 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
494 ifp->if_capabilities = p->if_capabilities &
495 (IFCAP_TSOv4 | IFCAP_TSOv6 |
496 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
497 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
498 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
499 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
500 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
501 }
502 /*
503 * We inherit the parent's Ethernet address.
504 */
505 ether_ifattach(ifp, CLLADDR(p->if_sadl));
506 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
507 break;
508 }
509
510 default:
511 error = EPROTONOSUPPORT;
512 goto done;
513 }
514
515 nmib->ifvm_p = p;
516 nmib->ifvm_tag = vid;
517 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
518 ifv->ifv_if.if_flags = p->if_flags &
519 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
520
521 /*
522 * Inherit the if_type from the parent. This allows us
523 * to participate in bridges of that type.
524 */
525 ifv->ifv_if.if_type = p->if_type;
526
527 PSLIST_ENTRY_INIT(ifv, ifv_hash);
528 idx = vlan_tag_hash(vid, ifv_hash.mask);
529
530 mutex_enter(&ifv_hash.lock);
531 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
532 mutex_exit(&ifv_hash.lock);
533
534 vlan_linkmib_update(ifv, nmib);
535 nmib = NULL;
536 nmib_psref = NULL;
537 omib_cleanup = true;
538
539 done:
540 mutex_exit(&ifv->ifv_lock);
541
542 if (nmib_psref)
543 psref_target_destroy(nmib_psref, ifvm_psref_class);
544
545 if (nmib)
546 kmem_free(nmib, sizeof(*nmib));
547
548 if (omib_cleanup)
549 kmem_free(omib, sizeof(*omib));
550
551 return error;
552 }
553
554 /*
555 * Unconfigure a VLAN interface.
556 */
557 static void
558 vlan_unconfig(struct ifnet *ifp)
559 {
560 struct ifvlan *ifv = ifp->if_softc;
561 struct ifvlan_linkmib *nmib = NULL;
562 int error;
563
564 KASSERT(mutex_owned(ifp->if_ioctl_lock));
565
566 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
567
568 mutex_enter(&ifv->ifv_lock);
569 error = vlan_unconfig_locked(ifv, nmib);
570 mutex_exit(&ifv->ifv_lock);
571
572 if (error)
573 kmem_free(nmib, sizeof(*nmib));
574 }
575 static int
576 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
577 {
578 struct ifnet *p;
579 struct ifnet *ifp = &ifv->ifv_if;
580 struct psref_target *nmib_psref = NULL;
581 struct ifvlan_linkmib *omib;
582 int error = 0;
583
584 KASSERT(mutex_owned(ifp->if_ioctl_lock));
585 KASSERT(mutex_owned(&ifv->ifv_lock));
586
587 omib = ifv->ifv_mib;
588 p = omib->ifvm_p;
589
590 if (p == NULL) {
591 error = -1;
592 goto done;
593 }
594
595 *nmib = *omib;
596 nmib_psref = &nmib->ifvm_psref;
597 psref_target_init(nmib_psref, ifvm_psref_class);
598
599 /*
600 * Since the interface is being unconfigured, we need to empty the
601 * list of multicast groups that we may have joined while we were
602 * alive and remove them from the parent's list also.
603 */
604 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
605
606 /* Disconnect from parent. */
607 switch (p->if_type) {
608 case IFT_ETHER:
609 {
610 struct ethercom *ec = (void *)p;
611 if (--ec->ec_nvlans == 0)
612 (void)if_disable_vlan_mtu(p);
613
614 ether_ifdetach(ifp);
615 /* Restore vlan_ioctl overwritten by ether_ifdetach */
616 ifp->if_ioctl = vlan_ioctl;
617 vlan_reset_linkname(ifp);
618 break;
619 }
620
621 #ifdef DIAGNOSTIC
622 default:
623 panic("vlan_unconfig: impossible");
624 #endif
625 }
626
627 nmib->ifvm_p = NULL;
628 ifv->ifv_if.if_mtu = 0;
629 ifv->ifv_flags = 0;
630
631 mutex_enter(&ifv_hash.lock);
632 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
633 pserialize_perform(vlan_psz);
634 mutex_exit(&ifv_hash.lock);
635 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
636
637 vlan_linkmib_update(ifv, nmib);
638
639 mutex_exit(&ifv->ifv_lock);
640
641 nmib_psref = NULL;
642 kmem_free(omib, sizeof(*omib));
643
644 #ifdef INET6
645 KERNEL_LOCK_UNLESS_NET_MPSAFE();
646 /* To delete v6 link local addresses */
647 if (in6_present)
648 in6_ifdetach(ifp);
649 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
650 #endif
651
652 if ((ifp->if_flags & IFF_PROMISC) != 0)
653 vlan_safe_ifpromisc_locked(ifp, 0);
654 if_down(ifp);
655 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
656 ifp->if_capabilities = 0;
657 mutex_enter(&ifv->ifv_lock);
658 done:
659
660 if (nmib_psref)
661 psref_target_destroy(nmib_psref, ifvm_psref_class);
662
663 return error;
664 }
665
666 static void
667 vlan_hash_init(void)
668 {
669
670 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
671 &ifv_hash.mask);
672 }
673
674 static int
675 vlan_hash_fini(void)
676 {
677 int i;
678
679 mutex_enter(&ifv_hash.lock);
680
681 for (i = 0; i < ifv_hash.mask + 1; i++) {
682 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
683 ifv_hash) != NULL) {
684 mutex_exit(&ifv_hash.lock);
685 return EBUSY;
686 }
687 }
688
689 for (i = 0; i < ifv_hash.mask + 1; i++)
690 PSLIST_DESTROY(&ifv_hash.lists[i]);
691
692 mutex_exit(&ifv_hash.lock);
693
694 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
695
696 ifv_hash.lists = NULL;
697 ifv_hash.mask = 0;
698
699 return 0;
700 }
701
702 static int
703 vlan_tag_hash(uint16_t tag, u_long mask)
704 {
705 uint32_t hash;
706
707 hash = (tag >> 8) ^ tag;
708 hash = (hash >> 2) ^ hash;
709
710 return hash & mask;
711 }
712
713 static struct ifvlan_linkmib *
714 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
715 {
716 struct ifvlan_linkmib *mib;
717 int s;
718
719 s = pserialize_read_enter();
720 mib = sc->ifv_mib;
721 if (mib == NULL) {
722 pserialize_read_exit(s);
723 return NULL;
724 }
725 membar_datadep_consumer();
726 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
727 pserialize_read_exit(s);
728
729 return mib;
730 }
731
732 static void
733 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
734 {
735 if (mib == NULL)
736 return;
737 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
738 }
739
740 static struct ifvlan_linkmib *
741 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
742 {
743 int idx;
744 int s;
745 struct ifvlan *sc;
746
747 idx = vlan_tag_hash(tag, ifv_hash.mask);
748
749 s = pserialize_read_enter();
750 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
751 ifv_hash) {
752 struct ifvlan_linkmib *mib = sc->ifv_mib;
753 if (mib == NULL)
754 continue;
755 if (mib->ifvm_tag != tag)
756 continue;
757 if (mib->ifvm_p != ifp)
758 continue;
759
760 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
761 pserialize_read_exit(s);
762 return mib;
763 }
764 pserialize_read_exit(s);
765 return NULL;
766 }
767
768 static void
769 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
770 {
771 struct ifvlan_linkmib *omib = ifv->ifv_mib;
772
773 KASSERT(mutex_owned(&ifv->ifv_lock));
774
775 membar_producer();
776 ifv->ifv_mib = nmib;
777
778 pserialize_perform(vlan_psz);
779 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
780 }
781
782 /*
783 * Called when a parent interface is detaching; destroy any VLAN
784 * configuration for the parent interface.
785 */
786 void
787 vlan_ifdetach(struct ifnet *p)
788 {
789 struct ifvlan *ifv;
790 struct ifvlan_linkmib *mib, **nmibs;
791 struct psref psref;
792 int error;
793 int bound;
794 int i, cnt = 0;
795
796 bound = curlwp_bind();
797 mutex_enter(&ifv_list.lock);
798 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
799 mib = vlan_getref_linkmib(ifv, &psref);
800 if (mib == NULL)
801 continue;
802
803 if (mib->ifvm_p == p)
804 cnt++;
805
806 vlan_putref_linkmib(mib, &psref);
807 }
808 mutex_exit(&ifv_list.lock);
809
810 /*
811 * The value of "cnt" does not increase while ifv_list.lock
812 * and ifv->ifv_lock are released here, because the parent
813 * interface is detaching.
814 */
815 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
816 for (i=0; i < cnt; i++) {
817 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
818 }
819
820 mutex_enter(&ifv_list.lock);
821
822 i = 0;
823 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
824 struct ifnet *ifp = &ifv->ifv_if;
825
826 /* Need if_ioctl_lock that must be held before ifv_lock. */
827 mutex_enter(ifp->if_ioctl_lock);
828 mutex_enter(&ifv->ifv_lock);
829 if (ifv->ifv_mib->ifvm_p == p) {
830 KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
831 p->if_xname);
832 error = vlan_unconfig_locked(ifv, nmibs[i]);
833 if (!error) {
834 nmibs[i] = NULL;
835 i++;
836 }
837
838 }
839 mutex_exit(&ifv->ifv_lock);
840 mutex_exit(ifp->if_ioctl_lock);
841 }
842
843 mutex_exit(&ifv_list.lock);
844 curlwp_bindx(bound);
845
846 for (i=0; i < cnt; i++) {
847 if (nmibs[i])
848 kmem_free(nmibs[i], sizeof(*nmibs[i]));
849 }
850
851 kmem_free(nmibs, sizeof(*nmibs) * cnt);
852
853 return;
854 }
855
856 static int
857 vlan_set_promisc(struct ifnet *ifp)
858 {
859 struct ifvlan *ifv = ifp->if_softc;
860 struct ifvlan_linkmib *mib;
861 struct psref psref;
862 int error = 0;
863 int bound;
864
865 bound = curlwp_bind();
866 mib = vlan_getref_linkmib(ifv, &psref);
867 if (mib == NULL) {
868 curlwp_bindx(bound);
869 return EBUSY;
870 }
871
872 if ((ifp->if_flags & IFF_PROMISC) != 0) {
873 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
874 error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
875 if (error == 0)
876 ifv->ifv_flags |= IFVF_PROMISC;
877 }
878 } else {
879 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
880 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
881 if (error == 0)
882 ifv->ifv_flags &= ~IFVF_PROMISC;
883 }
884 }
885 vlan_putref_linkmib(mib, &psref);
886 curlwp_bindx(bound);
887
888 return (error);
889 }
890
891 static int
892 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
893 {
894 struct lwp *l = curlwp; /* XXX */
895 struct ifvlan *ifv = ifp->if_softc;
896 struct ifaddr *ifa = (struct ifaddr *) data;
897 struct ifreq *ifr = (struct ifreq *) data;
898 struct ifnet *pr;
899 struct ifcapreq *ifcr;
900 struct vlanreq vlr;
901 struct ifvlan_linkmib *mib;
902 struct psref psref;
903 int error = 0;
904 int bound;
905
906 switch (cmd) {
907 case SIOCSIFMTU:
908 bound = curlwp_bind();
909 mib = vlan_getref_linkmib(ifv, &psref);
910 if (mib == NULL) {
911 curlwp_bindx(bound);
912 error = EBUSY;
913 break;
914 }
915
916 if (mib->ifvm_p == NULL) {
917 vlan_putref_linkmib(mib, &psref);
918 curlwp_bindx(bound);
919 error = EINVAL;
920 } else if (
921 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
922 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
923 vlan_putref_linkmib(mib, &psref);
924 curlwp_bindx(bound);
925 error = EINVAL;
926 } else {
927 vlan_putref_linkmib(mib, &psref);
928 curlwp_bindx(bound);
929
930 error = ifioctl_common(ifp, cmd, data);
931 if (error == ENETRESET)
932 error = 0;
933 }
934
935 break;
936
937 case SIOCSETVLAN:
938 if ((error = kauth_authorize_network(l->l_cred,
939 KAUTH_NETWORK_INTERFACE,
940 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
941 NULL)) != 0)
942 break;
943 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
944 break;
945
946 if (vlr.vlr_parent[0] == '\0') {
947 bound = curlwp_bind();
948 mib = vlan_getref_linkmib(ifv, &psref);
949 if (mib == NULL) {
950 curlwp_bindx(bound);
951 error = EBUSY;
952 break;
953 }
954
955 if (mib->ifvm_p != NULL &&
956 (ifp->if_flags & IFF_PROMISC) != 0)
957 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
958
959 vlan_putref_linkmib(mib, &psref);
960 curlwp_bindx(bound);
961
962 vlan_unconfig(ifp);
963 break;
964 }
965 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
966 error = EINVAL; /* check for valid tag */
967 break;
968 }
969 if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
970 error = ENOENT;
971 break;
972 }
973 error = vlan_config(ifv, pr, vlr.vlr_tag);
974 if (error != 0) {
975 break;
976 }
977 ifp->if_flags |= IFF_RUNNING;
978
979 /* Update promiscuous mode, if necessary. */
980 vlan_set_promisc(ifp);
981 break;
982
983 case SIOCGETVLAN:
984 memset(&vlr, 0, sizeof(vlr));
985 bound = curlwp_bind();
986 mib = vlan_getref_linkmib(ifv, &psref);
987 if (mib == NULL) {
988 curlwp_bindx(bound);
989 error = EBUSY;
990 break;
991 }
992 if (mib->ifvm_p != NULL) {
993 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
994 mib->ifvm_p->if_xname);
995 vlr.vlr_tag = mib->ifvm_tag;
996 }
997 vlan_putref_linkmib(mib, &psref);
998 curlwp_bindx(bound);
999 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1000 break;
1001
1002 case SIOCSIFFLAGS:
1003 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1004 break;
1005 /*
1006 * For promiscuous mode, we enable promiscuous mode on
1007 * the parent if we need promiscuous on the VLAN interface.
1008 */
1009 bound = curlwp_bind();
1010 mib = vlan_getref_linkmib(ifv, &psref);
1011 if (mib == NULL) {
1012 curlwp_bindx(bound);
1013 error = EBUSY;
1014 break;
1015 }
1016
1017 if (mib->ifvm_p != NULL)
1018 error = vlan_set_promisc(ifp);
1019 vlan_putref_linkmib(mib, &psref);
1020 curlwp_bindx(bound);
1021 break;
1022
1023 case SIOCADDMULTI:
1024 mutex_enter(&ifv->ifv_lock);
1025 mib = ifv->ifv_mib;
1026 if (mib == NULL) {
1027 error = EBUSY;
1028 mutex_exit(&ifv->ifv_lock);
1029 break;
1030 }
1031
1032 error = (mib->ifvm_p != NULL) ?
1033 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1034 mib = NULL;
1035 mutex_exit(&ifv->ifv_lock);
1036 break;
1037
1038 case SIOCDELMULTI:
1039 mutex_enter(&ifv->ifv_lock);
1040 mib = ifv->ifv_mib;
1041 if (mib == NULL) {
1042 error = EBUSY;
1043 mutex_exit(&ifv->ifv_lock);
1044 break;
1045 }
1046 error = (mib->ifvm_p != NULL) ?
1047 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1048 mib = NULL;
1049 mutex_exit(&ifv->ifv_lock);
1050 break;
1051
1052 case SIOCSIFCAP:
1053 ifcr = data;
1054 /* make sure caps are enabled on parent */
1055 bound = curlwp_bind();
1056 mib = vlan_getref_linkmib(ifv, &psref);
1057 if (mib == NULL) {
1058 curlwp_bindx(bound);
1059 error = EBUSY;
1060 break;
1061 }
1062
1063 if (mib->ifvm_p == NULL) {
1064 vlan_putref_linkmib(mib, &psref);
1065 curlwp_bindx(bound);
1066 error = EINVAL;
1067 break;
1068 }
1069 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1070 ifcr->ifcr_capenable) {
1071 vlan_putref_linkmib(mib, &psref);
1072 curlwp_bindx(bound);
1073 error = EINVAL;
1074 break;
1075 }
1076
1077 vlan_putref_linkmib(mib, &psref);
1078 curlwp_bindx(bound);
1079
1080 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1081 error = 0;
1082 break;
1083 case SIOCINITIFADDR:
1084 bound = curlwp_bind();
1085 mib = vlan_getref_linkmib(ifv, &psref);
1086 if (mib == NULL) {
1087 curlwp_bindx(bound);
1088 error = EBUSY;
1089 break;
1090 }
1091
1092 if (mib->ifvm_p == NULL) {
1093 error = EINVAL;
1094 vlan_putref_linkmib(mib, &psref);
1095 curlwp_bindx(bound);
1096 break;
1097 }
1098 vlan_putref_linkmib(mib, &psref);
1099 curlwp_bindx(bound);
1100
1101 ifp->if_flags |= IFF_UP;
1102 #ifdef INET
1103 if (ifa->ifa_addr->sa_family == AF_INET)
1104 arp_ifinit(ifp, ifa);
1105 #endif
1106 break;
1107
1108 default:
1109 error = ether_ioctl(ifp, cmd, data);
1110 }
1111
1112 return (error);
1113 }
1114
1115 static int
1116 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1117 {
1118 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1119 struct vlan_mc_entry *mc;
1120 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1121 struct ifvlan_linkmib *mib;
1122 int error;
1123
1124 KASSERT(mutex_owned(&ifv->ifv_lock));
1125
1126 if (sa->sa_len > sizeof(struct sockaddr_storage))
1127 return (EINVAL);
1128
1129 error = ether_addmulti(sa, &ifv->ifv_ec);
1130 if (error != ENETRESET)
1131 return (error);
1132
1133 /*
1134 * This is new multicast address. We have to tell parent
1135 * about it. Also, remember this multicast address so that
1136 * we can delete them on unconfigure.
1137 */
1138 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1139 if (mc == NULL) {
1140 error = ENOMEM;
1141 goto alloc_failed;
1142 }
1143
1144 /*
1145 * As ether_addmulti() returns ENETRESET, following two
1146 * statement shouldn't fail.
1147 */
1148 (void)ether_multiaddr(sa, addrlo, addrhi);
1149 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
1150 memcpy(&mc->mc_addr, sa, sa->sa_len);
1151 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1152
1153 mib = ifv->ifv_mib;
1154
1155 KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1156 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1157 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1158
1159 if (error != 0)
1160 goto ioctl_failed;
1161 return (error);
1162
1163 ioctl_failed:
1164 LIST_REMOVE(mc, mc_entries);
1165 free(mc, M_DEVBUF);
1166 alloc_failed:
1167 (void)ether_delmulti(sa, &ifv->ifv_ec);
1168 return (error);
1169 }
1170
1171 static int
1172 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1173 {
1174 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1175 struct ether_multi *enm;
1176 struct vlan_mc_entry *mc;
1177 struct ifvlan_linkmib *mib;
1178 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1179 int error;
1180
1181 KASSERT(mutex_owned(&ifv->ifv_lock));
1182
1183 /*
1184 * Find a key to lookup vlan_mc_entry. We have to do this
1185 * before calling ether_delmulti for obvious reason.
1186 */
1187 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1188 return (error);
1189 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
1190
1191 error = ether_delmulti(sa, &ifv->ifv_ec);
1192 if (error != ENETRESET)
1193 return (error);
1194
1195 /* We no longer use this multicast address. Tell parent so. */
1196 mib = ifv->ifv_mib;
1197 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1198
1199 if (error == 0) {
1200 /* And forget about this address. */
1201 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
1202 mc = LIST_NEXT(mc, mc_entries)) {
1203 if (mc->mc_enm == enm) {
1204 LIST_REMOVE(mc, mc_entries);
1205 free(mc, M_DEVBUF);
1206 break;
1207 }
1208 }
1209 KASSERT(mc != NULL);
1210 } else
1211 (void)ether_addmulti(sa, &ifv->ifv_ec);
1212 return (error);
1213 }
1214
1215 /*
1216 * Delete any multicast address we have asked to add from parent
1217 * interface. Called when the vlan is being unconfigured.
1218 */
1219 static void
1220 vlan_ether_purgemulti(struct ifvlan *ifv)
1221 {
1222 struct vlan_mc_entry *mc;
1223 struct ifvlan_linkmib *mib;
1224
1225 KASSERT(mutex_owned(&ifv->ifv_lock));
1226 mib = ifv->ifv_mib;
1227 if (mib == NULL) {
1228 return;
1229 }
1230
1231 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1232 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1233 (const struct sockaddr *)&mc->mc_addr);
1234 LIST_REMOVE(mc, mc_entries);
1235 free(mc, M_DEVBUF);
1236 }
1237 }
1238
1239 static void
1240 vlan_start(struct ifnet *ifp)
1241 {
1242 struct ifvlan *ifv = ifp->if_softc;
1243 struct ifnet *p;
1244 struct ethercom *ec;
1245 struct mbuf *m;
1246 struct ifvlan_linkmib *mib;
1247 struct psref psref;
1248 int error;
1249
1250 mib = vlan_getref_linkmib(ifv, &psref);
1251 if (mib == NULL)
1252 return;
1253 p = mib->ifvm_p;
1254 ec = (void *)mib->ifvm_p;
1255
1256 ifp->if_flags |= IFF_OACTIVE;
1257
1258 for (;;) {
1259 IFQ_DEQUEUE(&ifp->if_snd, m);
1260 if (m == NULL)
1261 break;
1262
1263 #ifdef ALTQ
1264 /*
1265 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is defined.
1266 */
1267 KERNEL_LOCK(1, NULL);
1268 /*
1269 * If ALTQ is enabled on the parent interface, do
1270 * classification; the queueing discipline might
1271 * not require classification, but might require
1272 * the address family/header pointer in the pktattr.
1273 */
1274 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1275 switch (p->if_type) {
1276 case IFT_ETHER:
1277 altq_etherclassify(&p->if_snd, m);
1278 break;
1279 #ifdef DIAGNOSTIC
1280 default:
1281 panic("vlan_start: impossible (altq)");
1282 #endif
1283 }
1284 }
1285 KERNEL_UNLOCK_ONE(NULL);
1286 #endif /* ALTQ */
1287
1288 bpf_mtap(ifp, m);
1289 /*
1290 * If the parent can insert the tag itself, just mark
1291 * the tag in the mbuf header.
1292 */
1293 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1294 vlan_set_tag(m, mib->ifvm_tag);
1295 } else {
1296 /*
1297 * insert the tag ourselves
1298 */
1299 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1300 if (m == NULL) {
1301 printf("%s: unable to prepend encap header",
1302 p->if_xname);
1303 ifp->if_oerrors++;
1304 continue;
1305 }
1306
1307 switch (p->if_type) {
1308 case IFT_ETHER:
1309 {
1310 struct ether_vlan_header *evl;
1311
1312 if (m->m_len < sizeof(struct ether_vlan_header))
1313 m = m_pullup(m,
1314 sizeof(struct ether_vlan_header));
1315 if (m == NULL) {
1316 printf("%s: unable to pullup encap "
1317 "header", p->if_xname);
1318 ifp->if_oerrors++;
1319 continue;
1320 }
1321
1322 /*
1323 * Transform the Ethernet header into an
1324 * Ethernet header with 802.1Q encapsulation.
1325 */
1326 memmove(mtod(m, void *),
1327 mtod(m, char *) + mib->ifvm_encaplen,
1328 sizeof(struct ether_header));
1329 evl = mtod(m, struct ether_vlan_header *);
1330 evl->evl_proto = evl->evl_encap_proto;
1331 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1332 evl->evl_tag = htons(mib->ifvm_tag);
1333
1334 /*
1335 * To cater for VLAN-aware layer 2 ethernet
1336 * switches which may need to strip the tag
1337 * before forwarding the packet, make sure
1338 * the packet+tag is at least 68 bytes long.
1339 * This is necessary because our parent will
1340 * only pad to 64 bytes (ETHER_MIN_LEN) and
1341 * some switches will not pad by themselves
1342 * after deleting a tag.
1343 */
1344 if (m->m_pkthdr.len <
1345 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1346 ETHER_VLAN_ENCAP_LEN)) {
1347 m_copyback(m, m->m_pkthdr.len,
1348 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1349 ETHER_VLAN_ENCAP_LEN) -
1350 m->m_pkthdr.len,
1351 vlan_zero_pad_buff);
1352 }
1353 break;
1354 }
1355
1356 #ifdef DIAGNOSTIC
1357 default:
1358 panic("vlan_start: impossible");
1359 #endif
1360 }
1361 }
1362
1363 if ((p->if_flags & IFF_RUNNING) == 0) {
1364 m_freem(m);
1365 continue;
1366 }
1367
1368 error = if_transmit_lock(p, m);
1369 if (error) {
1370 /* mbuf is already freed */
1371 ifp->if_oerrors++;
1372 continue;
1373 }
1374 ifp->if_opackets++;
1375 }
1376
1377 ifp->if_flags &= ~IFF_OACTIVE;
1378
1379 /* Remove reference to mib before release */
1380 p = NULL;
1381 ec = NULL;
1382
1383 vlan_putref_linkmib(mib, &psref);
1384 }
1385
1386 static int
1387 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1388 {
1389 struct ifvlan *ifv = ifp->if_softc;
1390 struct ifnet *p;
1391 struct ethercom *ec;
1392 struct ifvlan_linkmib *mib;
1393 struct psref psref;
1394 int error;
1395 size_t pktlen = m->m_pkthdr.len;
1396 bool mcast = (m->m_flags & M_MCAST) != 0;
1397
1398 mib = vlan_getref_linkmib(ifv, &psref);
1399 if (mib == NULL) {
1400 m_freem(m);
1401 return ENETDOWN;
1402 }
1403
1404 p = mib->ifvm_p;
1405 ec = (void *)mib->ifvm_p;
1406
1407 bpf_mtap(ifp, m);
1408
1409 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT) != 0) {
1410 if (m != NULL)
1411 m_freem(m);
1412 error = 0;
1413 goto out;
1414 }
1415
1416 /*
1417 * If the parent can insert the tag itself, just mark
1418 * the tag in the mbuf header.
1419 */
1420 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1421 vlan_set_tag(m, mib->ifvm_tag);
1422 } else {
1423 /*
1424 * insert the tag ourselves
1425 */
1426 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1427 if (m == NULL) {
1428 printf("%s: unable to prepend encap header",
1429 p->if_xname);
1430 ifp->if_oerrors++;
1431 error = ENOBUFS;
1432 goto out;
1433 }
1434
1435 switch (p->if_type) {
1436 case IFT_ETHER:
1437 {
1438 struct ether_vlan_header *evl;
1439
1440 if (m->m_len < sizeof(struct ether_vlan_header))
1441 m = m_pullup(m,
1442 sizeof(struct ether_vlan_header));
1443 if (m == NULL) {
1444 printf("%s: unable to pullup encap "
1445 "header", p->if_xname);
1446 ifp->if_oerrors++;
1447 error = ENOBUFS;
1448 goto out;
1449 }
1450
1451 /*
1452 * Transform the Ethernet header into an
1453 * Ethernet header with 802.1Q encapsulation.
1454 */
1455 memmove(mtod(m, void *),
1456 mtod(m, char *) + mib->ifvm_encaplen,
1457 sizeof(struct ether_header));
1458 evl = mtod(m, struct ether_vlan_header *);
1459 evl->evl_proto = evl->evl_encap_proto;
1460 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1461 evl->evl_tag = htons(mib->ifvm_tag);
1462
1463 /*
1464 * To cater for VLAN-aware layer 2 ethernet
1465 * switches which may need to strip the tag
1466 * before forwarding the packet, make sure
1467 * the packet+tag is at least 68 bytes long.
1468 * This is necessary because our parent will
1469 * only pad to 64 bytes (ETHER_MIN_LEN) and
1470 * some switches will not pad by themselves
1471 * after deleting a tag.
1472 */
1473 if (m->m_pkthdr.len <
1474 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1475 ETHER_VLAN_ENCAP_LEN)) {
1476 m_copyback(m, m->m_pkthdr.len,
1477 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1478 ETHER_VLAN_ENCAP_LEN) -
1479 m->m_pkthdr.len,
1480 vlan_zero_pad_buff);
1481 }
1482 break;
1483 }
1484
1485 #ifdef DIAGNOSTIC
1486 default:
1487 panic("vlan_transmit: impossible");
1488 #endif
1489 }
1490 }
1491
1492 if ((p->if_flags & IFF_RUNNING) == 0) {
1493 m_freem(m);
1494 error = ENETDOWN;
1495 goto out;
1496 }
1497
1498 error = if_transmit_lock(p, m);
1499 if (error) {
1500 /* mbuf is already freed */
1501 ifp->if_oerrors++;
1502 } else {
1503
1504 ifp->if_opackets++;
1505 ifp->if_obytes += pktlen;
1506 if (mcast)
1507 ifp->if_omcasts++;
1508 }
1509
1510 out:
1511 /* Remove reference to mib before release */
1512 p = NULL;
1513 ec = NULL;
1514
1515 vlan_putref_linkmib(mib, &psref);
1516 return error;
1517 }
1518
1519 /*
1520 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1521 * given source interface and tag, then run the real packet through the
1522 * parent's input routine.
1523 */
1524 void
1525 vlan_input(struct ifnet *ifp, struct mbuf *m)
1526 {
1527 struct ifvlan *ifv;
1528 uint16_t vid;
1529 struct ifvlan_linkmib *mib;
1530 struct psref psref;
1531 bool have_vtag;
1532
1533 have_vtag = vlan_has_tag(m);
1534 if (have_vtag) {
1535 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1536 m->m_flags &= ~M_VLANTAG;
1537 } else {
1538 switch (ifp->if_type) {
1539 case IFT_ETHER:
1540 {
1541 struct ether_vlan_header *evl;
1542
1543 if (m->m_len < sizeof(struct ether_vlan_header) &&
1544 (m = m_pullup(m,
1545 sizeof(struct ether_vlan_header))) == NULL) {
1546 printf("%s: no memory for VLAN header, "
1547 "dropping packet.\n", ifp->if_xname);
1548 return;
1549 }
1550 evl = mtod(m, struct ether_vlan_header *);
1551 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1552
1553 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1554
1555 /*
1556 * Restore the original ethertype. We'll remove
1557 * the encapsulation after we've found the vlan
1558 * interface corresponding to the tag.
1559 */
1560 evl->evl_encap_proto = evl->evl_proto;
1561 break;
1562 }
1563
1564 default:
1565 vid = (uint16_t) -1; /* XXX GCC */
1566 #ifdef DIAGNOSTIC
1567 panic("vlan_input: impossible");
1568 #endif
1569 }
1570 }
1571
1572 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1573 if (mib == NULL) {
1574 m_freem(m);
1575 ifp->if_noproto++;
1576 return;
1577 }
1578
1579 ifv = mib->ifvm_ifvlan;
1580 if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
1581 (IFF_UP|IFF_RUNNING)) {
1582 m_freem(m);
1583 ifp->if_noproto++;
1584 goto out;
1585 }
1586
1587 /*
1588 * Now, remove the encapsulation header. The original
1589 * header has already been fixed up above.
1590 */
1591 if (!have_vtag) {
1592 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1593 mtod(m, void *), sizeof(struct ether_header));
1594 m_adj(m, mib->ifvm_encaplen);
1595 }
1596
1597 m_set_rcvif(m, &ifv->ifv_if);
1598 ifv->ifv_if.if_ipackets++;
1599
1600 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) {
1601 if (m != NULL)
1602 m_freem(m);
1603 goto out;
1604 }
1605
1606 m->m_flags &= ~M_PROMISC;
1607 if_input(&ifv->ifv_if, m);
1608 out:
1609 vlan_putref_linkmib(mib, &psref);
1610 }
1611
1612 /*
1613 * Module infrastructure
1614 */
1615 #include "if_module.h"
1616
1617 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
1618