if_vlan.c revision 1.124.2.2 1 /* $NetBSD: if_vlan.c,v 1.124.2.2 2018/06/25 07:26:06 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.124.2.2 2018/06/25 07:26:06 pgoyette Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #endif
123
124 #include "ioconf.h"
125
126 struct vlan_mc_entry {
127 LIST_ENTRY(vlan_mc_entry) mc_entries;
128 /*
129 * A key to identify this entry. The mc_addr below can't be
130 * used since multiple sockaddr may mapped into the same
131 * ether_multi (e.g., AF_UNSPEC).
132 */
133 union {
134 struct ether_multi *mcu_enm;
135 } mc_u;
136 struct sockaddr_storage mc_addr;
137 };
138
139 #define mc_enm mc_u.mcu_enm
140
141
142 struct ifvlan_linkmib {
143 struct ifvlan *ifvm_ifvlan;
144 const struct vlan_multisw *ifvm_msw;
145 int ifvm_encaplen; /* encapsulation length */
146 int ifvm_mtufudge; /* MTU fudged by this much */
147 int ifvm_mintu; /* min transmission unit */
148 uint16_t ifvm_proto; /* encapsulation ethertype */
149 uint16_t ifvm_tag; /* tag to apply on packets */
150 struct ifnet *ifvm_p; /* parent interface of this vlan */
151
152 struct psref_target ifvm_psref;
153 };
154
155 struct ifvlan {
156 union {
157 struct ethercom ifvu_ec;
158 } ifv_u;
159 struct ifvlan_linkmib *ifv_mib; /*
160 * reader must use vlan_getref_linkmib()
161 * instead of direct dereference
162 */
163 kmutex_t ifv_lock; /* writer lock for ifv_mib */
164
165 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
166 LIST_ENTRY(ifvlan) ifv_list;
167 struct pslist_entry ifv_hash;
168 int ifv_flags;
169 };
170
171 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
172
173 #define ifv_ec ifv_u.ifvu_ec
174
175 #define ifv_if ifv_ec.ec_if
176
177 #define ifv_msw ifv_mib.ifvm_msw
178 #define ifv_encaplen ifv_mib.ifvm_encaplen
179 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
180 #define ifv_mintu ifv_mib.ifvm_mintu
181 #define ifv_tag ifv_mib.ifvm_tag
182
183 struct vlan_multisw {
184 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
185 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
186 void (*vmsw_purgemulti)(struct ifvlan *);
187 };
188
189 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
190 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
191 static void vlan_ether_purgemulti(struct ifvlan *);
192
193 const struct vlan_multisw vlan_ether_multisw = {
194 .vmsw_addmulti = vlan_ether_addmulti,
195 .vmsw_delmulti = vlan_ether_delmulti,
196 .vmsw_purgemulti = vlan_ether_purgemulti,
197 };
198
199 static int vlan_clone_create(struct if_clone *, int);
200 static int vlan_clone_destroy(struct ifnet *);
201 static int vlan_config(struct ifvlan *, struct ifnet *,
202 uint16_t);
203 static int vlan_ioctl(struct ifnet *, u_long, void *);
204 static void vlan_start(struct ifnet *);
205 static int vlan_transmit(struct ifnet *, struct mbuf *);
206 static void vlan_unconfig(struct ifnet *);
207 static int vlan_unconfig_locked(struct ifvlan *,
208 struct ifvlan_linkmib *);
209 static void vlan_hash_init(void);
210 static int vlan_hash_fini(void);
211 static int vlan_tag_hash(uint16_t, u_long);
212 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
213 struct psref *);
214 static void vlan_putref_linkmib(struct ifvlan_linkmib *,
215 struct psref *);
216 static void vlan_linkmib_update(struct ifvlan *,
217 struct ifvlan_linkmib *);
218 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
219 uint16_t, struct psref *);
220
221 LIST_HEAD(vlan_ifvlist, ifvlan);
222 static struct {
223 kmutex_t lock;
224 struct vlan_ifvlist list;
225 } ifv_list __cacheline_aligned;
226
227
228 #if !defined(VLAN_TAG_HASH_SIZE)
229 #define VLAN_TAG_HASH_SIZE 32
230 #endif
231 static struct {
232 kmutex_t lock;
233 struct pslist_head *lists;
234 u_long mask;
235 } ifv_hash __cacheline_aligned = {
236 .lists = NULL,
237 .mask = 0,
238 };
239
240 pserialize_t vlan_psz __read_mostly;
241 static struct psref_class *ifvm_psref_class __read_mostly;
242
243 struct if_clone vlan_cloner =
244 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
245
246 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
247 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
248
249 static inline int
250 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
251 {
252 int e;
253
254 KERNEL_LOCK_UNLESS_NET_MPSAFE();
255 e = ifpromisc(ifp, pswitch);
256 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
257
258 return e;
259 }
260
261 static inline int
262 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
263 {
264 int e;
265
266 KERNEL_LOCK_UNLESS_NET_MPSAFE();
267 e = ifpromisc_locked(ifp, pswitch);
268 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
269
270 return e;
271 }
272
273 void
274 vlanattach(int n)
275 {
276
277 /*
278 * Nothing to do here, initialization is handled by the
279 * module initialization code in vlaninit() below.
280 */
281 }
282
283 static void
284 vlaninit(void)
285 {
286 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
287 LIST_INIT(&ifv_list.list);
288
289 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
290 vlan_psz = pserialize_create();
291 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
292 if_clone_attach(&vlan_cloner);
293
294 vlan_hash_init();
295 }
296
297 static int
298 vlandetach(void)
299 {
300 bool is_empty;
301 int error;
302
303 mutex_enter(&ifv_list.lock);
304 is_empty = LIST_EMPTY(&ifv_list.list);
305 mutex_exit(&ifv_list.lock);
306
307 if (!is_empty)
308 return EBUSY;
309
310 error = vlan_hash_fini();
311 if (error != 0)
312 return error;
313
314 if_clone_detach(&vlan_cloner);
315 psref_class_destroy(ifvm_psref_class);
316 pserialize_destroy(vlan_psz);
317 mutex_destroy(&ifv_hash.lock);
318 mutex_destroy(&ifv_list.lock);
319
320 return 0;
321 }
322
323 static void
324 vlan_reset_linkname(struct ifnet *ifp)
325 {
326
327 /*
328 * We start out with a "802.1Q VLAN" type and zero-length
329 * addresses. When we attach to a parent interface, we
330 * inherit its type, address length, address, and data link
331 * type.
332 */
333
334 ifp->if_type = IFT_L2VLAN;
335 ifp->if_addrlen = 0;
336 ifp->if_dlt = DLT_NULL;
337 if_alloc_sadl(ifp);
338 }
339
340 static int
341 vlan_clone_create(struct if_clone *ifc, int unit)
342 {
343 struct ifvlan *ifv;
344 struct ifnet *ifp;
345 struct ifvlan_linkmib *mib;
346 int rv;
347
348 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
349 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
350 ifp = &ifv->ifv_if;
351 LIST_INIT(&ifv->ifv_mc_listhead);
352
353 mib->ifvm_ifvlan = ifv;
354 mib->ifvm_p = NULL;
355 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
356
357 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
358 ifv->ifv_mib = mib;
359
360 mutex_enter(&ifv_list.lock);
361 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
362 mutex_exit(&ifv_list.lock);
363
364 if_initname(ifp, ifc->ifc_name, unit);
365 ifp->if_softc = ifv;
366 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
368 #ifdef NET_MPSAFE
369 ifp->if_extflags |= IFEF_MPSAFE;
370 #endif
371 ifp->if_start = vlan_start;
372 ifp->if_transmit = vlan_transmit;
373 ifp->if_ioctl = vlan_ioctl;
374 IFQ_SET_READY(&ifp->if_snd);
375
376 rv = if_initialize(ifp);
377 if (rv != 0) {
378 aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
379 rv);
380 goto fail;
381 }
382
383 vlan_reset_linkname(ifp);
384 if_register(ifp);
385 return 0;
386
387 fail:
388 mutex_enter(&ifv_list.lock);
389 LIST_REMOVE(ifv, ifv_list);
390 mutex_exit(&ifv_list.lock);
391
392 mutex_destroy(&ifv->ifv_lock);
393 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
394 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
395 free(ifv, M_DEVBUF);
396
397 return rv;
398 }
399
400 static int
401 vlan_clone_destroy(struct ifnet *ifp)
402 {
403 struct ifvlan *ifv = ifp->if_softc;
404
405 mutex_enter(&ifv_list.lock);
406 LIST_REMOVE(ifv, ifv_list);
407 mutex_exit(&ifv_list.lock);
408
409 IFNET_LOCK(ifp);
410 vlan_unconfig(ifp);
411 IFNET_UNLOCK(ifp);
412 if_detach(ifp);
413
414 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
415 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
416 mutex_destroy(&ifv->ifv_lock);
417 free(ifv, M_DEVBUF);
418
419 return 0;
420 }
421
422 /*
423 * Configure a VLAN interface.
424 */
425 static int
426 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
427 {
428 struct ifnet *ifp = &ifv->ifv_if;
429 struct ifvlan_linkmib *nmib = NULL;
430 struct ifvlan_linkmib *omib = NULL;
431 struct ifvlan_linkmib *checkmib;
432 struct psref_target *nmib_psref = NULL;
433 const uint16_t vid = EVL_VLANOFTAG(tag);
434 int error = 0;
435 int idx;
436 bool omib_cleanup = false;
437 struct psref psref;
438
439 /* VLAN ID 0 and 4095 are reserved in the spec */
440 if ((vid == 0) || (vid == 0xfff))
441 return EINVAL;
442
443 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
444 mutex_enter(&ifv->ifv_lock);
445 omib = ifv->ifv_mib;
446
447 if (omib->ifvm_p != NULL) {
448 error = EBUSY;
449 goto done;
450 }
451
452 /* Duplicate check */
453 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
454 if (checkmib != NULL) {
455 vlan_putref_linkmib(checkmib, &psref);
456 error = EEXIST;
457 goto done;
458 }
459
460 *nmib = *omib;
461 nmib_psref = &nmib->ifvm_psref;
462
463 psref_target_init(nmib_psref, ifvm_psref_class);
464
465 switch (p->if_type) {
466 case IFT_ETHER:
467 {
468 struct ethercom *ec = (void *)p;
469 nmib->ifvm_msw = &vlan_ether_multisw;
470 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
471 nmib->ifvm_mintu = ETHERMIN;
472
473 if (ec->ec_nvlans++ == 0) {
474 IFNET_LOCK(p);
475 error = ether_enable_vlan_mtu(p);
476 IFNET_UNLOCK(p);
477 if (error >= 0) {
478 if (error) {
479 ec->ec_nvlans--;
480 goto done;
481 }
482 nmib->ifvm_mtufudge = 0;
483 } else {
484 /*
485 * Fudge the MTU by the encapsulation size. This
486 * makes us incompatible with strictly compliant
487 * 802.1Q implementations, but allows us to use
488 * the feature with other NetBSD
489 * implementations, which might still be useful.
490 */
491 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
492 }
493 error = 0;
494 }
495
496 /*
497 * If the parent interface can do hardware-assisted
498 * VLAN encapsulation, then propagate its hardware-
499 * assisted checksumming flags and tcp segmentation
500 * offload.
501 */
502 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
503 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
504 ifp->if_capabilities = p->if_capabilities &
505 (IFCAP_TSOv4 | IFCAP_TSOv6 |
506 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
507 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
508 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
509 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
510 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
511 }
512
513 /*
514 * We inherit the parent's Ethernet address.
515 */
516 ether_ifattach(ifp, CLLADDR(p->if_sadl));
517 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
518 break;
519 }
520
521 default:
522 error = EPROTONOSUPPORT;
523 goto done;
524 }
525
526 nmib->ifvm_p = p;
527 nmib->ifvm_tag = vid;
528 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
529 ifv->ifv_if.if_flags = p->if_flags &
530 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
531
532 /*
533 * Inherit the if_type from the parent. This allows us
534 * to participate in bridges of that type.
535 */
536 ifv->ifv_if.if_type = p->if_type;
537
538 PSLIST_ENTRY_INIT(ifv, ifv_hash);
539 idx = vlan_tag_hash(vid, ifv_hash.mask);
540
541 mutex_enter(&ifv_hash.lock);
542 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
543 mutex_exit(&ifv_hash.lock);
544
545 vlan_linkmib_update(ifv, nmib);
546 nmib = NULL;
547 nmib_psref = NULL;
548 omib_cleanup = true;
549
550 done:
551 mutex_exit(&ifv->ifv_lock);
552
553 if (nmib_psref)
554 psref_target_destroy(nmib_psref, ifvm_psref_class);
555 if (nmib)
556 kmem_free(nmib, sizeof(*nmib));
557 if (omib_cleanup)
558 kmem_free(omib, sizeof(*omib));
559
560 return error;
561 }
562
563 /*
564 * Unconfigure a VLAN interface.
565 */
566 static void
567 vlan_unconfig(struct ifnet *ifp)
568 {
569 struct ifvlan *ifv = ifp->if_softc;
570 struct ifvlan_linkmib *nmib = NULL;
571 int error;
572
573 KASSERT(IFNET_LOCKED(ifp));
574
575 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
576
577 mutex_enter(&ifv->ifv_lock);
578 error = vlan_unconfig_locked(ifv, nmib);
579 mutex_exit(&ifv->ifv_lock);
580
581 if (error)
582 kmem_free(nmib, sizeof(*nmib));
583 }
584 static int
585 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
586 {
587 struct ifnet *p;
588 struct ifnet *ifp = &ifv->ifv_if;
589 struct psref_target *nmib_psref = NULL;
590 struct ifvlan_linkmib *omib;
591 int error = 0;
592
593 KASSERT(IFNET_LOCKED(ifp));
594 KASSERT(mutex_owned(&ifv->ifv_lock));
595
596 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
597
598 omib = ifv->ifv_mib;
599 p = omib->ifvm_p;
600
601 if (p == NULL) {
602 error = -1;
603 goto done;
604 }
605
606 *nmib = *omib;
607 nmib_psref = &nmib->ifvm_psref;
608 psref_target_init(nmib_psref, ifvm_psref_class);
609
610 /*
611 * Since the interface is being unconfigured, we need to empty the
612 * list of multicast groups that we may have joined while we were
613 * alive and remove them from the parent's list also.
614 */
615 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
616
617 /* Disconnect from parent. */
618 switch (p->if_type) {
619 case IFT_ETHER:
620 {
621 struct ethercom *ec = (void *)p;
622 if (--ec->ec_nvlans == 0) {
623 IFNET_LOCK(p);
624 (void) ether_disable_vlan_mtu(p);
625 IFNET_UNLOCK(p);
626 }
627
628 /* XXX ether_ifdetach must not be called with IFNET_LOCK */
629 mutex_exit(&ifv->ifv_lock);
630 IFNET_UNLOCK(ifp);
631 ether_ifdetach(ifp);
632 IFNET_LOCK(ifp);
633 mutex_enter(&ifv->ifv_lock);
634
635 /* Restore vlan_ioctl overwritten by ether_ifdetach */
636 ifp->if_ioctl = vlan_ioctl;
637 vlan_reset_linkname(ifp);
638 break;
639 }
640
641 default:
642 panic("%s: impossible", __func__);
643 }
644
645 nmib->ifvm_p = NULL;
646 ifv->ifv_if.if_mtu = 0;
647 ifv->ifv_flags = 0;
648
649 mutex_enter(&ifv_hash.lock);
650 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
651 pserialize_perform(vlan_psz);
652 mutex_exit(&ifv_hash.lock);
653 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
654
655 vlan_linkmib_update(ifv, nmib);
656
657 mutex_exit(&ifv->ifv_lock);
658
659 nmib_psref = NULL;
660 kmem_free(omib, sizeof(*omib));
661
662 #ifdef INET6
663 KERNEL_LOCK_UNLESS_NET_MPSAFE();
664 /* To delete v6 link local addresses */
665 if (in6_present)
666 in6_ifdetach(ifp);
667 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
668 #endif
669
670 if ((ifp->if_flags & IFF_PROMISC) != 0)
671 vlan_safe_ifpromisc_locked(ifp, 0);
672 if_down_locked(ifp);
673 ifp->if_capabilities = 0;
674 mutex_enter(&ifv->ifv_lock);
675 done:
676
677 if (nmib_psref)
678 psref_target_destroy(nmib_psref, ifvm_psref_class);
679
680 return error;
681 }
682
683 static void
684 vlan_hash_init(void)
685 {
686
687 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
688 &ifv_hash.mask);
689 }
690
691 static int
692 vlan_hash_fini(void)
693 {
694 int i;
695
696 mutex_enter(&ifv_hash.lock);
697
698 for (i = 0; i < ifv_hash.mask + 1; i++) {
699 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
700 ifv_hash) != NULL) {
701 mutex_exit(&ifv_hash.lock);
702 return EBUSY;
703 }
704 }
705
706 for (i = 0; i < ifv_hash.mask + 1; i++)
707 PSLIST_DESTROY(&ifv_hash.lists[i]);
708
709 mutex_exit(&ifv_hash.lock);
710
711 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
712
713 ifv_hash.lists = NULL;
714 ifv_hash.mask = 0;
715
716 return 0;
717 }
718
719 static int
720 vlan_tag_hash(uint16_t tag, u_long mask)
721 {
722 uint32_t hash;
723
724 hash = (tag >> 8) ^ tag;
725 hash = (hash >> 2) ^ hash;
726
727 return hash & mask;
728 }
729
730 static struct ifvlan_linkmib *
731 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
732 {
733 struct ifvlan_linkmib *mib;
734 int s;
735
736 s = pserialize_read_enter();
737 mib = sc->ifv_mib;
738 if (mib == NULL) {
739 pserialize_read_exit(s);
740 return NULL;
741 }
742 membar_datadep_consumer();
743 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
744 pserialize_read_exit(s);
745
746 return mib;
747 }
748
749 static void
750 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
751 {
752 if (mib == NULL)
753 return;
754 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
755 }
756
757 static struct ifvlan_linkmib *
758 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
759 {
760 int idx;
761 int s;
762 struct ifvlan *sc;
763
764 idx = vlan_tag_hash(tag, ifv_hash.mask);
765
766 s = pserialize_read_enter();
767 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
768 ifv_hash) {
769 struct ifvlan_linkmib *mib = sc->ifv_mib;
770 if (mib == NULL)
771 continue;
772 if (mib->ifvm_tag != tag)
773 continue;
774 if (mib->ifvm_p != ifp)
775 continue;
776
777 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
778 pserialize_read_exit(s);
779 return mib;
780 }
781 pserialize_read_exit(s);
782 return NULL;
783 }
784
785 static void
786 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
787 {
788 struct ifvlan_linkmib *omib = ifv->ifv_mib;
789
790 KASSERT(mutex_owned(&ifv->ifv_lock));
791
792 membar_producer();
793 ifv->ifv_mib = nmib;
794
795 pserialize_perform(vlan_psz);
796 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
797 }
798
799 /*
800 * Called when a parent interface is detaching; destroy any VLAN
801 * configuration for the parent interface.
802 */
803 void
804 vlan_ifdetach(struct ifnet *p)
805 {
806 struct ifvlan *ifv;
807 struct ifvlan_linkmib *mib, **nmibs;
808 struct psref psref;
809 int error;
810 int bound;
811 int i, cnt = 0;
812
813 bound = curlwp_bind();
814
815 mutex_enter(&ifv_list.lock);
816 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
817 mib = vlan_getref_linkmib(ifv, &psref);
818 if (mib == NULL)
819 continue;
820
821 if (mib->ifvm_p == p)
822 cnt++;
823
824 vlan_putref_linkmib(mib, &psref);
825 }
826 mutex_exit(&ifv_list.lock);
827
828 if (cnt == 0) {
829 curlwp_bindx(bound);
830 return;
831 }
832
833 /*
834 * The value of "cnt" does not increase while ifv_list.lock
835 * and ifv->ifv_lock are released here, because the parent
836 * interface is detaching.
837 */
838 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
839 for (i = 0; i < cnt; i++) {
840 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
841 }
842
843 mutex_enter(&ifv_list.lock);
844
845 i = 0;
846 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
847 struct ifnet *ifp = &ifv->ifv_if;
848
849 /* IFNET_LOCK must be held before ifv_lock. */
850 IFNET_LOCK(ifp);
851 mutex_enter(&ifv->ifv_lock);
852
853 /* XXX ifv_mib = NULL? */
854 if (ifv->ifv_mib->ifvm_p == p) {
855 KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
856 p->if_xname);
857 error = vlan_unconfig_locked(ifv, nmibs[i]);
858 if (!error) {
859 nmibs[i] = NULL;
860 i++;
861 }
862
863 }
864
865 mutex_exit(&ifv->ifv_lock);
866 IFNET_UNLOCK(ifp);
867 }
868
869 mutex_exit(&ifv_list.lock);
870
871 curlwp_bindx(bound);
872
873 for (i = 0; i < cnt; i++) {
874 if (nmibs[i])
875 kmem_free(nmibs[i], sizeof(*nmibs[i]));
876 }
877
878 kmem_free(nmibs, sizeof(*nmibs) * cnt);
879
880 return;
881 }
882
883 static int
884 vlan_set_promisc(struct ifnet *ifp)
885 {
886 struct ifvlan *ifv = ifp->if_softc;
887 struct ifvlan_linkmib *mib;
888 struct psref psref;
889 int error = 0;
890 int bound;
891
892 bound = curlwp_bind();
893 mib = vlan_getref_linkmib(ifv, &psref);
894 if (mib == NULL) {
895 curlwp_bindx(bound);
896 return EBUSY;
897 }
898
899 if ((ifp->if_flags & IFF_PROMISC) != 0) {
900 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
901 error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
902 if (error == 0)
903 ifv->ifv_flags |= IFVF_PROMISC;
904 }
905 } else {
906 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
907 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
908 if (error == 0)
909 ifv->ifv_flags &= ~IFVF_PROMISC;
910 }
911 }
912 vlan_putref_linkmib(mib, &psref);
913 curlwp_bindx(bound);
914
915 return error;
916 }
917
918 static int
919 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
920 {
921 struct lwp *l = curlwp;
922 struct ifvlan *ifv = ifp->if_softc;
923 struct ifaddr *ifa = (struct ifaddr *) data;
924 struct ifreq *ifr = (struct ifreq *) data;
925 struct ifnet *pr;
926 struct ifcapreq *ifcr;
927 struct vlanreq vlr;
928 struct ifvlan_linkmib *mib;
929 struct psref psref;
930 int error = 0;
931 int bound;
932
933 switch (cmd) {
934 case SIOCSIFMTU:
935 bound = curlwp_bind();
936 mib = vlan_getref_linkmib(ifv, &psref);
937 if (mib == NULL) {
938 curlwp_bindx(bound);
939 error = EBUSY;
940 break;
941 }
942
943 if (mib->ifvm_p == NULL) {
944 vlan_putref_linkmib(mib, &psref);
945 curlwp_bindx(bound);
946 error = EINVAL;
947 } else if (
948 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
949 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
950 vlan_putref_linkmib(mib, &psref);
951 curlwp_bindx(bound);
952 error = EINVAL;
953 } else {
954 vlan_putref_linkmib(mib, &psref);
955 curlwp_bindx(bound);
956
957 error = ifioctl_common(ifp, cmd, data);
958 if (error == ENETRESET)
959 error = 0;
960 }
961
962 break;
963
964 case SIOCSETVLAN:
965 if ((error = kauth_authorize_network(l->l_cred,
966 KAUTH_NETWORK_INTERFACE,
967 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
968 NULL)) != 0)
969 break;
970 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
971 break;
972
973 if (vlr.vlr_parent[0] == '\0') {
974 bound = curlwp_bind();
975 mib = vlan_getref_linkmib(ifv, &psref);
976 if (mib == NULL) {
977 curlwp_bindx(bound);
978 error = EBUSY;
979 break;
980 }
981
982 if (mib->ifvm_p != NULL &&
983 (ifp->if_flags & IFF_PROMISC) != 0)
984 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
985
986 vlan_putref_linkmib(mib, &psref);
987 curlwp_bindx(bound);
988
989 vlan_unconfig(ifp);
990 break;
991 }
992 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
993 error = EINVAL; /* check for valid tag */
994 break;
995 }
996 if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
997 error = ENOENT;
998 break;
999 }
1000 error = vlan_config(ifv, pr, vlr.vlr_tag);
1001 if (error != 0) {
1002 break;
1003 }
1004
1005 /* Update promiscuous mode, if necessary. */
1006 vlan_set_promisc(ifp);
1007
1008 ifp->if_flags |= IFF_RUNNING;
1009 break;
1010
1011 case SIOCGETVLAN:
1012 memset(&vlr, 0, sizeof(vlr));
1013 bound = curlwp_bind();
1014 mib = vlan_getref_linkmib(ifv, &psref);
1015 if (mib == NULL) {
1016 curlwp_bindx(bound);
1017 error = EBUSY;
1018 break;
1019 }
1020 if (mib->ifvm_p != NULL) {
1021 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
1022 mib->ifvm_p->if_xname);
1023 vlr.vlr_tag = mib->ifvm_tag;
1024 }
1025 vlan_putref_linkmib(mib, &psref);
1026 curlwp_bindx(bound);
1027 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1028 break;
1029
1030 case SIOCSIFFLAGS:
1031 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1032 break;
1033 /*
1034 * For promiscuous mode, we enable promiscuous mode on
1035 * the parent if we need promiscuous on the VLAN interface.
1036 */
1037 bound = curlwp_bind();
1038 mib = vlan_getref_linkmib(ifv, &psref);
1039 if (mib == NULL) {
1040 curlwp_bindx(bound);
1041 error = EBUSY;
1042 break;
1043 }
1044
1045 if (mib->ifvm_p != NULL)
1046 error = vlan_set_promisc(ifp);
1047 vlan_putref_linkmib(mib, &psref);
1048 curlwp_bindx(bound);
1049 break;
1050
1051 case SIOCADDMULTI:
1052 mutex_enter(&ifv->ifv_lock);
1053 mib = ifv->ifv_mib;
1054 if (mib == NULL) {
1055 error = EBUSY;
1056 mutex_exit(&ifv->ifv_lock);
1057 break;
1058 }
1059
1060 error = (mib->ifvm_p != NULL) ?
1061 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1062 mib = NULL;
1063 mutex_exit(&ifv->ifv_lock);
1064 break;
1065
1066 case SIOCDELMULTI:
1067 mutex_enter(&ifv->ifv_lock);
1068 mib = ifv->ifv_mib;
1069 if (mib == NULL) {
1070 error = EBUSY;
1071 mutex_exit(&ifv->ifv_lock);
1072 break;
1073 }
1074 error = (mib->ifvm_p != NULL) ?
1075 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1076 mib = NULL;
1077 mutex_exit(&ifv->ifv_lock);
1078 break;
1079
1080 case SIOCSIFCAP:
1081 ifcr = data;
1082 /* make sure caps are enabled on parent */
1083 bound = curlwp_bind();
1084 mib = vlan_getref_linkmib(ifv, &psref);
1085 if (mib == NULL) {
1086 curlwp_bindx(bound);
1087 error = EBUSY;
1088 break;
1089 }
1090
1091 if (mib->ifvm_p == NULL) {
1092 vlan_putref_linkmib(mib, &psref);
1093 curlwp_bindx(bound);
1094 error = EINVAL;
1095 break;
1096 }
1097 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1098 ifcr->ifcr_capenable) {
1099 vlan_putref_linkmib(mib, &psref);
1100 curlwp_bindx(bound);
1101 error = EINVAL;
1102 break;
1103 }
1104
1105 vlan_putref_linkmib(mib, &psref);
1106 curlwp_bindx(bound);
1107
1108 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1109 error = 0;
1110 break;
1111 case SIOCINITIFADDR:
1112 bound = curlwp_bind();
1113 mib = vlan_getref_linkmib(ifv, &psref);
1114 if (mib == NULL) {
1115 curlwp_bindx(bound);
1116 error = EBUSY;
1117 break;
1118 }
1119
1120 if (mib->ifvm_p == NULL) {
1121 error = EINVAL;
1122 vlan_putref_linkmib(mib, &psref);
1123 curlwp_bindx(bound);
1124 break;
1125 }
1126 vlan_putref_linkmib(mib, &psref);
1127 curlwp_bindx(bound);
1128
1129 ifp->if_flags |= IFF_UP;
1130 #ifdef INET
1131 if (ifa->ifa_addr->sa_family == AF_INET)
1132 arp_ifinit(ifp, ifa);
1133 #endif
1134 break;
1135
1136 default:
1137 error = ether_ioctl(ifp, cmd, data);
1138 }
1139
1140 return error;
1141 }
1142
1143 static int
1144 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1145 {
1146 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1147 struct vlan_mc_entry *mc;
1148 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1149 struct ifvlan_linkmib *mib;
1150 int error;
1151
1152 KASSERT(mutex_owned(&ifv->ifv_lock));
1153
1154 if (sa->sa_len > sizeof(struct sockaddr_storage))
1155 return EINVAL;
1156
1157 error = ether_addmulti(sa, &ifv->ifv_ec);
1158 if (error != ENETRESET)
1159 return error;
1160
1161 /*
1162 * This is a new multicast address. We have to tell parent
1163 * about it. Also, remember this multicast address so that
1164 * we can delete it on unconfigure.
1165 */
1166 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1167 if (mc == NULL) {
1168 error = ENOMEM;
1169 goto alloc_failed;
1170 }
1171
1172 /*
1173 * Since ether_addmulti() returned ENETRESET, the following two
1174 * statements shouldn't fail. Here ifv_ec is implicitly protected
1175 * by the ifv_lock lock.
1176 */
1177 error = ether_multiaddr(sa, addrlo, addrhi);
1178 KASSERT(error == 0);
1179
1180 ETHER_LOCK(&ifv->ifv_ec);
1181 mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1182 ETHER_UNLOCK(&ifv->ifv_ec);
1183
1184 KASSERT(mc->mc_enm != NULL);
1185
1186 memcpy(&mc->mc_addr, sa, sa->sa_len);
1187 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1188
1189 mib = ifv->ifv_mib;
1190
1191 KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1192 IFNET_LOCK(mib->ifvm_p);
1193 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1194 IFNET_UNLOCK(mib->ifvm_p);
1195 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1196
1197 if (error != 0)
1198 goto ioctl_failed;
1199 return error;
1200
1201 ioctl_failed:
1202 LIST_REMOVE(mc, mc_entries);
1203 free(mc, M_DEVBUF);
1204
1205 alloc_failed:
1206 (void)ether_delmulti(sa, &ifv->ifv_ec);
1207 return error;
1208 }
1209
1210 static int
1211 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1212 {
1213 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1214 struct ether_multi *enm;
1215 struct vlan_mc_entry *mc;
1216 struct ifvlan_linkmib *mib;
1217 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1218 int error;
1219
1220 KASSERT(mutex_owned(&ifv->ifv_lock));
1221
1222 /*
1223 * Find a key to lookup vlan_mc_entry. We have to do this
1224 * before calling ether_delmulti for obvious reasons.
1225 */
1226 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1227 return error;
1228
1229 ETHER_LOCK(&ifv->ifv_ec);
1230 enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1231 ETHER_UNLOCK(&ifv->ifv_ec);
1232 if (enm == NULL)
1233 return EINVAL;
1234
1235 LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
1236 if (mc->mc_enm == enm)
1237 break;
1238 }
1239
1240 /* We woun't delete entries we didn't add */
1241 if (mc == NULL)
1242 return EINVAL;
1243
1244 error = ether_delmulti(sa, &ifv->ifv_ec);
1245 if (error != ENETRESET)
1246 return error;
1247
1248 /* We no longer use this multicast address. Tell parent so. */
1249 mib = ifv->ifv_mib;
1250 IFNET_LOCK(mib->ifvm_p);
1251 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1252 IFNET_UNLOCK(mib->ifvm_p);
1253
1254 if (error == 0) {
1255 /* And forget about this address. */
1256 LIST_REMOVE(mc, mc_entries);
1257 free(mc, M_DEVBUF);
1258 } else {
1259 (void)ether_addmulti(sa, &ifv->ifv_ec);
1260 }
1261
1262 return error;
1263 }
1264
1265 /*
1266 * Delete any multicast address we have asked to add from parent
1267 * interface. Called when the vlan is being unconfigured.
1268 */
1269 static void
1270 vlan_ether_purgemulti(struct ifvlan *ifv)
1271 {
1272 struct vlan_mc_entry *mc;
1273 struct ifvlan_linkmib *mib;
1274
1275 KASSERT(mutex_owned(&ifv->ifv_lock));
1276 mib = ifv->ifv_mib;
1277 if (mib == NULL) {
1278 return;
1279 }
1280
1281 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1282 IFNET_LOCK(mib->ifvm_p);
1283 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1284 sstocsa(&mc->mc_addr));
1285 IFNET_UNLOCK(mib->ifvm_p);
1286 LIST_REMOVE(mc, mc_entries);
1287 free(mc, M_DEVBUF);
1288 }
1289 }
1290
1291 static void
1292 vlan_start(struct ifnet *ifp)
1293 {
1294 struct ifvlan *ifv = ifp->if_softc;
1295 struct ifnet *p;
1296 struct ethercom *ec;
1297 struct mbuf *m;
1298 struct ifvlan_linkmib *mib;
1299 struct psref psref;
1300 int error;
1301
1302 mib = vlan_getref_linkmib(ifv, &psref);
1303 if (mib == NULL)
1304 return;
1305 p = mib->ifvm_p;
1306 ec = (void *)mib->ifvm_p;
1307
1308 ifp->if_flags |= IFF_OACTIVE;
1309
1310 for (;;) {
1311 IFQ_DEQUEUE(&ifp->if_snd, m);
1312 if (m == NULL)
1313 break;
1314
1315 #ifdef ALTQ
1316 /*
1317 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
1318 * defined.
1319 */
1320 KERNEL_LOCK(1, NULL);
1321 /*
1322 * If ALTQ is enabled on the parent interface, do
1323 * classification; the queueing discipline might
1324 * not require classification, but might require
1325 * the address family/header pointer in the pktattr.
1326 */
1327 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1328 switch (p->if_type) {
1329 case IFT_ETHER:
1330 altq_etherclassify(&p->if_snd, m);
1331 break;
1332 default:
1333 panic("%s: impossible (altq)", __func__);
1334 }
1335 }
1336 KERNEL_UNLOCK_ONE(NULL);
1337 #endif /* ALTQ */
1338
1339 bpf_mtap(ifp, m);
1340 /*
1341 * If the parent can insert the tag itself, just mark
1342 * the tag in the mbuf header.
1343 */
1344 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1345 vlan_set_tag(m, mib->ifvm_tag);
1346 } else {
1347 /*
1348 * insert the tag ourselves
1349 */
1350 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1351 if (m == NULL) {
1352 printf("%s: unable to prepend encap header",
1353 p->if_xname);
1354 ifp->if_oerrors++;
1355 continue;
1356 }
1357
1358 switch (p->if_type) {
1359 case IFT_ETHER:
1360 {
1361 struct ether_vlan_header *evl;
1362
1363 if (m->m_len < sizeof(struct ether_vlan_header))
1364 m = m_pullup(m,
1365 sizeof(struct ether_vlan_header));
1366 if (m == NULL) {
1367 printf("%s: unable to pullup encap "
1368 "header", p->if_xname);
1369 ifp->if_oerrors++;
1370 continue;
1371 }
1372
1373 /*
1374 * Transform the Ethernet header into an
1375 * Ethernet header with 802.1Q encapsulation.
1376 */
1377 memmove(mtod(m, void *),
1378 mtod(m, char *) + mib->ifvm_encaplen,
1379 sizeof(struct ether_header));
1380 evl = mtod(m, struct ether_vlan_header *);
1381 evl->evl_proto = evl->evl_encap_proto;
1382 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1383 evl->evl_tag = htons(mib->ifvm_tag);
1384
1385 /*
1386 * To cater for VLAN-aware layer 2 ethernet
1387 * switches which may need to strip the tag
1388 * before forwarding the packet, make sure
1389 * the packet+tag is at least 68 bytes long.
1390 * This is necessary because our parent will
1391 * only pad to 64 bytes (ETHER_MIN_LEN) and
1392 * some switches will not pad by themselves
1393 * after deleting a tag.
1394 */
1395 const size_t min_data_len = ETHER_MIN_LEN -
1396 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1397 if (m->m_pkthdr.len < min_data_len) {
1398 m_copyback(m, m->m_pkthdr.len,
1399 min_data_len - m->m_pkthdr.len,
1400 vlan_zero_pad_buff);
1401 }
1402 break;
1403 }
1404
1405 default:
1406 panic("%s: impossible", __func__);
1407 }
1408 }
1409
1410 if ((p->if_flags & IFF_RUNNING) == 0) {
1411 m_freem(m);
1412 continue;
1413 }
1414
1415 error = if_transmit_lock(p, m);
1416 if (error) {
1417 /* mbuf is already freed */
1418 ifp->if_oerrors++;
1419 continue;
1420 }
1421 ifp->if_opackets++;
1422 }
1423
1424 ifp->if_flags &= ~IFF_OACTIVE;
1425
1426 /* Remove reference to mib before release */
1427 vlan_putref_linkmib(mib, &psref);
1428 }
1429
1430 static int
1431 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1432 {
1433 struct ifvlan *ifv = ifp->if_softc;
1434 struct ifnet *p;
1435 struct ethercom *ec;
1436 struct ifvlan_linkmib *mib;
1437 struct psref psref;
1438 int error;
1439 size_t pktlen = m->m_pkthdr.len;
1440 bool mcast = (m->m_flags & M_MCAST) != 0;
1441
1442 mib = vlan_getref_linkmib(ifv, &psref);
1443 if (mib == NULL) {
1444 m_freem(m);
1445 return ENETDOWN;
1446 }
1447
1448 p = mib->ifvm_p;
1449 ec = (void *)mib->ifvm_p;
1450
1451 bpf_mtap(ifp, m);
1452
1453 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
1454 goto out;
1455 if (m == NULL)
1456 goto out;
1457
1458 /*
1459 * If the parent can insert the tag itself, just mark
1460 * the tag in the mbuf header.
1461 */
1462 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1463 vlan_set_tag(m, mib->ifvm_tag);
1464 } else {
1465 /*
1466 * insert the tag ourselves
1467 */
1468 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1469 if (m == NULL) {
1470 printf("%s: unable to prepend encap header",
1471 p->if_xname);
1472 ifp->if_oerrors++;
1473 error = ENOBUFS;
1474 goto out;
1475 }
1476
1477 switch (p->if_type) {
1478 case IFT_ETHER:
1479 {
1480 struct ether_vlan_header *evl;
1481
1482 if (m->m_len < sizeof(struct ether_vlan_header))
1483 m = m_pullup(m,
1484 sizeof(struct ether_vlan_header));
1485 if (m == NULL) {
1486 printf("%s: unable to pullup encap "
1487 "header", p->if_xname);
1488 ifp->if_oerrors++;
1489 error = ENOBUFS;
1490 goto out;
1491 }
1492
1493 /*
1494 * Transform the Ethernet header into an
1495 * Ethernet header with 802.1Q encapsulation.
1496 */
1497 memmove(mtod(m, void *),
1498 mtod(m, char *) + mib->ifvm_encaplen,
1499 sizeof(struct ether_header));
1500 evl = mtod(m, struct ether_vlan_header *);
1501 evl->evl_proto = evl->evl_encap_proto;
1502 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1503 evl->evl_tag = htons(mib->ifvm_tag);
1504
1505 /*
1506 * To cater for VLAN-aware layer 2 ethernet
1507 * switches which may need to strip the tag
1508 * before forwarding the packet, make sure
1509 * the packet+tag is at least 68 bytes long.
1510 * This is necessary because our parent will
1511 * only pad to 64 bytes (ETHER_MIN_LEN) and
1512 * some switches will not pad by themselves
1513 * after deleting a tag.
1514 */
1515 const size_t min_data_len = ETHER_MIN_LEN -
1516 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1517 if (m->m_pkthdr.len < min_data_len) {
1518 m_copyback(m, m->m_pkthdr.len,
1519 min_data_len - m->m_pkthdr.len,
1520 vlan_zero_pad_buff);
1521 }
1522 break;
1523 }
1524
1525 default:
1526 panic("%s: impossible", __func__);
1527 }
1528 }
1529
1530 if ((p->if_flags & IFF_RUNNING) == 0) {
1531 m_freem(m);
1532 error = ENETDOWN;
1533 goto out;
1534 }
1535
1536 error = if_transmit_lock(p, m);
1537 if (error) {
1538 /* mbuf is already freed */
1539 ifp->if_oerrors++;
1540 } else {
1541
1542 ifp->if_opackets++;
1543 ifp->if_obytes += pktlen;
1544 if (mcast)
1545 ifp->if_omcasts++;
1546 }
1547
1548 out:
1549 /* Remove reference to mib before release */
1550 vlan_putref_linkmib(mib, &psref);
1551 return error;
1552 }
1553
1554 /*
1555 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1556 * given source interface and tag, then run the real packet through the
1557 * parent's input routine.
1558 */
1559 void
1560 vlan_input(struct ifnet *ifp, struct mbuf *m)
1561 {
1562 struct ifvlan *ifv;
1563 uint16_t vid;
1564 struct ifvlan_linkmib *mib;
1565 struct psref psref;
1566 bool have_vtag;
1567
1568 have_vtag = vlan_has_tag(m);
1569 if (have_vtag) {
1570 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1571 m->m_flags &= ~M_VLANTAG;
1572 } else {
1573 struct ether_vlan_header *evl;
1574
1575 if (ifp->if_type != IFT_ETHER) {
1576 panic("%s: impossible", __func__);
1577 }
1578
1579 if (m->m_len < sizeof(struct ether_vlan_header) &&
1580 (m = m_pullup(m,
1581 sizeof(struct ether_vlan_header))) == NULL) {
1582 printf("%s: no memory for VLAN header, "
1583 "dropping packet.\n", ifp->if_xname);
1584 return;
1585 }
1586 evl = mtod(m, struct ether_vlan_header *);
1587 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1588
1589 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1590
1591 /*
1592 * Restore the original ethertype. We'll remove
1593 * the encapsulation after we've found the vlan
1594 * interface corresponding to the tag.
1595 */
1596 evl->evl_encap_proto = evl->evl_proto;
1597 }
1598
1599 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1600 if (mib == NULL) {
1601 m_freem(m);
1602 ifp->if_noproto++;
1603 return;
1604 }
1605 KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
1606
1607 ifv = mib->ifvm_ifvlan;
1608 if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
1609 (IFF_UP|IFF_RUNNING)) {
1610 m_freem(m);
1611 ifp->if_noproto++;
1612 goto out;
1613 }
1614
1615 /*
1616 * Now, remove the encapsulation header. The original
1617 * header has already been fixed up above.
1618 */
1619 if (!have_vtag) {
1620 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1621 mtod(m, void *), sizeof(struct ether_header));
1622 m_adj(m, mib->ifvm_encaplen);
1623 }
1624
1625 m_set_rcvif(m, &ifv->ifv_if);
1626 ifv->ifv_if.if_ipackets++;
1627
1628 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
1629 goto out;
1630 if (m == NULL)
1631 goto out;
1632
1633 m->m_flags &= ~M_PROMISC;
1634 if_input(&ifv->ifv_if, m);
1635 out:
1636 vlan_putref_linkmib(mib, &psref);
1637 }
1638
1639 /*
1640 * Module infrastructure
1641 */
1642 #include "if_module.h"
1643
1644 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
1645