Home | History | Annotate | Line # | Download | only in net
if_vlan.c revision 1.124.2.1
      1 /*	$NetBSD: if_vlan.c,v 1.124.2.1 2018/03/22 01:44:51 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright 1998 Massachusetts Institute of Technology
     34  *
     35  * Permission to use, copy, modify, and distribute this software and
     36  * its documentation for any purpose and without fee is hereby
     37  * granted, provided that both the above copyright notice and this
     38  * permission notice appear in all copies, that both the above
     39  * copyright notice and this permission notice appear in all
     40  * supporting documentation, and that the name of M.I.T. not be used
     41  * in advertising or publicity pertaining to distribution of the
     42  * software without specific, written prior permission.  M.I.T. makes
     43  * no representations about the suitability of this software for any
     44  * purpose.  It is provided "as is" without express or implied
     45  * warranty.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
     48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
     49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
     51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
     61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
     62  */
     63 
     64 /*
     65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
     66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
     67  * sort of sneaky in the implementation, since we need to pretend to be
     68  * enough of an Ethernet implementation to make ARP work.  The way we do
     69  * this is by telling everyone that we are an Ethernet interface, and then
     70  * catch the packets that ether_output() left on our output queue when it
     71  * calls if_start(), rewrite them for use by the real outgoing interface,
     72  * and ask it to send them.
     73  *
     74  * TODO:
     75  *
     76  *	- Need some way to notify vlan interfaces when the parent
     77  *	  interface changes MTU.
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.124.2.1 2018/03/22 01:44:51 pgoyette Exp $");
     82 
     83 #ifdef _KERNEL_OPT
     84 #include "opt_inet.h"
     85 #include "opt_net_mpsafe.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/kernel.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/queue.h>
     93 #include <sys/socket.h>
     94 #include <sys/sockio.h>
     95 #include <sys/systm.h>
     96 #include <sys/proc.h>
     97 #include <sys/kauth.h>
     98 #include <sys/mutex.h>
     99 #include <sys/kmem.h>
    100 #include <sys/cpu.h>
    101 #include <sys/pserialize.h>
    102 #include <sys/psref.h>
    103 #include <sys/pslist.h>
    104 #include <sys/atomic.h>
    105 #include <sys/device.h>
    106 #include <sys/module.h>
    107 
    108 #include <net/bpf.h>
    109 #include <net/if.h>
    110 #include <net/if_dl.h>
    111 #include <net/if_types.h>
    112 #include <net/if_ether.h>
    113 #include <net/if_vlanvar.h>
    114 
    115 #ifdef INET
    116 #include <netinet/in.h>
    117 #include <netinet/if_inarp.h>
    118 #endif
    119 #ifdef INET6
    120 #include <netinet6/in6_ifattach.h>
    121 #include <netinet6/in6_var.h>
    122 #endif
    123 
    124 #include "ioconf.h"
    125 
    126 struct vlan_mc_entry {
    127 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
    128 	/*
    129 	 * A key to identify this entry.  The mc_addr below can't be
    130 	 * used since multiple sockaddr may mapped into the same
    131 	 * ether_multi (e.g., AF_UNSPEC).
    132 	 */
    133 	union {
    134 		struct ether_multi	*mcu_enm;
    135 	} mc_u;
    136 	struct sockaddr_storage		mc_addr;
    137 };
    138 
    139 #define	mc_enm		mc_u.mcu_enm
    140 
    141 
    142 struct ifvlan_linkmib {
    143 	struct ifvlan *ifvm_ifvlan;
    144 	const struct vlan_multisw *ifvm_msw;
    145 	int	ifvm_encaplen;	/* encapsulation length */
    146 	int	ifvm_mtufudge;	/* MTU fudged by this much */
    147 	int	ifvm_mintu;	/* min transmission unit */
    148 	uint16_t ifvm_proto;	/* encapsulation ethertype */
    149 	uint16_t ifvm_tag;	/* tag to apply on packets */
    150 	struct ifnet *ifvm_p;		/* parent interface of this vlan */
    151 
    152 	struct psref_target ifvm_psref;
    153 };
    154 
    155 struct ifvlan {
    156 	union {
    157 		struct ethercom ifvu_ec;
    158 	} ifv_u;
    159 	struct ifvlan_linkmib *ifv_mib;	/*
    160 					 * reader must use vlan_getref_linkmib()
    161 					 * instead of direct dereference
    162 					 */
    163 	kmutex_t ifv_lock;		/* writer lock for ifv_mib */
    164 
    165 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
    166 	LIST_ENTRY(ifvlan) ifv_list;
    167 	struct pslist_entry ifv_hash;
    168 	int ifv_flags;
    169 };
    170 
    171 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
    172 
    173 #define	ifv_ec		ifv_u.ifvu_ec
    174 
    175 #define	ifv_if		ifv_ec.ec_if
    176 
    177 #define	ifv_msw		ifv_mib.ifvm_msw
    178 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
    179 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
    180 #define	ifv_mintu	ifv_mib.ifvm_mintu
    181 #define	ifv_tag		ifv_mib.ifvm_tag
    182 
    183 struct vlan_multisw {
    184 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
    185 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
    186 	void	(*vmsw_purgemulti)(struct ifvlan *);
    187 };
    188 
    189 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
    190 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
    191 static void	vlan_ether_purgemulti(struct ifvlan *);
    192 
    193 const struct vlan_multisw vlan_ether_multisw = {
    194 	.vmsw_addmulti = vlan_ether_addmulti,
    195 	.vmsw_delmulti = vlan_ether_delmulti,
    196 	.vmsw_purgemulti = vlan_ether_purgemulti,
    197 };
    198 
    199 static int	vlan_clone_create(struct if_clone *, int);
    200 static int	vlan_clone_destroy(struct ifnet *);
    201 static int	vlan_config(struct ifvlan *, struct ifnet *,
    202     uint16_t);
    203 static int	vlan_ioctl(struct ifnet *, u_long, void *);
    204 static void	vlan_start(struct ifnet *);
    205 static int	vlan_transmit(struct ifnet *, struct mbuf *);
    206 static void	vlan_unconfig(struct ifnet *);
    207 static int	vlan_unconfig_locked(struct ifvlan *,
    208     struct ifvlan_linkmib *);
    209 static void	vlan_hash_init(void);
    210 static int	vlan_hash_fini(void);
    211 static int	vlan_tag_hash(uint16_t, u_long);
    212 static struct ifvlan_linkmib*	vlan_getref_linkmib(struct ifvlan *,
    213     struct psref *);
    214 static void	vlan_putref_linkmib(struct ifvlan_linkmib *,
    215     struct psref *);
    216 static void	vlan_linkmib_update(struct ifvlan *,
    217     struct ifvlan_linkmib *);
    218 static struct ifvlan_linkmib*	vlan_lookup_tag_psref(struct ifnet *,
    219     uint16_t, struct psref *);
    220 
    221 LIST_HEAD(vlan_ifvlist, ifvlan);
    222 static struct {
    223 	kmutex_t lock;
    224 	struct vlan_ifvlist list;
    225 } ifv_list __cacheline_aligned;
    226 
    227 
    228 #if !defined(VLAN_TAG_HASH_SIZE)
    229 #define VLAN_TAG_HASH_SIZE 32
    230 #endif
    231 static struct {
    232 	kmutex_t lock;
    233 	struct pslist_head *lists;
    234 	u_long mask;
    235 } ifv_hash __cacheline_aligned = {
    236 	.lists = NULL,
    237 	.mask = 0,
    238 };
    239 
    240 pserialize_t vlan_psz __read_mostly;
    241 static struct psref_class *ifvm_psref_class __read_mostly;
    242 
    243 struct if_clone vlan_cloner =
    244     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
    245 
    246 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
    247 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
    248 
    249 static inline int
    250 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
    251 {
    252 	int e;
    253 
    254 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    255 	e = ifpromisc(ifp, pswitch);
    256 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    257 
    258 	return e;
    259 }
    260 
    261 static inline int
    262 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
    263 {
    264 	int e;
    265 
    266 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    267 	e = ifpromisc_locked(ifp, pswitch);
    268 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    269 
    270 	return e;
    271 }
    272 
    273 void
    274 vlanattach(int n)
    275 {
    276 
    277 	/*
    278 	 * Nothing to do here, initialization is handled by the
    279 	 * module initialization code in vlaninit() below.
    280 	 */
    281 }
    282 
    283 static void
    284 vlaninit(void)
    285 {
    286 	mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
    287 	LIST_INIT(&ifv_list.list);
    288 
    289 	mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
    290 	vlan_psz = pserialize_create();
    291 	ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
    292 	if_clone_attach(&vlan_cloner);
    293 
    294 	vlan_hash_init();
    295 }
    296 
    297 static int
    298 vlandetach(void)
    299 {
    300 	bool is_empty;
    301 	int error;
    302 
    303 	mutex_enter(&ifv_list.lock);
    304 	is_empty = LIST_EMPTY(&ifv_list.list);
    305 	mutex_exit(&ifv_list.lock);
    306 
    307 	if (!is_empty)
    308 		return EBUSY;
    309 
    310 	error = vlan_hash_fini();
    311 	if (error != 0)
    312 		return error;
    313 
    314 	if_clone_detach(&vlan_cloner);
    315 	psref_class_destroy(ifvm_psref_class);
    316 	pserialize_destroy(vlan_psz);
    317 	mutex_destroy(&ifv_hash.lock);
    318 	mutex_destroy(&ifv_list.lock);
    319 
    320 	return 0;
    321 }
    322 
    323 static void
    324 vlan_reset_linkname(struct ifnet *ifp)
    325 {
    326 
    327 	/*
    328 	 * We start out with a "802.1Q VLAN" type and zero-length
    329 	 * addresses.  When we attach to a parent interface, we
    330 	 * inherit its type, address length, address, and data link
    331 	 * type.
    332 	 */
    333 
    334 	ifp->if_type = IFT_L2VLAN;
    335 	ifp->if_addrlen = 0;
    336 	ifp->if_dlt = DLT_NULL;
    337 	if_alloc_sadl(ifp);
    338 }
    339 
    340 static int
    341 vlan_clone_create(struct if_clone *ifc, int unit)
    342 {
    343 	struct ifvlan *ifv;
    344 	struct ifnet *ifp;
    345 	struct ifvlan_linkmib *mib;
    346 	int rv;
    347 
    348 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
    349 	mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
    350 	ifp = &ifv->ifv_if;
    351 	LIST_INIT(&ifv->ifv_mc_listhead);
    352 
    353 	mib->ifvm_ifvlan = ifv;
    354 	mib->ifvm_p = NULL;
    355 	psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
    356 
    357 	mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
    358 	ifv->ifv_mib = mib;
    359 
    360 	mutex_enter(&ifv_list.lock);
    361 	LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
    362 	mutex_exit(&ifv_list.lock);
    363 
    364 	if_initname(ifp, ifc->ifc_name, unit);
    365 	ifp->if_softc = ifv;
    366 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    367 	ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
    368 #ifdef NET_MPSAFE
    369 	ifp->if_extflags |= IFEF_MPSAFE;
    370 #endif
    371 	ifp->if_start = vlan_start;
    372 	ifp->if_transmit = vlan_transmit;
    373 	ifp->if_ioctl = vlan_ioctl;
    374 	IFQ_SET_READY(&ifp->if_snd);
    375 
    376 	rv = if_initialize(ifp);
    377 	if (rv != 0) {
    378 		aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
    379 		    rv);
    380 		goto fail;
    381 	}
    382 
    383 	vlan_reset_linkname(ifp);
    384 	if_register(ifp);
    385 	return 0;
    386 
    387 fail:
    388 	mutex_enter(&ifv_list.lock);
    389 	LIST_REMOVE(ifv, ifv_list);
    390 	mutex_exit(&ifv_list.lock);
    391 
    392 	mutex_destroy(&ifv->ifv_lock);
    393 	psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
    394 	kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
    395 	free(ifv, M_DEVBUF);
    396 
    397 	return rv;
    398 }
    399 
    400 static int
    401 vlan_clone_destroy(struct ifnet *ifp)
    402 {
    403 	struct ifvlan *ifv = ifp->if_softc;
    404 
    405 	mutex_enter(&ifv_list.lock);
    406 	LIST_REMOVE(ifv, ifv_list);
    407 	mutex_exit(&ifv_list.lock);
    408 
    409 	IFNET_LOCK(ifp);
    410 	vlan_unconfig(ifp);
    411 	IFNET_UNLOCK(ifp);
    412 	if_detach(ifp);
    413 
    414 	psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
    415 	kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
    416 	mutex_destroy(&ifv->ifv_lock);
    417 	free(ifv, M_DEVBUF);
    418 
    419 	return 0;
    420 }
    421 
    422 /*
    423  * Configure a VLAN interface.
    424  */
    425 static int
    426 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
    427 {
    428 	struct ifnet *ifp = &ifv->ifv_if;
    429 	struct ifvlan_linkmib *nmib = NULL;
    430 	struct ifvlan_linkmib *omib = NULL;
    431 	struct ifvlan_linkmib *checkmib;
    432 	struct psref_target *nmib_psref = NULL;
    433 	const uint16_t vid = EVL_VLANOFTAG(tag);
    434 	int error = 0;
    435 	int idx;
    436 	bool omib_cleanup = false;
    437 	struct psref psref;
    438 
    439 	/* VLAN ID 0 and 4095 are reserved in the spec */
    440 	if ((vid == 0) || (vid == 0xfff))
    441 		return EINVAL;
    442 
    443 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
    444 	mutex_enter(&ifv->ifv_lock);
    445 	omib = ifv->ifv_mib;
    446 
    447 	if (omib->ifvm_p != NULL) {
    448 		error = EBUSY;
    449 		goto done;
    450 	}
    451 
    452 	/* Duplicate check */
    453 	checkmib = vlan_lookup_tag_psref(p, vid, &psref);
    454 	if (checkmib != NULL) {
    455 		vlan_putref_linkmib(checkmib, &psref);
    456 		error = EEXIST;
    457 		goto done;
    458 	}
    459 
    460 	*nmib = *omib;
    461 	nmib_psref = &nmib->ifvm_psref;
    462 
    463 	psref_target_init(nmib_psref, ifvm_psref_class);
    464 
    465 	switch (p->if_type) {
    466 	case IFT_ETHER:
    467 	    {
    468 		struct ethercom *ec = (void *)p;
    469 		nmib->ifvm_msw = &vlan_ether_multisw;
    470 		nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
    471 		nmib->ifvm_mintu = ETHERMIN;
    472 
    473 		if (ec->ec_nvlans++ == 0) {
    474 			IFNET_LOCK(p);
    475 			error = ether_enable_vlan_mtu(p);
    476 			IFNET_UNLOCK(p);
    477 			if (error >= 0) {
    478 				if (error) {
    479 					ec->ec_nvlans--;
    480 					goto done;
    481 				}
    482 				nmib->ifvm_mtufudge = 0;
    483 			} else {
    484 				/*
    485 				 * Fudge the MTU by the encapsulation size. This
    486 				 * makes us incompatible with strictly compliant
    487 				 * 802.1Q implementations, but allows us to use
    488 				 * the feature with other NetBSD
    489 				 * implementations, which might still be useful.
    490 				 */
    491 				nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
    492 			}
    493 			error = 0;
    494 		}
    495 
    496 		/*
    497 		 * If the parent interface can do hardware-assisted
    498 		 * VLAN encapsulation, then propagate its hardware-
    499 		 * assisted checksumming flags and tcp segmentation
    500 		 * offload.
    501 		 */
    502 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    503 			ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    504 			ifp->if_capabilities = p->if_capabilities &
    505 			    (IFCAP_TSOv4 | IFCAP_TSOv6 |
    506 			     IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
    507 			     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
    508 			     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
    509 			     IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
    510 			     IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
    511 		}
    512 
    513 		/*
    514 		 * We inherit the parent's Ethernet address.
    515 		 */
    516 		ether_ifattach(ifp, CLLADDR(p->if_sadl));
    517 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
    518 		break;
    519 	    }
    520 
    521 	default:
    522 		error = EPROTONOSUPPORT;
    523 		goto done;
    524 	}
    525 
    526 	nmib->ifvm_p = p;
    527 	nmib->ifvm_tag = vid;
    528 	ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
    529 	ifv->ifv_if.if_flags = p->if_flags &
    530 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
    531 
    532 	/*
    533 	 * Inherit the if_type from the parent.  This allows us
    534 	 * to participate in bridges of that type.
    535 	 */
    536 	ifv->ifv_if.if_type = p->if_type;
    537 
    538 	PSLIST_ENTRY_INIT(ifv, ifv_hash);
    539 	idx = vlan_tag_hash(vid, ifv_hash.mask);
    540 
    541 	mutex_enter(&ifv_hash.lock);
    542 	PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
    543 	mutex_exit(&ifv_hash.lock);
    544 
    545 	vlan_linkmib_update(ifv, nmib);
    546 	nmib = NULL;
    547 	nmib_psref = NULL;
    548 	omib_cleanup = true;
    549 
    550 done:
    551 	mutex_exit(&ifv->ifv_lock);
    552 
    553 	if (nmib_psref)
    554 		psref_target_destroy(nmib_psref, ifvm_psref_class);
    555 	if (nmib)
    556 		kmem_free(nmib, sizeof(*nmib));
    557 	if (omib_cleanup)
    558 		kmem_free(omib, sizeof(*omib));
    559 
    560 	return error;
    561 }
    562 
    563 /*
    564  * Unconfigure a VLAN interface.
    565  */
    566 static void
    567 vlan_unconfig(struct ifnet *ifp)
    568 {
    569 	struct ifvlan *ifv = ifp->if_softc;
    570 	struct ifvlan_linkmib *nmib = NULL;
    571 	int error;
    572 
    573 	KASSERT(IFNET_LOCKED(ifp));
    574 
    575 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
    576 
    577 	mutex_enter(&ifv->ifv_lock);
    578 	error = vlan_unconfig_locked(ifv, nmib);
    579 	mutex_exit(&ifv->ifv_lock);
    580 
    581 	if (error)
    582 		kmem_free(nmib, sizeof(*nmib));
    583 }
    584 static int
    585 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
    586 {
    587 	struct ifnet *p;
    588 	struct ifnet *ifp = &ifv->ifv_if;
    589 	struct psref_target *nmib_psref = NULL;
    590 	struct ifvlan_linkmib *omib;
    591 	int error = 0;
    592 
    593 	KASSERT(IFNET_LOCKED(ifp));
    594 	KASSERT(mutex_owned(&ifv->ifv_lock));
    595 
    596 	ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
    597 
    598 	omib = ifv->ifv_mib;
    599 	p = omib->ifvm_p;
    600 
    601 	if (p == NULL) {
    602 		error = -1;
    603 		goto done;
    604 	}
    605 
    606 	*nmib = *omib;
    607 	nmib_psref = &nmib->ifvm_psref;
    608 	psref_target_init(nmib_psref, ifvm_psref_class);
    609 
    610 	/*
    611  	 * Since the interface is being unconfigured, we need to empty the
    612 	 * list of multicast groups that we may have joined while we were
    613 	 * alive and remove them from the parent's list also.
    614 	 */
    615 	(*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
    616 
    617 	/* Disconnect from parent. */
    618 	switch (p->if_type) {
    619 	case IFT_ETHER:
    620 	    {
    621 		struct ethercom *ec = (void *)p;
    622 		if (--ec->ec_nvlans == 0) {
    623 			IFNET_LOCK(p);
    624 			(void) ether_disable_vlan_mtu(p);
    625 			IFNET_UNLOCK(p);
    626 		}
    627 
    628 		ether_ifdetach(ifp);
    629 		/* Restore vlan_ioctl overwritten by ether_ifdetach */
    630 		ifp->if_ioctl = vlan_ioctl;
    631 		vlan_reset_linkname(ifp);
    632 		break;
    633 	    }
    634 
    635 	default:
    636 		panic("%s: impossible", __func__);
    637 	}
    638 
    639 	nmib->ifvm_p = NULL;
    640 	ifv->ifv_if.if_mtu = 0;
    641 	ifv->ifv_flags = 0;
    642 
    643 	mutex_enter(&ifv_hash.lock);
    644 	PSLIST_WRITER_REMOVE(ifv, ifv_hash);
    645 	pserialize_perform(vlan_psz);
    646 	mutex_exit(&ifv_hash.lock);
    647 	PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
    648 
    649 	vlan_linkmib_update(ifv, nmib);
    650 
    651 	mutex_exit(&ifv->ifv_lock);
    652 
    653 	nmib_psref = NULL;
    654 	kmem_free(omib, sizeof(*omib));
    655 
    656 #ifdef INET6
    657 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    658 	/* To delete v6 link local addresses */
    659 	if (in6_present)
    660 		in6_ifdetach(ifp);
    661 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    662 #endif
    663 
    664 	if ((ifp->if_flags & IFF_PROMISC) != 0)
    665 		vlan_safe_ifpromisc_locked(ifp, 0);
    666 	if_down_locked(ifp);
    667 	ifp->if_capabilities = 0;
    668 	mutex_enter(&ifv->ifv_lock);
    669 done:
    670 
    671 	if (nmib_psref)
    672 		psref_target_destroy(nmib_psref, ifvm_psref_class);
    673 
    674 	return error;
    675 }
    676 
    677 static void
    678 vlan_hash_init(void)
    679 {
    680 
    681 	ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
    682 	    &ifv_hash.mask);
    683 }
    684 
    685 static int
    686 vlan_hash_fini(void)
    687 {
    688 	int i;
    689 
    690 	mutex_enter(&ifv_hash.lock);
    691 
    692 	for (i = 0; i < ifv_hash.mask + 1; i++) {
    693 		if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
    694 		    ifv_hash) != NULL) {
    695 			mutex_exit(&ifv_hash.lock);
    696 			return EBUSY;
    697 		}
    698 	}
    699 
    700 	for (i = 0; i < ifv_hash.mask + 1; i++)
    701 		PSLIST_DESTROY(&ifv_hash.lists[i]);
    702 
    703 	mutex_exit(&ifv_hash.lock);
    704 
    705 	hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
    706 
    707 	ifv_hash.lists = NULL;
    708 	ifv_hash.mask = 0;
    709 
    710 	return 0;
    711 }
    712 
    713 static int
    714 vlan_tag_hash(uint16_t tag, u_long mask)
    715 {
    716 	uint32_t hash;
    717 
    718 	hash = (tag >> 8) ^ tag;
    719 	hash = (hash >> 2) ^ hash;
    720 
    721 	return hash & mask;
    722 }
    723 
    724 static struct ifvlan_linkmib *
    725 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
    726 {
    727 	struct ifvlan_linkmib *mib;
    728 	int s;
    729 
    730 	s = pserialize_read_enter();
    731 	mib = sc->ifv_mib;
    732 	if (mib == NULL) {
    733 		pserialize_read_exit(s);
    734 		return NULL;
    735 	}
    736 	membar_datadep_consumer();
    737 	psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
    738 	pserialize_read_exit(s);
    739 
    740 	return mib;
    741 }
    742 
    743 static void
    744 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
    745 {
    746 	if (mib == NULL)
    747 		return;
    748 	psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
    749 }
    750 
    751 static struct ifvlan_linkmib *
    752 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
    753 {
    754 	int idx;
    755 	int s;
    756 	struct ifvlan *sc;
    757 
    758 	idx = vlan_tag_hash(tag, ifv_hash.mask);
    759 
    760 	s = pserialize_read_enter();
    761 	PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
    762 	    ifv_hash) {
    763 		struct ifvlan_linkmib *mib = sc->ifv_mib;
    764 		if (mib == NULL)
    765 			continue;
    766 		if (mib->ifvm_tag != tag)
    767 			continue;
    768 		if (mib->ifvm_p != ifp)
    769 			continue;
    770 
    771 		psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
    772 		pserialize_read_exit(s);
    773 		return mib;
    774 	}
    775 	pserialize_read_exit(s);
    776 	return NULL;
    777 }
    778 
    779 static void
    780 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
    781 {
    782 	struct ifvlan_linkmib *omib = ifv->ifv_mib;
    783 
    784 	KASSERT(mutex_owned(&ifv->ifv_lock));
    785 
    786 	membar_producer();
    787 	ifv->ifv_mib = nmib;
    788 
    789 	pserialize_perform(vlan_psz);
    790 	psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
    791 }
    792 
    793 /*
    794  * Called when a parent interface is detaching; destroy any VLAN
    795  * configuration for the parent interface.
    796  */
    797 void
    798 vlan_ifdetach(struct ifnet *p)
    799 {
    800 	struct ifvlan *ifv;
    801 	struct ifvlan_linkmib *mib, **nmibs;
    802 	struct psref psref;
    803 	int error;
    804 	int bound;
    805 	int i, cnt = 0;
    806 
    807 	bound = curlwp_bind();
    808 
    809 	mutex_enter(&ifv_list.lock);
    810 	LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
    811 		mib = vlan_getref_linkmib(ifv, &psref);
    812 		if (mib == NULL)
    813 			continue;
    814 
    815 		if (mib->ifvm_p == p)
    816 			cnt++;
    817 
    818 		vlan_putref_linkmib(mib, &psref);
    819 	}
    820 	mutex_exit(&ifv_list.lock);
    821 
    822 	if (cnt == 0) {
    823 		curlwp_bindx(bound);
    824 		return;
    825 	}
    826 
    827 	/*
    828 	 * The value of "cnt" does not increase while ifv_list.lock
    829 	 * and ifv->ifv_lock are released here, because the parent
    830 	 * interface is detaching.
    831 	 */
    832 	nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
    833 	for (i = 0; i < cnt; i++) {
    834 		nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
    835 	}
    836 
    837 	mutex_enter(&ifv_list.lock);
    838 
    839 	i = 0;
    840 	LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
    841 		struct ifnet *ifp = &ifv->ifv_if;
    842 
    843 		/* IFNET_LOCK must be held before ifv_lock. */
    844 		IFNET_LOCK(ifp);
    845 		mutex_enter(&ifv->ifv_lock);
    846 
    847 		/* XXX ifv_mib = NULL? */
    848 		if (ifv->ifv_mib->ifvm_p == p) {
    849 			KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
    850 			    p->if_xname);
    851 			error = vlan_unconfig_locked(ifv, nmibs[i]);
    852 			if (!error) {
    853 				nmibs[i] = NULL;
    854 				i++;
    855 			}
    856 
    857 		}
    858 
    859 		mutex_exit(&ifv->ifv_lock);
    860 		IFNET_UNLOCK(ifp);
    861 	}
    862 
    863 	mutex_exit(&ifv_list.lock);
    864 
    865 	curlwp_bindx(bound);
    866 
    867 	for (i = 0; i < cnt; i++) {
    868 		if (nmibs[i])
    869 			kmem_free(nmibs[i], sizeof(*nmibs[i]));
    870 	}
    871 
    872 	kmem_free(nmibs, sizeof(*nmibs) * cnt);
    873 
    874 	return;
    875 }
    876 
    877 static int
    878 vlan_set_promisc(struct ifnet *ifp)
    879 {
    880 	struct ifvlan *ifv = ifp->if_softc;
    881 	struct ifvlan_linkmib *mib;
    882 	struct psref psref;
    883 	int error = 0;
    884 	int bound;
    885 
    886 	bound = curlwp_bind();
    887 	mib = vlan_getref_linkmib(ifv, &psref);
    888 	if (mib == NULL) {
    889 		curlwp_bindx(bound);
    890 		return EBUSY;
    891 	}
    892 
    893 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
    894 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
    895 			error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
    896 			if (error == 0)
    897 				ifv->ifv_flags |= IFVF_PROMISC;
    898 		}
    899 	} else {
    900 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
    901 			error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
    902 			if (error == 0)
    903 				ifv->ifv_flags &= ~IFVF_PROMISC;
    904 		}
    905 	}
    906 	vlan_putref_linkmib(mib, &psref);
    907 	curlwp_bindx(bound);
    908 
    909 	return error;
    910 }
    911 
    912 static int
    913 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    914 {
    915 	struct lwp *l = curlwp;
    916 	struct ifvlan *ifv = ifp->if_softc;
    917 	struct ifaddr *ifa = (struct ifaddr *) data;
    918 	struct ifreq *ifr = (struct ifreq *) data;
    919 	struct ifnet *pr;
    920 	struct ifcapreq *ifcr;
    921 	struct vlanreq vlr;
    922 	struct ifvlan_linkmib *mib;
    923 	struct psref psref;
    924 	int error = 0;
    925 	int bound;
    926 
    927 	switch (cmd) {
    928 	case SIOCSIFMTU:
    929 		bound = curlwp_bind();
    930 		mib = vlan_getref_linkmib(ifv, &psref);
    931 		if (mib == NULL) {
    932 			curlwp_bindx(bound);
    933 			error = EBUSY;
    934 			break;
    935 		}
    936 
    937 		if (mib->ifvm_p == NULL) {
    938 			vlan_putref_linkmib(mib, &psref);
    939 			curlwp_bindx(bound);
    940 			error = EINVAL;
    941 		} else if (
    942 		    ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
    943 		    ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
    944 			vlan_putref_linkmib(mib, &psref);
    945 			curlwp_bindx(bound);
    946 			error = EINVAL;
    947 		} else {
    948 			vlan_putref_linkmib(mib, &psref);
    949 			curlwp_bindx(bound);
    950 
    951 			error = ifioctl_common(ifp, cmd, data);
    952 			if (error == ENETRESET)
    953 				error = 0;
    954 		}
    955 
    956 		break;
    957 
    958 	case SIOCSETVLAN:
    959 		if ((error = kauth_authorize_network(l->l_cred,
    960 		    KAUTH_NETWORK_INTERFACE,
    961 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
    962 		    NULL)) != 0)
    963 			break;
    964 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
    965 			break;
    966 
    967 		if (vlr.vlr_parent[0] == '\0') {
    968 			bound = curlwp_bind();
    969 			mib = vlan_getref_linkmib(ifv, &psref);
    970 			if (mib == NULL) {
    971 				curlwp_bindx(bound);
    972 				error = EBUSY;
    973 				break;
    974 			}
    975 
    976 			if (mib->ifvm_p != NULL &&
    977 			    (ifp->if_flags & IFF_PROMISC) != 0)
    978 				error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
    979 
    980 			vlan_putref_linkmib(mib, &psref);
    981 			curlwp_bindx(bound);
    982 
    983 			vlan_unconfig(ifp);
    984 			break;
    985 		}
    986 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
    987 			error = EINVAL;		 /* check for valid tag */
    988 			break;
    989 		}
    990 		if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
    991 			error = ENOENT;
    992 			break;
    993 		}
    994 		error = vlan_config(ifv, pr, vlr.vlr_tag);
    995 		if (error != 0) {
    996 			break;
    997 		}
    998 
    999 		/* Update promiscuous mode, if necessary. */
   1000 		vlan_set_promisc(ifp);
   1001 
   1002 		ifp->if_flags |= IFF_RUNNING;
   1003 		break;
   1004 
   1005 	case SIOCGETVLAN:
   1006 		memset(&vlr, 0, sizeof(vlr));
   1007 		bound = curlwp_bind();
   1008 		mib = vlan_getref_linkmib(ifv, &psref);
   1009 		if (mib == NULL) {
   1010 			curlwp_bindx(bound);
   1011 			error = EBUSY;
   1012 			break;
   1013 		}
   1014 		if (mib->ifvm_p != NULL) {
   1015 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
   1016 			    mib->ifvm_p->if_xname);
   1017 			vlr.vlr_tag = mib->ifvm_tag;
   1018 		}
   1019 		vlan_putref_linkmib(mib, &psref);
   1020 		curlwp_bindx(bound);
   1021 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
   1022 		break;
   1023 
   1024 	case SIOCSIFFLAGS:
   1025 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1026 			break;
   1027 		/*
   1028 		 * For promiscuous mode, we enable promiscuous mode on
   1029 		 * the parent if we need promiscuous on the VLAN interface.
   1030 		 */
   1031 		bound = curlwp_bind();
   1032 		mib = vlan_getref_linkmib(ifv, &psref);
   1033 		if (mib == NULL) {
   1034 			curlwp_bindx(bound);
   1035 			error = EBUSY;
   1036 			break;
   1037 		}
   1038 
   1039 		if (mib->ifvm_p != NULL)
   1040 			error = vlan_set_promisc(ifp);
   1041 		vlan_putref_linkmib(mib, &psref);
   1042 		curlwp_bindx(bound);
   1043 		break;
   1044 
   1045 	case SIOCADDMULTI:
   1046 		mutex_enter(&ifv->ifv_lock);
   1047 		mib = ifv->ifv_mib;
   1048 		if (mib == NULL) {
   1049 			error = EBUSY;
   1050 			mutex_exit(&ifv->ifv_lock);
   1051 			break;
   1052 		}
   1053 
   1054 		error = (mib->ifvm_p != NULL) ?
   1055 		    (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
   1056 		mib = NULL;
   1057 		mutex_exit(&ifv->ifv_lock);
   1058 		break;
   1059 
   1060 	case SIOCDELMULTI:
   1061 		mutex_enter(&ifv->ifv_lock);
   1062 		mib = ifv->ifv_mib;
   1063 		if (mib == NULL) {
   1064 			error = EBUSY;
   1065 			mutex_exit(&ifv->ifv_lock);
   1066 			break;
   1067 		}
   1068 		error = (mib->ifvm_p != NULL) ?
   1069 		    (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
   1070 		mib = NULL;
   1071 		mutex_exit(&ifv->ifv_lock);
   1072 		break;
   1073 
   1074 	case SIOCSIFCAP:
   1075 		ifcr = data;
   1076 		/* make sure caps are enabled on parent */
   1077 		bound = curlwp_bind();
   1078 		mib = vlan_getref_linkmib(ifv, &psref);
   1079 		if (mib == NULL) {
   1080 			curlwp_bindx(bound);
   1081 			error = EBUSY;
   1082 			break;
   1083 		}
   1084 
   1085 		if (mib->ifvm_p == NULL) {
   1086 			vlan_putref_linkmib(mib, &psref);
   1087 			curlwp_bindx(bound);
   1088 			error = EINVAL;
   1089 			break;
   1090 		}
   1091 		if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
   1092 		    ifcr->ifcr_capenable) {
   1093 			vlan_putref_linkmib(mib, &psref);
   1094 			curlwp_bindx(bound);
   1095 			error = EINVAL;
   1096 			break;
   1097 		}
   1098 
   1099 		vlan_putref_linkmib(mib, &psref);
   1100 		curlwp_bindx(bound);
   1101 
   1102 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   1103 			error = 0;
   1104 		break;
   1105 	case SIOCINITIFADDR:
   1106 		bound = curlwp_bind();
   1107 		mib = vlan_getref_linkmib(ifv, &psref);
   1108 		if (mib == NULL) {
   1109 			curlwp_bindx(bound);
   1110 			error = EBUSY;
   1111 			break;
   1112 		}
   1113 
   1114 		if (mib->ifvm_p == NULL) {
   1115 			error = EINVAL;
   1116 			vlan_putref_linkmib(mib, &psref);
   1117 			curlwp_bindx(bound);
   1118 			break;
   1119 		}
   1120 		vlan_putref_linkmib(mib, &psref);
   1121 		curlwp_bindx(bound);
   1122 
   1123 		ifp->if_flags |= IFF_UP;
   1124 #ifdef INET
   1125 		if (ifa->ifa_addr->sa_family == AF_INET)
   1126 			arp_ifinit(ifp, ifa);
   1127 #endif
   1128 		break;
   1129 
   1130 	default:
   1131 		error = ether_ioctl(ifp, cmd, data);
   1132 	}
   1133 
   1134 	return error;
   1135 }
   1136 
   1137 static int
   1138 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
   1139 {
   1140 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
   1141 	struct vlan_mc_entry *mc;
   1142 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
   1143 	struct ifvlan_linkmib *mib;
   1144 	int error;
   1145 
   1146 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1147 
   1148 	if (sa->sa_len > sizeof(struct sockaddr_storage))
   1149 		return EINVAL;
   1150 
   1151 	error = ether_addmulti(sa, &ifv->ifv_ec);
   1152 	if (error != ENETRESET)
   1153 		return error;
   1154 
   1155 	/*
   1156 	 * This is a new multicast address.  We have to tell parent
   1157 	 * about it.  Also, remember this multicast address so that
   1158 	 * we can delete it on unconfigure.
   1159 	 */
   1160 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
   1161 	if (mc == NULL) {
   1162 		error = ENOMEM;
   1163 		goto alloc_failed;
   1164 	}
   1165 
   1166 	/*
   1167 	 * Since ether_addmulti() returned ENETRESET, the following two
   1168 	 * statements shouldn't fail. Here ifv_ec is implicitly protected
   1169 	 * by the ifv_lock lock.
   1170 	 */
   1171 	error = ether_multiaddr(sa, addrlo, addrhi);
   1172 	KASSERT(error == 0);
   1173 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
   1174 	KASSERT(mc->mc_enm != NULL);
   1175 
   1176 	memcpy(&mc->mc_addr, sa, sa->sa_len);
   1177 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
   1178 
   1179 	mib = ifv->ifv_mib;
   1180 
   1181 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
   1182 	IFNET_LOCK(mib->ifvm_p);
   1183 	error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
   1184 	IFNET_UNLOCK(mib->ifvm_p);
   1185 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
   1186 
   1187 	if (error != 0)
   1188 		goto ioctl_failed;
   1189 	return error;
   1190 
   1191 ioctl_failed:
   1192 	LIST_REMOVE(mc, mc_entries);
   1193 	free(mc, M_DEVBUF);
   1194 
   1195 alloc_failed:
   1196 	(void)ether_delmulti(sa, &ifv->ifv_ec);
   1197 	return error;
   1198 }
   1199 
   1200 static int
   1201 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
   1202 {
   1203 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
   1204 	struct ether_multi *enm;
   1205 	struct vlan_mc_entry *mc;
   1206 	struct ifvlan_linkmib *mib;
   1207 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
   1208 	int error;
   1209 
   1210 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1211 
   1212 	/*
   1213 	 * Find a key to lookup vlan_mc_entry.  We have to do this
   1214 	 * before calling ether_delmulti for obvious reasons.
   1215 	 */
   1216 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
   1217 		return error;
   1218 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
   1219 
   1220 	error = ether_delmulti(sa, &ifv->ifv_ec);
   1221 	if (error != ENETRESET)
   1222 		return error;
   1223 
   1224 	/* We no longer use this multicast address.  Tell parent so. */
   1225 	mib = ifv->ifv_mib;
   1226 	IFNET_LOCK(mib->ifvm_p);
   1227 	error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
   1228 	IFNET_UNLOCK(mib->ifvm_p);
   1229 
   1230 	if (error == 0) {
   1231 		/* And forget about this address. */
   1232 		for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
   1233 		    mc = LIST_NEXT(mc, mc_entries)) {
   1234 			if (mc->mc_enm == enm) {
   1235 				LIST_REMOVE(mc, mc_entries);
   1236 				free(mc, M_DEVBUF);
   1237 				break;
   1238 			}
   1239 		}
   1240 		KASSERT(mc != NULL);
   1241 	} else
   1242 		(void)ether_addmulti(sa, &ifv->ifv_ec);
   1243 
   1244 	return error;
   1245 }
   1246 
   1247 /*
   1248  * Delete any multicast address we have asked to add from parent
   1249  * interface.  Called when the vlan is being unconfigured.
   1250  */
   1251 static void
   1252 vlan_ether_purgemulti(struct ifvlan *ifv)
   1253 {
   1254 	struct vlan_mc_entry *mc;
   1255 	struct ifvlan_linkmib *mib;
   1256 
   1257 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1258 	mib = ifv->ifv_mib;
   1259 	if (mib == NULL) {
   1260 		return;
   1261 	}
   1262 
   1263 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
   1264 		IFNET_LOCK(mib->ifvm_p);
   1265 		(void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
   1266 		    (const struct sockaddr *)&mc->mc_addr);
   1267 		IFNET_UNLOCK(mib->ifvm_p);
   1268 		LIST_REMOVE(mc, mc_entries);
   1269 		free(mc, M_DEVBUF);
   1270 	}
   1271 }
   1272 
   1273 static void
   1274 vlan_start(struct ifnet *ifp)
   1275 {
   1276 	struct ifvlan *ifv = ifp->if_softc;
   1277 	struct ifnet *p;
   1278 	struct ethercom *ec;
   1279 	struct mbuf *m;
   1280 	struct ifvlan_linkmib *mib;
   1281 	struct psref psref;
   1282 	int error;
   1283 
   1284 	mib = vlan_getref_linkmib(ifv, &psref);
   1285 	if (mib == NULL)
   1286 		return;
   1287 	p = mib->ifvm_p;
   1288 	ec = (void *)mib->ifvm_p;
   1289 
   1290 	ifp->if_flags |= IFF_OACTIVE;
   1291 
   1292 	for (;;) {
   1293 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1294 		if (m == NULL)
   1295 			break;
   1296 
   1297 #ifdef ALTQ
   1298 		/*
   1299 		 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
   1300 		 * defined.
   1301 		 */
   1302 		KERNEL_LOCK(1, NULL);
   1303 		/*
   1304 		 * If ALTQ is enabled on the parent interface, do
   1305 		 * classification; the queueing discipline might
   1306 		 * not require classification, but might require
   1307 		 * the address family/header pointer in the pktattr.
   1308 		 */
   1309 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
   1310 			switch (p->if_type) {
   1311 			case IFT_ETHER:
   1312 				altq_etherclassify(&p->if_snd, m);
   1313 				break;
   1314 			default:
   1315 				panic("%s: impossible (altq)", __func__);
   1316 			}
   1317 		}
   1318 		KERNEL_UNLOCK_ONE(NULL);
   1319 #endif /* ALTQ */
   1320 
   1321 		bpf_mtap(ifp, m);
   1322 		/*
   1323 		 * If the parent can insert the tag itself, just mark
   1324 		 * the tag in the mbuf header.
   1325 		 */
   1326 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
   1327 			vlan_set_tag(m, mib->ifvm_tag);
   1328 		} else {
   1329 			/*
   1330 			 * insert the tag ourselves
   1331 			 */
   1332 			M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
   1333 			if (m == NULL) {
   1334 				printf("%s: unable to prepend encap header",
   1335 				    p->if_xname);
   1336 				ifp->if_oerrors++;
   1337 				continue;
   1338 			}
   1339 
   1340 			switch (p->if_type) {
   1341 			case IFT_ETHER:
   1342 			    {
   1343 				struct ether_vlan_header *evl;
   1344 
   1345 				if (m->m_len < sizeof(struct ether_vlan_header))
   1346 					m = m_pullup(m,
   1347 					    sizeof(struct ether_vlan_header));
   1348 				if (m == NULL) {
   1349 					printf("%s: unable to pullup encap "
   1350 					    "header", p->if_xname);
   1351 					ifp->if_oerrors++;
   1352 					continue;
   1353 				}
   1354 
   1355 				/*
   1356 				 * Transform the Ethernet header into an
   1357 				 * Ethernet header with 802.1Q encapsulation.
   1358 				 */
   1359 				memmove(mtod(m, void *),
   1360 				    mtod(m, char *) + mib->ifvm_encaplen,
   1361 				    sizeof(struct ether_header));
   1362 				evl = mtod(m, struct ether_vlan_header *);
   1363 				evl->evl_proto = evl->evl_encap_proto;
   1364 				evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
   1365 				evl->evl_tag = htons(mib->ifvm_tag);
   1366 
   1367 				/*
   1368 				 * To cater for VLAN-aware layer 2 ethernet
   1369 				 * switches which may need to strip the tag
   1370 				 * before forwarding the packet, make sure
   1371 				 * the packet+tag is at least 68 bytes long.
   1372 				 * This is necessary because our parent will
   1373 				 * only pad to 64 bytes (ETHER_MIN_LEN) and
   1374 				 * some switches will not pad by themselves
   1375 				 * after deleting a tag.
   1376 				 */
   1377 				const size_t min_data_len = ETHER_MIN_LEN -
   1378 				    ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
   1379 				if (m->m_pkthdr.len < min_data_len) {
   1380 					m_copyback(m, m->m_pkthdr.len,
   1381 					    min_data_len - m->m_pkthdr.len,
   1382 					    vlan_zero_pad_buff);
   1383 				}
   1384 				break;
   1385 			    }
   1386 
   1387 			default:
   1388 				panic("%s: impossible", __func__);
   1389 			}
   1390 		}
   1391 
   1392 		if ((p->if_flags & IFF_RUNNING) == 0) {
   1393 			m_freem(m);
   1394 			continue;
   1395 		}
   1396 
   1397 		error = if_transmit_lock(p, m);
   1398 		if (error) {
   1399 			/* mbuf is already freed */
   1400 			ifp->if_oerrors++;
   1401 			continue;
   1402 		}
   1403 		ifp->if_opackets++;
   1404 	}
   1405 
   1406 	ifp->if_flags &= ~IFF_OACTIVE;
   1407 
   1408 	/* Remove reference to mib before release */
   1409 	vlan_putref_linkmib(mib, &psref);
   1410 }
   1411 
   1412 static int
   1413 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
   1414 {
   1415 	struct ifvlan *ifv = ifp->if_softc;
   1416 	struct ifnet *p;
   1417 	struct ethercom *ec;
   1418 	struct ifvlan_linkmib *mib;
   1419 	struct psref psref;
   1420 	int error;
   1421 	size_t pktlen = m->m_pkthdr.len;
   1422 	bool mcast = (m->m_flags & M_MCAST) != 0;
   1423 
   1424 	mib = vlan_getref_linkmib(ifv, &psref);
   1425 	if (mib == NULL) {
   1426 		m_freem(m);
   1427 		return ENETDOWN;
   1428 	}
   1429 
   1430 	p = mib->ifvm_p;
   1431 	ec = (void *)mib->ifvm_p;
   1432 
   1433 	bpf_mtap(ifp, m);
   1434 
   1435 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
   1436 		goto out;
   1437 	if (m == NULL)
   1438 		goto out;
   1439 
   1440 	/*
   1441 	 * If the parent can insert the tag itself, just mark
   1442 	 * the tag in the mbuf header.
   1443 	 */
   1444 	if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
   1445 		vlan_set_tag(m, mib->ifvm_tag);
   1446 	} else {
   1447 		/*
   1448 		 * insert the tag ourselves
   1449 		 */
   1450 		M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
   1451 		if (m == NULL) {
   1452 			printf("%s: unable to prepend encap header",
   1453 			    p->if_xname);
   1454 			ifp->if_oerrors++;
   1455 			error = ENOBUFS;
   1456 			goto out;
   1457 		}
   1458 
   1459 		switch (p->if_type) {
   1460 		case IFT_ETHER:
   1461 		    {
   1462 			struct ether_vlan_header *evl;
   1463 
   1464 			if (m->m_len < sizeof(struct ether_vlan_header))
   1465 				m = m_pullup(m,
   1466 				    sizeof(struct ether_vlan_header));
   1467 			if (m == NULL) {
   1468 				printf("%s: unable to pullup encap "
   1469 				    "header", p->if_xname);
   1470 				ifp->if_oerrors++;
   1471 				error = ENOBUFS;
   1472 				goto out;
   1473 			}
   1474 
   1475 			/*
   1476 			 * Transform the Ethernet header into an
   1477 			 * Ethernet header with 802.1Q encapsulation.
   1478 			 */
   1479 			memmove(mtod(m, void *),
   1480 			    mtod(m, char *) + mib->ifvm_encaplen,
   1481 			    sizeof(struct ether_header));
   1482 			evl = mtod(m, struct ether_vlan_header *);
   1483 			evl->evl_proto = evl->evl_encap_proto;
   1484 			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
   1485 			evl->evl_tag = htons(mib->ifvm_tag);
   1486 
   1487 			/*
   1488 			 * To cater for VLAN-aware layer 2 ethernet
   1489 			 * switches which may need to strip the tag
   1490 			 * before forwarding the packet, make sure
   1491 			 * the packet+tag is at least 68 bytes long.
   1492 			 * This is necessary because our parent will
   1493 			 * only pad to 64 bytes (ETHER_MIN_LEN) and
   1494 			 * some switches will not pad by themselves
   1495 			 * after deleting a tag.
   1496 			 */
   1497 			const size_t min_data_len = ETHER_MIN_LEN -
   1498 			    ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
   1499 			if (m->m_pkthdr.len < min_data_len) {
   1500 				m_copyback(m, m->m_pkthdr.len,
   1501 				    min_data_len - m->m_pkthdr.len,
   1502 				    vlan_zero_pad_buff);
   1503 			}
   1504 			break;
   1505 		    }
   1506 
   1507 		default:
   1508 			panic("%s: impossible", __func__);
   1509 		}
   1510 	}
   1511 
   1512 	if ((p->if_flags & IFF_RUNNING) == 0) {
   1513 		m_freem(m);
   1514 		error = ENETDOWN;
   1515 		goto out;
   1516 	}
   1517 
   1518 	error = if_transmit_lock(p, m);
   1519 	if (error) {
   1520 		/* mbuf is already freed */
   1521 		ifp->if_oerrors++;
   1522 	} else {
   1523 
   1524 		ifp->if_opackets++;
   1525 		ifp->if_obytes += pktlen;
   1526 		if (mcast)
   1527 			ifp->if_omcasts++;
   1528 	}
   1529 
   1530 out:
   1531 	/* Remove reference to mib before release */
   1532 	vlan_putref_linkmib(mib, &psref);
   1533 	return error;
   1534 }
   1535 
   1536 /*
   1537  * Given an Ethernet frame, find a valid vlan interface corresponding to the
   1538  * given source interface and tag, then run the real packet through the
   1539  * parent's input routine.
   1540  */
   1541 void
   1542 vlan_input(struct ifnet *ifp, struct mbuf *m)
   1543 {
   1544 	struct ifvlan *ifv;
   1545 	uint16_t vid;
   1546 	struct ifvlan_linkmib *mib;
   1547 	struct psref psref;
   1548 	bool have_vtag;
   1549 
   1550 	have_vtag = vlan_has_tag(m);
   1551 	if (have_vtag) {
   1552 		vid = EVL_VLANOFTAG(vlan_get_tag(m));
   1553 		m->m_flags &= ~M_VLANTAG;
   1554 	} else {
   1555 		struct ether_vlan_header *evl;
   1556 
   1557 		if (ifp->if_type != IFT_ETHER) {
   1558 			panic("%s: impossible", __func__);
   1559 		}
   1560 
   1561 		if (m->m_len < sizeof(struct ether_vlan_header) &&
   1562 		    (m = m_pullup(m,
   1563 		     sizeof(struct ether_vlan_header))) == NULL) {
   1564 			printf("%s: no memory for VLAN header, "
   1565 			    "dropping packet.\n", ifp->if_xname);
   1566 			return;
   1567 		}
   1568 		evl = mtod(m, struct ether_vlan_header *);
   1569 		KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
   1570 
   1571 		vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
   1572 
   1573 		/*
   1574 		 * Restore the original ethertype.  We'll remove
   1575 		 * the encapsulation after we've found the vlan
   1576 		 * interface corresponding to the tag.
   1577 		 */
   1578 		evl->evl_encap_proto = evl->evl_proto;
   1579 	}
   1580 
   1581 	mib = vlan_lookup_tag_psref(ifp, vid, &psref);
   1582 	if (mib == NULL) {
   1583 		m_freem(m);
   1584 		ifp->if_noproto++;
   1585 		return;
   1586 	}
   1587 	KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
   1588 
   1589 	ifv = mib->ifvm_ifvlan;
   1590 	if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
   1591 	    (IFF_UP|IFF_RUNNING)) {
   1592 		m_freem(m);
   1593 		ifp->if_noproto++;
   1594 		goto out;
   1595 	}
   1596 
   1597 	/*
   1598 	 * Now, remove the encapsulation header.  The original
   1599 	 * header has already been fixed up above.
   1600 	 */
   1601 	if (!have_vtag) {
   1602 		memmove(mtod(m, char *) + mib->ifvm_encaplen,
   1603 		    mtod(m, void *), sizeof(struct ether_header));
   1604 		m_adj(m, mib->ifvm_encaplen);
   1605 	}
   1606 
   1607 	m_set_rcvif(m, &ifv->ifv_if);
   1608 	ifv->ifv_if.if_ipackets++;
   1609 
   1610 	if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
   1611 		goto out;
   1612 	if (m == NULL)
   1613 		goto out;
   1614 
   1615 	m->m_flags &= ~M_PROMISC;
   1616 	if_input(&ifv->ifv_if, m);
   1617 out:
   1618 	vlan_putref_linkmib(mib, &psref);
   1619 }
   1620 
   1621 /*
   1622  * Module infrastructure
   1623  */
   1624 #include "if_module.h"
   1625 
   1626 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
   1627