if_vlan.c revision 1.145 1 /* $NetBSD: if_vlan.c,v 1.145 2019/08/21 06:00:07 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.145 2019/08/21 06:00:07 msaitoh Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #endif
123
124 #include "ioconf.h"
125
126 struct vlan_mc_entry {
127 LIST_ENTRY(vlan_mc_entry) mc_entries;
128 /*
129 * A key to identify this entry. The mc_addr below can't be
130 * used since multiple sockaddr may mapped into the same
131 * ether_multi (e.g., AF_UNSPEC).
132 */
133 struct ether_multi *mc_enm;
134 struct sockaddr_storage mc_addr;
135 };
136
137 struct ifvlan_linkmib {
138 struct ifvlan *ifvm_ifvlan;
139 const struct vlan_multisw *ifvm_msw;
140 int ifvm_encaplen; /* encapsulation length */
141 int ifvm_mtufudge; /* MTU fudged by this much */
142 int ifvm_mintu; /* min transmission unit */
143 uint16_t ifvm_proto; /* encapsulation ethertype */
144 uint16_t ifvm_tag; /* tag to apply on packets */
145 struct ifnet *ifvm_p; /* parent interface of this vlan */
146
147 struct psref_target ifvm_psref;
148 };
149
150 struct ifvlan {
151 struct ethercom ifv_ec;
152 struct ifvlan_linkmib *ifv_mib; /*
153 * reader must use vlan_getref_linkmib()
154 * instead of direct dereference
155 */
156 kmutex_t ifv_lock; /* writer lock for ifv_mib */
157 pserialize_t ifv_psz;
158
159 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
160 LIST_ENTRY(ifvlan) ifv_list;
161 struct pslist_entry ifv_hash;
162 int ifv_flags;
163 };
164
165 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
166
167 #define ifv_if ifv_ec.ec_if
168
169 #define ifv_msw ifv_mib.ifvm_msw
170 #define ifv_encaplen ifv_mib.ifvm_encaplen
171 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
172 #define ifv_mintu ifv_mib.ifvm_mintu
173 #define ifv_tag ifv_mib.ifvm_tag
174
175 struct vlan_multisw {
176 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
177 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
178 void (*vmsw_purgemulti)(struct ifvlan *);
179 };
180
181 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
182 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
183 static void vlan_ether_purgemulti(struct ifvlan *);
184
185 const struct vlan_multisw vlan_ether_multisw = {
186 .vmsw_addmulti = vlan_ether_addmulti,
187 .vmsw_delmulti = vlan_ether_delmulti,
188 .vmsw_purgemulti = vlan_ether_purgemulti,
189 };
190
191 static int vlan_clone_create(struct if_clone *, int);
192 static int vlan_clone_destroy(struct ifnet *);
193 static int vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
194 static int vlan_ioctl(struct ifnet *, u_long, void *);
195 static void vlan_start(struct ifnet *);
196 static int vlan_transmit(struct ifnet *, struct mbuf *);
197 static void vlan_unconfig(struct ifnet *);
198 static int vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
199 static void vlan_hash_init(void);
200 static int vlan_hash_fini(void);
201 static int vlan_tag_hash(uint16_t, u_long);
202 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
203 struct psref *);
204 static void vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
205 static void vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
206 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
207 uint16_t, struct psref *);
208
209 static struct {
210 kmutex_t lock;
211 LIST_HEAD(vlan_ifvlist, ifvlan) list;
212 } ifv_list __cacheline_aligned;
213
214
215 #if !defined(VLAN_TAG_HASH_SIZE)
216 #define VLAN_TAG_HASH_SIZE 32
217 #endif
218 static struct {
219 kmutex_t lock;
220 struct pslist_head *lists;
221 u_long mask;
222 } ifv_hash __cacheline_aligned = {
223 .lists = NULL,
224 .mask = 0,
225 };
226
227 pserialize_t vlan_psz __read_mostly;
228 static struct psref_class *ifvm_psref_class __read_mostly;
229
230 struct if_clone vlan_cloner =
231 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
232
233 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
234 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
235
236 static inline int
237 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
238 {
239 int e;
240
241 KERNEL_LOCK_UNLESS_NET_MPSAFE();
242 e = ifpromisc(ifp, pswitch);
243 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
244
245 return e;
246 }
247
248 static inline int
249 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
250 {
251 int e;
252
253 KERNEL_LOCK_UNLESS_NET_MPSAFE();
254 e = ifpromisc_locked(ifp, pswitch);
255 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
256
257 return e;
258 }
259
260 void
261 vlanattach(int n)
262 {
263
264 /*
265 * Nothing to do here, initialization is handled by the
266 * module initialization code in vlaninit() below.
267 */
268 }
269
270 static void
271 vlaninit(void)
272 {
273 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
274 LIST_INIT(&ifv_list.list);
275
276 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
277 vlan_psz = pserialize_create();
278 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
279 if_clone_attach(&vlan_cloner);
280
281 vlan_hash_init();
282 MODULE_HOOK_SET(if_vlan_vlan_input_hook, "vlan_inp", vlan_input);
283 }
284
285 static int
286 vlandetach(void)
287 {
288 bool is_empty;
289 int error;
290
291 mutex_enter(&ifv_list.lock);
292 is_empty = LIST_EMPTY(&ifv_list.list);
293 mutex_exit(&ifv_list.lock);
294
295 if (!is_empty)
296 return EBUSY;
297
298 error = vlan_hash_fini();
299 if (error != 0)
300 return error;
301
302 if_clone_detach(&vlan_cloner);
303 psref_class_destroy(ifvm_psref_class);
304 pserialize_destroy(vlan_psz);
305 mutex_destroy(&ifv_hash.lock);
306 mutex_destroy(&ifv_list.lock);
307
308 MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
309 return 0;
310 }
311
312 static void
313 vlan_reset_linkname(struct ifnet *ifp)
314 {
315
316 /*
317 * We start out with a "802.1Q VLAN" type and zero-length
318 * addresses. When we attach to a parent interface, we
319 * inherit its type, address length, address, and data link
320 * type.
321 */
322
323 ifp->if_type = IFT_L2VLAN;
324 ifp->if_addrlen = 0;
325 ifp->if_dlt = DLT_NULL;
326 if_alloc_sadl(ifp);
327 }
328
329 static int
330 vlan_clone_create(struct if_clone *ifc, int unit)
331 {
332 struct ifvlan *ifv;
333 struct ifnet *ifp;
334 struct ifvlan_linkmib *mib;
335 int rv;
336
337 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
338 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
339 ifp = &ifv->ifv_if;
340 LIST_INIT(&ifv->ifv_mc_listhead);
341
342 mib->ifvm_ifvlan = ifv;
343 mib->ifvm_p = NULL;
344 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
345
346 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
347 ifv->ifv_psz = pserialize_create();
348 ifv->ifv_mib = mib;
349
350 mutex_enter(&ifv_list.lock);
351 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
352 mutex_exit(&ifv_list.lock);
353
354 if_initname(ifp, ifc->ifc_name, unit);
355 ifp->if_softc = ifv;
356 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
357 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
358 #ifdef NET_MPSAFE
359 ifp->if_extflags |= IFEF_MPSAFE;
360 #endif
361 ifp->if_start = vlan_start;
362 ifp->if_transmit = vlan_transmit;
363 ifp->if_ioctl = vlan_ioctl;
364 IFQ_SET_READY(&ifp->if_snd);
365
366 rv = if_initialize(ifp);
367 if (rv != 0) {
368 aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
369 rv);
370 goto fail;
371 }
372
373 vlan_reset_linkname(ifp);
374 if_register(ifp);
375 return 0;
376
377 fail:
378 mutex_enter(&ifv_list.lock);
379 LIST_REMOVE(ifv, ifv_list);
380 mutex_exit(&ifv_list.lock);
381
382 mutex_destroy(&ifv->ifv_lock);
383 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
384 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
385 free(ifv, M_DEVBUF);
386
387 return rv;
388 }
389
390 static int
391 vlan_clone_destroy(struct ifnet *ifp)
392 {
393 struct ifvlan *ifv = ifp->if_softc;
394
395 mutex_enter(&ifv_list.lock);
396 LIST_REMOVE(ifv, ifv_list);
397 mutex_exit(&ifv_list.lock);
398
399 IFNET_LOCK(ifp);
400 vlan_unconfig(ifp);
401 IFNET_UNLOCK(ifp);
402 if_detach(ifp);
403
404 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
405 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
406 pserialize_destroy(ifv->ifv_psz);
407 mutex_destroy(&ifv->ifv_lock);
408 free(ifv, M_DEVBUF);
409
410 return 0;
411 }
412
413 /*
414 * Configure a VLAN interface.
415 */
416 static int
417 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
418 {
419 struct ifnet *ifp = &ifv->ifv_if;
420 struct ifvlan_linkmib *nmib = NULL;
421 struct ifvlan_linkmib *omib = NULL;
422 struct ifvlan_linkmib *checkmib;
423 struct psref_target *nmib_psref = NULL;
424 const uint16_t vid = EVL_VLANOFTAG(tag);
425 int error = 0;
426 int idx;
427 bool omib_cleanup = false;
428 struct psref psref;
429
430 /* VLAN ID 0 and 4095 are reserved in the spec */
431 if ((vid == 0) || (vid == 0xfff))
432 return EINVAL;
433
434 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
435 mutex_enter(&ifv->ifv_lock);
436 omib = ifv->ifv_mib;
437
438 if (omib->ifvm_p != NULL) {
439 error = EBUSY;
440 goto done;
441 }
442
443 /* Duplicate check */
444 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
445 if (checkmib != NULL) {
446 vlan_putref_linkmib(checkmib, &psref);
447 error = EEXIST;
448 goto done;
449 }
450
451 *nmib = *omib;
452 nmib_psref = &nmib->ifvm_psref;
453
454 psref_target_init(nmib_psref, ifvm_psref_class);
455
456 switch (p->if_type) {
457 case IFT_ETHER:
458 {
459 struct ethercom *ec = (void *)p;
460 struct vlanid_list *vidmem;
461
462 nmib->ifvm_msw = &vlan_ether_multisw;
463 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
464 nmib->ifvm_mintu = ETHERMIN;
465
466 if (ec->ec_nvlans++ == 0) {
467 IFNET_LOCK(p);
468 error = ether_enable_vlan_mtu(p);
469 IFNET_UNLOCK(p);
470 if (error >= 0) {
471 if (error) {
472 ec->ec_nvlans--;
473 goto done;
474 }
475 nmib->ifvm_mtufudge = 0;
476 } else {
477 /*
478 * Fudge the MTU by the encapsulation size. This
479 * makes us incompatible with strictly compliant
480 * 802.1Q implementations, but allows us to use
481 * the feature with other NetBSD
482 * implementations, which might still be useful.
483 */
484 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
485 }
486 error = 0;
487 }
488 /* Add a vid to the list */
489 vidmem = kmem_alloc(sizeof(struct vlanid_list), KM_SLEEP);
490 if (vidmem == NULL) {
491 error = ENOMEM;
492 goto viderr;
493 }
494 vidmem->vid = vid;
495 ETHER_LOCK(ec);
496 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidmem, vid_list);
497 ETHER_UNLOCK(ec);
498
499 if (ec->ec_vlan_cb != NULL) {
500 /*
501 * Call ec_vlan_cb(). It will setup VLAN HW filter or
502 * HW tagging function.
503 */
504 error = (*ec->ec_vlan_cb)(ec, vid, true);
505 viderr:
506 if (error) {
507 ec->ec_nvlans--;
508 if (ec->ec_nvlans == 0) {
509 IFNET_LOCK(p);
510 (void)ether_disable_vlan_mtu(p);
511 IFNET_UNLOCK(p);
512 }
513 goto done;
514 }
515 }
516 /*
517 * If the parent interface can do hardware-assisted
518 * VLAN encapsulation, then propagate its hardware-
519 * assisted checksumming flags and tcp segmentation
520 * offload.
521 */
522 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
523 ifp->if_capabilities = p->if_capabilities &
524 (IFCAP_TSOv4 | IFCAP_TSOv6 |
525 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
526 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
527 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
528 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
529 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
530 }
531
532 /*
533 * We inherit the parent's Ethernet address.
534 */
535 ether_ifattach(ifp, CLLADDR(p->if_sadl));
536 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
537 break;
538 }
539
540 default:
541 error = EPROTONOSUPPORT;
542 goto done;
543 }
544
545 nmib->ifvm_p = p;
546 nmib->ifvm_tag = vid;
547 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
548 ifv->ifv_if.if_flags = p->if_flags &
549 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
550
551 /*
552 * Inherit the if_type from the parent. This allows us
553 * to participate in bridges of that type.
554 */
555 ifv->ifv_if.if_type = p->if_type;
556
557 PSLIST_ENTRY_INIT(ifv, ifv_hash);
558 idx = vlan_tag_hash(vid, ifv_hash.mask);
559
560 mutex_enter(&ifv_hash.lock);
561 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
562 mutex_exit(&ifv_hash.lock);
563
564 vlan_linkmib_update(ifv, nmib);
565 nmib = NULL;
566 nmib_psref = NULL;
567 omib_cleanup = true;
568
569 done:
570 mutex_exit(&ifv->ifv_lock);
571
572 if (nmib_psref)
573 psref_target_destroy(nmib_psref, ifvm_psref_class);
574 if (nmib)
575 kmem_free(nmib, sizeof(*nmib));
576 if (omib_cleanup)
577 kmem_free(omib, sizeof(*omib));
578
579 return error;
580 }
581
582 /*
583 * Unconfigure a VLAN interface.
584 */
585 static void
586 vlan_unconfig(struct ifnet *ifp)
587 {
588 struct ifvlan *ifv = ifp->if_softc;
589 struct ifvlan_linkmib *nmib = NULL;
590 int error;
591
592 KASSERT(IFNET_LOCKED(ifp));
593
594 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
595
596 mutex_enter(&ifv->ifv_lock);
597 error = vlan_unconfig_locked(ifv, nmib);
598 mutex_exit(&ifv->ifv_lock);
599
600 if (error)
601 kmem_free(nmib, sizeof(*nmib));
602 }
603 static int
604 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
605 {
606 struct ifnet *p;
607 struct ifnet *ifp = &ifv->ifv_if;
608 struct psref_target *nmib_psref = NULL;
609 struct ifvlan_linkmib *omib;
610 int error = 0;
611
612 KASSERT(IFNET_LOCKED(ifp));
613 KASSERT(mutex_owned(&ifv->ifv_lock));
614
615 ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);
616
617 omib = ifv->ifv_mib;
618 p = omib->ifvm_p;
619
620 if (p == NULL) {
621 error = -1;
622 goto done;
623 }
624
625 *nmib = *omib;
626 nmib_psref = &nmib->ifvm_psref;
627 psref_target_init(nmib_psref, ifvm_psref_class);
628
629 /*
630 * Since the interface is being unconfigured, we need to empty the
631 * list of multicast groups that we may have joined while we were
632 * alive and remove them from the parent's list also.
633 */
634 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
635
636 /* Disconnect from parent. */
637 switch (p->if_type) {
638 case IFT_ETHER:
639 {
640 struct ethercom *ec = (void *)p;
641 struct vlanid_list *vlanidp, *tmpp;
642 uint16_t vid = EVL_VLANOFTAG(nmib->ifvm_tag);
643
644 ETHER_LOCK(ec);
645 SIMPLEQ_FOREACH_SAFE(vlanidp, &ec->ec_vids, vid_list, tmpp) {
646 if (vlanidp->vid == vid) {
647 SIMPLEQ_REMOVE(&ec->ec_vids, vlanidp,
648 vlanid_list, vid_list);
649 kmem_free(vlanidp, sizeof(*vlanidp));
650 }
651 }
652 ETHER_UNLOCK(ec);
653 if (ec->ec_vlan_cb != NULL) {
654 /*
655 * Call ec_vlan_cb(). It will setup VLAN HW filter or
656 * HW tagging function.
657 */
658 (void)(*ec->ec_vlan_cb)(ec, vid, false);
659 }
660 if (--ec->ec_nvlans == 0) {
661 IFNET_LOCK(p);
662 (void)ether_disable_vlan_mtu(p);
663 IFNET_UNLOCK(p);
664 }
665
666 /* XXX ether_ifdetach must not be called with IFNET_LOCK */
667 mutex_exit(&ifv->ifv_lock);
668 IFNET_UNLOCK(ifp);
669 ether_ifdetach(ifp);
670 IFNET_LOCK(ifp);
671 mutex_enter(&ifv->ifv_lock);
672
673 /* if_free_sadl must be called with IFNET_LOCK */
674 if_free_sadl(ifp, 1);
675
676 /* Restore vlan_ioctl overwritten by ether_ifdetach */
677 ifp->if_ioctl = vlan_ioctl;
678 vlan_reset_linkname(ifp);
679 break;
680 }
681
682 default:
683 panic("%s: impossible", __func__);
684 }
685
686 nmib->ifvm_p = NULL;
687 ifv->ifv_if.if_mtu = 0;
688 ifv->ifv_flags = 0;
689
690 mutex_enter(&ifv_hash.lock);
691 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
692 pserialize_perform(vlan_psz);
693 mutex_exit(&ifv_hash.lock);
694 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
695
696 vlan_linkmib_update(ifv, nmib);
697
698 mutex_exit(&ifv->ifv_lock);
699
700 nmib_psref = NULL;
701 kmem_free(omib, sizeof(*omib));
702
703 #ifdef INET6
704 KERNEL_LOCK_UNLESS_NET_MPSAFE();
705 /* To delete v6 link local addresses */
706 if (in6_present)
707 in6_ifdetach(ifp);
708 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
709 #endif
710
711 if ((ifp->if_flags & IFF_PROMISC) != 0)
712 vlan_safe_ifpromisc_locked(ifp, 0);
713 if_down_locked(ifp);
714 ifp->if_capabilities = 0;
715 mutex_enter(&ifv->ifv_lock);
716 done:
717
718 if (nmib_psref)
719 psref_target_destroy(nmib_psref, ifvm_psref_class);
720
721 return error;
722 }
723
724 static void
725 vlan_hash_init(void)
726 {
727
728 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
729 &ifv_hash.mask);
730 }
731
732 static int
733 vlan_hash_fini(void)
734 {
735 int i;
736
737 mutex_enter(&ifv_hash.lock);
738
739 for (i = 0; i < ifv_hash.mask + 1; i++) {
740 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
741 ifv_hash) != NULL) {
742 mutex_exit(&ifv_hash.lock);
743 return EBUSY;
744 }
745 }
746
747 for (i = 0; i < ifv_hash.mask + 1; i++)
748 PSLIST_DESTROY(&ifv_hash.lists[i]);
749
750 mutex_exit(&ifv_hash.lock);
751
752 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
753
754 ifv_hash.lists = NULL;
755 ifv_hash.mask = 0;
756
757 return 0;
758 }
759
760 static int
761 vlan_tag_hash(uint16_t tag, u_long mask)
762 {
763 uint32_t hash;
764
765 hash = (tag >> 8) ^ tag;
766 hash = (hash >> 2) ^ hash;
767
768 return hash & mask;
769 }
770
771 static struct ifvlan_linkmib *
772 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
773 {
774 struct ifvlan_linkmib *mib;
775 int s;
776
777 s = pserialize_read_enter();
778 mib = sc->ifv_mib;
779 if (mib == NULL) {
780 pserialize_read_exit(s);
781 return NULL;
782 }
783 membar_datadep_consumer();
784 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
785 pserialize_read_exit(s);
786
787 return mib;
788 }
789
790 static void
791 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
792 {
793 if (mib == NULL)
794 return;
795 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
796 }
797
798 static struct ifvlan_linkmib *
799 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
800 {
801 int idx;
802 int s;
803 struct ifvlan *sc;
804
805 idx = vlan_tag_hash(tag, ifv_hash.mask);
806
807 s = pserialize_read_enter();
808 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
809 ifv_hash) {
810 struct ifvlan_linkmib *mib = sc->ifv_mib;
811 if (mib == NULL)
812 continue;
813 if (mib->ifvm_tag != tag)
814 continue;
815 if (mib->ifvm_p != ifp)
816 continue;
817
818 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
819 pserialize_read_exit(s);
820 return mib;
821 }
822 pserialize_read_exit(s);
823 return NULL;
824 }
825
826 static void
827 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
828 {
829 struct ifvlan_linkmib *omib = ifv->ifv_mib;
830
831 KASSERT(mutex_owned(&ifv->ifv_lock));
832
833 membar_producer();
834 ifv->ifv_mib = nmib;
835
836 pserialize_perform(ifv->ifv_psz);
837 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
838 }
839
840 /*
841 * Called when a parent interface is detaching; destroy any VLAN
842 * configuration for the parent interface.
843 */
844 void
845 vlan_ifdetach(struct ifnet *p)
846 {
847 struct ifvlan *ifv;
848 struct ifvlan_linkmib *mib, **nmibs;
849 struct psref psref;
850 int error;
851 int bound;
852 int i, cnt = 0;
853
854 bound = curlwp_bind();
855
856 mutex_enter(&ifv_list.lock);
857 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
858 mib = vlan_getref_linkmib(ifv, &psref);
859 if (mib == NULL)
860 continue;
861
862 if (mib->ifvm_p == p)
863 cnt++;
864
865 vlan_putref_linkmib(mib, &psref);
866 }
867 mutex_exit(&ifv_list.lock);
868
869 if (cnt == 0) {
870 curlwp_bindx(bound);
871 return;
872 }
873
874 /*
875 * The value of "cnt" does not increase while ifv_list.lock
876 * and ifv->ifv_lock are released here, because the parent
877 * interface is detaching.
878 */
879 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
880 for (i = 0; i < cnt; i++) {
881 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
882 }
883
884 mutex_enter(&ifv_list.lock);
885
886 i = 0;
887 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
888 struct ifnet *ifp = &ifv->ifv_if;
889
890 /* IFNET_LOCK must be held before ifv_lock. */
891 IFNET_LOCK(ifp);
892 mutex_enter(&ifv->ifv_lock);
893
894 /* XXX ifv_mib = NULL? */
895 if (ifv->ifv_mib->ifvm_p == p) {
896 KASSERTMSG(i < cnt,
897 "no memory for unconfig, parent=%s", p->if_xname);
898 error = vlan_unconfig_locked(ifv, nmibs[i]);
899 if (!error) {
900 nmibs[i] = NULL;
901 i++;
902 }
903
904 }
905
906 mutex_exit(&ifv->ifv_lock);
907 IFNET_UNLOCK(ifp);
908 }
909
910 mutex_exit(&ifv_list.lock);
911
912 curlwp_bindx(bound);
913
914 for (i = 0; i < cnt; i++) {
915 if (nmibs[i])
916 kmem_free(nmibs[i], sizeof(*nmibs[i]));
917 }
918
919 kmem_free(nmibs, sizeof(*nmibs) * cnt);
920
921 return;
922 }
923
924 static int
925 vlan_set_promisc(struct ifnet *ifp)
926 {
927 struct ifvlan *ifv = ifp->if_softc;
928 struct ifvlan_linkmib *mib;
929 struct psref psref;
930 int error = 0;
931 int bound;
932
933 bound = curlwp_bind();
934 mib = vlan_getref_linkmib(ifv, &psref);
935 if (mib == NULL) {
936 curlwp_bindx(bound);
937 return EBUSY;
938 }
939
940 if ((ifp->if_flags & IFF_PROMISC) != 0) {
941 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
942 error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
943 if (error == 0)
944 ifv->ifv_flags |= IFVF_PROMISC;
945 }
946 } else {
947 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
948 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
949 if (error == 0)
950 ifv->ifv_flags &= ~IFVF_PROMISC;
951 }
952 }
953 vlan_putref_linkmib(mib, &psref);
954 curlwp_bindx(bound);
955
956 return error;
957 }
958
959 static int
960 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
961 {
962 struct lwp *l = curlwp;
963 struct ifvlan *ifv = ifp->if_softc;
964 struct ifaddr *ifa = (struct ifaddr *) data;
965 struct ifreq *ifr = (struct ifreq *) data;
966 struct ifnet *pr;
967 struct ifcapreq *ifcr;
968 struct vlanreq vlr;
969 struct ifvlan_linkmib *mib;
970 struct psref psref;
971 int error = 0;
972 int bound;
973
974 switch (cmd) {
975 case SIOCSIFMTU:
976 bound = curlwp_bind();
977 mib = vlan_getref_linkmib(ifv, &psref);
978 if (mib == NULL) {
979 curlwp_bindx(bound);
980 error = EBUSY;
981 break;
982 }
983
984 if (mib->ifvm_p == NULL) {
985 vlan_putref_linkmib(mib, &psref);
986 curlwp_bindx(bound);
987 error = EINVAL;
988 } else if (
989 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
990 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
991 vlan_putref_linkmib(mib, &psref);
992 curlwp_bindx(bound);
993 error = EINVAL;
994 } else {
995 vlan_putref_linkmib(mib, &psref);
996 curlwp_bindx(bound);
997
998 error = ifioctl_common(ifp, cmd, data);
999 if (error == ENETRESET)
1000 error = 0;
1001 }
1002
1003 break;
1004
1005 case SIOCSETVLAN:
1006 if ((error = kauth_authorize_network(l->l_cred,
1007 KAUTH_NETWORK_INTERFACE,
1008 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1009 NULL)) != 0)
1010 break;
1011 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
1012 break;
1013
1014 if (vlr.vlr_parent[0] == '\0') {
1015 bound = curlwp_bind();
1016 mib = vlan_getref_linkmib(ifv, &psref);
1017 if (mib == NULL) {
1018 curlwp_bindx(bound);
1019 error = EBUSY;
1020 break;
1021 }
1022
1023 if (mib->ifvm_p != NULL &&
1024 (ifp->if_flags & IFF_PROMISC) != 0)
1025 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
1026
1027 vlan_putref_linkmib(mib, &psref);
1028 curlwp_bindx(bound);
1029
1030 vlan_unconfig(ifp);
1031 break;
1032 }
1033 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
1034 error = EINVAL; /* check for valid tag */
1035 break;
1036 }
1037 if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
1038 error = ENOENT;
1039 break;
1040 }
1041
1042 error = vlan_config(ifv, pr, vlr.vlr_tag);
1043 if (error != 0)
1044 break;
1045
1046 /* Update promiscuous mode, if necessary. */
1047 vlan_set_promisc(ifp);
1048
1049 ifp->if_flags |= IFF_RUNNING;
1050 break;
1051
1052 case SIOCGETVLAN:
1053 memset(&vlr, 0, sizeof(vlr));
1054 bound = curlwp_bind();
1055 mib = vlan_getref_linkmib(ifv, &psref);
1056 if (mib == NULL) {
1057 curlwp_bindx(bound);
1058 error = EBUSY;
1059 break;
1060 }
1061 if (mib->ifvm_p != NULL) {
1062 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
1063 mib->ifvm_p->if_xname);
1064 vlr.vlr_tag = mib->ifvm_tag;
1065 }
1066 vlan_putref_linkmib(mib, &psref);
1067 curlwp_bindx(bound);
1068 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1069 break;
1070
1071 case SIOCSIFFLAGS:
1072 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1073 break;
1074 /*
1075 * For promiscuous mode, we enable promiscuous mode on
1076 * the parent if we need promiscuous on the VLAN interface.
1077 */
1078 bound = curlwp_bind();
1079 mib = vlan_getref_linkmib(ifv, &psref);
1080 if (mib == NULL) {
1081 curlwp_bindx(bound);
1082 error = EBUSY;
1083 break;
1084 }
1085
1086 if (mib->ifvm_p != NULL)
1087 error = vlan_set_promisc(ifp);
1088 vlan_putref_linkmib(mib, &psref);
1089 curlwp_bindx(bound);
1090 break;
1091
1092 case SIOCADDMULTI:
1093 mutex_enter(&ifv->ifv_lock);
1094 mib = ifv->ifv_mib;
1095 if (mib == NULL) {
1096 error = EBUSY;
1097 mutex_exit(&ifv->ifv_lock);
1098 break;
1099 }
1100
1101 error = (mib->ifvm_p != NULL) ?
1102 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1103 mib = NULL;
1104 mutex_exit(&ifv->ifv_lock);
1105 break;
1106
1107 case SIOCDELMULTI:
1108 mutex_enter(&ifv->ifv_lock);
1109 mib = ifv->ifv_mib;
1110 if (mib == NULL) {
1111 error = EBUSY;
1112 mutex_exit(&ifv->ifv_lock);
1113 break;
1114 }
1115 error = (mib->ifvm_p != NULL) ?
1116 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1117 mib = NULL;
1118 mutex_exit(&ifv->ifv_lock);
1119 break;
1120
1121 case SIOCSIFCAP:
1122 ifcr = data;
1123 /* make sure caps are enabled on parent */
1124 bound = curlwp_bind();
1125 mib = vlan_getref_linkmib(ifv, &psref);
1126 if (mib == NULL) {
1127 curlwp_bindx(bound);
1128 error = EBUSY;
1129 break;
1130 }
1131
1132 if (mib->ifvm_p == NULL) {
1133 vlan_putref_linkmib(mib, &psref);
1134 curlwp_bindx(bound);
1135 error = EINVAL;
1136 break;
1137 }
1138 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1139 ifcr->ifcr_capenable) {
1140 vlan_putref_linkmib(mib, &psref);
1141 curlwp_bindx(bound);
1142 error = EINVAL;
1143 break;
1144 }
1145
1146 vlan_putref_linkmib(mib, &psref);
1147 curlwp_bindx(bound);
1148
1149 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1150 error = 0;
1151 break;
1152 case SIOCINITIFADDR:
1153 bound = curlwp_bind();
1154 mib = vlan_getref_linkmib(ifv, &psref);
1155 if (mib == NULL) {
1156 curlwp_bindx(bound);
1157 error = EBUSY;
1158 break;
1159 }
1160
1161 if (mib->ifvm_p == NULL) {
1162 error = EINVAL;
1163 vlan_putref_linkmib(mib, &psref);
1164 curlwp_bindx(bound);
1165 break;
1166 }
1167 vlan_putref_linkmib(mib, &psref);
1168 curlwp_bindx(bound);
1169
1170 ifp->if_flags |= IFF_UP;
1171 #ifdef INET
1172 if (ifa->ifa_addr->sa_family == AF_INET)
1173 arp_ifinit(ifp, ifa);
1174 #endif
1175 break;
1176
1177 default:
1178 error = ether_ioctl(ifp, cmd, data);
1179 }
1180
1181 return error;
1182 }
1183
1184 static int
1185 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1186 {
1187 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1188 struct vlan_mc_entry *mc;
1189 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1190 struct ifvlan_linkmib *mib;
1191 int error;
1192
1193 KASSERT(mutex_owned(&ifv->ifv_lock));
1194
1195 if (sa->sa_len > sizeof(struct sockaddr_storage))
1196 return EINVAL;
1197
1198 error = ether_addmulti(sa, &ifv->ifv_ec);
1199 if (error != ENETRESET)
1200 return error;
1201
1202 /*
1203 * This is a new multicast address. We have to tell parent
1204 * about it. Also, remember this multicast address so that
1205 * we can delete it on unconfigure.
1206 */
1207 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1208 if (mc == NULL) {
1209 error = ENOMEM;
1210 goto alloc_failed;
1211 }
1212
1213 /*
1214 * Since ether_addmulti() returned ENETRESET, the following two
1215 * statements shouldn't fail. Here ifv_ec is implicitly protected
1216 * by the ifv_lock lock.
1217 */
1218 error = ether_multiaddr(sa, addrlo, addrhi);
1219 KASSERT(error == 0);
1220
1221 ETHER_LOCK(&ifv->ifv_ec);
1222 mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1223 ETHER_UNLOCK(&ifv->ifv_ec);
1224
1225 KASSERT(mc->mc_enm != NULL);
1226
1227 memcpy(&mc->mc_addr, sa, sa->sa_len);
1228 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1229
1230 mib = ifv->ifv_mib;
1231
1232 KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1233 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1234 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1235
1236 if (error != 0)
1237 goto ioctl_failed;
1238 return error;
1239
1240 ioctl_failed:
1241 LIST_REMOVE(mc, mc_entries);
1242 free(mc, M_DEVBUF);
1243
1244 alloc_failed:
1245 (void)ether_delmulti(sa, &ifv->ifv_ec);
1246 return error;
1247 }
1248
1249 static int
1250 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1251 {
1252 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1253 struct ether_multi *enm;
1254 struct vlan_mc_entry *mc;
1255 struct ifvlan_linkmib *mib;
1256 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1257 int error;
1258
1259 KASSERT(mutex_owned(&ifv->ifv_lock));
1260
1261 /*
1262 * Find a key to lookup vlan_mc_entry. We have to do this
1263 * before calling ether_delmulti for obvious reasons.
1264 */
1265 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1266 return error;
1267
1268 ETHER_LOCK(&ifv->ifv_ec);
1269 enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1270 ETHER_UNLOCK(&ifv->ifv_ec);
1271 if (enm == NULL)
1272 return EINVAL;
1273
1274 LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
1275 if (mc->mc_enm == enm)
1276 break;
1277 }
1278
1279 /* We woun't delete entries we didn't add */
1280 if (mc == NULL)
1281 return EINVAL;
1282
1283 error = ether_delmulti(sa, &ifv->ifv_ec);
1284 if (error != ENETRESET)
1285 return error;
1286
1287 /* We no longer use this multicast address. Tell parent so. */
1288 mib = ifv->ifv_mib;
1289 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1290
1291 if (error == 0) {
1292 /* And forget about this address. */
1293 LIST_REMOVE(mc, mc_entries);
1294 free(mc, M_DEVBUF);
1295 } else {
1296 (void)ether_addmulti(sa, &ifv->ifv_ec);
1297 }
1298
1299 return error;
1300 }
1301
1302 /*
1303 * Delete any multicast address we have asked to add from parent
1304 * interface. Called when the vlan is being unconfigured.
1305 */
1306 static void
1307 vlan_ether_purgemulti(struct ifvlan *ifv)
1308 {
1309 struct vlan_mc_entry *mc;
1310 struct ifvlan_linkmib *mib;
1311
1312 KASSERT(mutex_owned(&ifv->ifv_lock));
1313 mib = ifv->ifv_mib;
1314 if (mib == NULL) {
1315 return;
1316 }
1317
1318 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1319 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1320 sstocsa(&mc->mc_addr));
1321 LIST_REMOVE(mc, mc_entries);
1322 free(mc, M_DEVBUF);
1323 }
1324 }
1325
1326 static void
1327 vlan_start(struct ifnet *ifp)
1328 {
1329 struct ifvlan *ifv = ifp->if_softc;
1330 struct ifnet *p;
1331 struct ethercom *ec;
1332 struct mbuf *m;
1333 struct ifvlan_linkmib *mib;
1334 struct psref psref;
1335 int error;
1336
1337 mib = vlan_getref_linkmib(ifv, &psref);
1338 if (mib == NULL)
1339 return;
1340 p = mib->ifvm_p;
1341 ec = (void *)mib->ifvm_p;
1342
1343 ifp->if_flags |= IFF_OACTIVE;
1344
1345 for (;;) {
1346 IFQ_DEQUEUE(&ifp->if_snd, m);
1347 if (m == NULL)
1348 break;
1349
1350 #ifdef ALTQ
1351 /*
1352 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
1353 * defined.
1354 */
1355 KERNEL_LOCK(1, NULL);
1356 /*
1357 * If ALTQ is enabled on the parent interface, do
1358 * classification; the queueing discipline might
1359 * not require classification, but might require
1360 * the address family/header pointer in the pktattr.
1361 */
1362 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1363 switch (p->if_type) {
1364 case IFT_ETHER:
1365 altq_etherclassify(&p->if_snd, m);
1366 break;
1367 default:
1368 panic("%s: impossible (altq)", __func__);
1369 }
1370 }
1371 KERNEL_UNLOCK_ONE(NULL);
1372 #endif /* ALTQ */
1373
1374 bpf_mtap(ifp, m, BPF_D_OUT);
1375 /*
1376 * If the parent can insert the tag itself, just mark
1377 * the tag in the mbuf header.
1378 */
1379 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1380 vlan_set_tag(m, mib->ifvm_tag);
1381 } else {
1382 /*
1383 * insert the tag ourselves
1384 */
1385 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1386 if (m == NULL) {
1387 printf("%s: unable to prepend encap header",
1388 p->if_xname);
1389 ifp->if_oerrors++;
1390 continue;
1391 }
1392
1393 switch (p->if_type) {
1394 case IFT_ETHER:
1395 {
1396 struct ether_vlan_header *evl;
1397
1398 if (m->m_len < sizeof(struct ether_vlan_header))
1399 m = m_pullup(m,
1400 sizeof(struct ether_vlan_header));
1401 if (m == NULL) {
1402 printf("%s: unable to pullup encap "
1403 "header", p->if_xname);
1404 ifp->if_oerrors++;
1405 continue;
1406 }
1407
1408 /*
1409 * Transform the Ethernet header into an
1410 * Ethernet header with 802.1Q encapsulation.
1411 */
1412 memmove(mtod(m, void *),
1413 mtod(m, char *) + mib->ifvm_encaplen,
1414 sizeof(struct ether_header));
1415 evl = mtod(m, struct ether_vlan_header *);
1416 evl->evl_proto = evl->evl_encap_proto;
1417 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1418 evl->evl_tag = htons(mib->ifvm_tag);
1419
1420 /*
1421 * To cater for VLAN-aware layer 2 ethernet
1422 * switches which may need to strip the tag
1423 * before forwarding the packet, make sure
1424 * the packet+tag is at least 68 bytes long.
1425 * This is necessary because our parent will
1426 * only pad to 64 bytes (ETHER_MIN_LEN) and
1427 * some switches will not pad by themselves
1428 * after deleting a tag.
1429 */
1430 const size_t min_data_len = ETHER_MIN_LEN -
1431 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1432 if (m->m_pkthdr.len < min_data_len) {
1433 m_copyback(m, m->m_pkthdr.len,
1434 min_data_len - m->m_pkthdr.len,
1435 vlan_zero_pad_buff);
1436 }
1437 break;
1438 }
1439
1440 default:
1441 panic("%s: impossible", __func__);
1442 }
1443 }
1444
1445 if ((p->if_flags & IFF_RUNNING) == 0) {
1446 m_freem(m);
1447 continue;
1448 }
1449
1450 error = if_transmit_lock(p, m);
1451 if (error) {
1452 /* mbuf is already freed */
1453 ifp->if_oerrors++;
1454 continue;
1455 }
1456 ifp->if_opackets++;
1457 }
1458
1459 ifp->if_flags &= ~IFF_OACTIVE;
1460
1461 /* Remove reference to mib before release */
1462 vlan_putref_linkmib(mib, &psref);
1463 }
1464
1465 static int
1466 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1467 {
1468 struct ifvlan *ifv = ifp->if_softc;
1469 struct ifnet *p;
1470 struct ethercom *ec;
1471 struct ifvlan_linkmib *mib;
1472 struct psref psref;
1473 int error;
1474 size_t pktlen = m->m_pkthdr.len;
1475 bool mcast = (m->m_flags & M_MCAST) != 0;
1476
1477 mib = vlan_getref_linkmib(ifv, &psref);
1478 if (mib == NULL) {
1479 m_freem(m);
1480 return ENETDOWN;
1481 }
1482
1483 p = mib->ifvm_p;
1484 ec = (void *)mib->ifvm_p;
1485
1486 bpf_mtap(ifp, m, BPF_D_OUT);
1487
1488 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
1489 goto out;
1490 if (m == NULL)
1491 goto out;
1492
1493 /*
1494 * If the parent can insert the tag itself, just mark
1495 * the tag in the mbuf header.
1496 */
1497 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1498 vlan_set_tag(m, mib->ifvm_tag);
1499 } else {
1500 /*
1501 * insert the tag ourselves
1502 */
1503 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1504 if (m == NULL) {
1505 printf("%s: unable to prepend encap header",
1506 p->if_xname);
1507 ifp->if_oerrors++;
1508 error = ENOBUFS;
1509 goto out;
1510 }
1511
1512 switch (p->if_type) {
1513 case IFT_ETHER:
1514 {
1515 struct ether_vlan_header *evl;
1516
1517 if (m->m_len < sizeof(struct ether_vlan_header))
1518 m = m_pullup(m,
1519 sizeof(struct ether_vlan_header));
1520 if (m == NULL) {
1521 printf("%s: unable to pullup encap "
1522 "header", p->if_xname);
1523 ifp->if_oerrors++;
1524 error = ENOBUFS;
1525 goto out;
1526 }
1527
1528 /*
1529 * Transform the Ethernet header into an
1530 * Ethernet header with 802.1Q encapsulation.
1531 */
1532 memmove(mtod(m, void *),
1533 mtod(m, char *) + mib->ifvm_encaplen,
1534 sizeof(struct ether_header));
1535 evl = mtod(m, struct ether_vlan_header *);
1536 evl->evl_proto = evl->evl_encap_proto;
1537 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1538 evl->evl_tag = htons(mib->ifvm_tag);
1539
1540 /*
1541 * To cater for VLAN-aware layer 2 ethernet
1542 * switches which may need to strip the tag
1543 * before forwarding the packet, make sure
1544 * the packet+tag is at least 68 bytes long.
1545 * This is necessary because our parent will
1546 * only pad to 64 bytes (ETHER_MIN_LEN) and
1547 * some switches will not pad by themselves
1548 * after deleting a tag.
1549 */
1550 const size_t min_data_len = ETHER_MIN_LEN -
1551 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1552 if (m->m_pkthdr.len < min_data_len) {
1553 m_copyback(m, m->m_pkthdr.len,
1554 min_data_len - m->m_pkthdr.len,
1555 vlan_zero_pad_buff);
1556 }
1557 break;
1558 }
1559
1560 default:
1561 panic("%s: impossible", __func__);
1562 }
1563 }
1564
1565 if ((p->if_flags & IFF_RUNNING) == 0) {
1566 m_freem(m);
1567 error = ENETDOWN;
1568 goto out;
1569 }
1570
1571 error = if_transmit_lock(p, m);
1572 if (error) {
1573 /* mbuf is already freed */
1574 ifp->if_oerrors++;
1575 } else {
1576
1577 ifp->if_opackets++;
1578 ifp->if_obytes += pktlen;
1579 if (mcast)
1580 ifp->if_omcasts++;
1581 }
1582
1583 out:
1584 /* Remove reference to mib before release */
1585 vlan_putref_linkmib(mib, &psref);
1586 return error;
1587 }
1588
1589 /*
1590 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1591 * given source interface and tag, then run the real packet through the
1592 * parent's input routine.
1593 */
1594 void
1595 vlan_input(struct ifnet *ifp, struct mbuf *m)
1596 {
1597 struct ifvlan *ifv;
1598 uint16_t vid;
1599 struct ifvlan_linkmib *mib;
1600 struct psref psref;
1601 bool have_vtag;
1602
1603 have_vtag = vlan_has_tag(m);
1604 if (have_vtag) {
1605 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1606 m->m_flags &= ~M_VLANTAG;
1607 } else {
1608 struct ether_vlan_header *evl;
1609
1610 if (ifp->if_type != IFT_ETHER) {
1611 panic("%s: impossible", __func__);
1612 }
1613
1614 if (m->m_len < sizeof(struct ether_vlan_header) &&
1615 (m = m_pullup(m,
1616 sizeof(struct ether_vlan_header))) == NULL) {
1617 printf("%s: no memory for VLAN header, "
1618 "dropping packet.\n", ifp->if_xname);
1619 return;
1620 }
1621 evl = mtod(m, struct ether_vlan_header *);
1622 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1623
1624 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1625
1626 /*
1627 * Restore the original ethertype. We'll remove
1628 * the encapsulation after we've found the vlan
1629 * interface corresponding to the tag.
1630 */
1631 evl->evl_encap_proto = evl->evl_proto;
1632 }
1633
1634 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1635 if (mib == NULL) {
1636 m_freem(m);
1637 ifp->if_noproto++;
1638 return;
1639 }
1640 KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
1641
1642 ifv = mib->ifvm_ifvlan;
1643 if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1644 (IFF_UP | IFF_RUNNING)) {
1645 m_freem(m);
1646 ifp->if_noproto++;
1647 goto out;
1648 }
1649
1650 /*
1651 * Now, remove the encapsulation header. The original
1652 * header has already been fixed up above.
1653 */
1654 if (!have_vtag) {
1655 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1656 mtod(m, void *), sizeof(struct ether_header));
1657 m_adj(m, mib->ifvm_encaplen);
1658 }
1659
1660 m_set_rcvif(m, &ifv->ifv_if);
1661 ifv->ifv_if.if_ipackets++;
1662
1663 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
1664 goto out;
1665 if (m == NULL)
1666 goto out;
1667
1668 m->m_flags &= ~M_PROMISC;
1669 if_input(&ifv->ifv_if, m);
1670 out:
1671 vlan_putref_linkmib(mib, &psref);
1672 }
1673
1674 /*
1675 * Module infrastructure
1676 */
1677 #include "if_module.h"
1678
1679 IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)
1680