if_vlan.c revision 1.123 1 /* $NetBSD: if_vlan.c,v 1.123 2018/01/15 08:45:19 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.123 2018/01/15 08:45:19 maxv Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #endif
123
124 #include "ioconf.h"
125
126 struct vlan_mc_entry {
127 LIST_ENTRY(vlan_mc_entry) mc_entries;
128 /*
129 * A key to identify this entry. The mc_addr below can't be
130 * used since multiple sockaddr may mapped into the same
131 * ether_multi (e.g., AF_UNSPEC).
132 */
133 union {
134 struct ether_multi *mcu_enm;
135 } mc_u;
136 struct sockaddr_storage mc_addr;
137 };
138
139 #define mc_enm mc_u.mcu_enm
140
141
142 struct ifvlan_linkmib {
143 struct ifvlan *ifvm_ifvlan;
144 const struct vlan_multisw *ifvm_msw;
145 int ifvm_encaplen; /* encapsulation length */
146 int ifvm_mtufudge; /* MTU fudged by this much */
147 int ifvm_mintu; /* min transmission unit */
148 uint16_t ifvm_proto; /* encapsulation ethertype */
149 uint16_t ifvm_tag; /* tag to apply on packets */
150 struct ifnet *ifvm_p; /* parent interface of this vlan */
151
152 struct psref_target ifvm_psref;
153 };
154
155 struct ifvlan {
156 union {
157 struct ethercom ifvu_ec;
158 } ifv_u;
159 struct ifvlan_linkmib *ifv_mib; /*
160 * reader must use vlan_getref_linkmib()
161 * instead of direct dereference
162 */
163 kmutex_t ifv_lock; /* writer lock for ifv_mib */
164
165 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
166 LIST_ENTRY(ifvlan) ifv_list;
167 struct pslist_entry ifv_hash;
168 int ifv_flags;
169 };
170
171 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
172
173 #define ifv_ec ifv_u.ifvu_ec
174
175 #define ifv_if ifv_ec.ec_if
176
177 #define ifv_msw ifv_mib.ifvm_msw
178 #define ifv_encaplen ifv_mib.ifvm_encaplen
179 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
180 #define ifv_mintu ifv_mib.ifvm_mintu
181 #define ifv_tag ifv_mib.ifvm_tag
182
183 struct vlan_multisw {
184 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
185 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
186 void (*vmsw_purgemulti)(struct ifvlan *);
187 };
188
189 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
190 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
191 static void vlan_ether_purgemulti(struct ifvlan *);
192
193 const struct vlan_multisw vlan_ether_multisw = {
194 .vmsw_addmulti = vlan_ether_addmulti,
195 .vmsw_delmulti = vlan_ether_delmulti,
196 .vmsw_purgemulti = vlan_ether_purgemulti,
197 };
198
199 static int vlan_clone_create(struct if_clone *, int);
200 static int vlan_clone_destroy(struct ifnet *);
201 static int vlan_config(struct ifvlan *, struct ifnet *,
202 uint16_t);
203 static int vlan_ioctl(struct ifnet *, u_long, void *);
204 static void vlan_start(struct ifnet *);
205 static int vlan_transmit(struct ifnet *, struct mbuf *);
206 static void vlan_unconfig(struct ifnet *);
207 static int vlan_unconfig_locked(struct ifvlan *,
208 struct ifvlan_linkmib *);
209 static void vlan_hash_init(void);
210 static int vlan_hash_fini(void);
211 static int vlan_tag_hash(uint16_t, u_long);
212 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
213 struct psref *);
214 static void vlan_putref_linkmib(struct ifvlan_linkmib *,
215 struct psref *);
216 static void vlan_linkmib_update(struct ifvlan *,
217 struct ifvlan_linkmib *);
218 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
219 uint16_t, struct psref *);
220
221 LIST_HEAD(vlan_ifvlist, ifvlan);
222 static struct {
223 kmutex_t lock;
224 struct vlan_ifvlist list;
225 } ifv_list __cacheline_aligned;
226
227
228 #if !defined(VLAN_TAG_HASH_SIZE)
229 #define VLAN_TAG_HASH_SIZE 32
230 #endif
231 static struct {
232 kmutex_t lock;
233 struct pslist_head *lists;
234 u_long mask;
235 } ifv_hash __cacheline_aligned = {
236 .lists = NULL,
237 .mask = 0,
238 };
239
240 pserialize_t vlan_psz __read_mostly;
241 static struct psref_class *ifvm_psref_class __read_mostly;
242
243 struct if_clone vlan_cloner =
244 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
245
246 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
247 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
248
249 static inline int
250 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
251 {
252 int e;
253 KERNEL_LOCK_UNLESS_NET_MPSAFE();
254 e = ifpromisc(ifp, pswitch);
255 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
256 return e;
257 }
258
259 static inline int
260 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
261 {
262 int e;
263 KERNEL_LOCK_UNLESS_NET_MPSAFE();
264 e = ifpromisc_locked(ifp, pswitch);
265 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
266 return e;
267 }
268
269 void
270 vlanattach(int n)
271 {
272
273 /*
274 * Nothing to do here, initialization is handled by the
275 * module initialization code in vlaninit() below).
276 */
277 }
278
279 static void
280 vlaninit(void)
281 {
282 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
283 LIST_INIT(&ifv_list.list);
284
285 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
286 vlan_psz = pserialize_create();
287 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
288 if_clone_attach(&vlan_cloner);
289
290 vlan_hash_init();
291 }
292
293 static int
294 vlandetach(void)
295 {
296 int error = 0;
297
298 mutex_enter(&ifv_list.lock);
299 if (!LIST_EMPTY(&ifv_list.list)) {
300 mutex_exit(&ifv_list.lock);
301 return EBUSY;
302 }
303 mutex_exit(&ifv_list.lock);
304
305 error = vlan_hash_fini();
306 if (error != 0)
307 return error;
308
309 if_clone_detach(&vlan_cloner);
310 psref_class_destroy(ifvm_psref_class);
311 pserialize_destroy(vlan_psz);
312 mutex_destroy(&ifv_hash.lock);
313 mutex_destroy(&ifv_list.lock);
314
315 return 0;
316 }
317
318 static void
319 vlan_reset_linkname(struct ifnet *ifp)
320 {
321
322 /*
323 * We start out with a "802.1Q VLAN" type and zero-length
324 * addresses. When we attach to a parent interface, we
325 * inherit its type, address length, address, and data link
326 * type.
327 */
328
329 ifp->if_type = IFT_L2VLAN;
330 ifp->if_addrlen = 0;
331 ifp->if_dlt = DLT_NULL;
332 if_alloc_sadl(ifp);
333 }
334
335 static int
336 vlan_clone_create(struct if_clone *ifc, int unit)
337 {
338 struct ifvlan *ifv;
339 struct ifnet *ifp;
340 struct ifvlan_linkmib *mib;
341 int rv;
342
343 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
344 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
345 ifp = &ifv->ifv_if;
346 LIST_INIT(&ifv->ifv_mc_listhead);
347
348 mib->ifvm_ifvlan = ifv;
349 mib->ifvm_p = NULL;
350 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
351
352 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
353 ifv->ifv_mib = mib;
354
355 mutex_enter(&ifv_list.lock);
356 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
357 mutex_exit(&ifv_list.lock);
358
359 if_initname(ifp, ifc->ifc_name, unit);
360 ifp->if_softc = ifv;
361 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
362 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
363 #ifdef NET_MPSAFE
364 ifp->if_extflags |= IFEF_MPSAFE;
365 #endif
366 ifp->if_start = vlan_start;
367 ifp->if_transmit = vlan_transmit;
368 ifp->if_ioctl = vlan_ioctl;
369 IFQ_SET_READY(&ifp->if_snd);
370
371 rv = if_initialize(ifp);
372 if (rv != 0) {
373 aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
374 rv);
375 goto fail;
376 }
377
378 vlan_reset_linkname(ifp);
379 if_register(ifp);
380 return 0;
381
382 fail:
383 mutex_enter(&ifv_list.lock);
384 LIST_REMOVE(ifv, ifv_list);
385 mutex_exit(&ifv_list.lock);
386
387 mutex_destroy(&ifv->ifv_lock);
388 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
389 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
390 free(ifv, M_DEVBUF);
391
392 return rv;
393 }
394
395 static int
396 vlan_clone_destroy(struct ifnet *ifp)
397 {
398 struct ifvlan *ifv = ifp->if_softc;
399
400 mutex_enter(&ifv_list.lock);
401 LIST_REMOVE(ifv, ifv_list);
402 mutex_exit(&ifv_list.lock);
403
404 IFNET_LOCK(ifp);
405 vlan_unconfig(ifp);
406 IFNET_UNLOCK(ifp);
407 if_detach(ifp);
408
409 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
410 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
411 mutex_destroy(&ifv->ifv_lock);
412 free(ifv, M_DEVBUF);
413
414 return (0);
415 }
416
417 /*
418 * Configure a VLAN interface.
419 */
420 static int
421 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
422 {
423 struct ifnet *ifp = &ifv->ifv_if;
424 struct ifvlan_linkmib *nmib = NULL;
425 struct ifvlan_linkmib *omib = NULL;
426 struct ifvlan_linkmib *checkmib = NULL;
427 struct psref_target *nmib_psref = NULL;
428 uint16_t vid = EVL_VLANOFTAG(tag);
429 int error = 0;
430 int idx;
431 bool omib_cleanup = false;
432 struct psref psref;
433
434 /* VLAN ID 0 and 4095 are reserved in the spec */
435 if ((vid == 0) || (vid == 0xfff))
436 return EINVAL;
437
438 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
439
440 mutex_enter(&ifv->ifv_lock);
441 omib = ifv->ifv_mib;
442
443 if (omib->ifvm_p != NULL) {
444 error = EBUSY;
445 goto done;
446 }
447
448 /* Duplicate check */
449 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
450 if (checkmib != NULL) {
451 vlan_putref_linkmib(checkmib, &psref);
452 error = EEXIST;
453 goto done;
454 }
455
456 *nmib = *omib;
457 nmib_psref = &nmib->ifvm_psref;
458
459 psref_target_init(nmib_psref, ifvm_psref_class);
460
461 switch (p->if_type) {
462 case IFT_ETHER:
463 {
464 struct ethercom *ec = (void *) p;
465 nmib->ifvm_msw = &vlan_ether_multisw;
466 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
467 nmib->ifvm_mintu = ETHERMIN;
468
469 if (ec->ec_nvlans++ == 0) {
470 IFNET_LOCK(p);
471 error = ether_enable_vlan_mtu(p);
472 IFNET_UNLOCK(p);
473 if (error >= 0) {
474 if (error) {
475 ec->ec_nvlans--;
476 goto done;
477 }
478 nmib->ifvm_mtufudge = 0;
479 } else {
480 /*
481 * Fudge the MTU by the encapsulation size. This
482 * makes us incompatible with strictly compliant
483 * 802.1Q implementations, but allows us to use
484 * the feature with other NetBSD
485 * implementations, which might still be useful.
486 */
487 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
488 }
489 error = 0;
490 }
491
492 /*
493 * If the parent interface can do hardware-assisted
494 * VLAN encapsulation, then propagate its hardware-
495 * assisted checksumming flags and tcp segmentation
496 * offload.
497 */
498 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
499 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
500 ifp->if_capabilities = p->if_capabilities &
501 (IFCAP_TSOv4 | IFCAP_TSOv6 |
502 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
503 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
504 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
505 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
506 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
507 }
508 /*
509 * We inherit the parent's Ethernet address.
510 */
511 ether_ifattach(ifp, CLLADDR(p->if_sadl));
512 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
513 break;
514 }
515
516 default:
517 error = EPROTONOSUPPORT;
518 goto done;
519 }
520
521 nmib->ifvm_p = p;
522 nmib->ifvm_tag = vid;
523 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
524 ifv->ifv_if.if_flags = p->if_flags &
525 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
526
527 /*
528 * Inherit the if_type from the parent. This allows us
529 * to participate in bridges of that type.
530 */
531 ifv->ifv_if.if_type = p->if_type;
532
533 PSLIST_ENTRY_INIT(ifv, ifv_hash);
534 idx = vlan_tag_hash(vid, ifv_hash.mask);
535
536 mutex_enter(&ifv_hash.lock);
537 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
538 mutex_exit(&ifv_hash.lock);
539
540 vlan_linkmib_update(ifv, nmib);
541 nmib = NULL;
542 nmib_psref = NULL;
543 omib_cleanup = true;
544
545 done:
546 mutex_exit(&ifv->ifv_lock);
547
548 if (nmib_psref)
549 psref_target_destroy(nmib_psref, ifvm_psref_class);
550
551 if (nmib)
552 kmem_free(nmib, sizeof(*nmib));
553
554 if (omib_cleanup)
555 kmem_free(omib, sizeof(*omib));
556
557 return error;
558 }
559
560 /*
561 * Unconfigure a VLAN interface.
562 */
563 static void
564 vlan_unconfig(struct ifnet *ifp)
565 {
566 struct ifvlan *ifv = ifp->if_softc;
567 struct ifvlan_linkmib *nmib = NULL;
568 int error;
569
570 KASSERT(IFNET_LOCKED(ifp));
571
572 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
573
574 mutex_enter(&ifv->ifv_lock);
575 error = vlan_unconfig_locked(ifv, nmib);
576 mutex_exit(&ifv->ifv_lock);
577
578 if (error)
579 kmem_free(nmib, sizeof(*nmib));
580 }
581 static int
582 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
583 {
584 struct ifnet *p;
585 struct ifnet *ifp = &ifv->ifv_if;
586 struct psref_target *nmib_psref = NULL;
587 struct ifvlan_linkmib *omib;
588 int error = 0;
589
590 KASSERT(IFNET_LOCKED(ifp));
591 KASSERT(mutex_owned(&ifv->ifv_lock));
592
593 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
594
595 omib = ifv->ifv_mib;
596 p = omib->ifvm_p;
597
598 if (p == NULL) {
599 error = -1;
600 goto done;
601 }
602
603 *nmib = *omib;
604 nmib_psref = &nmib->ifvm_psref;
605 psref_target_init(nmib_psref, ifvm_psref_class);
606
607 /*
608 * Since the interface is being unconfigured, we need to empty the
609 * list of multicast groups that we may have joined while we were
610 * alive and remove them from the parent's list also.
611 */
612 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
613
614 /* Disconnect from parent. */
615 switch (p->if_type) {
616 case IFT_ETHER:
617 {
618 struct ethercom *ec = (void *)p;
619 if (--ec->ec_nvlans == 0) {
620 IFNET_LOCK(p);
621 (void) ether_disable_vlan_mtu(p);
622 IFNET_UNLOCK(p);
623 }
624
625 ether_ifdetach(ifp);
626 /* Restore vlan_ioctl overwritten by ether_ifdetach */
627 ifp->if_ioctl = vlan_ioctl;
628 vlan_reset_linkname(ifp);
629 break;
630 }
631
632 #ifdef DIAGNOSTIC
633 default:
634 panic("vlan_unconfig: impossible");
635 #endif
636 }
637
638 nmib->ifvm_p = NULL;
639 ifv->ifv_if.if_mtu = 0;
640 ifv->ifv_flags = 0;
641
642 mutex_enter(&ifv_hash.lock);
643 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
644 pserialize_perform(vlan_psz);
645 mutex_exit(&ifv_hash.lock);
646 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
647
648 vlan_linkmib_update(ifv, nmib);
649
650 mutex_exit(&ifv->ifv_lock);
651
652 nmib_psref = NULL;
653 kmem_free(omib, sizeof(*omib));
654
655 #ifdef INET6
656 KERNEL_LOCK_UNLESS_NET_MPSAFE();
657 /* To delete v6 link local addresses */
658 if (in6_present)
659 in6_ifdetach(ifp);
660 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
661 #endif
662
663 if ((ifp->if_flags & IFF_PROMISC) != 0)
664 vlan_safe_ifpromisc_locked(ifp, 0);
665 if_down_locked(ifp);
666 ifp->if_capabilities = 0;
667 mutex_enter(&ifv->ifv_lock);
668 done:
669
670 if (nmib_psref)
671 psref_target_destroy(nmib_psref, ifvm_psref_class);
672
673 return error;
674 }
675
676 static void
677 vlan_hash_init(void)
678 {
679
680 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
681 &ifv_hash.mask);
682 }
683
684 static int
685 vlan_hash_fini(void)
686 {
687 int i;
688
689 mutex_enter(&ifv_hash.lock);
690
691 for (i = 0; i < ifv_hash.mask + 1; i++) {
692 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
693 ifv_hash) != NULL) {
694 mutex_exit(&ifv_hash.lock);
695 return EBUSY;
696 }
697 }
698
699 for (i = 0; i < ifv_hash.mask + 1; i++)
700 PSLIST_DESTROY(&ifv_hash.lists[i]);
701
702 mutex_exit(&ifv_hash.lock);
703
704 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
705
706 ifv_hash.lists = NULL;
707 ifv_hash.mask = 0;
708
709 return 0;
710 }
711
712 static int
713 vlan_tag_hash(uint16_t tag, u_long mask)
714 {
715 uint32_t hash;
716
717 hash = (tag >> 8) ^ tag;
718 hash = (hash >> 2) ^ hash;
719
720 return hash & mask;
721 }
722
723 static struct ifvlan_linkmib *
724 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
725 {
726 struct ifvlan_linkmib *mib;
727 int s;
728
729 s = pserialize_read_enter();
730 mib = sc->ifv_mib;
731 if (mib == NULL) {
732 pserialize_read_exit(s);
733 return NULL;
734 }
735 membar_datadep_consumer();
736 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
737 pserialize_read_exit(s);
738
739 return mib;
740 }
741
742 static void
743 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
744 {
745 if (mib == NULL)
746 return;
747 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
748 }
749
750 static struct ifvlan_linkmib *
751 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
752 {
753 int idx;
754 int s;
755 struct ifvlan *sc;
756
757 idx = vlan_tag_hash(tag, ifv_hash.mask);
758
759 s = pserialize_read_enter();
760 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
761 ifv_hash) {
762 struct ifvlan_linkmib *mib = sc->ifv_mib;
763 if (mib == NULL)
764 continue;
765 if (mib->ifvm_tag != tag)
766 continue;
767 if (mib->ifvm_p != ifp)
768 continue;
769
770 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
771 pserialize_read_exit(s);
772 return mib;
773 }
774 pserialize_read_exit(s);
775 return NULL;
776 }
777
778 static void
779 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
780 {
781 struct ifvlan_linkmib *omib = ifv->ifv_mib;
782
783 KASSERT(mutex_owned(&ifv->ifv_lock));
784
785 membar_producer();
786 ifv->ifv_mib = nmib;
787
788 pserialize_perform(vlan_psz);
789 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
790 }
791
792 /*
793 * Called when a parent interface is detaching; destroy any VLAN
794 * configuration for the parent interface.
795 */
796 void
797 vlan_ifdetach(struct ifnet *p)
798 {
799 struct ifvlan *ifv;
800 struct ifvlan_linkmib *mib, **nmibs;
801 struct psref psref;
802 int error;
803 int bound;
804 int i, cnt = 0;
805
806 bound = curlwp_bind();
807
808 mutex_enter(&ifv_list.lock);
809 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
810 mib = vlan_getref_linkmib(ifv, &psref);
811 if (mib == NULL)
812 continue;
813
814 if (mib->ifvm_p == p)
815 cnt++;
816
817 vlan_putref_linkmib(mib, &psref);
818 }
819 mutex_exit(&ifv_list.lock);
820
821 if (cnt == 0) {
822 curlwp_bindx(bound);
823 return;
824 }
825
826 /*
827 * The value of "cnt" does not increase while ifv_list.lock
828 * and ifv->ifv_lock are released here, because the parent
829 * interface is detaching.
830 */
831 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
832 for (i = 0; i < cnt; i++) {
833 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
834 }
835
836 mutex_enter(&ifv_list.lock);
837
838 i = 0;
839 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
840 struct ifnet *ifp = &ifv->ifv_if;
841
842 /* Need IFNET_LOCK that must be held before ifv_lock. */
843 IFNET_LOCK(ifp);
844 mutex_enter(&ifv->ifv_lock);
845 if (ifv->ifv_mib->ifvm_p == p) {
846 KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
847 p->if_xname);
848 error = vlan_unconfig_locked(ifv, nmibs[i]);
849 if (!error) {
850 nmibs[i] = NULL;
851 i++;
852 }
853
854 }
855 mutex_exit(&ifv->ifv_lock);
856 IFNET_UNLOCK(ifp);
857 }
858
859 mutex_exit(&ifv_list.lock);
860
861 curlwp_bindx(bound);
862
863 for (i = 0; i < cnt; i++) {
864 if (nmibs[i])
865 kmem_free(nmibs[i], sizeof(*nmibs[i]));
866 }
867
868 kmem_free(nmibs, sizeof(*nmibs) * cnt);
869
870 return;
871 }
872
873 static int
874 vlan_set_promisc(struct ifnet *ifp)
875 {
876 struct ifvlan *ifv = ifp->if_softc;
877 struct ifvlan_linkmib *mib;
878 struct psref psref;
879 int error = 0;
880 int bound;
881
882 bound = curlwp_bind();
883 mib = vlan_getref_linkmib(ifv, &psref);
884 if (mib == NULL) {
885 curlwp_bindx(bound);
886 return EBUSY;
887 }
888
889 if ((ifp->if_flags & IFF_PROMISC) != 0) {
890 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
891 error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
892 if (error == 0)
893 ifv->ifv_flags |= IFVF_PROMISC;
894 }
895 } else {
896 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
897 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
898 if (error == 0)
899 ifv->ifv_flags &= ~IFVF_PROMISC;
900 }
901 }
902 vlan_putref_linkmib(mib, &psref);
903 curlwp_bindx(bound);
904
905 return (error);
906 }
907
908 static int
909 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
910 {
911 struct lwp *l = curlwp; /* XXX */
912 struct ifvlan *ifv = ifp->if_softc;
913 struct ifaddr *ifa = (struct ifaddr *) data;
914 struct ifreq *ifr = (struct ifreq *) data;
915 struct ifnet *pr;
916 struct ifcapreq *ifcr;
917 struct vlanreq vlr;
918 struct ifvlan_linkmib *mib;
919 struct psref psref;
920 int error = 0;
921 int bound;
922
923 switch (cmd) {
924 case SIOCSIFMTU:
925 bound = curlwp_bind();
926 mib = vlan_getref_linkmib(ifv, &psref);
927 if (mib == NULL) {
928 curlwp_bindx(bound);
929 error = EBUSY;
930 break;
931 }
932
933 if (mib->ifvm_p == NULL) {
934 vlan_putref_linkmib(mib, &psref);
935 curlwp_bindx(bound);
936 error = EINVAL;
937 } else if (
938 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
939 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
940 vlan_putref_linkmib(mib, &psref);
941 curlwp_bindx(bound);
942 error = EINVAL;
943 } else {
944 vlan_putref_linkmib(mib, &psref);
945 curlwp_bindx(bound);
946
947 error = ifioctl_common(ifp, cmd, data);
948 if (error == ENETRESET)
949 error = 0;
950 }
951
952 break;
953
954 case SIOCSETVLAN:
955 if ((error = kauth_authorize_network(l->l_cred,
956 KAUTH_NETWORK_INTERFACE,
957 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
958 NULL)) != 0)
959 break;
960 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
961 break;
962
963 if (vlr.vlr_parent[0] == '\0') {
964 bound = curlwp_bind();
965 mib = vlan_getref_linkmib(ifv, &psref);
966 if (mib == NULL) {
967 curlwp_bindx(bound);
968 error = EBUSY;
969 break;
970 }
971
972 if (mib->ifvm_p != NULL &&
973 (ifp->if_flags & IFF_PROMISC) != 0)
974 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
975
976 vlan_putref_linkmib(mib, &psref);
977 curlwp_bindx(bound);
978
979 vlan_unconfig(ifp);
980 break;
981 }
982 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
983 error = EINVAL; /* check for valid tag */
984 break;
985 }
986 if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
987 error = ENOENT;
988 break;
989 }
990 error = vlan_config(ifv, pr, vlr.vlr_tag);
991 if (error != 0) {
992 break;
993 }
994
995 /* Update promiscuous mode, if necessary. */
996 vlan_set_promisc(ifp);
997
998 ifp->if_flags |= IFF_RUNNING;
999 break;
1000
1001 case SIOCGETVLAN:
1002 memset(&vlr, 0, sizeof(vlr));
1003 bound = curlwp_bind();
1004 mib = vlan_getref_linkmib(ifv, &psref);
1005 if (mib == NULL) {
1006 curlwp_bindx(bound);
1007 error = EBUSY;
1008 break;
1009 }
1010 if (mib->ifvm_p != NULL) {
1011 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
1012 mib->ifvm_p->if_xname);
1013 vlr.vlr_tag = mib->ifvm_tag;
1014 }
1015 vlan_putref_linkmib(mib, &psref);
1016 curlwp_bindx(bound);
1017 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1018 break;
1019
1020 case SIOCSIFFLAGS:
1021 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1022 break;
1023 /*
1024 * For promiscuous mode, we enable promiscuous mode on
1025 * the parent if we need promiscuous on the VLAN interface.
1026 */
1027 bound = curlwp_bind();
1028 mib = vlan_getref_linkmib(ifv, &psref);
1029 if (mib == NULL) {
1030 curlwp_bindx(bound);
1031 error = EBUSY;
1032 break;
1033 }
1034
1035 if (mib->ifvm_p != NULL)
1036 error = vlan_set_promisc(ifp);
1037 vlan_putref_linkmib(mib, &psref);
1038 curlwp_bindx(bound);
1039 break;
1040
1041 case SIOCADDMULTI:
1042 mutex_enter(&ifv->ifv_lock);
1043 mib = ifv->ifv_mib;
1044 if (mib == NULL) {
1045 error = EBUSY;
1046 mutex_exit(&ifv->ifv_lock);
1047 break;
1048 }
1049
1050 error = (mib->ifvm_p != NULL) ?
1051 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1052 mib = NULL;
1053 mutex_exit(&ifv->ifv_lock);
1054 break;
1055
1056 case SIOCDELMULTI:
1057 mutex_enter(&ifv->ifv_lock);
1058 mib = ifv->ifv_mib;
1059 if (mib == NULL) {
1060 error = EBUSY;
1061 mutex_exit(&ifv->ifv_lock);
1062 break;
1063 }
1064 error = (mib->ifvm_p != NULL) ?
1065 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1066 mib = NULL;
1067 mutex_exit(&ifv->ifv_lock);
1068 break;
1069
1070 case SIOCSIFCAP:
1071 ifcr = data;
1072 /* make sure caps are enabled on parent */
1073 bound = curlwp_bind();
1074 mib = vlan_getref_linkmib(ifv, &psref);
1075 if (mib == NULL) {
1076 curlwp_bindx(bound);
1077 error = EBUSY;
1078 break;
1079 }
1080
1081 if (mib->ifvm_p == NULL) {
1082 vlan_putref_linkmib(mib, &psref);
1083 curlwp_bindx(bound);
1084 error = EINVAL;
1085 break;
1086 }
1087 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1088 ifcr->ifcr_capenable) {
1089 vlan_putref_linkmib(mib, &psref);
1090 curlwp_bindx(bound);
1091 error = EINVAL;
1092 break;
1093 }
1094
1095 vlan_putref_linkmib(mib, &psref);
1096 curlwp_bindx(bound);
1097
1098 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1099 error = 0;
1100 break;
1101 case SIOCINITIFADDR:
1102 bound = curlwp_bind();
1103 mib = vlan_getref_linkmib(ifv, &psref);
1104 if (mib == NULL) {
1105 curlwp_bindx(bound);
1106 error = EBUSY;
1107 break;
1108 }
1109
1110 if (mib->ifvm_p == NULL) {
1111 error = EINVAL;
1112 vlan_putref_linkmib(mib, &psref);
1113 curlwp_bindx(bound);
1114 break;
1115 }
1116 vlan_putref_linkmib(mib, &psref);
1117 curlwp_bindx(bound);
1118
1119 ifp->if_flags |= IFF_UP;
1120 #ifdef INET
1121 if (ifa->ifa_addr->sa_family == AF_INET)
1122 arp_ifinit(ifp, ifa);
1123 #endif
1124 break;
1125
1126 default:
1127 error = ether_ioctl(ifp, cmd, data);
1128 }
1129
1130 return (error);
1131 }
1132
1133 static int
1134 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1135 {
1136 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1137 struct vlan_mc_entry *mc;
1138 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1139 struct ifvlan_linkmib *mib;
1140 int error;
1141
1142 KASSERT(mutex_owned(&ifv->ifv_lock));
1143
1144 if (sa->sa_len > sizeof(struct sockaddr_storage))
1145 return (EINVAL);
1146
1147 error = ether_addmulti(sa, &ifv->ifv_ec);
1148 if (error != ENETRESET)
1149 return (error);
1150
1151 /*
1152 * This is new multicast address. We have to tell parent
1153 * about it. Also, remember this multicast address so that
1154 * we can delete them on unconfigure.
1155 */
1156 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1157 if (mc == NULL) {
1158 error = ENOMEM;
1159 goto alloc_failed;
1160 }
1161
1162 /*
1163 * Since ether_addmulti() returns ENETRESET, the following two
1164 * statements shouldn't fail. Here ifv_ec is implicitly protected
1165 * by the ifv_lock lock.
1166 */
1167 error = ether_multiaddr(sa, addrlo, addrhi);
1168 KASSERT(error == 0);
1169 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
1170 KASSERT(mc->mc_enm != NULL);
1171
1172 memcpy(&mc->mc_addr, sa, sa->sa_len);
1173 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1174
1175 mib = ifv->ifv_mib;
1176
1177 KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1178 IFNET_LOCK(mib->ifvm_p);
1179 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1180 IFNET_UNLOCK(mib->ifvm_p);
1181 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1182
1183 if (error != 0)
1184 goto ioctl_failed;
1185 return (error);
1186
1187 ioctl_failed:
1188 LIST_REMOVE(mc, mc_entries);
1189 free(mc, M_DEVBUF);
1190 alloc_failed:
1191 (void)ether_delmulti(sa, &ifv->ifv_ec);
1192 return (error);
1193 }
1194
1195 static int
1196 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1197 {
1198 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1199 struct ether_multi *enm;
1200 struct vlan_mc_entry *mc;
1201 struct ifvlan_linkmib *mib;
1202 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1203 int error;
1204
1205 KASSERT(mutex_owned(&ifv->ifv_lock));
1206
1207 /*
1208 * Find a key to lookup vlan_mc_entry. We have to do this
1209 * before calling ether_delmulti for obvious reason.
1210 */
1211 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1212 return (error);
1213 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
1214
1215 error = ether_delmulti(sa, &ifv->ifv_ec);
1216 if (error != ENETRESET)
1217 return (error);
1218
1219 /* We no longer use this multicast address. Tell parent so. */
1220 mib = ifv->ifv_mib;
1221 IFNET_LOCK(mib->ifvm_p);
1222 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1223 IFNET_UNLOCK(mib->ifvm_p);
1224
1225 if (error == 0) {
1226 /* And forget about this address. */
1227 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
1228 mc = LIST_NEXT(mc, mc_entries)) {
1229 if (mc->mc_enm == enm) {
1230 LIST_REMOVE(mc, mc_entries);
1231 free(mc, M_DEVBUF);
1232 break;
1233 }
1234 }
1235 KASSERT(mc != NULL);
1236 } else
1237 (void)ether_addmulti(sa, &ifv->ifv_ec);
1238 return (error);
1239 }
1240
1241 /*
1242 * Delete any multicast address we have asked to add from parent
1243 * interface. Called when the vlan is being unconfigured.
1244 */
1245 static void
1246 vlan_ether_purgemulti(struct ifvlan *ifv)
1247 {
1248 struct vlan_mc_entry *mc;
1249 struct ifvlan_linkmib *mib;
1250
1251 KASSERT(mutex_owned(&ifv->ifv_lock));
1252 mib = ifv->ifv_mib;
1253 if (mib == NULL) {
1254 return;
1255 }
1256
1257 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1258 IFNET_LOCK(mib->ifvm_p);
1259 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1260 (const struct sockaddr *)&mc->mc_addr);
1261 IFNET_UNLOCK(mib->ifvm_p);
1262 LIST_REMOVE(mc, mc_entries);
1263 free(mc, M_DEVBUF);
1264 }
1265 }
1266
1267 static void
1268 vlan_start(struct ifnet *ifp)
1269 {
1270 struct ifvlan *ifv = ifp->if_softc;
1271 struct ifnet *p;
1272 struct ethercom *ec;
1273 struct mbuf *m;
1274 struct ifvlan_linkmib *mib;
1275 struct psref psref;
1276 int error;
1277
1278 mib = vlan_getref_linkmib(ifv, &psref);
1279 if (mib == NULL)
1280 return;
1281 p = mib->ifvm_p;
1282 ec = (void *)mib->ifvm_p;
1283
1284 ifp->if_flags |= IFF_OACTIVE;
1285
1286 for (;;) {
1287 IFQ_DEQUEUE(&ifp->if_snd, m);
1288 if (m == NULL)
1289 break;
1290
1291 #ifdef ALTQ
1292 /*
1293 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is defined.
1294 */
1295 KERNEL_LOCK(1, NULL);
1296 /*
1297 * If ALTQ is enabled on the parent interface, do
1298 * classification; the queueing discipline might
1299 * not require classification, but might require
1300 * the address family/header pointer in the pktattr.
1301 */
1302 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1303 switch (p->if_type) {
1304 case IFT_ETHER:
1305 altq_etherclassify(&p->if_snd, m);
1306 break;
1307 #ifdef DIAGNOSTIC
1308 default:
1309 panic("vlan_start: impossible (altq)");
1310 #endif
1311 }
1312 }
1313 KERNEL_UNLOCK_ONE(NULL);
1314 #endif /* ALTQ */
1315
1316 bpf_mtap(ifp, m);
1317 /*
1318 * If the parent can insert the tag itself, just mark
1319 * the tag in the mbuf header.
1320 */
1321 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1322 vlan_set_tag(m, mib->ifvm_tag);
1323 } else {
1324 /*
1325 * insert the tag ourselves
1326 */
1327 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1328 if (m == NULL) {
1329 printf("%s: unable to prepend encap header",
1330 p->if_xname);
1331 ifp->if_oerrors++;
1332 continue;
1333 }
1334
1335 switch (p->if_type) {
1336 case IFT_ETHER:
1337 {
1338 struct ether_vlan_header *evl;
1339
1340 if (m->m_len < sizeof(struct ether_vlan_header))
1341 m = m_pullup(m,
1342 sizeof(struct ether_vlan_header));
1343 if (m == NULL) {
1344 printf("%s: unable to pullup encap "
1345 "header", p->if_xname);
1346 ifp->if_oerrors++;
1347 continue;
1348 }
1349
1350 /*
1351 * Transform the Ethernet header into an
1352 * Ethernet header with 802.1Q encapsulation.
1353 */
1354 memmove(mtod(m, void *),
1355 mtod(m, char *) + mib->ifvm_encaplen,
1356 sizeof(struct ether_header));
1357 evl = mtod(m, struct ether_vlan_header *);
1358 evl->evl_proto = evl->evl_encap_proto;
1359 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1360 evl->evl_tag = htons(mib->ifvm_tag);
1361
1362 /*
1363 * To cater for VLAN-aware layer 2 ethernet
1364 * switches which may need to strip the tag
1365 * before forwarding the packet, make sure
1366 * the packet+tag is at least 68 bytes long.
1367 * This is necessary because our parent will
1368 * only pad to 64 bytes (ETHER_MIN_LEN) and
1369 * some switches will not pad by themselves
1370 * after deleting a tag.
1371 */
1372 if (m->m_pkthdr.len <
1373 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1374 ETHER_VLAN_ENCAP_LEN)) {
1375 m_copyback(m, m->m_pkthdr.len,
1376 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1377 ETHER_VLAN_ENCAP_LEN) -
1378 m->m_pkthdr.len,
1379 vlan_zero_pad_buff);
1380 }
1381 break;
1382 }
1383
1384 #ifdef DIAGNOSTIC
1385 default:
1386 panic("vlan_start: impossible");
1387 #endif
1388 }
1389 }
1390
1391 if ((p->if_flags & IFF_RUNNING) == 0) {
1392 m_freem(m);
1393 continue;
1394 }
1395
1396 error = if_transmit_lock(p, m);
1397 if (error) {
1398 /* mbuf is already freed */
1399 ifp->if_oerrors++;
1400 continue;
1401 }
1402 ifp->if_opackets++;
1403 }
1404
1405 ifp->if_flags &= ~IFF_OACTIVE;
1406
1407 /* Remove reference to mib before release */
1408 p = NULL;
1409 ec = NULL;
1410
1411 vlan_putref_linkmib(mib, &psref);
1412 }
1413
1414 static int
1415 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1416 {
1417 struct ifvlan *ifv = ifp->if_softc;
1418 struct ifnet *p;
1419 struct ethercom *ec;
1420 struct ifvlan_linkmib *mib;
1421 struct psref psref;
1422 int error;
1423 size_t pktlen = m->m_pkthdr.len;
1424 bool mcast = (m->m_flags & M_MCAST) != 0;
1425
1426 mib = vlan_getref_linkmib(ifv, &psref);
1427 if (mib == NULL) {
1428 m_freem(m);
1429 return ENETDOWN;
1430 }
1431
1432 p = mib->ifvm_p;
1433 ec = (void *)mib->ifvm_p;
1434
1435 bpf_mtap(ifp, m);
1436
1437 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT) != 0) {
1438 if (m != NULL)
1439 m_freem(m);
1440 error = 0;
1441 goto out;
1442 }
1443
1444 /*
1445 * If the parent can insert the tag itself, just mark
1446 * the tag in the mbuf header.
1447 */
1448 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1449 vlan_set_tag(m, mib->ifvm_tag);
1450 } else {
1451 /*
1452 * insert the tag ourselves
1453 */
1454 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1455 if (m == NULL) {
1456 printf("%s: unable to prepend encap header",
1457 p->if_xname);
1458 ifp->if_oerrors++;
1459 error = ENOBUFS;
1460 goto out;
1461 }
1462
1463 switch (p->if_type) {
1464 case IFT_ETHER:
1465 {
1466 struct ether_vlan_header *evl;
1467
1468 if (m->m_len < sizeof(struct ether_vlan_header))
1469 m = m_pullup(m,
1470 sizeof(struct ether_vlan_header));
1471 if (m == NULL) {
1472 printf("%s: unable to pullup encap "
1473 "header", p->if_xname);
1474 ifp->if_oerrors++;
1475 error = ENOBUFS;
1476 goto out;
1477 }
1478
1479 /*
1480 * Transform the Ethernet header into an
1481 * Ethernet header with 802.1Q encapsulation.
1482 */
1483 memmove(mtod(m, void *),
1484 mtod(m, char *) + mib->ifvm_encaplen,
1485 sizeof(struct ether_header));
1486 evl = mtod(m, struct ether_vlan_header *);
1487 evl->evl_proto = evl->evl_encap_proto;
1488 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1489 evl->evl_tag = htons(mib->ifvm_tag);
1490
1491 /*
1492 * To cater for VLAN-aware layer 2 ethernet
1493 * switches which may need to strip the tag
1494 * before forwarding the packet, make sure
1495 * the packet+tag is at least 68 bytes long.
1496 * This is necessary because our parent will
1497 * only pad to 64 bytes (ETHER_MIN_LEN) and
1498 * some switches will not pad by themselves
1499 * after deleting a tag.
1500 */
1501 if (m->m_pkthdr.len <
1502 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1503 ETHER_VLAN_ENCAP_LEN)) {
1504 m_copyback(m, m->m_pkthdr.len,
1505 (ETHER_MIN_LEN - ETHER_CRC_LEN +
1506 ETHER_VLAN_ENCAP_LEN) -
1507 m->m_pkthdr.len,
1508 vlan_zero_pad_buff);
1509 }
1510 break;
1511 }
1512
1513 #ifdef DIAGNOSTIC
1514 default:
1515 panic("vlan_transmit: impossible");
1516 #endif
1517 }
1518 }
1519
1520 if ((p->if_flags & IFF_RUNNING) == 0) {
1521 m_freem(m);
1522 error = ENETDOWN;
1523 goto out;
1524 }
1525
1526 error = if_transmit_lock(p, m);
1527 if (error) {
1528 /* mbuf is already freed */
1529 ifp->if_oerrors++;
1530 } else {
1531
1532 ifp->if_opackets++;
1533 ifp->if_obytes += pktlen;
1534 if (mcast)
1535 ifp->if_omcasts++;
1536 }
1537
1538 out:
1539 /* Remove reference to mib before release */
1540 p = NULL;
1541 ec = NULL;
1542
1543 vlan_putref_linkmib(mib, &psref);
1544 return error;
1545 }
1546
1547 /*
1548 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1549 * given source interface and tag, then run the real packet through the
1550 * parent's input routine.
1551 */
1552 void
1553 vlan_input(struct ifnet *ifp, struct mbuf *m)
1554 {
1555 struct ifvlan *ifv;
1556 uint16_t vid;
1557 struct ifvlan_linkmib *mib;
1558 struct psref psref;
1559 bool have_vtag;
1560
1561 have_vtag = vlan_has_tag(m);
1562 if (have_vtag) {
1563 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1564 m->m_flags &= ~M_VLANTAG;
1565 } else {
1566 switch (ifp->if_type) {
1567 case IFT_ETHER:
1568 {
1569 struct ether_vlan_header *evl;
1570
1571 if (m->m_len < sizeof(struct ether_vlan_header) &&
1572 (m = m_pullup(m,
1573 sizeof(struct ether_vlan_header))) == NULL) {
1574 printf("%s: no memory for VLAN header, "
1575 "dropping packet.\n", ifp->if_xname);
1576 return;
1577 }
1578 evl = mtod(m, struct ether_vlan_header *);
1579 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1580
1581 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1582
1583 /*
1584 * Restore the original ethertype. We'll remove
1585 * the encapsulation after we've found the vlan
1586 * interface corresponding to the tag.
1587 */
1588 evl->evl_encap_proto = evl->evl_proto;
1589 break;
1590 }
1591
1592 default:
1593 vid = (uint16_t) -1; /* XXX GCC */
1594 #ifdef DIAGNOSTIC
1595 panic("vlan_input: impossible");
1596 #endif
1597 }
1598 }
1599
1600 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1601 if (mib == NULL) {
1602 m_freem(m);
1603 ifp->if_noproto++;
1604 return;
1605 }
1606
1607 ifv = mib->ifvm_ifvlan;
1608 if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
1609 (IFF_UP|IFF_RUNNING)) {
1610 m_freem(m);
1611 ifp->if_noproto++;
1612 goto out;
1613 }
1614
1615 /*
1616 * Now, remove the encapsulation header. The original
1617 * header has already been fixed up above.
1618 */
1619 if (!have_vtag) {
1620 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1621 mtod(m, void *), sizeof(struct ether_header));
1622 m_adj(m, mib->ifvm_encaplen);
1623 }
1624
1625 m_set_rcvif(m, &ifv->ifv_if);
1626 ifv->ifv_if.if_ipackets++;
1627
1628 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) {
1629 if (m != NULL)
1630 m_freem(m);
1631 goto out;
1632 }
1633
1634 m->m_flags &= ~M_PROMISC;
1635 if_input(&ifv->ifv_if, m);
1636 out:
1637 vlan_putref_linkmib(mib, &psref);
1638 }
1639
1640 /*
1641 * Module infrastructure
1642 */
1643 #include "if_module.h"
1644
1645 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
1646