if_vlan.c revision 1.124.2.4 1 /* $NetBSD: if_vlan.c,v 1.124.2.4 2018/09/06 06:56:44 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.124.2.4 2018/09/06 06:56:44 pgoyette Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #endif
123
124 #include "ioconf.h"
125
126 struct vlan_mc_entry {
127 LIST_ENTRY(vlan_mc_entry) mc_entries;
128 /*
129 * A key to identify this entry. The mc_addr below can't be
130 * used since multiple sockaddr may mapped into the same
131 * ether_multi (e.g., AF_UNSPEC).
132 */
133 union {
134 struct ether_multi *mcu_enm;
135 } mc_u;
136 struct sockaddr_storage mc_addr;
137 };
138
139 #define mc_enm mc_u.mcu_enm
140
141
142 struct ifvlan_linkmib {
143 struct ifvlan *ifvm_ifvlan;
144 const struct vlan_multisw *ifvm_msw;
145 int ifvm_encaplen; /* encapsulation length */
146 int ifvm_mtufudge; /* MTU fudged by this much */
147 int ifvm_mintu; /* min transmission unit */
148 uint16_t ifvm_proto; /* encapsulation ethertype */
149 uint16_t ifvm_tag; /* tag to apply on packets */
150 struct ifnet *ifvm_p; /* parent interface of this vlan */
151
152 struct psref_target ifvm_psref;
153 };
154
155 struct ifvlan {
156 union {
157 struct ethercom ifvu_ec;
158 } ifv_u;
159 struct ifvlan_linkmib *ifv_mib; /*
160 * reader must use vlan_getref_linkmib()
161 * instead of direct dereference
162 */
163 kmutex_t ifv_lock; /* writer lock for ifv_mib */
164 pserialize_t ifv_psz;
165
166 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
167 LIST_ENTRY(ifvlan) ifv_list;
168 struct pslist_entry ifv_hash;
169 int ifv_flags;
170 };
171
172 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
173
174 #define ifv_ec ifv_u.ifvu_ec
175
176 #define ifv_if ifv_ec.ec_if
177
178 #define ifv_msw ifv_mib.ifvm_msw
179 #define ifv_encaplen ifv_mib.ifvm_encaplen
180 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
181 #define ifv_mintu ifv_mib.ifvm_mintu
182 #define ifv_tag ifv_mib.ifvm_tag
183
184 struct vlan_multisw {
185 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
186 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
187 void (*vmsw_purgemulti)(struct ifvlan *);
188 };
189
190 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
191 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
192 static void vlan_ether_purgemulti(struct ifvlan *);
193
194 const struct vlan_multisw vlan_ether_multisw = {
195 .vmsw_addmulti = vlan_ether_addmulti,
196 .vmsw_delmulti = vlan_ether_delmulti,
197 .vmsw_purgemulti = vlan_ether_purgemulti,
198 };
199
200 static int vlan_clone_create(struct if_clone *, int);
201 static int vlan_clone_destroy(struct ifnet *);
202 static int vlan_config(struct ifvlan *, struct ifnet *,
203 uint16_t);
204 static int vlan_ioctl(struct ifnet *, u_long, void *);
205 static void vlan_start(struct ifnet *);
206 static int vlan_transmit(struct ifnet *, struct mbuf *);
207 static void vlan_unconfig(struct ifnet *);
208 static int vlan_unconfig_locked(struct ifvlan *,
209 struct ifvlan_linkmib *);
210 static void vlan_hash_init(void);
211 static int vlan_hash_fini(void);
212 static int vlan_tag_hash(uint16_t, u_long);
213 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
214 struct psref *);
215 static void vlan_putref_linkmib(struct ifvlan_linkmib *,
216 struct psref *);
217 static void vlan_linkmib_update(struct ifvlan *,
218 struct ifvlan_linkmib *);
219 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
220 uint16_t, struct psref *);
221
222 LIST_HEAD(vlan_ifvlist, ifvlan);
223 static struct {
224 kmutex_t lock;
225 struct vlan_ifvlist list;
226 } ifv_list __cacheline_aligned;
227
228
229 #if !defined(VLAN_TAG_HASH_SIZE)
230 #define VLAN_TAG_HASH_SIZE 32
231 #endif
232 static struct {
233 kmutex_t lock;
234 struct pslist_head *lists;
235 u_long mask;
236 } ifv_hash __cacheline_aligned = {
237 .lists = NULL,
238 .mask = 0,
239 };
240
241 pserialize_t vlan_psz __read_mostly;
242 static struct psref_class *ifvm_psref_class __read_mostly;
243
244 struct if_clone vlan_cloner =
245 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
246
247 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
248 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
249
250 static inline int
251 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
252 {
253 int e;
254
255 KERNEL_LOCK_UNLESS_NET_MPSAFE();
256 e = ifpromisc(ifp, pswitch);
257 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
258
259 return e;
260 }
261
262 static inline int
263 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
264 {
265 int e;
266
267 KERNEL_LOCK_UNLESS_NET_MPSAFE();
268 e = ifpromisc_locked(ifp, pswitch);
269 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
270
271 return e;
272 }
273
274 void
275 vlanattach(int n)
276 {
277
278 /*
279 * Nothing to do here, initialization is handled by the
280 * module initialization code in vlaninit() below.
281 */
282 }
283
284 static void
285 vlaninit(void)
286 {
287 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
288 LIST_INIT(&ifv_list.list);
289
290 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
291 vlan_psz = pserialize_create();
292 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
293 if_clone_attach(&vlan_cloner);
294
295 vlan_hash_init();
296 }
297
298 static int
299 vlandetach(void)
300 {
301 bool is_empty;
302 int error;
303
304 mutex_enter(&ifv_list.lock);
305 is_empty = LIST_EMPTY(&ifv_list.list);
306 mutex_exit(&ifv_list.lock);
307
308 if (!is_empty)
309 return EBUSY;
310
311 error = vlan_hash_fini();
312 if (error != 0)
313 return error;
314
315 if_clone_detach(&vlan_cloner);
316 psref_class_destroy(ifvm_psref_class);
317 pserialize_destroy(vlan_psz);
318 mutex_destroy(&ifv_hash.lock);
319 mutex_destroy(&ifv_list.lock);
320
321 return 0;
322 }
323
324 static void
325 vlan_reset_linkname(struct ifnet *ifp)
326 {
327
328 /*
329 * We start out with a "802.1Q VLAN" type and zero-length
330 * addresses. When we attach to a parent interface, we
331 * inherit its type, address length, address, and data link
332 * type.
333 */
334
335 ifp->if_type = IFT_L2VLAN;
336 ifp->if_addrlen = 0;
337 ifp->if_dlt = DLT_NULL;
338 if_alloc_sadl(ifp);
339 }
340
341 static int
342 vlan_clone_create(struct if_clone *ifc, int unit)
343 {
344 struct ifvlan *ifv;
345 struct ifnet *ifp;
346 struct ifvlan_linkmib *mib;
347 int rv;
348
349 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
350 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
351 ifp = &ifv->ifv_if;
352 LIST_INIT(&ifv->ifv_mc_listhead);
353
354 mib->ifvm_ifvlan = ifv;
355 mib->ifvm_p = NULL;
356 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
357
358 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
359 ifv->ifv_psz = pserialize_create();
360 ifv->ifv_mib = mib;
361
362 mutex_enter(&ifv_list.lock);
363 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
364 mutex_exit(&ifv_list.lock);
365
366 if_initname(ifp, ifc->ifc_name, unit);
367 ifp->if_softc = ifv;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
370 #ifdef NET_MPSAFE
371 ifp->if_extflags |= IFEF_MPSAFE;
372 #endif
373 ifp->if_start = vlan_start;
374 ifp->if_transmit = vlan_transmit;
375 ifp->if_ioctl = vlan_ioctl;
376 IFQ_SET_READY(&ifp->if_snd);
377
378 rv = if_initialize(ifp);
379 if (rv != 0) {
380 aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
381 rv);
382 goto fail;
383 }
384
385 vlan_reset_linkname(ifp);
386 if_register(ifp);
387 return 0;
388
389 fail:
390 mutex_enter(&ifv_list.lock);
391 LIST_REMOVE(ifv, ifv_list);
392 mutex_exit(&ifv_list.lock);
393
394 mutex_destroy(&ifv->ifv_lock);
395 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
396 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
397 free(ifv, M_DEVBUF);
398
399 return rv;
400 }
401
402 static int
403 vlan_clone_destroy(struct ifnet *ifp)
404 {
405 struct ifvlan *ifv = ifp->if_softc;
406
407 mutex_enter(&ifv_list.lock);
408 LIST_REMOVE(ifv, ifv_list);
409 mutex_exit(&ifv_list.lock);
410
411 IFNET_LOCK(ifp);
412 vlan_unconfig(ifp);
413 IFNET_UNLOCK(ifp);
414 if_detach(ifp);
415
416 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
417 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
418 mutex_destroy(&ifv->ifv_lock);
419 free(ifv, M_DEVBUF);
420
421 return 0;
422 }
423
424 /*
425 * Configure a VLAN interface.
426 */
427 static int
428 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
429 {
430 struct ifnet *ifp = &ifv->ifv_if;
431 struct ifvlan_linkmib *nmib = NULL;
432 struct ifvlan_linkmib *omib = NULL;
433 struct ifvlan_linkmib *checkmib;
434 struct psref_target *nmib_psref = NULL;
435 const uint16_t vid = EVL_VLANOFTAG(tag);
436 int error = 0;
437 int idx;
438 bool omib_cleanup = false;
439 struct psref psref;
440
441 /* VLAN ID 0 and 4095 are reserved in the spec */
442 if ((vid == 0) || (vid == 0xfff))
443 return EINVAL;
444
445 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
446 mutex_enter(&ifv->ifv_lock);
447 omib = ifv->ifv_mib;
448
449 if (omib->ifvm_p != NULL) {
450 error = EBUSY;
451 goto done;
452 }
453
454 /* Duplicate check */
455 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
456 if (checkmib != NULL) {
457 vlan_putref_linkmib(checkmib, &psref);
458 error = EEXIST;
459 goto done;
460 }
461
462 *nmib = *omib;
463 nmib_psref = &nmib->ifvm_psref;
464
465 psref_target_init(nmib_psref, ifvm_psref_class);
466
467 switch (p->if_type) {
468 case IFT_ETHER:
469 {
470 struct ethercom *ec = (void *)p;
471 nmib->ifvm_msw = &vlan_ether_multisw;
472 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
473 nmib->ifvm_mintu = ETHERMIN;
474
475 if (ec->ec_nvlans++ == 0) {
476 IFNET_LOCK(p);
477 error = ether_enable_vlan_mtu(p);
478 IFNET_UNLOCK(p);
479 if (error >= 0) {
480 if (error) {
481 ec->ec_nvlans--;
482 goto done;
483 }
484 nmib->ifvm_mtufudge = 0;
485 } else {
486 /*
487 * Fudge the MTU by the encapsulation size. This
488 * makes us incompatible with strictly compliant
489 * 802.1Q implementations, but allows us to use
490 * the feature with other NetBSD
491 * implementations, which might still be useful.
492 */
493 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
494 }
495 error = 0;
496 }
497
498 /*
499 * If the parent interface can do hardware-assisted
500 * VLAN encapsulation, then propagate its hardware-
501 * assisted checksumming flags and tcp segmentation
502 * offload.
503 */
504 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
505 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
506 ifp->if_capabilities = p->if_capabilities &
507 (IFCAP_TSOv4 | IFCAP_TSOv6 |
508 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
509 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
510 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
511 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
512 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
513 }
514
515 /*
516 * We inherit the parent's Ethernet address.
517 */
518 ether_ifattach(ifp, CLLADDR(p->if_sadl));
519 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
520 break;
521 }
522
523 default:
524 error = EPROTONOSUPPORT;
525 goto done;
526 }
527
528 nmib->ifvm_p = p;
529 nmib->ifvm_tag = vid;
530 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
531 ifv->ifv_if.if_flags = p->if_flags &
532 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
533
534 /*
535 * Inherit the if_type from the parent. This allows us
536 * to participate in bridges of that type.
537 */
538 ifv->ifv_if.if_type = p->if_type;
539
540 PSLIST_ENTRY_INIT(ifv, ifv_hash);
541 idx = vlan_tag_hash(vid, ifv_hash.mask);
542
543 mutex_enter(&ifv_hash.lock);
544 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
545 mutex_exit(&ifv_hash.lock);
546
547 vlan_linkmib_update(ifv, nmib);
548 nmib = NULL;
549 nmib_psref = NULL;
550 omib_cleanup = true;
551
552 done:
553 mutex_exit(&ifv->ifv_lock);
554
555 if (nmib_psref)
556 psref_target_destroy(nmib_psref, ifvm_psref_class);
557 if (nmib)
558 kmem_free(nmib, sizeof(*nmib));
559 if (omib_cleanup)
560 kmem_free(omib, sizeof(*omib));
561
562 return error;
563 }
564
565 /*
566 * Unconfigure a VLAN interface.
567 */
568 static void
569 vlan_unconfig(struct ifnet *ifp)
570 {
571 struct ifvlan *ifv = ifp->if_softc;
572 struct ifvlan_linkmib *nmib = NULL;
573 int error;
574
575 KASSERT(IFNET_LOCKED(ifp));
576
577 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
578
579 mutex_enter(&ifv->ifv_lock);
580 error = vlan_unconfig_locked(ifv, nmib);
581 mutex_exit(&ifv->ifv_lock);
582
583 if (error)
584 kmem_free(nmib, sizeof(*nmib));
585 }
586 static int
587 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
588 {
589 struct ifnet *p;
590 struct ifnet *ifp = &ifv->ifv_if;
591 struct psref_target *nmib_psref = NULL;
592 struct ifvlan_linkmib *omib;
593 int error = 0;
594
595 KASSERT(IFNET_LOCKED(ifp));
596 KASSERT(mutex_owned(&ifv->ifv_lock));
597
598 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
599
600 omib = ifv->ifv_mib;
601 p = omib->ifvm_p;
602
603 if (p == NULL) {
604 error = -1;
605 goto done;
606 }
607
608 *nmib = *omib;
609 nmib_psref = &nmib->ifvm_psref;
610 psref_target_init(nmib_psref, ifvm_psref_class);
611
612 /*
613 * Since the interface is being unconfigured, we need to empty the
614 * list of multicast groups that we may have joined while we were
615 * alive and remove them from the parent's list also.
616 */
617 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
618
619 /* Disconnect from parent. */
620 switch (p->if_type) {
621 case IFT_ETHER:
622 {
623 struct ethercom *ec = (void *)p;
624 if (--ec->ec_nvlans == 0) {
625 IFNET_LOCK(p);
626 (void) ether_disable_vlan_mtu(p);
627 IFNET_UNLOCK(p);
628 }
629
630 /* XXX ether_ifdetach must not be called with IFNET_LOCK */
631 mutex_exit(&ifv->ifv_lock);
632 IFNET_UNLOCK(ifp);
633 ether_ifdetach(ifp);
634 IFNET_LOCK(ifp);
635 mutex_enter(&ifv->ifv_lock);
636
637 /* Restore vlan_ioctl overwritten by ether_ifdetach */
638 ifp->if_ioctl = vlan_ioctl;
639 vlan_reset_linkname(ifp);
640 break;
641 }
642
643 default:
644 panic("%s: impossible", __func__);
645 }
646
647 nmib->ifvm_p = NULL;
648 ifv->ifv_if.if_mtu = 0;
649 ifv->ifv_flags = 0;
650
651 mutex_enter(&ifv_hash.lock);
652 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
653 pserialize_perform(vlan_psz);
654 mutex_exit(&ifv_hash.lock);
655 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
656
657 vlan_linkmib_update(ifv, nmib);
658
659 mutex_exit(&ifv->ifv_lock);
660
661 nmib_psref = NULL;
662 kmem_free(omib, sizeof(*omib));
663
664 #ifdef INET6
665 KERNEL_LOCK_UNLESS_NET_MPSAFE();
666 /* To delete v6 link local addresses */
667 if (in6_present)
668 in6_ifdetach(ifp);
669 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
670 #endif
671
672 if ((ifp->if_flags & IFF_PROMISC) != 0)
673 vlan_safe_ifpromisc_locked(ifp, 0);
674 if_down_locked(ifp);
675 ifp->if_capabilities = 0;
676 mutex_enter(&ifv->ifv_lock);
677 done:
678
679 if (nmib_psref)
680 psref_target_destroy(nmib_psref, ifvm_psref_class);
681
682 return error;
683 }
684
685 static void
686 vlan_hash_init(void)
687 {
688
689 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
690 &ifv_hash.mask);
691 }
692
693 static int
694 vlan_hash_fini(void)
695 {
696 int i;
697
698 mutex_enter(&ifv_hash.lock);
699
700 for (i = 0; i < ifv_hash.mask + 1; i++) {
701 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
702 ifv_hash) != NULL) {
703 mutex_exit(&ifv_hash.lock);
704 return EBUSY;
705 }
706 }
707
708 for (i = 0; i < ifv_hash.mask + 1; i++)
709 PSLIST_DESTROY(&ifv_hash.lists[i]);
710
711 mutex_exit(&ifv_hash.lock);
712
713 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
714
715 ifv_hash.lists = NULL;
716 ifv_hash.mask = 0;
717
718 return 0;
719 }
720
721 static int
722 vlan_tag_hash(uint16_t tag, u_long mask)
723 {
724 uint32_t hash;
725
726 hash = (tag >> 8) ^ tag;
727 hash = (hash >> 2) ^ hash;
728
729 return hash & mask;
730 }
731
732 static struct ifvlan_linkmib *
733 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
734 {
735 struct ifvlan_linkmib *mib;
736 int s;
737
738 s = pserialize_read_enter();
739 mib = sc->ifv_mib;
740 if (mib == NULL) {
741 pserialize_read_exit(s);
742 return NULL;
743 }
744 membar_datadep_consumer();
745 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
746 pserialize_read_exit(s);
747
748 return mib;
749 }
750
751 static void
752 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
753 {
754 if (mib == NULL)
755 return;
756 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
757 }
758
759 static struct ifvlan_linkmib *
760 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
761 {
762 int idx;
763 int s;
764 struct ifvlan *sc;
765
766 idx = vlan_tag_hash(tag, ifv_hash.mask);
767
768 s = pserialize_read_enter();
769 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
770 ifv_hash) {
771 struct ifvlan_linkmib *mib = sc->ifv_mib;
772 if (mib == NULL)
773 continue;
774 if (mib->ifvm_tag != tag)
775 continue;
776 if (mib->ifvm_p != ifp)
777 continue;
778
779 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
780 pserialize_read_exit(s);
781 return mib;
782 }
783 pserialize_read_exit(s);
784 return NULL;
785 }
786
787 static void
788 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
789 {
790 struct ifvlan_linkmib *omib = ifv->ifv_mib;
791
792 KASSERT(mutex_owned(&ifv->ifv_lock));
793
794 membar_producer();
795 ifv->ifv_mib = nmib;
796
797 pserialize_perform(ifv->ifv_psz);
798 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
799 }
800
801 /*
802 * Called when a parent interface is detaching; destroy any VLAN
803 * configuration for the parent interface.
804 */
805 void
806 vlan_ifdetach(struct ifnet *p)
807 {
808 struct ifvlan *ifv;
809 struct ifvlan_linkmib *mib, **nmibs;
810 struct psref psref;
811 int error;
812 int bound;
813 int i, cnt = 0;
814
815 bound = curlwp_bind();
816
817 mutex_enter(&ifv_list.lock);
818 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
819 mib = vlan_getref_linkmib(ifv, &psref);
820 if (mib == NULL)
821 continue;
822
823 if (mib->ifvm_p == p)
824 cnt++;
825
826 vlan_putref_linkmib(mib, &psref);
827 }
828 mutex_exit(&ifv_list.lock);
829
830 if (cnt == 0) {
831 curlwp_bindx(bound);
832 return;
833 }
834
835 /*
836 * The value of "cnt" does not increase while ifv_list.lock
837 * and ifv->ifv_lock are released here, because the parent
838 * interface is detaching.
839 */
840 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
841 for (i = 0; i < cnt; i++) {
842 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
843 }
844
845 mutex_enter(&ifv_list.lock);
846
847 i = 0;
848 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
849 struct ifnet *ifp = &ifv->ifv_if;
850
851 /* IFNET_LOCK must be held before ifv_lock. */
852 IFNET_LOCK(ifp);
853 mutex_enter(&ifv->ifv_lock);
854
855 /* XXX ifv_mib = NULL? */
856 if (ifv->ifv_mib->ifvm_p == p) {
857 KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
858 p->if_xname);
859 error = vlan_unconfig_locked(ifv, nmibs[i]);
860 if (!error) {
861 nmibs[i] = NULL;
862 i++;
863 }
864
865 }
866
867 mutex_exit(&ifv->ifv_lock);
868 IFNET_UNLOCK(ifp);
869 }
870
871 mutex_exit(&ifv_list.lock);
872
873 curlwp_bindx(bound);
874
875 for (i = 0; i < cnt; i++) {
876 if (nmibs[i])
877 kmem_free(nmibs[i], sizeof(*nmibs[i]));
878 }
879
880 kmem_free(nmibs, sizeof(*nmibs) * cnt);
881
882 return;
883 }
884
885 static int
886 vlan_set_promisc(struct ifnet *ifp)
887 {
888 struct ifvlan *ifv = ifp->if_softc;
889 struct ifvlan_linkmib *mib;
890 struct psref psref;
891 int error = 0;
892 int bound;
893
894 bound = curlwp_bind();
895 mib = vlan_getref_linkmib(ifv, &psref);
896 if (mib == NULL) {
897 curlwp_bindx(bound);
898 return EBUSY;
899 }
900
901 if ((ifp->if_flags & IFF_PROMISC) != 0) {
902 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
903 error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
904 if (error == 0)
905 ifv->ifv_flags |= IFVF_PROMISC;
906 }
907 } else {
908 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
909 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
910 if (error == 0)
911 ifv->ifv_flags &= ~IFVF_PROMISC;
912 }
913 }
914 vlan_putref_linkmib(mib, &psref);
915 curlwp_bindx(bound);
916
917 return error;
918 }
919
920 static int
921 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
922 {
923 struct lwp *l = curlwp;
924 struct ifvlan *ifv = ifp->if_softc;
925 struct ifaddr *ifa = (struct ifaddr *) data;
926 struct ifreq *ifr = (struct ifreq *) data;
927 struct ifnet *pr;
928 struct ifcapreq *ifcr;
929 struct vlanreq vlr;
930 struct ifvlan_linkmib *mib;
931 struct psref psref;
932 int error = 0;
933 int bound;
934
935 switch (cmd) {
936 case SIOCSIFMTU:
937 bound = curlwp_bind();
938 mib = vlan_getref_linkmib(ifv, &psref);
939 if (mib == NULL) {
940 curlwp_bindx(bound);
941 error = EBUSY;
942 break;
943 }
944
945 if (mib->ifvm_p == NULL) {
946 vlan_putref_linkmib(mib, &psref);
947 curlwp_bindx(bound);
948 error = EINVAL;
949 } else if (
950 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
951 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
952 vlan_putref_linkmib(mib, &psref);
953 curlwp_bindx(bound);
954 error = EINVAL;
955 } else {
956 vlan_putref_linkmib(mib, &psref);
957 curlwp_bindx(bound);
958
959 error = ifioctl_common(ifp, cmd, data);
960 if (error == ENETRESET)
961 error = 0;
962 }
963
964 break;
965
966 case SIOCSETVLAN:
967 if ((error = kauth_authorize_network(l->l_cred,
968 KAUTH_NETWORK_INTERFACE,
969 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
970 NULL)) != 0)
971 break;
972 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
973 break;
974
975 if (vlr.vlr_parent[0] == '\0') {
976 bound = curlwp_bind();
977 mib = vlan_getref_linkmib(ifv, &psref);
978 if (mib == NULL) {
979 curlwp_bindx(bound);
980 error = EBUSY;
981 break;
982 }
983
984 if (mib->ifvm_p != NULL &&
985 (ifp->if_flags & IFF_PROMISC) != 0)
986 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
987
988 vlan_putref_linkmib(mib, &psref);
989 curlwp_bindx(bound);
990
991 vlan_unconfig(ifp);
992 break;
993 }
994 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
995 error = EINVAL; /* check for valid tag */
996 break;
997 }
998 if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
999 error = ENOENT;
1000 break;
1001 }
1002 error = vlan_config(ifv, pr, vlr.vlr_tag);
1003 if (error != 0) {
1004 break;
1005 }
1006
1007 /* Update promiscuous mode, if necessary. */
1008 vlan_set_promisc(ifp);
1009
1010 ifp->if_flags |= IFF_RUNNING;
1011 break;
1012
1013 case SIOCGETVLAN:
1014 memset(&vlr, 0, sizeof(vlr));
1015 bound = curlwp_bind();
1016 mib = vlan_getref_linkmib(ifv, &psref);
1017 if (mib == NULL) {
1018 curlwp_bindx(bound);
1019 error = EBUSY;
1020 break;
1021 }
1022 if (mib->ifvm_p != NULL) {
1023 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
1024 mib->ifvm_p->if_xname);
1025 vlr.vlr_tag = mib->ifvm_tag;
1026 }
1027 vlan_putref_linkmib(mib, &psref);
1028 curlwp_bindx(bound);
1029 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1030 break;
1031
1032 case SIOCSIFFLAGS:
1033 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1034 break;
1035 /*
1036 * For promiscuous mode, we enable promiscuous mode on
1037 * the parent if we need promiscuous on the VLAN interface.
1038 */
1039 bound = curlwp_bind();
1040 mib = vlan_getref_linkmib(ifv, &psref);
1041 if (mib == NULL) {
1042 curlwp_bindx(bound);
1043 error = EBUSY;
1044 break;
1045 }
1046
1047 if (mib->ifvm_p != NULL)
1048 error = vlan_set_promisc(ifp);
1049 vlan_putref_linkmib(mib, &psref);
1050 curlwp_bindx(bound);
1051 break;
1052
1053 case SIOCADDMULTI:
1054 mutex_enter(&ifv->ifv_lock);
1055 mib = ifv->ifv_mib;
1056 if (mib == NULL) {
1057 error = EBUSY;
1058 mutex_exit(&ifv->ifv_lock);
1059 break;
1060 }
1061
1062 error = (mib->ifvm_p != NULL) ?
1063 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1064 mib = NULL;
1065 mutex_exit(&ifv->ifv_lock);
1066 break;
1067
1068 case SIOCDELMULTI:
1069 mutex_enter(&ifv->ifv_lock);
1070 mib = ifv->ifv_mib;
1071 if (mib == NULL) {
1072 error = EBUSY;
1073 mutex_exit(&ifv->ifv_lock);
1074 break;
1075 }
1076 error = (mib->ifvm_p != NULL) ?
1077 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1078 mib = NULL;
1079 mutex_exit(&ifv->ifv_lock);
1080 break;
1081
1082 case SIOCSIFCAP:
1083 ifcr = data;
1084 /* make sure caps are enabled on parent */
1085 bound = curlwp_bind();
1086 mib = vlan_getref_linkmib(ifv, &psref);
1087 if (mib == NULL) {
1088 curlwp_bindx(bound);
1089 error = EBUSY;
1090 break;
1091 }
1092
1093 if (mib->ifvm_p == NULL) {
1094 vlan_putref_linkmib(mib, &psref);
1095 curlwp_bindx(bound);
1096 error = EINVAL;
1097 break;
1098 }
1099 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1100 ifcr->ifcr_capenable) {
1101 vlan_putref_linkmib(mib, &psref);
1102 curlwp_bindx(bound);
1103 error = EINVAL;
1104 break;
1105 }
1106
1107 vlan_putref_linkmib(mib, &psref);
1108 curlwp_bindx(bound);
1109
1110 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1111 error = 0;
1112 break;
1113 case SIOCINITIFADDR:
1114 bound = curlwp_bind();
1115 mib = vlan_getref_linkmib(ifv, &psref);
1116 if (mib == NULL) {
1117 curlwp_bindx(bound);
1118 error = EBUSY;
1119 break;
1120 }
1121
1122 if (mib->ifvm_p == NULL) {
1123 error = EINVAL;
1124 vlan_putref_linkmib(mib, &psref);
1125 curlwp_bindx(bound);
1126 break;
1127 }
1128 vlan_putref_linkmib(mib, &psref);
1129 curlwp_bindx(bound);
1130
1131 ifp->if_flags |= IFF_UP;
1132 #ifdef INET
1133 if (ifa->ifa_addr->sa_family == AF_INET)
1134 arp_ifinit(ifp, ifa);
1135 #endif
1136 break;
1137
1138 default:
1139 error = ether_ioctl(ifp, cmd, data);
1140 }
1141
1142 return error;
1143 }
1144
1145 static int
1146 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1147 {
1148 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1149 struct vlan_mc_entry *mc;
1150 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1151 struct ifvlan_linkmib *mib;
1152 int error;
1153
1154 KASSERT(mutex_owned(&ifv->ifv_lock));
1155
1156 if (sa->sa_len > sizeof(struct sockaddr_storage))
1157 return EINVAL;
1158
1159 error = ether_addmulti(sa, &ifv->ifv_ec);
1160 if (error != ENETRESET)
1161 return error;
1162
1163 /*
1164 * This is a new multicast address. We have to tell parent
1165 * about it. Also, remember this multicast address so that
1166 * we can delete it on unconfigure.
1167 */
1168 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1169 if (mc == NULL) {
1170 error = ENOMEM;
1171 goto alloc_failed;
1172 }
1173
1174 /*
1175 * Since ether_addmulti() returned ENETRESET, the following two
1176 * statements shouldn't fail. Here ifv_ec is implicitly protected
1177 * by the ifv_lock lock.
1178 */
1179 error = ether_multiaddr(sa, addrlo, addrhi);
1180 KASSERT(error == 0);
1181
1182 ETHER_LOCK(&ifv->ifv_ec);
1183 mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1184 ETHER_UNLOCK(&ifv->ifv_ec);
1185
1186 KASSERT(mc->mc_enm != NULL);
1187
1188 memcpy(&mc->mc_addr, sa, sa->sa_len);
1189 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1190
1191 mib = ifv->ifv_mib;
1192
1193 KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1194 IFNET_LOCK(mib->ifvm_p);
1195 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1196 IFNET_UNLOCK(mib->ifvm_p);
1197 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1198
1199 if (error != 0)
1200 goto ioctl_failed;
1201 return error;
1202
1203 ioctl_failed:
1204 LIST_REMOVE(mc, mc_entries);
1205 free(mc, M_DEVBUF);
1206
1207 alloc_failed:
1208 (void)ether_delmulti(sa, &ifv->ifv_ec);
1209 return error;
1210 }
1211
1212 static int
1213 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1214 {
1215 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1216 struct ether_multi *enm;
1217 struct vlan_mc_entry *mc;
1218 struct ifvlan_linkmib *mib;
1219 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1220 int error;
1221
1222 KASSERT(mutex_owned(&ifv->ifv_lock));
1223
1224 /*
1225 * Find a key to lookup vlan_mc_entry. We have to do this
1226 * before calling ether_delmulti for obvious reasons.
1227 */
1228 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1229 return error;
1230
1231 ETHER_LOCK(&ifv->ifv_ec);
1232 enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1233 ETHER_UNLOCK(&ifv->ifv_ec);
1234 if (enm == NULL)
1235 return EINVAL;
1236
1237 LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
1238 if (mc->mc_enm == enm)
1239 break;
1240 }
1241
1242 /* We woun't delete entries we didn't add */
1243 if (mc == NULL)
1244 return EINVAL;
1245
1246 error = ether_delmulti(sa, &ifv->ifv_ec);
1247 if (error != ENETRESET)
1248 return error;
1249
1250 /* We no longer use this multicast address. Tell parent so. */
1251 mib = ifv->ifv_mib;
1252 IFNET_LOCK(mib->ifvm_p);
1253 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1254 IFNET_UNLOCK(mib->ifvm_p);
1255
1256 if (error == 0) {
1257 /* And forget about this address. */
1258 LIST_REMOVE(mc, mc_entries);
1259 free(mc, M_DEVBUF);
1260 } else {
1261 (void)ether_addmulti(sa, &ifv->ifv_ec);
1262 }
1263
1264 return error;
1265 }
1266
1267 /*
1268 * Delete any multicast address we have asked to add from parent
1269 * interface. Called when the vlan is being unconfigured.
1270 */
1271 static void
1272 vlan_ether_purgemulti(struct ifvlan *ifv)
1273 {
1274 struct vlan_mc_entry *mc;
1275 struct ifvlan_linkmib *mib;
1276
1277 KASSERT(mutex_owned(&ifv->ifv_lock));
1278 mib = ifv->ifv_mib;
1279 if (mib == NULL) {
1280 return;
1281 }
1282
1283 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1284 IFNET_LOCK(mib->ifvm_p);
1285 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1286 sstocsa(&mc->mc_addr));
1287 IFNET_UNLOCK(mib->ifvm_p);
1288 LIST_REMOVE(mc, mc_entries);
1289 free(mc, M_DEVBUF);
1290 }
1291 }
1292
1293 static void
1294 vlan_start(struct ifnet *ifp)
1295 {
1296 struct ifvlan *ifv = ifp->if_softc;
1297 struct ifnet *p;
1298 struct ethercom *ec;
1299 struct mbuf *m;
1300 struct ifvlan_linkmib *mib;
1301 struct psref psref;
1302 int error;
1303
1304 mib = vlan_getref_linkmib(ifv, &psref);
1305 if (mib == NULL)
1306 return;
1307 p = mib->ifvm_p;
1308 ec = (void *)mib->ifvm_p;
1309
1310 ifp->if_flags |= IFF_OACTIVE;
1311
1312 for (;;) {
1313 IFQ_DEQUEUE(&ifp->if_snd, m);
1314 if (m == NULL)
1315 break;
1316
1317 #ifdef ALTQ
1318 /*
1319 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
1320 * defined.
1321 */
1322 KERNEL_LOCK(1, NULL);
1323 /*
1324 * If ALTQ is enabled on the parent interface, do
1325 * classification; the queueing discipline might
1326 * not require classification, but might require
1327 * the address family/header pointer in the pktattr.
1328 */
1329 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1330 switch (p->if_type) {
1331 case IFT_ETHER:
1332 altq_etherclassify(&p->if_snd, m);
1333 break;
1334 default:
1335 panic("%s: impossible (altq)", __func__);
1336 }
1337 }
1338 KERNEL_UNLOCK_ONE(NULL);
1339 #endif /* ALTQ */
1340
1341 bpf_mtap(ifp, m, BPF_D_OUT);
1342 /*
1343 * If the parent can insert the tag itself, just mark
1344 * the tag in the mbuf header.
1345 */
1346 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1347 vlan_set_tag(m, mib->ifvm_tag);
1348 } else {
1349 /*
1350 * insert the tag ourselves
1351 */
1352 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1353 if (m == NULL) {
1354 printf("%s: unable to prepend encap header",
1355 p->if_xname);
1356 ifp->if_oerrors++;
1357 continue;
1358 }
1359
1360 switch (p->if_type) {
1361 case IFT_ETHER:
1362 {
1363 struct ether_vlan_header *evl;
1364
1365 if (m->m_len < sizeof(struct ether_vlan_header))
1366 m = m_pullup(m,
1367 sizeof(struct ether_vlan_header));
1368 if (m == NULL) {
1369 printf("%s: unable to pullup encap "
1370 "header", p->if_xname);
1371 ifp->if_oerrors++;
1372 continue;
1373 }
1374
1375 /*
1376 * Transform the Ethernet header into an
1377 * Ethernet header with 802.1Q encapsulation.
1378 */
1379 memmove(mtod(m, void *),
1380 mtod(m, char *) + mib->ifvm_encaplen,
1381 sizeof(struct ether_header));
1382 evl = mtod(m, struct ether_vlan_header *);
1383 evl->evl_proto = evl->evl_encap_proto;
1384 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1385 evl->evl_tag = htons(mib->ifvm_tag);
1386
1387 /*
1388 * To cater for VLAN-aware layer 2 ethernet
1389 * switches which may need to strip the tag
1390 * before forwarding the packet, make sure
1391 * the packet+tag is at least 68 bytes long.
1392 * This is necessary because our parent will
1393 * only pad to 64 bytes (ETHER_MIN_LEN) and
1394 * some switches will not pad by themselves
1395 * after deleting a tag.
1396 */
1397 const size_t min_data_len = ETHER_MIN_LEN -
1398 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1399 if (m->m_pkthdr.len < min_data_len) {
1400 m_copyback(m, m->m_pkthdr.len,
1401 min_data_len - m->m_pkthdr.len,
1402 vlan_zero_pad_buff);
1403 }
1404 break;
1405 }
1406
1407 default:
1408 panic("%s: impossible", __func__);
1409 }
1410 }
1411
1412 if ((p->if_flags & IFF_RUNNING) == 0) {
1413 m_freem(m);
1414 continue;
1415 }
1416
1417 error = if_transmit_lock(p, m);
1418 if (error) {
1419 /* mbuf is already freed */
1420 ifp->if_oerrors++;
1421 continue;
1422 }
1423 ifp->if_opackets++;
1424 }
1425
1426 ifp->if_flags &= ~IFF_OACTIVE;
1427
1428 /* Remove reference to mib before release */
1429 vlan_putref_linkmib(mib, &psref);
1430 }
1431
1432 static int
1433 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1434 {
1435 struct ifvlan *ifv = ifp->if_softc;
1436 struct ifnet *p;
1437 struct ethercom *ec;
1438 struct ifvlan_linkmib *mib;
1439 struct psref psref;
1440 int error;
1441 size_t pktlen = m->m_pkthdr.len;
1442 bool mcast = (m->m_flags & M_MCAST) != 0;
1443
1444 mib = vlan_getref_linkmib(ifv, &psref);
1445 if (mib == NULL) {
1446 m_freem(m);
1447 return ENETDOWN;
1448 }
1449
1450 p = mib->ifvm_p;
1451 ec = (void *)mib->ifvm_p;
1452
1453 bpf_mtap(ifp, m, BPF_D_OUT);
1454
1455 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
1456 goto out;
1457 if (m == NULL)
1458 goto out;
1459
1460 /*
1461 * If the parent can insert the tag itself, just mark
1462 * the tag in the mbuf header.
1463 */
1464 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1465 vlan_set_tag(m, mib->ifvm_tag);
1466 } else {
1467 /*
1468 * insert the tag ourselves
1469 */
1470 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1471 if (m == NULL) {
1472 printf("%s: unable to prepend encap header",
1473 p->if_xname);
1474 ifp->if_oerrors++;
1475 error = ENOBUFS;
1476 goto out;
1477 }
1478
1479 switch (p->if_type) {
1480 case IFT_ETHER:
1481 {
1482 struct ether_vlan_header *evl;
1483
1484 if (m->m_len < sizeof(struct ether_vlan_header))
1485 m = m_pullup(m,
1486 sizeof(struct ether_vlan_header));
1487 if (m == NULL) {
1488 printf("%s: unable to pullup encap "
1489 "header", p->if_xname);
1490 ifp->if_oerrors++;
1491 error = ENOBUFS;
1492 goto out;
1493 }
1494
1495 /*
1496 * Transform the Ethernet header into an
1497 * Ethernet header with 802.1Q encapsulation.
1498 */
1499 memmove(mtod(m, void *),
1500 mtod(m, char *) + mib->ifvm_encaplen,
1501 sizeof(struct ether_header));
1502 evl = mtod(m, struct ether_vlan_header *);
1503 evl->evl_proto = evl->evl_encap_proto;
1504 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1505 evl->evl_tag = htons(mib->ifvm_tag);
1506
1507 /*
1508 * To cater for VLAN-aware layer 2 ethernet
1509 * switches which may need to strip the tag
1510 * before forwarding the packet, make sure
1511 * the packet+tag is at least 68 bytes long.
1512 * This is necessary because our parent will
1513 * only pad to 64 bytes (ETHER_MIN_LEN) and
1514 * some switches will not pad by themselves
1515 * after deleting a tag.
1516 */
1517 const size_t min_data_len = ETHER_MIN_LEN -
1518 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1519 if (m->m_pkthdr.len < min_data_len) {
1520 m_copyback(m, m->m_pkthdr.len,
1521 min_data_len - m->m_pkthdr.len,
1522 vlan_zero_pad_buff);
1523 }
1524 break;
1525 }
1526
1527 default:
1528 panic("%s: impossible", __func__);
1529 }
1530 }
1531
1532 if ((p->if_flags & IFF_RUNNING) == 0) {
1533 m_freem(m);
1534 error = ENETDOWN;
1535 goto out;
1536 }
1537
1538 error = if_transmit_lock(p, m);
1539 if (error) {
1540 /* mbuf is already freed */
1541 ifp->if_oerrors++;
1542 } else {
1543
1544 ifp->if_opackets++;
1545 ifp->if_obytes += pktlen;
1546 if (mcast)
1547 ifp->if_omcasts++;
1548 }
1549
1550 out:
1551 /* Remove reference to mib before release */
1552 vlan_putref_linkmib(mib, &psref);
1553 return error;
1554 }
1555
1556 /*
1557 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1558 * given source interface and tag, then run the real packet through the
1559 * parent's input routine.
1560 */
1561 void
1562 vlan_input(struct ifnet *ifp, struct mbuf *m)
1563 {
1564 struct ifvlan *ifv;
1565 uint16_t vid;
1566 struct ifvlan_linkmib *mib;
1567 struct psref psref;
1568 bool have_vtag;
1569
1570 have_vtag = vlan_has_tag(m);
1571 if (have_vtag) {
1572 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1573 m->m_flags &= ~M_VLANTAG;
1574 } else {
1575 struct ether_vlan_header *evl;
1576
1577 if (ifp->if_type != IFT_ETHER) {
1578 panic("%s: impossible", __func__);
1579 }
1580
1581 if (m->m_len < sizeof(struct ether_vlan_header) &&
1582 (m = m_pullup(m,
1583 sizeof(struct ether_vlan_header))) == NULL) {
1584 printf("%s: no memory for VLAN header, "
1585 "dropping packet.\n", ifp->if_xname);
1586 return;
1587 }
1588 evl = mtod(m, struct ether_vlan_header *);
1589 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1590
1591 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1592
1593 /*
1594 * Restore the original ethertype. We'll remove
1595 * the encapsulation after we've found the vlan
1596 * interface corresponding to the tag.
1597 */
1598 evl->evl_encap_proto = evl->evl_proto;
1599 }
1600
1601 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1602 if (mib == NULL) {
1603 m_freem(m);
1604 ifp->if_noproto++;
1605 return;
1606 }
1607 KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
1608
1609 ifv = mib->ifvm_ifvlan;
1610 if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
1611 (IFF_UP|IFF_RUNNING)) {
1612 m_freem(m);
1613 ifp->if_noproto++;
1614 goto out;
1615 }
1616
1617 /*
1618 * Now, remove the encapsulation header. The original
1619 * header has already been fixed up above.
1620 */
1621 if (!have_vtag) {
1622 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1623 mtod(m, void *), sizeof(struct ether_header));
1624 m_adj(m, mib->ifvm_encaplen);
1625 }
1626
1627 m_set_rcvif(m, &ifv->ifv_if);
1628 ifv->ifv_if.if_ipackets++;
1629
1630 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
1631 goto out;
1632 if (m == NULL)
1633 goto out;
1634
1635 m->m_flags &= ~M_PROMISC;
1636 if_input(&ifv->ifv_if, m);
1637 out:
1638 vlan_putref_linkmib(mib, &psref);
1639 }
1640
1641 /*
1642 * Module infrastructure
1643 */
1644 #include "if_module.h"
1645
1646 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
1647