if_vlan.c revision 1.137 1 /* $NetBSD: if_vlan.c,v 1.137 2019/06/18 08:36:52 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.137 2019/06/18 08:36:52 msaitoh Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #endif
123
124 #include "ioconf.h"
125
126 struct vlan_mc_entry {
127 LIST_ENTRY(vlan_mc_entry) mc_entries;
128 /*
129 * A key to identify this entry. The mc_addr below can't be
130 * used since multiple sockaddr may mapped into the same
131 * ether_multi (e.g., AF_UNSPEC).
132 */
133 union {
134 struct ether_multi *mcu_enm;
135 } mc_u;
136 struct sockaddr_storage mc_addr;
137 };
138
139 #define mc_enm mc_u.mcu_enm
140
141
142 struct ifvlan_linkmib {
143 struct ifvlan *ifvm_ifvlan;
144 const struct vlan_multisw *ifvm_msw;
145 int ifvm_encaplen; /* encapsulation length */
146 int ifvm_mtufudge; /* MTU fudged by this much */
147 int ifvm_mintu; /* min transmission unit */
148 uint16_t ifvm_proto; /* encapsulation ethertype */
149 uint16_t ifvm_tag; /* tag to apply on packets */
150 struct ifnet *ifvm_p; /* parent interface of this vlan */
151
152 struct psref_target ifvm_psref;
153 };
154
155 struct ifvlan {
156 union {
157 struct ethercom ifvu_ec;
158 } ifv_u;
159 struct ifvlan_linkmib *ifv_mib; /*
160 * reader must use vlan_getref_linkmib()
161 * instead of direct dereference
162 */
163 kmutex_t ifv_lock; /* writer lock for ifv_mib */
164 pserialize_t ifv_psz;
165
166 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
167 LIST_ENTRY(ifvlan) ifv_list;
168 struct pslist_entry ifv_hash;
169 int ifv_flags;
170 };
171
172 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
173
174 #define ifv_ec ifv_u.ifvu_ec
175
176 #define ifv_if ifv_ec.ec_if
177
178 #define ifv_msw ifv_mib.ifvm_msw
179 #define ifv_encaplen ifv_mib.ifvm_encaplen
180 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
181 #define ifv_mintu ifv_mib.ifvm_mintu
182 #define ifv_tag ifv_mib.ifvm_tag
183
184 struct vlan_multisw {
185 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
186 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
187 void (*vmsw_purgemulti)(struct ifvlan *);
188 };
189
190 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
191 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
192 static void vlan_ether_purgemulti(struct ifvlan *);
193
194 const struct vlan_multisw vlan_ether_multisw = {
195 .vmsw_addmulti = vlan_ether_addmulti,
196 .vmsw_delmulti = vlan_ether_delmulti,
197 .vmsw_purgemulti = vlan_ether_purgemulti,
198 };
199
200 static int vlan_clone_create(struct if_clone *, int);
201 static int vlan_clone_destroy(struct ifnet *);
202 static int vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
203 static int vlan_ioctl(struct ifnet *, u_long, void *);
204 static void vlan_start(struct ifnet *);
205 static int vlan_transmit(struct ifnet *, struct mbuf *);
206 static void vlan_unconfig(struct ifnet *);
207 static int vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
208 static void vlan_hash_init(void);
209 static int vlan_hash_fini(void);
210 static int vlan_tag_hash(uint16_t, u_long);
211 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
212 struct psref *);
213 static void vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
214 static void vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
215 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
216 uint16_t, struct psref *);
217
218 LIST_HEAD(vlan_ifvlist, ifvlan);
219 static struct {
220 kmutex_t lock;
221 struct vlan_ifvlist list;
222 } ifv_list __cacheline_aligned;
223
224
225 #if !defined(VLAN_TAG_HASH_SIZE)
226 #define VLAN_TAG_HASH_SIZE 32
227 #endif
228 static struct {
229 kmutex_t lock;
230 struct pslist_head *lists;
231 u_long mask;
232 } ifv_hash __cacheline_aligned = {
233 .lists = NULL,
234 .mask = 0,
235 };
236
237 pserialize_t vlan_psz __read_mostly;
238 static struct psref_class *ifvm_psref_class __read_mostly;
239
240 struct if_clone vlan_cloner =
241 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
242
243 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
244 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
245
246 static inline int
247 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
248 {
249 int e;
250
251 KERNEL_LOCK_UNLESS_NET_MPSAFE();
252 e = ifpromisc(ifp, pswitch);
253 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
254
255 return e;
256 }
257
258 static inline int
259 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
260 {
261 int e;
262
263 KERNEL_LOCK_UNLESS_NET_MPSAFE();
264 e = ifpromisc_locked(ifp, pswitch);
265 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
266
267 return e;
268 }
269
270 void
271 vlanattach(int n)
272 {
273
274 /*
275 * Nothing to do here, initialization is handled by the
276 * module initialization code in vlaninit() below.
277 */
278 }
279
280 static void
281 vlaninit(void)
282 {
283 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
284 LIST_INIT(&ifv_list.list);
285
286 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
287 vlan_psz = pserialize_create();
288 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
289 if_clone_attach(&vlan_cloner);
290
291 vlan_hash_init();
292 MODULE_HOOK_SET(if_vlan_vlan_input_hook, "vlan_inp", vlan_input);
293 }
294
295 static int
296 vlandetach(void)
297 {
298 bool is_empty;
299 int error;
300
301 mutex_enter(&ifv_list.lock);
302 is_empty = LIST_EMPTY(&ifv_list.list);
303 mutex_exit(&ifv_list.lock);
304
305 if (!is_empty)
306 return EBUSY;
307
308 error = vlan_hash_fini();
309 if (error != 0)
310 return error;
311
312 if_clone_detach(&vlan_cloner);
313 psref_class_destroy(ifvm_psref_class);
314 pserialize_destroy(vlan_psz);
315 mutex_destroy(&ifv_hash.lock);
316 mutex_destroy(&ifv_list.lock);
317
318 MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
319 return 0;
320 }
321
322 static void
323 vlan_reset_linkname(struct ifnet *ifp)
324 {
325
326 /*
327 * We start out with a "802.1Q VLAN" type and zero-length
328 * addresses. When we attach to a parent interface, we
329 * inherit its type, address length, address, and data link
330 * type.
331 */
332
333 ifp->if_type = IFT_L2VLAN;
334 ifp->if_addrlen = 0;
335 ifp->if_dlt = DLT_NULL;
336 if_alloc_sadl(ifp);
337 }
338
339 static int
340 vlan_clone_create(struct if_clone *ifc, int unit)
341 {
342 struct ifvlan *ifv;
343 struct ifnet *ifp;
344 struct ifvlan_linkmib *mib;
345 int rv;
346
347 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
348 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
349 ifp = &ifv->ifv_if;
350 LIST_INIT(&ifv->ifv_mc_listhead);
351
352 mib->ifvm_ifvlan = ifv;
353 mib->ifvm_p = NULL;
354 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
355
356 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
357 ifv->ifv_psz = pserialize_create();
358 ifv->ifv_mib = mib;
359
360 mutex_enter(&ifv_list.lock);
361 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
362 mutex_exit(&ifv_list.lock);
363
364 if_initname(ifp, ifc->ifc_name, unit);
365 ifp->if_softc = ifv;
366 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
368 #ifdef NET_MPSAFE
369 ifp->if_extflags |= IFEF_MPSAFE;
370 #endif
371 ifp->if_start = vlan_start;
372 ifp->if_transmit = vlan_transmit;
373 ifp->if_ioctl = vlan_ioctl;
374 IFQ_SET_READY(&ifp->if_snd);
375
376 rv = if_initialize(ifp);
377 if (rv != 0) {
378 aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
379 rv);
380 goto fail;
381 }
382
383 vlan_reset_linkname(ifp);
384 if_register(ifp);
385 return 0;
386
387 fail:
388 mutex_enter(&ifv_list.lock);
389 LIST_REMOVE(ifv, ifv_list);
390 mutex_exit(&ifv_list.lock);
391
392 mutex_destroy(&ifv->ifv_lock);
393 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
394 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
395 free(ifv, M_DEVBUF);
396
397 return rv;
398 }
399
400 static int
401 vlan_clone_destroy(struct ifnet *ifp)
402 {
403 struct ifvlan *ifv = ifp->if_softc;
404
405 mutex_enter(&ifv_list.lock);
406 LIST_REMOVE(ifv, ifv_list);
407 mutex_exit(&ifv_list.lock);
408
409 IFNET_LOCK(ifp);
410 vlan_unconfig(ifp);
411 IFNET_UNLOCK(ifp);
412 if_detach(ifp);
413
414 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
415 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
416 pserialize_destroy(ifv->ifv_psz);
417 mutex_destroy(&ifv->ifv_lock);
418 free(ifv, M_DEVBUF);
419
420 return 0;
421 }
422
423 /*
424 * Configure a VLAN interface.
425 */
426 static int
427 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
428 {
429 struct ifnet *ifp = &ifv->ifv_if;
430 struct ifvlan_linkmib *nmib = NULL;
431 struct ifvlan_linkmib *omib = NULL;
432 struct ifvlan_linkmib *checkmib;
433 struct psref_target *nmib_psref = NULL;
434 const uint16_t vid = EVL_VLANOFTAG(tag);
435 int error = 0;
436 int idx;
437 bool omib_cleanup = false;
438 struct psref psref;
439
440 /* VLAN ID 0 and 4095 are reserved in the spec */
441 if ((vid == 0) || (vid == 0xfff))
442 return EINVAL;
443
444 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
445 mutex_enter(&ifv->ifv_lock);
446 omib = ifv->ifv_mib;
447
448 if (omib->ifvm_p != NULL) {
449 error = EBUSY;
450 goto done;
451 }
452
453 /* Duplicate check */
454 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
455 if (checkmib != NULL) {
456 vlan_putref_linkmib(checkmib, &psref);
457 error = EEXIST;
458 goto done;
459 }
460
461 *nmib = *omib;
462 nmib_psref = &nmib->ifvm_psref;
463
464 psref_target_init(nmib_psref, ifvm_psref_class);
465
466 switch (p->if_type) {
467 case IFT_ETHER:
468 {
469 struct ethercom *ec = (void *)p;
470 nmib->ifvm_msw = &vlan_ether_multisw;
471 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
472 nmib->ifvm_mintu = ETHERMIN;
473
474 if (ec->ec_nvlans++ == 0) {
475 IFNET_LOCK(p);
476 error = ether_enable_vlan_mtu(p);
477 IFNET_UNLOCK(p);
478 if (error >= 0) {
479 if (error) {
480 ec->ec_nvlans--;
481 goto done;
482 }
483 nmib->ifvm_mtufudge = 0;
484 } else {
485 /*
486 * Fudge the MTU by the encapsulation size. This
487 * makes us incompatible with strictly compliant
488 * 802.1Q implementations, but allows us to use
489 * the feature with other NetBSD
490 * implementations, which might still be useful.
491 */
492 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
493 }
494 error = 0;
495 }
496
497 /*
498 * If the parent interface can do hardware-assisted
499 * VLAN encapsulation, then propagate its hardware-
500 * assisted checksumming flags and tcp segmentation
501 * offload.
502 */
503 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
504 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
505 ifp->if_capabilities = p->if_capabilities &
506 (IFCAP_TSOv4 | IFCAP_TSOv6 |
507 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
508 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
509 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
510 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
511 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
512 }
513
514 /*
515 * We inherit the parent's Ethernet address.
516 */
517 ether_ifattach(ifp, CLLADDR(p->if_sadl));
518 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
519 break;
520 }
521
522 default:
523 error = EPROTONOSUPPORT;
524 goto done;
525 }
526
527 nmib->ifvm_p = p;
528 nmib->ifvm_tag = vid;
529 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
530 ifv->ifv_if.if_flags = p->if_flags &
531 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
532
533 /*
534 * Inherit the if_type from the parent. This allows us
535 * to participate in bridges of that type.
536 */
537 ifv->ifv_if.if_type = p->if_type;
538
539 PSLIST_ENTRY_INIT(ifv, ifv_hash);
540 idx = vlan_tag_hash(vid, ifv_hash.mask);
541
542 mutex_enter(&ifv_hash.lock);
543 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
544 mutex_exit(&ifv_hash.lock);
545
546 vlan_linkmib_update(ifv, nmib);
547 nmib = NULL;
548 nmib_psref = NULL;
549 omib_cleanup = true;
550
551 done:
552 mutex_exit(&ifv->ifv_lock);
553
554 if (nmib_psref)
555 psref_target_destroy(nmib_psref, ifvm_psref_class);
556 if (nmib)
557 kmem_free(nmib, sizeof(*nmib));
558 if (omib_cleanup)
559 kmem_free(omib, sizeof(*omib));
560
561 return error;
562 }
563
564 /*
565 * Unconfigure a VLAN interface.
566 */
567 static void
568 vlan_unconfig(struct ifnet *ifp)
569 {
570 struct ifvlan *ifv = ifp->if_softc;
571 struct ifvlan_linkmib *nmib = NULL;
572 int error;
573
574 KASSERT(IFNET_LOCKED(ifp));
575
576 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
577
578 mutex_enter(&ifv->ifv_lock);
579 error = vlan_unconfig_locked(ifv, nmib);
580 mutex_exit(&ifv->ifv_lock);
581
582 if (error)
583 kmem_free(nmib, sizeof(*nmib));
584 }
585 static int
586 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
587 {
588 struct ifnet *p;
589 struct ifnet *ifp = &ifv->ifv_if;
590 struct psref_target *nmib_psref = NULL;
591 struct ifvlan_linkmib *omib;
592 int error = 0;
593
594 KASSERT(IFNET_LOCKED(ifp));
595 KASSERT(mutex_owned(&ifv->ifv_lock));
596
597 ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);
598
599 omib = ifv->ifv_mib;
600 p = omib->ifvm_p;
601
602 if (p == NULL) {
603 error = -1;
604 goto done;
605 }
606
607 *nmib = *omib;
608 nmib_psref = &nmib->ifvm_psref;
609 psref_target_init(nmib_psref, ifvm_psref_class);
610
611 /*
612 * Since the interface is being unconfigured, we need to empty the
613 * list of multicast groups that we may have joined while we were
614 * alive and remove them from the parent's list also.
615 */
616 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
617
618 /* Disconnect from parent. */
619 switch (p->if_type) {
620 case IFT_ETHER:
621 {
622 struct ethercom *ec = (void *)p;
623 if (--ec->ec_nvlans == 0) {
624 IFNET_LOCK(p);
625 (void) ether_disable_vlan_mtu(p);
626 IFNET_UNLOCK(p);
627 }
628
629 /* XXX ether_ifdetach must not be called with IFNET_LOCK */
630 mutex_exit(&ifv->ifv_lock);
631 IFNET_UNLOCK(ifp);
632 ether_ifdetach(ifp);
633 IFNET_LOCK(ifp);
634 mutex_enter(&ifv->ifv_lock);
635
636 /* if_free_sadl must be called with IFNET_LOCK */
637 if_free_sadl(ifp, 1);
638
639 /* Restore vlan_ioctl overwritten by ether_ifdetach */
640 ifp->if_ioctl = vlan_ioctl;
641 vlan_reset_linkname(ifp);
642 break;
643 }
644
645 default:
646 panic("%s: impossible", __func__);
647 }
648
649 nmib->ifvm_p = NULL;
650 ifv->ifv_if.if_mtu = 0;
651 ifv->ifv_flags = 0;
652
653 mutex_enter(&ifv_hash.lock);
654 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
655 pserialize_perform(vlan_psz);
656 mutex_exit(&ifv_hash.lock);
657 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
658
659 vlan_linkmib_update(ifv, nmib);
660
661 mutex_exit(&ifv->ifv_lock);
662
663 nmib_psref = NULL;
664 kmem_free(omib, sizeof(*omib));
665
666 #ifdef INET6
667 KERNEL_LOCK_UNLESS_NET_MPSAFE();
668 /* To delete v6 link local addresses */
669 if (in6_present)
670 in6_ifdetach(ifp);
671 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
672 #endif
673
674 if ((ifp->if_flags & IFF_PROMISC) != 0)
675 vlan_safe_ifpromisc_locked(ifp, 0);
676 if_down_locked(ifp);
677 ifp->if_capabilities = 0;
678 mutex_enter(&ifv->ifv_lock);
679 done:
680
681 if (nmib_psref)
682 psref_target_destroy(nmib_psref, ifvm_psref_class);
683
684 return error;
685 }
686
687 static void
688 vlan_hash_init(void)
689 {
690
691 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
692 &ifv_hash.mask);
693 }
694
695 static int
696 vlan_hash_fini(void)
697 {
698 int i;
699
700 mutex_enter(&ifv_hash.lock);
701
702 for (i = 0; i < ifv_hash.mask + 1; i++) {
703 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
704 ifv_hash) != NULL) {
705 mutex_exit(&ifv_hash.lock);
706 return EBUSY;
707 }
708 }
709
710 for (i = 0; i < ifv_hash.mask + 1; i++)
711 PSLIST_DESTROY(&ifv_hash.lists[i]);
712
713 mutex_exit(&ifv_hash.lock);
714
715 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
716
717 ifv_hash.lists = NULL;
718 ifv_hash.mask = 0;
719
720 return 0;
721 }
722
723 static int
724 vlan_tag_hash(uint16_t tag, u_long mask)
725 {
726 uint32_t hash;
727
728 hash = (tag >> 8) ^ tag;
729 hash = (hash >> 2) ^ hash;
730
731 return hash & mask;
732 }
733
734 static struct ifvlan_linkmib *
735 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
736 {
737 struct ifvlan_linkmib *mib;
738 int s;
739
740 s = pserialize_read_enter();
741 mib = sc->ifv_mib;
742 if (mib == NULL) {
743 pserialize_read_exit(s);
744 return NULL;
745 }
746 membar_datadep_consumer();
747 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
748 pserialize_read_exit(s);
749
750 return mib;
751 }
752
753 static void
754 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
755 {
756 if (mib == NULL)
757 return;
758 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
759 }
760
761 static struct ifvlan_linkmib *
762 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
763 {
764 int idx;
765 int s;
766 struct ifvlan *sc;
767
768 idx = vlan_tag_hash(tag, ifv_hash.mask);
769
770 s = pserialize_read_enter();
771 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
772 ifv_hash) {
773 struct ifvlan_linkmib *mib = sc->ifv_mib;
774 if (mib == NULL)
775 continue;
776 if (mib->ifvm_tag != tag)
777 continue;
778 if (mib->ifvm_p != ifp)
779 continue;
780
781 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
782 pserialize_read_exit(s);
783 return mib;
784 }
785 pserialize_read_exit(s);
786 return NULL;
787 }
788
789 static void
790 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
791 {
792 struct ifvlan_linkmib *omib = ifv->ifv_mib;
793
794 KASSERT(mutex_owned(&ifv->ifv_lock));
795
796 membar_producer();
797 ifv->ifv_mib = nmib;
798
799 pserialize_perform(ifv->ifv_psz);
800 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
801 }
802
803 /*
804 * Called when a parent interface is detaching; destroy any VLAN
805 * configuration for the parent interface.
806 */
807 void
808 vlan_ifdetach(struct ifnet *p)
809 {
810 struct ifvlan *ifv;
811 struct ifvlan_linkmib *mib, **nmibs;
812 struct psref psref;
813 int error;
814 int bound;
815 int i, cnt = 0;
816
817 bound = curlwp_bind();
818
819 mutex_enter(&ifv_list.lock);
820 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
821 mib = vlan_getref_linkmib(ifv, &psref);
822 if (mib == NULL)
823 continue;
824
825 if (mib->ifvm_p == p)
826 cnt++;
827
828 vlan_putref_linkmib(mib, &psref);
829 }
830 mutex_exit(&ifv_list.lock);
831
832 if (cnt == 0) {
833 curlwp_bindx(bound);
834 return;
835 }
836
837 /*
838 * The value of "cnt" does not increase while ifv_list.lock
839 * and ifv->ifv_lock are released here, because the parent
840 * interface is detaching.
841 */
842 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
843 for (i = 0; i < cnt; i++) {
844 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
845 }
846
847 mutex_enter(&ifv_list.lock);
848
849 i = 0;
850 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
851 struct ifnet *ifp = &ifv->ifv_if;
852
853 /* IFNET_LOCK must be held before ifv_lock. */
854 IFNET_LOCK(ifp);
855 mutex_enter(&ifv->ifv_lock);
856
857 /* XXX ifv_mib = NULL? */
858 if (ifv->ifv_mib->ifvm_p == p) {
859 KASSERTMSG(i < cnt,
860 "no memory for unconfig, parent=%s", p->if_xname);
861 error = vlan_unconfig_locked(ifv, nmibs[i]);
862 if (!error) {
863 nmibs[i] = NULL;
864 i++;
865 }
866
867 }
868
869 mutex_exit(&ifv->ifv_lock);
870 IFNET_UNLOCK(ifp);
871 }
872
873 mutex_exit(&ifv_list.lock);
874
875 curlwp_bindx(bound);
876
877 for (i = 0; i < cnt; i++) {
878 if (nmibs[i])
879 kmem_free(nmibs[i], sizeof(*nmibs[i]));
880 }
881
882 kmem_free(nmibs, sizeof(*nmibs) * cnt);
883
884 return;
885 }
886
887 static int
888 vlan_set_promisc(struct ifnet *ifp)
889 {
890 struct ifvlan *ifv = ifp->if_softc;
891 struct ifvlan_linkmib *mib;
892 struct psref psref;
893 int error = 0;
894 int bound;
895
896 bound = curlwp_bind();
897 mib = vlan_getref_linkmib(ifv, &psref);
898 if (mib == NULL) {
899 curlwp_bindx(bound);
900 return EBUSY;
901 }
902
903 if ((ifp->if_flags & IFF_PROMISC) != 0) {
904 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
905 error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
906 if (error == 0)
907 ifv->ifv_flags |= IFVF_PROMISC;
908 }
909 } else {
910 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
911 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
912 if (error == 0)
913 ifv->ifv_flags &= ~IFVF_PROMISC;
914 }
915 }
916 vlan_putref_linkmib(mib, &psref);
917 curlwp_bindx(bound);
918
919 return error;
920 }
921
922 static int
923 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
924 {
925 struct lwp *l = curlwp;
926 struct ifvlan *ifv = ifp->if_softc;
927 struct ifaddr *ifa = (struct ifaddr *) data;
928 struct ifreq *ifr = (struct ifreq *) data;
929 struct ifnet *pr;
930 struct ifcapreq *ifcr;
931 struct vlanreq vlr;
932 struct ifvlan_linkmib *mib;
933 struct psref psref;
934 int error = 0;
935 int bound;
936
937 switch (cmd) {
938 case SIOCSIFMTU:
939 bound = curlwp_bind();
940 mib = vlan_getref_linkmib(ifv, &psref);
941 if (mib == NULL) {
942 curlwp_bindx(bound);
943 error = EBUSY;
944 break;
945 }
946
947 if (mib->ifvm_p == NULL) {
948 vlan_putref_linkmib(mib, &psref);
949 curlwp_bindx(bound);
950 error = EINVAL;
951 } else if (
952 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
953 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
954 vlan_putref_linkmib(mib, &psref);
955 curlwp_bindx(bound);
956 error = EINVAL;
957 } else {
958 vlan_putref_linkmib(mib, &psref);
959 curlwp_bindx(bound);
960
961 error = ifioctl_common(ifp, cmd, data);
962 if (error == ENETRESET)
963 error = 0;
964 }
965
966 break;
967
968 case SIOCSETVLAN:
969 if ((error = kauth_authorize_network(l->l_cred,
970 KAUTH_NETWORK_INTERFACE,
971 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
972 NULL)) != 0)
973 break;
974 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
975 break;
976
977 if (vlr.vlr_parent[0] == '\0') {
978 bound = curlwp_bind();
979 mib = vlan_getref_linkmib(ifv, &psref);
980 if (mib == NULL) {
981 curlwp_bindx(bound);
982 error = EBUSY;
983 break;
984 }
985
986 if (mib->ifvm_p != NULL &&
987 (ifp->if_flags & IFF_PROMISC) != 0)
988 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
989
990 vlan_putref_linkmib(mib, &psref);
991 curlwp_bindx(bound);
992
993 vlan_unconfig(ifp);
994 break;
995 }
996 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
997 error = EINVAL; /* check for valid tag */
998 break;
999 }
1000 if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
1001 error = ENOENT;
1002 break;
1003 }
1004 error = vlan_config(ifv, pr, vlr.vlr_tag);
1005 if (error != 0) {
1006 break;
1007 }
1008
1009 /* Update promiscuous mode, if necessary. */
1010 vlan_set_promisc(ifp);
1011
1012 ifp->if_flags |= IFF_RUNNING;
1013 break;
1014
1015 case SIOCGETVLAN:
1016 memset(&vlr, 0, sizeof(vlr));
1017 bound = curlwp_bind();
1018 mib = vlan_getref_linkmib(ifv, &psref);
1019 if (mib == NULL) {
1020 curlwp_bindx(bound);
1021 error = EBUSY;
1022 break;
1023 }
1024 if (mib->ifvm_p != NULL) {
1025 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
1026 mib->ifvm_p->if_xname);
1027 vlr.vlr_tag = mib->ifvm_tag;
1028 }
1029 vlan_putref_linkmib(mib, &psref);
1030 curlwp_bindx(bound);
1031 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1032 break;
1033
1034 case SIOCSIFFLAGS:
1035 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1036 break;
1037 /*
1038 * For promiscuous mode, we enable promiscuous mode on
1039 * the parent if we need promiscuous on the VLAN interface.
1040 */
1041 bound = curlwp_bind();
1042 mib = vlan_getref_linkmib(ifv, &psref);
1043 if (mib == NULL) {
1044 curlwp_bindx(bound);
1045 error = EBUSY;
1046 break;
1047 }
1048
1049 if (mib->ifvm_p != NULL)
1050 error = vlan_set_promisc(ifp);
1051 vlan_putref_linkmib(mib, &psref);
1052 curlwp_bindx(bound);
1053 break;
1054
1055 case SIOCADDMULTI:
1056 mutex_enter(&ifv->ifv_lock);
1057 mib = ifv->ifv_mib;
1058 if (mib == NULL) {
1059 error = EBUSY;
1060 mutex_exit(&ifv->ifv_lock);
1061 break;
1062 }
1063
1064 error = (mib->ifvm_p != NULL) ?
1065 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1066 mib = NULL;
1067 mutex_exit(&ifv->ifv_lock);
1068 break;
1069
1070 case SIOCDELMULTI:
1071 mutex_enter(&ifv->ifv_lock);
1072 mib = ifv->ifv_mib;
1073 if (mib == NULL) {
1074 error = EBUSY;
1075 mutex_exit(&ifv->ifv_lock);
1076 break;
1077 }
1078 error = (mib->ifvm_p != NULL) ?
1079 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1080 mib = NULL;
1081 mutex_exit(&ifv->ifv_lock);
1082 break;
1083
1084 case SIOCSIFCAP:
1085 ifcr = data;
1086 /* make sure caps are enabled on parent */
1087 bound = curlwp_bind();
1088 mib = vlan_getref_linkmib(ifv, &psref);
1089 if (mib == NULL) {
1090 curlwp_bindx(bound);
1091 error = EBUSY;
1092 break;
1093 }
1094
1095 if (mib->ifvm_p == NULL) {
1096 vlan_putref_linkmib(mib, &psref);
1097 curlwp_bindx(bound);
1098 error = EINVAL;
1099 break;
1100 }
1101 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1102 ifcr->ifcr_capenable) {
1103 vlan_putref_linkmib(mib, &psref);
1104 curlwp_bindx(bound);
1105 error = EINVAL;
1106 break;
1107 }
1108
1109 vlan_putref_linkmib(mib, &psref);
1110 curlwp_bindx(bound);
1111
1112 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1113 error = 0;
1114 break;
1115 case SIOCINITIFADDR:
1116 bound = curlwp_bind();
1117 mib = vlan_getref_linkmib(ifv, &psref);
1118 if (mib == NULL) {
1119 curlwp_bindx(bound);
1120 error = EBUSY;
1121 break;
1122 }
1123
1124 if (mib->ifvm_p == NULL) {
1125 error = EINVAL;
1126 vlan_putref_linkmib(mib, &psref);
1127 curlwp_bindx(bound);
1128 break;
1129 }
1130 vlan_putref_linkmib(mib, &psref);
1131 curlwp_bindx(bound);
1132
1133 ifp->if_flags |= IFF_UP;
1134 #ifdef INET
1135 if (ifa->ifa_addr->sa_family == AF_INET)
1136 arp_ifinit(ifp, ifa);
1137 #endif
1138 break;
1139
1140 default:
1141 error = ether_ioctl(ifp, cmd, data);
1142 }
1143
1144 return error;
1145 }
1146
1147 static int
1148 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1149 {
1150 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1151 struct vlan_mc_entry *mc;
1152 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1153 struct ifvlan_linkmib *mib;
1154 int error;
1155
1156 KASSERT(mutex_owned(&ifv->ifv_lock));
1157
1158 if (sa->sa_len > sizeof(struct sockaddr_storage))
1159 return EINVAL;
1160
1161 error = ether_addmulti(sa, &ifv->ifv_ec);
1162 if (error != ENETRESET)
1163 return error;
1164
1165 /*
1166 * This is a new multicast address. We have to tell parent
1167 * about it. Also, remember this multicast address so that
1168 * we can delete it on unconfigure.
1169 */
1170 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1171 if (mc == NULL) {
1172 error = ENOMEM;
1173 goto alloc_failed;
1174 }
1175
1176 /*
1177 * Since ether_addmulti() returned ENETRESET, the following two
1178 * statements shouldn't fail. Here ifv_ec is implicitly protected
1179 * by the ifv_lock lock.
1180 */
1181 error = ether_multiaddr(sa, addrlo, addrhi);
1182 KASSERT(error == 0);
1183
1184 ETHER_LOCK(&ifv->ifv_ec);
1185 mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1186 ETHER_UNLOCK(&ifv->ifv_ec);
1187
1188 KASSERT(mc->mc_enm != NULL);
1189
1190 memcpy(&mc->mc_addr, sa, sa->sa_len);
1191 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1192
1193 mib = ifv->ifv_mib;
1194
1195 KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1196 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1197 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1198
1199 if (error != 0)
1200 goto ioctl_failed;
1201 return error;
1202
1203 ioctl_failed:
1204 LIST_REMOVE(mc, mc_entries);
1205 free(mc, M_DEVBUF);
1206
1207 alloc_failed:
1208 (void)ether_delmulti(sa, &ifv->ifv_ec);
1209 return error;
1210 }
1211
1212 static int
1213 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1214 {
1215 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1216 struct ether_multi *enm;
1217 struct vlan_mc_entry *mc;
1218 struct ifvlan_linkmib *mib;
1219 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1220 int error;
1221
1222 KASSERT(mutex_owned(&ifv->ifv_lock));
1223
1224 /*
1225 * Find a key to lookup vlan_mc_entry. We have to do this
1226 * before calling ether_delmulti for obvious reasons.
1227 */
1228 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1229 return error;
1230
1231 ETHER_LOCK(&ifv->ifv_ec);
1232 enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1233 ETHER_UNLOCK(&ifv->ifv_ec);
1234 if (enm == NULL)
1235 return EINVAL;
1236
1237 LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
1238 if (mc->mc_enm == enm)
1239 break;
1240 }
1241
1242 /* We woun't delete entries we didn't add */
1243 if (mc == NULL)
1244 return EINVAL;
1245
1246 error = ether_delmulti(sa, &ifv->ifv_ec);
1247 if (error != ENETRESET)
1248 return error;
1249
1250 /* We no longer use this multicast address. Tell parent so. */
1251 mib = ifv->ifv_mib;
1252 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1253
1254 if (error == 0) {
1255 /* And forget about this address. */
1256 LIST_REMOVE(mc, mc_entries);
1257 free(mc, M_DEVBUF);
1258 } else {
1259 (void)ether_addmulti(sa, &ifv->ifv_ec);
1260 }
1261
1262 return error;
1263 }
1264
1265 /*
1266 * Delete any multicast address we have asked to add from parent
1267 * interface. Called when the vlan is being unconfigured.
1268 */
1269 static void
1270 vlan_ether_purgemulti(struct ifvlan *ifv)
1271 {
1272 struct vlan_mc_entry *mc;
1273 struct ifvlan_linkmib *mib;
1274
1275 KASSERT(mutex_owned(&ifv->ifv_lock));
1276 mib = ifv->ifv_mib;
1277 if (mib == NULL) {
1278 return;
1279 }
1280
1281 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1282 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1283 sstocsa(&mc->mc_addr));
1284 LIST_REMOVE(mc, mc_entries);
1285 free(mc, M_DEVBUF);
1286 }
1287 }
1288
1289 static void
1290 vlan_start(struct ifnet *ifp)
1291 {
1292 struct ifvlan *ifv = ifp->if_softc;
1293 struct ifnet *p;
1294 struct ethercom *ec;
1295 struct mbuf *m;
1296 struct ifvlan_linkmib *mib;
1297 struct psref psref;
1298 int error;
1299
1300 mib = vlan_getref_linkmib(ifv, &psref);
1301 if (mib == NULL)
1302 return;
1303 p = mib->ifvm_p;
1304 ec = (void *)mib->ifvm_p;
1305
1306 ifp->if_flags |= IFF_OACTIVE;
1307
1308 for (;;) {
1309 IFQ_DEQUEUE(&ifp->if_snd, m);
1310 if (m == NULL)
1311 break;
1312
1313 #ifdef ALTQ
1314 /*
1315 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
1316 * defined.
1317 */
1318 KERNEL_LOCK(1, NULL);
1319 /*
1320 * If ALTQ is enabled on the parent interface, do
1321 * classification; the queueing discipline might
1322 * not require classification, but might require
1323 * the address family/header pointer in the pktattr.
1324 */
1325 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1326 switch (p->if_type) {
1327 case IFT_ETHER:
1328 altq_etherclassify(&p->if_snd, m);
1329 break;
1330 default:
1331 panic("%s: impossible (altq)", __func__);
1332 }
1333 }
1334 KERNEL_UNLOCK_ONE(NULL);
1335 #endif /* ALTQ */
1336
1337 bpf_mtap(ifp, m, BPF_D_OUT);
1338 /*
1339 * If the parent can insert the tag itself, just mark
1340 * the tag in the mbuf header.
1341 */
1342 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1343 vlan_set_tag(m, mib->ifvm_tag);
1344 } else {
1345 /*
1346 * insert the tag ourselves
1347 */
1348 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1349 if (m == NULL) {
1350 printf("%s: unable to prepend encap header",
1351 p->if_xname);
1352 ifp->if_oerrors++;
1353 continue;
1354 }
1355
1356 switch (p->if_type) {
1357 case IFT_ETHER:
1358 {
1359 struct ether_vlan_header *evl;
1360
1361 if (m->m_len < sizeof(struct ether_vlan_header))
1362 m = m_pullup(m,
1363 sizeof(struct ether_vlan_header));
1364 if (m == NULL) {
1365 printf("%s: unable to pullup encap "
1366 "header", p->if_xname);
1367 ifp->if_oerrors++;
1368 continue;
1369 }
1370
1371 /*
1372 * Transform the Ethernet header into an
1373 * Ethernet header with 802.1Q encapsulation.
1374 */
1375 memmove(mtod(m, void *),
1376 mtod(m, char *) + mib->ifvm_encaplen,
1377 sizeof(struct ether_header));
1378 evl = mtod(m, struct ether_vlan_header *);
1379 evl->evl_proto = evl->evl_encap_proto;
1380 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1381 evl->evl_tag = htons(mib->ifvm_tag);
1382
1383 /*
1384 * To cater for VLAN-aware layer 2 ethernet
1385 * switches which may need to strip the tag
1386 * before forwarding the packet, make sure
1387 * the packet+tag is at least 68 bytes long.
1388 * This is necessary because our parent will
1389 * only pad to 64 bytes (ETHER_MIN_LEN) and
1390 * some switches will not pad by themselves
1391 * after deleting a tag.
1392 */
1393 const size_t min_data_len = ETHER_MIN_LEN -
1394 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1395 if (m->m_pkthdr.len < min_data_len) {
1396 m_copyback(m, m->m_pkthdr.len,
1397 min_data_len - m->m_pkthdr.len,
1398 vlan_zero_pad_buff);
1399 }
1400 break;
1401 }
1402
1403 default:
1404 panic("%s: impossible", __func__);
1405 }
1406 }
1407
1408 if ((p->if_flags & IFF_RUNNING) == 0) {
1409 m_freem(m);
1410 continue;
1411 }
1412
1413 error = if_transmit_lock(p, m);
1414 if (error) {
1415 /* mbuf is already freed */
1416 ifp->if_oerrors++;
1417 continue;
1418 }
1419 ifp->if_opackets++;
1420 }
1421
1422 ifp->if_flags &= ~IFF_OACTIVE;
1423
1424 /* Remove reference to mib before release */
1425 vlan_putref_linkmib(mib, &psref);
1426 }
1427
1428 static int
1429 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1430 {
1431 struct ifvlan *ifv = ifp->if_softc;
1432 struct ifnet *p;
1433 struct ethercom *ec;
1434 struct ifvlan_linkmib *mib;
1435 struct psref psref;
1436 int error;
1437 size_t pktlen = m->m_pkthdr.len;
1438 bool mcast = (m->m_flags & M_MCAST) != 0;
1439
1440 mib = vlan_getref_linkmib(ifv, &psref);
1441 if (mib == NULL) {
1442 m_freem(m);
1443 return ENETDOWN;
1444 }
1445
1446 p = mib->ifvm_p;
1447 ec = (void *)mib->ifvm_p;
1448
1449 bpf_mtap(ifp, m, BPF_D_OUT);
1450
1451 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
1452 goto out;
1453 if (m == NULL)
1454 goto out;
1455
1456 /*
1457 * If the parent can insert the tag itself, just mark
1458 * the tag in the mbuf header.
1459 */
1460 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
1461 vlan_set_tag(m, mib->ifvm_tag);
1462 } else {
1463 /*
1464 * insert the tag ourselves
1465 */
1466 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1467 if (m == NULL) {
1468 printf("%s: unable to prepend encap header",
1469 p->if_xname);
1470 ifp->if_oerrors++;
1471 error = ENOBUFS;
1472 goto out;
1473 }
1474
1475 switch (p->if_type) {
1476 case IFT_ETHER:
1477 {
1478 struct ether_vlan_header *evl;
1479
1480 if (m->m_len < sizeof(struct ether_vlan_header))
1481 m = m_pullup(m,
1482 sizeof(struct ether_vlan_header));
1483 if (m == NULL) {
1484 printf("%s: unable to pullup encap "
1485 "header", p->if_xname);
1486 ifp->if_oerrors++;
1487 error = ENOBUFS;
1488 goto out;
1489 }
1490
1491 /*
1492 * Transform the Ethernet header into an
1493 * Ethernet header with 802.1Q encapsulation.
1494 */
1495 memmove(mtod(m, void *),
1496 mtod(m, char *) + mib->ifvm_encaplen,
1497 sizeof(struct ether_header));
1498 evl = mtod(m, struct ether_vlan_header *);
1499 evl->evl_proto = evl->evl_encap_proto;
1500 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1501 evl->evl_tag = htons(mib->ifvm_tag);
1502
1503 /*
1504 * To cater for VLAN-aware layer 2 ethernet
1505 * switches which may need to strip the tag
1506 * before forwarding the packet, make sure
1507 * the packet+tag is at least 68 bytes long.
1508 * This is necessary because our parent will
1509 * only pad to 64 bytes (ETHER_MIN_LEN) and
1510 * some switches will not pad by themselves
1511 * after deleting a tag.
1512 */
1513 const size_t min_data_len = ETHER_MIN_LEN -
1514 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1515 if (m->m_pkthdr.len < min_data_len) {
1516 m_copyback(m, m->m_pkthdr.len,
1517 min_data_len - m->m_pkthdr.len,
1518 vlan_zero_pad_buff);
1519 }
1520 break;
1521 }
1522
1523 default:
1524 panic("%s: impossible", __func__);
1525 }
1526 }
1527
1528 if ((p->if_flags & IFF_RUNNING) == 0) {
1529 m_freem(m);
1530 error = ENETDOWN;
1531 goto out;
1532 }
1533
1534 error = if_transmit_lock(p, m);
1535 if (error) {
1536 /* mbuf is already freed */
1537 ifp->if_oerrors++;
1538 } else {
1539
1540 ifp->if_opackets++;
1541 ifp->if_obytes += pktlen;
1542 if (mcast)
1543 ifp->if_omcasts++;
1544 }
1545
1546 out:
1547 /* Remove reference to mib before release */
1548 vlan_putref_linkmib(mib, &psref);
1549 return error;
1550 }
1551
1552 /*
1553 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1554 * given source interface and tag, then run the real packet through the
1555 * parent's input routine.
1556 */
1557 void
1558 vlan_input(struct ifnet *ifp, struct mbuf *m)
1559 {
1560 struct ifvlan *ifv;
1561 uint16_t vid;
1562 struct ifvlan_linkmib *mib;
1563 struct psref psref;
1564 bool have_vtag;
1565
1566 have_vtag = vlan_has_tag(m);
1567 if (have_vtag) {
1568 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1569 m->m_flags &= ~M_VLANTAG;
1570 } else {
1571 struct ether_vlan_header *evl;
1572
1573 if (ifp->if_type != IFT_ETHER) {
1574 panic("%s: impossible", __func__);
1575 }
1576
1577 if (m->m_len < sizeof(struct ether_vlan_header) &&
1578 (m = m_pullup(m,
1579 sizeof(struct ether_vlan_header))) == NULL) {
1580 printf("%s: no memory for VLAN header, "
1581 "dropping packet.\n", ifp->if_xname);
1582 return;
1583 }
1584 evl = mtod(m, struct ether_vlan_header *);
1585 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1586
1587 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1588
1589 /*
1590 * Restore the original ethertype. We'll remove
1591 * the encapsulation after we've found the vlan
1592 * interface corresponding to the tag.
1593 */
1594 evl->evl_encap_proto = evl->evl_proto;
1595 }
1596
1597 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1598 if (mib == NULL) {
1599 m_freem(m);
1600 ifp->if_noproto++;
1601 return;
1602 }
1603 KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
1604
1605 ifv = mib->ifvm_ifvlan;
1606 if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1607 (IFF_UP | IFF_RUNNING)) {
1608 m_freem(m);
1609 ifp->if_noproto++;
1610 goto out;
1611 }
1612
1613 /*
1614 * Now, remove the encapsulation header. The original
1615 * header has already been fixed up above.
1616 */
1617 if (!have_vtag) {
1618 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1619 mtod(m, void *), sizeof(struct ether_header));
1620 m_adj(m, mib->ifvm_encaplen);
1621 }
1622
1623 m_set_rcvif(m, &ifv->ifv_if);
1624 ifv->ifv_if.if_ipackets++;
1625
1626 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
1627 goto out;
1628 if (m == NULL)
1629 goto out;
1630
1631 m->m_flags &= ~M_PROMISC;
1632 if_input(&ifv->ifv_if, m);
1633 out:
1634 vlan_putref_linkmib(mib, &psref);
1635 }
1636
1637 /*
1638 * Module infrastructure
1639 */
1640 #include "if_module.h"
1641
1642 IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)
1643