if_vlan.c revision 1.147 1 /* $NetBSD: if_vlan.c,v 1.147 2019/10/21 06:26:12 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.147 2019/10/21 06:26:12 ozaki-r Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #endif
123
124 #include "ioconf.h"
125
126 struct vlan_mc_entry {
127 LIST_ENTRY(vlan_mc_entry) mc_entries;
128 /*
129 * A key to identify this entry. The mc_addr below can't be
130 * used since multiple sockaddr may mapped into the same
131 * ether_multi (e.g., AF_UNSPEC).
132 */
133 struct ether_multi *mc_enm;
134 struct sockaddr_storage mc_addr;
135 };
136
137 struct ifvlan_linkmib {
138 struct ifvlan *ifvm_ifvlan;
139 const struct vlan_multisw *ifvm_msw;
140 int ifvm_encaplen; /* encapsulation length */
141 int ifvm_mtufudge; /* MTU fudged by this much */
142 int ifvm_mintu; /* min transmission unit */
143 uint16_t ifvm_proto; /* encapsulation ethertype */
144 uint16_t ifvm_tag; /* tag to apply on packets */
145 struct ifnet *ifvm_p; /* parent interface of this vlan */
146
147 struct psref_target ifvm_psref;
148 };
149
150 struct ifvlan {
151 struct ethercom ifv_ec;
152 struct ifvlan_linkmib *ifv_mib; /*
153 * reader must use vlan_getref_linkmib()
154 * instead of direct dereference
155 */
156 kmutex_t ifv_lock; /* writer lock for ifv_mib */
157 pserialize_t ifv_psz;
158
159 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
160 LIST_ENTRY(ifvlan) ifv_list;
161 struct pslist_entry ifv_hash;
162 int ifv_flags;
163 };
164
165 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
166
167 #define ifv_if ifv_ec.ec_if
168
169 #define ifv_msw ifv_mib.ifvm_msw
170 #define ifv_encaplen ifv_mib.ifvm_encaplen
171 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
172 #define ifv_mintu ifv_mib.ifvm_mintu
173 #define ifv_tag ifv_mib.ifvm_tag
174
175 struct vlan_multisw {
176 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
177 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
178 void (*vmsw_purgemulti)(struct ifvlan *);
179 };
180
181 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
182 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
183 static void vlan_ether_purgemulti(struct ifvlan *);
184
185 const struct vlan_multisw vlan_ether_multisw = {
186 .vmsw_addmulti = vlan_ether_addmulti,
187 .vmsw_delmulti = vlan_ether_delmulti,
188 .vmsw_purgemulti = vlan_ether_purgemulti,
189 };
190
191 static int vlan_clone_create(struct if_clone *, int);
192 static int vlan_clone_destroy(struct ifnet *);
193 static int vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
194 static int vlan_ioctl(struct ifnet *, u_long, void *);
195 static void vlan_start(struct ifnet *);
196 static int vlan_transmit(struct ifnet *, struct mbuf *);
197 static void vlan_unconfig(struct ifnet *);
198 static int vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
199 static void vlan_hash_init(void);
200 static int vlan_hash_fini(void);
201 static int vlan_tag_hash(uint16_t, u_long);
202 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
203 struct psref *);
204 static void vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
205 static void vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
206 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
207 uint16_t, struct psref *);
208
209 static struct {
210 kmutex_t lock;
211 LIST_HEAD(vlan_ifvlist, ifvlan) list;
212 } ifv_list __cacheline_aligned;
213
214
215 #if !defined(VLAN_TAG_HASH_SIZE)
216 #define VLAN_TAG_HASH_SIZE 32
217 #endif
218 static struct {
219 kmutex_t lock;
220 struct pslist_head *lists;
221 u_long mask;
222 } ifv_hash __cacheline_aligned = {
223 .lists = NULL,
224 .mask = 0,
225 };
226
227 pserialize_t vlan_psz __read_mostly;
228 static struct psref_class *ifvm_psref_class __read_mostly;
229
230 struct if_clone vlan_cloner =
231 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
232
233 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
234 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
235
236 static inline int
237 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
238 {
239 int e;
240
241 KERNEL_LOCK_UNLESS_NET_MPSAFE();
242 e = ifpromisc(ifp, pswitch);
243 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
244
245 return e;
246 }
247
248 static inline int
249 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
250 {
251 int e;
252
253 KERNEL_LOCK_UNLESS_NET_MPSAFE();
254 e = ifpromisc_locked(ifp, pswitch);
255 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
256
257 return e;
258 }
259
260 void
261 vlanattach(int n)
262 {
263
264 /*
265 * Nothing to do here, initialization is handled by the
266 * module initialization code in vlaninit() below.
267 */
268 }
269
270 static void
271 vlaninit(void)
272 {
273 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
274 LIST_INIT(&ifv_list.list);
275
276 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
277 vlan_psz = pserialize_create();
278 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
279 if_clone_attach(&vlan_cloner);
280
281 vlan_hash_init();
282 MODULE_HOOK_SET(if_vlan_vlan_input_hook, "vlan_inp", vlan_input);
283 }
284
285 static int
286 vlandetach(void)
287 {
288 bool is_empty;
289 int error;
290
291 mutex_enter(&ifv_list.lock);
292 is_empty = LIST_EMPTY(&ifv_list.list);
293 mutex_exit(&ifv_list.lock);
294
295 if (!is_empty)
296 return EBUSY;
297
298 error = vlan_hash_fini();
299 if (error != 0)
300 return error;
301
302 if_clone_detach(&vlan_cloner);
303 psref_class_destroy(ifvm_psref_class);
304 pserialize_destroy(vlan_psz);
305 mutex_destroy(&ifv_hash.lock);
306 mutex_destroy(&ifv_list.lock);
307
308 MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
309 return 0;
310 }
311
312 static void
313 vlan_reset_linkname(struct ifnet *ifp)
314 {
315
316 /*
317 * We start out with a "802.1Q VLAN" type and zero-length
318 * addresses. When we attach to a parent interface, we
319 * inherit its type, address length, address, and data link
320 * type.
321 */
322
323 ifp->if_type = IFT_L2VLAN;
324 ifp->if_addrlen = 0;
325 ifp->if_dlt = DLT_NULL;
326 if_alloc_sadl(ifp);
327 }
328
329 static int
330 vlan_clone_create(struct if_clone *ifc, int unit)
331 {
332 struct ifvlan *ifv;
333 struct ifnet *ifp;
334 struct ifvlan_linkmib *mib;
335 int rv;
336
337 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
338 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
339 ifp = &ifv->ifv_if;
340 LIST_INIT(&ifv->ifv_mc_listhead);
341
342 mib->ifvm_ifvlan = ifv;
343 mib->ifvm_p = NULL;
344 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
345
346 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
347 ifv->ifv_psz = pserialize_create();
348 ifv->ifv_mib = mib;
349
350 mutex_enter(&ifv_list.lock);
351 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
352 mutex_exit(&ifv_list.lock);
353
354 if_initname(ifp, ifc->ifc_name, unit);
355 ifp->if_softc = ifv;
356 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
357 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
358 #ifdef NET_MPSAFE
359 ifp->if_extflags |= IFEF_MPSAFE;
360 #endif
361 ifp->if_start = vlan_start;
362 ifp->if_transmit = vlan_transmit;
363 ifp->if_ioctl = vlan_ioctl;
364 IFQ_SET_READY(&ifp->if_snd);
365
366 rv = if_initialize(ifp);
367 if (rv != 0) {
368 aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
369 rv);
370 goto fail;
371 }
372
373 vlan_reset_linkname(ifp);
374 if_register(ifp);
375 return 0;
376
377 fail:
378 mutex_enter(&ifv_list.lock);
379 LIST_REMOVE(ifv, ifv_list);
380 mutex_exit(&ifv_list.lock);
381
382 mutex_destroy(&ifv->ifv_lock);
383 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
384 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
385 free(ifv, M_DEVBUF);
386
387 return rv;
388 }
389
390 static int
391 vlan_clone_destroy(struct ifnet *ifp)
392 {
393 struct ifvlan *ifv = ifp->if_softc;
394
395 mutex_enter(&ifv_list.lock);
396 LIST_REMOVE(ifv, ifv_list);
397 mutex_exit(&ifv_list.lock);
398
399 IFNET_LOCK(ifp);
400 vlan_unconfig(ifp);
401 IFNET_UNLOCK(ifp);
402 if_detach(ifp);
403
404 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
405 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
406 pserialize_destroy(ifv->ifv_psz);
407 mutex_destroy(&ifv->ifv_lock);
408 free(ifv, M_DEVBUF);
409
410 return 0;
411 }
412
413 /*
414 * Configure a VLAN interface.
415 */
416 static int
417 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
418 {
419 struct ifnet *ifp = &ifv->ifv_if;
420 struct ifvlan_linkmib *nmib = NULL;
421 struct ifvlan_linkmib *omib = NULL;
422 struct ifvlan_linkmib *checkmib;
423 struct psref_target *nmib_psref = NULL;
424 const uint16_t vid = EVL_VLANOFTAG(tag);
425 int error = 0;
426 int idx;
427 bool omib_cleanup = false;
428 struct psref psref;
429
430 /* VLAN ID 0 and 4095 are reserved in the spec */
431 if ((vid == 0) || (vid == 0xfff))
432 return EINVAL;
433
434 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
435 mutex_enter(&ifv->ifv_lock);
436 omib = ifv->ifv_mib;
437
438 if (omib->ifvm_p != NULL) {
439 error = EBUSY;
440 goto done;
441 }
442
443 /* Duplicate check */
444 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
445 if (checkmib != NULL) {
446 vlan_putref_linkmib(checkmib, &psref);
447 error = EEXIST;
448 goto done;
449 }
450
451 *nmib = *omib;
452 nmib_psref = &nmib->ifvm_psref;
453
454 psref_target_init(nmib_psref, ifvm_psref_class);
455
456 switch (p->if_type) {
457 case IFT_ETHER:
458 {
459 struct ethercom *ec = (void *)p;
460 struct vlanid_list *vidmem;
461
462 nmib->ifvm_msw = &vlan_ether_multisw;
463 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
464 nmib->ifvm_mintu = ETHERMIN;
465
466 if (ec->ec_nvlans++ == 0) {
467 IFNET_LOCK(p);
468 error = ether_enable_vlan_mtu(p);
469 IFNET_UNLOCK(p);
470 if (error >= 0) {
471 if (error) {
472 ec->ec_nvlans--;
473 goto done;
474 }
475 nmib->ifvm_mtufudge = 0;
476 } else {
477 /*
478 * Fudge the MTU by the encapsulation size. This
479 * makes us incompatible with strictly compliant
480 * 802.1Q implementations, but allows us to use
481 * the feature with other NetBSD
482 * implementations, which might still be useful.
483 */
484 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
485 }
486 error = 0;
487 }
488 /* Add a vid to the list */
489 vidmem = kmem_alloc(sizeof(struct vlanid_list), KM_SLEEP);
490 vidmem->vid = vid;
491 ETHER_LOCK(ec);
492 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidmem, vid_list);
493 ETHER_UNLOCK(ec);
494
495 if (ec->ec_vlan_cb != NULL) {
496 /*
497 * Call ec_vlan_cb(). It will setup VLAN HW filter or
498 * HW tagging function.
499 */
500 error = (*ec->ec_vlan_cb)(ec, vid, true);
501 if (error) {
502 ec->ec_nvlans--;
503 if (ec->ec_nvlans == 0) {
504 IFNET_LOCK(p);
505 (void)ether_disable_vlan_mtu(p);
506 IFNET_UNLOCK(p);
507 }
508 goto done;
509 }
510 }
511 /*
512 * If the parent interface can do hardware-assisted
513 * VLAN encapsulation, then propagate its hardware-
514 * assisted checksumming flags and tcp segmentation
515 * offload.
516 */
517 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
518 ifp->if_capabilities = p->if_capabilities &
519 (IFCAP_TSOv4 | IFCAP_TSOv6 |
520 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
521 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
522 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
523 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
524 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
525 }
526
527 /*
528 * We inherit the parent's Ethernet address.
529 */
530 ether_ifattach(ifp, CLLADDR(p->if_sadl));
531 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
532 break;
533 }
534
535 default:
536 error = EPROTONOSUPPORT;
537 goto done;
538 }
539
540 nmib->ifvm_p = p;
541 nmib->ifvm_tag = vid;
542 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
543 ifv->ifv_if.if_flags = p->if_flags &
544 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
545
546 /*
547 * Inherit the if_type from the parent. This allows us
548 * to participate in bridges of that type.
549 */
550 ifv->ifv_if.if_type = p->if_type;
551
552 PSLIST_ENTRY_INIT(ifv, ifv_hash);
553 idx = vlan_tag_hash(vid, ifv_hash.mask);
554
555 mutex_enter(&ifv_hash.lock);
556 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
557 mutex_exit(&ifv_hash.lock);
558
559 vlan_linkmib_update(ifv, nmib);
560 nmib = NULL;
561 nmib_psref = NULL;
562 omib_cleanup = true;
563
564 done:
565 mutex_exit(&ifv->ifv_lock);
566
567 if (nmib_psref)
568 psref_target_destroy(nmib_psref, ifvm_psref_class);
569 if (nmib)
570 kmem_free(nmib, sizeof(*nmib));
571 if (omib_cleanup)
572 kmem_free(omib, sizeof(*omib));
573
574 return error;
575 }
576
577 /*
578 * Unconfigure a VLAN interface.
579 */
580 static void
581 vlan_unconfig(struct ifnet *ifp)
582 {
583 struct ifvlan *ifv = ifp->if_softc;
584 struct ifvlan_linkmib *nmib = NULL;
585 int error;
586
587 KASSERT(IFNET_LOCKED(ifp));
588
589 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
590
591 mutex_enter(&ifv->ifv_lock);
592 error = vlan_unconfig_locked(ifv, nmib);
593 mutex_exit(&ifv->ifv_lock);
594
595 if (error)
596 kmem_free(nmib, sizeof(*nmib));
597 }
598 static int
599 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
600 {
601 struct ifnet *p;
602 struct ifnet *ifp = &ifv->ifv_if;
603 struct psref_target *nmib_psref = NULL;
604 struct ifvlan_linkmib *omib;
605 int error = 0;
606
607 KASSERT(IFNET_LOCKED(ifp));
608 KASSERT(mutex_owned(&ifv->ifv_lock));
609
610 ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);
611
612 omib = ifv->ifv_mib;
613 p = omib->ifvm_p;
614
615 if (p == NULL) {
616 error = -1;
617 goto done;
618 }
619
620 *nmib = *omib;
621 nmib_psref = &nmib->ifvm_psref;
622 psref_target_init(nmib_psref, ifvm_psref_class);
623
624 /*
625 * Since the interface is being unconfigured, we need to empty the
626 * list of multicast groups that we may have joined while we were
627 * alive and remove them from the parent's list also.
628 */
629 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
630
631 /* Disconnect from parent. */
632 switch (p->if_type) {
633 case IFT_ETHER:
634 {
635 struct ethercom *ec = (void *)p;
636 struct vlanid_list *vlanidp;
637 uint16_t vid = EVL_VLANOFTAG(nmib->ifvm_tag);
638
639 ETHER_LOCK(ec);
640 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
641 if (vlanidp->vid == vid) {
642 SIMPLEQ_REMOVE(&ec->ec_vids, vlanidp,
643 vlanid_list, vid_list);
644 break;
645 }
646 }
647 ETHER_UNLOCK(ec);
648 if (vlanidp != NULL)
649 kmem_free(vlanidp, sizeof(*vlanidp));
650
651 if (ec->ec_vlan_cb != NULL) {
652 /*
653 * Call ec_vlan_cb(). It will setup VLAN HW filter or
654 * HW tagging function.
655 */
656 (void)(*ec->ec_vlan_cb)(ec, vid, false);
657 }
658 if (--ec->ec_nvlans == 0) {
659 IFNET_LOCK(p);
660 (void)ether_disable_vlan_mtu(p);
661 IFNET_UNLOCK(p);
662 }
663
664 /* XXX ether_ifdetach must not be called with IFNET_LOCK */
665 mutex_exit(&ifv->ifv_lock);
666 IFNET_UNLOCK(ifp);
667 ether_ifdetach(ifp);
668 IFNET_LOCK(ifp);
669 mutex_enter(&ifv->ifv_lock);
670
671 /* if_free_sadl must be called with IFNET_LOCK */
672 if_free_sadl(ifp, 1);
673
674 /* Restore vlan_ioctl overwritten by ether_ifdetach */
675 ifp->if_ioctl = vlan_ioctl;
676 vlan_reset_linkname(ifp);
677 break;
678 }
679
680 default:
681 panic("%s: impossible", __func__);
682 }
683
684 nmib->ifvm_p = NULL;
685 ifv->ifv_if.if_mtu = 0;
686 ifv->ifv_flags = 0;
687
688 mutex_enter(&ifv_hash.lock);
689 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
690 pserialize_perform(vlan_psz);
691 mutex_exit(&ifv_hash.lock);
692 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
693
694 vlan_linkmib_update(ifv, nmib);
695
696 mutex_exit(&ifv->ifv_lock);
697
698 nmib_psref = NULL;
699 kmem_free(omib, sizeof(*omib));
700
701 #ifdef INET6
702 KERNEL_LOCK_UNLESS_NET_MPSAFE();
703 /* To delete v6 link local addresses */
704 if (in6_present)
705 in6_ifdetach(ifp);
706 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
707 #endif
708
709 if ((ifp->if_flags & IFF_PROMISC) != 0)
710 vlan_safe_ifpromisc_locked(ifp, 0);
711 if_down_locked(ifp);
712 ifp->if_capabilities = 0;
713 mutex_enter(&ifv->ifv_lock);
714 done:
715
716 if (nmib_psref)
717 psref_target_destroy(nmib_psref, ifvm_psref_class);
718
719 return error;
720 }
721
722 static void
723 vlan_hash_init(void)
724 {
725
726 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
727 &ifv_hash.mask);
728 }
729
730 static int
731 vlan_hash_fini(void)
732 {
733 int i;
734
735 mutex_enter(&ifv_hash.lock);
736
737 for (i = 0; i < ifv_hash.mask + 1; i++) {
738 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
739 ifv_hash) != NULL) {
740 mutex_exit(&ifv_hash.lock);
741 return EBUSY;
742 }
743 }
744
745 for (i = 0; i < ifv_hash.mask + 1; i++)
746 PSLIST_DESTROY(&ifv_hash.lists[i]);
747
748 mutex_exit(&ifv_hash.lock);
749
750 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
751
752 ifv_hash.lists = NULL;
753 ifv_hash.mask = 0;
754
755 return 0;
756 }
757
758 static int
759 vlan_tag_hash(uint16_t tag, u_long mask)
760 {
761 uint32_t hash;
762
763 hash = (tag >> 8) ^ tag;
764 hash = (hash >> 2) ^ hash;
765
766 return hash & mask;
767 }
768
769 static struct ifvlan_linkmib *
770 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
771 {
772 struct ifvlan_linkmib *mib;
773 int s;
774
775 s = pserialize_read_enter();
776 mib = sc->ifv_mib;
777 if (mib == NULL) {
778 pserialize_read_exit(s);
779 return NULL;
780 }
781 membar_datadep_consumer();
782 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
783 pserialize_read_exit(s);
784
785 return mib;
786 }
787
788 static void
789 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
790 {
791 if (mib == NULL)
792 return;
793 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
794 }
795
796 static struct ifvlan_linkmib *
797 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
798 {
799 int idx;
800 int s;
801 struct ifvlan *sc;
802
803 idx = vlan_tag_hash(tag, ifv_hash.mask);
804
805 s = pserialize_read_enter();
806 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
807 ifv_hash) {
808 struct ifvlan_linkmib *mib = sc->ifv_mib;
809 if (mib == NULL)
810 continue;
811 if (mib->ifvm_tag != tag)
812 continue;
813 if (mib->ifvm_p != ifp)
814 continue;
815
816 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
817 pserialize_read_exit(s);
818 return mib;
819 }
820 pserialize_read_exit(s);
821 return NULL;
822 }
823
824 static void
825 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
826 {
827 struct ifvlan_linkmib *omib = ifv->ifv_mib;
828
829 KASSERT(mutex_owned(&ifv->ifv_lock));
830
831 membar_producer();
832 ifv->ifv_mib = nmib;
833
834 pserialize_perform(ifv->ifv_psz);
835 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
836 }
837
838 /*
839 * Called when a parent interface is detaching; destroy any VLAN
840 * configuration for the parent interface.
841 */
842 void
843 vlan_ifdetach(struct ifnet *p)
844 {
845 struct ifvlan *ifv;
846 struct ifvlan_linkmib *mib, **nmibs;
847 struct psref psref;
848 int error;
849 int bound;
850 int i, cnt = 0;
851
852 bound = curlwp_bind();
853
854 mutex_enter(&ifv_list.lock);
855 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
856 mib = vlan_getref_linkmib(ifv, &psref);
857 if (mib == NULL)
858 continue;
859
860 if (mib->ifvm_p == p)
861 cnt++;
862
863 vlan_putref_linkmib(mib, &psref);
864 }
865 mutex_exit(&ifv_list.lock);
866
867 if (cnt == 0) {
868 curlwp_bindx(bound);
869 return;
870 }
871
872 /*
873 * The value of "cnt" does not increase while ifv_list.lock
874 * and ifv->ifv_lock are released here, because the parent
875 * interface is detaching.
876 */
877 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
878 for (i = 0; i < cnt; i++) {
879 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
880 }
881
882 mutex_enter(&ifv_list.lock);
883
884 i = 0;
885 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
886 struct ifnet *ifp = &ifv->ifv_if;
887
888 /* IFNET_LOCK must be held before ifv_lock. */
889 IFNET_LOCK(ifp);
890 mutex_enter(&ifv->ifv_lock);
891
892 /* XXX ifv_mib = NULL? */
893 if (ifv->ifv_mib->ifvm_p == p) {
894 KASSERTMSG(i < cnt,
895 "no memory for unconfig, parent=%s", p->if_xname);
896 error = vlan_unconfig_locked(ifv, nmibs[i]);
897 if (!error) {
898 nmibs[i] = NULL;
899 i++;
900 }
901
902 }
903
904 mutex_exit(&ifv->ifv_lock);
905 IFNET_UNLOCK(ifp);
906 }
907
908 mutex_exit(&ifv_list.lock);
909
910 curlwp_bindx(bound);
911
912 for (i = 0; i < cnt; i++) {
913 if (nmibs[i])
914 kmem_free(nmibs[i], sizeof(*nmibs[i]));
915 }
916
917 kmem_free(nmibs, sizeof(*nmibs) * cnt);
918
919 return;
920 }
921
922 static int
923 vlan_set_promisc(struct ifnet *ifp)
924 {
925 struct ifvlan *ifv = ifp->if_softc;
926 struct ifvlan_linkmib *mib;
927 struct psref psref;
928 int error = 0;
929 int bound;
930
931 bound = curlwp_bind();
932 mib = vlan_getref_linkmib(ifv, &psref);
933 if (mib == NULL) {
934 curlwp_bindx(bound);
935 return EBUSY;
936 }
937
938 if ((ifp->if_flags & IFF_PROMISC) != 0) {
939 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
940 error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
941 if (error == 0)
942 ifv->ifv_flags |= IFVF_PROMISC;
943 }
944 } else {
945 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
946 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
947 if (error == 0)
948 ifv->ifv_flags &= ~IFVF_PROMISC;
949 }
950 }
951 vlan_putref_linkmib(mib, &psref);
952 curlwp_bindx(bound);
953
954 return error;
955 }
956
957 static int
958 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
959 {
960 struct lwp *l = curlwp;
961 struct ifvlan *ifv = ifp->if_softc;
962 struct ifaddr *ifa = (struct ifaddr *) data;
963 struct ifreq *ifr = (struct ifreq *) data;
964 struct ifnet *pr;
965 struct ifcapreq *ifcr;
966 struct vlanreq vlr;
967 struct ifvlan_linkmib *mib;
968 struct psref psref;
969 int error = 0;
970 int bound;
971
972 switch (cmd) {
973 case SIOCSIFMTU:
974 bound = curlwp_bind();
975 mib = vlan_getref_linkmib(ifv, &psref);
976 if (mib == NULL) {
977 curlwp_bindx(bound);
978 error = EBUSY;
979 break;
980 }
981
982 if (mib->ifvm_p == NULL) {
983 vlan_putref_linkmib(mib, &psref);
984 curlwp_bindx(bound);
985 error = EINVAL;
986 } else if (
987 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
988 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
989 vlan_putref_linkmib(mib, &psref);
990 curlwp_bindx(bound);
991 error = EINVAL;
992 } else {
993 vlan_putref_linkmib(mib, &psref);
994 curlwp_bindx(bound);
995
996 error = ifioctl_common(ifp, cmd, data);
997 if (error == ENETRESET)
998 error = 0;
999 }
1000
1001 break;
1002
1003 case SIOCSETVLAN:
1004 if ((error = kauth_authorize_network(l->l_cred,
1005 KAUTH_NETWORK_INTERFACE,
1006 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1007 NULL)) != 0)
1008 break;
1009 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
1010 break;
1011
1012 if (vlr.vlr_parent[0] == '\0') {
1013 bound = curlwp_bind();
1014 mib = vlan_getref_linkmib(ifv, &psref);
1015 if (mib == NULL) {
1016 curlwp_bindx(bound);
1017 error = EBUSY;
1018 break;
1019 }
1020
1021 if (mib->ifvm_p != NULL &&
1022 (ifp->if_flags & IFF_PROMISC) != 0)
1023 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
1024
1025 vlan_putref_linkmib(mib, &psref);
1026 curlwp_bindx(bound);
1027
1028 vlan_unconfig(ifp);
1029 break;
1030 }
1031 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
1032 error = EINVAL; /* check for valid tag */
1033 break;
1034 }
1035 if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
1036 error = ENOENT;
1037 break;
1038 }
1039
1040 error = vlan_config(ifv, pr, vlr.vlr_tag);
1041 if (error != 0)
1042 break;
1043
1044 /* Update promiscuous mode, if necessary. */
1045 vlan_set_promisc(ifp);
1046
1047 ifp->if_flags |= IFF_RUNNING;
1048 break;
1049
1050 case SIOCGETVLAN:
1051 memset(&vlr, 0, sizeof(vlr));
1052 bound = curlwp_bind();
1053 mib = vlan_getref_linkmib(ifv, &psref);
1054 if (mib == NULL) {
1055 curlwp_bindx(bound);
1056 error = EBUSY;
1057 break;
1058 }
1059 if (mib->ifvm_p != NULL) {
1060 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
1061 mib->ifvm_p->if_xname);
1062 vlr.vlr_tag = mib->ifvm_tag;
1063 }
1064 vlan_putref_linkmib(mib, &psref);
1065 curlwp_bindx(bound);
1066 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1067 break;
1068
1069 case SIOCSIFFLAGS:
1070 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1071 break;
1072 /*
1073 * For promiscuous mode, we enable promiscuous mode on
1074 * the parent if we need promiscuous on the VLAN interface.
1075 */
1076 bound = curlwp_bind();
1077 mib = vlan_getref_linkmib(ifv, &psref);
1078 if (mib == NULL) {
1079 curlwp_bindx(bound);
1080 error = EBUSY;
1081 break;
1082 }
1083
1084 if (mib->ifvm_p != NULL)
1085 error = vlan_set_promisc(ifp);
1086 vlan_putref_linkmib(mib, &psref);
1087 curlwp_bindx(bound);
1088 break;
1089
1090 case SIOCADDMULTI:
1091 mutex_enter(&ifv->ifv_lock);
1092 mib = ifv->ifv_mib;
1093 if (mib == NULL) {
1094 error = EBUSY;
1095 mutex_exit(&ifv->ifv_lock);
1096 break;
1097 }
1098
1099 error = (mib->ifvm_p != NULL) ?
1100 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1101 mib = NULL;
1102 mutex_exit(&ifv->ifv_lock);
1103 break;
1104
1105 case SIOCDELMULTI:
1106 mutex_enter(&ifv->ifv_lock);
1107 mib = ifv->ifv_mib;
1108 if (mib == NULL) {
1109 error = EBUSY;
1110 mutex_exit(&ifv->ifv_lock);
1111 break;
1112 }
1113 error = (mib->ifvm_p != NULL) ?
1114 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1115 mib = NULL;
1116 mutex_exit(&ifv->ifv_lock);
1117 break;
1118
1119 case SIOCSIFCAP:
1120 ifcr = data;
1121 /* make sure caps are enabled on parent */
1122 bound = curlwp_bind();
1123 mib = vlan_getref_linkmib(ifv, &psref);
1124 if (mib == NULL) {
1125 curlwp_bindx(bound);
1126 error = EBUSY;
1127 break;
1128 }
1129
1130 if (mib->ifvm_p == NULL) {
1131 vlan_putref_linkmib(mib, &psref);
1132 curlwp_bindx(bound);
1133 error = EINVAL;
1134 break;
1135 }
1136 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1137 ifcr->ifcr_capenable) {
1138 vlan_putref_linkmib(mib, &psref);
1139 curlwp_bindx(bound);
1140 error = EINVAL;
1141 break;
1142 }
1143
1144 vlan_putref_linkmib(mib, &psref);
1145 curlwp_bindx(bound);
1146
1147 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1148 error = 0;
1149 break;
1150 case SIOCINITIFADDR:
1151 bound = curlwp_bind();
1152 mib = vlan_getref_linkmib(ifv, &psref);
1153 if (mib == NULL) {
1154 curlwp_bindx(bound);
1155 error = EBUSY;
1156 break;
1157 }
1158
1159 if (mib->ifvm_p == NULL) {
1160 error = EINVAL;
1161 vlan_putref_linkmib(mib, &psref);
1162 curlwp_bindx(bound);
1163 break;
1164 }
1165 vlan_putref_linkmib(mib, &psref);
1166 curlwp_bindx(bound);
1167
1168 ifp->if_flags |= IFF_UP;
1169 #ifdef INET
1170 if (ifa->ifa_addr->sa_family == AF_INET)
1171 arp_ifinit(ifp, ifa);
1172 #endif
1173 break;
1174
1175 default:
1176 error = ether_ioctl(ifp, cmd, data);
1177 }
1178
1179 return error;
1180 }
1181
1182 static int
1183 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1184 {
1185 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1186 struct vlan_mc_entry *mc;
1187 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1188 struct ifvlan_linkmib *mib;
1189 int error;
1190
1191 KASSERT(mutex_owned(&ifv->ifv_lock));
1192
1193 if (sa->sa_len > sizeof(struct sockaddr_storage))
1194 return EINVAL;
1195
1196 error = ether_addmulti(sa, &ifv->ifv_ec);
1197 if (error != ENETRESET)
1198 return error;
1199
1200 /*
1201 * This is a new multicast address. We have to tell parent
1202 * about it. Also, remember this multicast address so that
1203 * we can delete it on unconfigure.
1204 */
1205 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1206 if (mc == NULL) {
1207 error = ENOMEM;
1208 goto alloc_failed;
1209 }
1210
1211 /*
1212 * Since ether_addmulti() returned ENETRESET, the following two
1213 * statements shouldn't fail. Here ifv_ec is implicitly protected
1214 * by the ifv_lock lock.
1215 */
1216 error = ether_multiaddr(sa, addrlo, addrhi);
1217 KASSERT(error == 0);
1218
1219 ETHER_LOCK(&ifv->ifv_ec);
1220 mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1221 ETHER_UNLOCK(&ifv->ifv_ec);
1222
1223 KASSERT(mc->mc_enm != NULL);
1224
1225 memcpy(&mc->mc_addr, sa, sa->sa_len);
1226 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1227
1228 mib = ifv->ifv_mib;
1229
1230 KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1231 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1232 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1233
1234 if (error != 0)
1235 goto ioctl_failed;
1236 return error;
1237
1238 ioctl_failed:
1239 LIST_REMOVE(mc, mc_entries);
1240 free(mc, M_DEVBUF);
1241
1242 alloc_failed:
1243 (void)ether_delmulti(sa, &ifv->ifv_ec);
1244 return error;
1245 }
1246
1247 static int
1248 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1249 {
1250 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1251 struct ether_multi *enm;
1252 struct vlan_mc_entry *mc;
1253 struct ifvlan_linkmib *mib;
1254 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1255 int error;
1256
1257 KASSERT(mutex_owned(&ifv->ifv_lock));
1258
1259 /*
1260 * Find a key to lookup vlan_mc_entry. We have to do this
1261 * before calling ether_delmulti for obvious reasons.
1262 */
1263 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1264 return error;
1265
1266 ETHER_LOCK(&ifv->ifv_ec);
1267 enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1268 ETHER_UNLOCK(&ifv->ifv_ec);
1269 if (enm == NULL)
1270 return EINVAL;
1271
1272 LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
1273 if (mc->mc_enm == enm)
1274 break;
1275 }
1276
1277 /* We woun't delete entries we didn't add */
1278 if (mc == NULL)
1279 return EINVAL;
1280
1281 error = ether_delmulti(sa, &ifv->ifv_ec);
1282 if (error != ENETRESET)
1283 return error;
1284
1285 /* We no longer use this multicast address. Tell parent so. */
1286 mib = ifv->ifv_mib;
1287 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1288
1289 if (error == 0) {
1290 /* And forget about this address. */
1291 LIST_REMOVE(mc, mc_entries);
1292 free(mc, M_DEVBUF);
1293 } else {
1294 (void)ether_addmulti(sa, &ifv->ifv_ec);
1295 }
1296
1297 return error;
1298 }
1299
1300 /*
1301 * Delete any multicast address we have asked to add from parent
1302 * interface. Called when the vlan is being unconfigured.
1303 */
1304 static void
1305 vlan_ether_purgemulti(struct ifvlan *ifv)
1306 {
1307 struct vlan_mc_entry *mc;
1308 struct ifvlan_linkmib *mib;
1309
1310 KASSERT(mutex_owned(&ifv->ifv_lock));
1311 mib = ifv->ifv_mib;
1312 if (mib == NULL) {
1313 return;
1314 }
1315
1316 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1317 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1318 sstocsa(&mc->mc_addr));
1319 LIST_REMOVE(mc, mc_entries);
1320 free(mc, M_DEVBUF);
1321 }
1322 }
1323
1324 static void
1325 vlan_start(struct ifnet *ifp)
1326 {
1327 struct ifvlan *ifv = ifp->if_softc;
1328 struct ifnet *p;
1329 struct ethercom *ec;
1330 struct mbuf *m;
1331 struct ifvlan_linkmib *mib;
1332 struct psref psref;
1333 int error;
1334
1335 mib = vlan_getref_linkmib(ifv, &psref);
1336 if (mib == NULL)
1337 return;
1338 p = mib->ifvm_p;
1339 ec = (void *)mib->ifvm_p;
1340
1341 ifp->if_flags |= IFF_OACTIVE;
1342
1343 for (;;) {
1344 IFQ_DEQUEUE(&ifp->if_snd, m);
1345 if (m == NULL)
1346 break;
1347
1348 #ifdef ALTQ
1349 /*
1350 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
1351 * defined.
1352 */
1353 KERNEL_LOCK(1, NULL);
1354 /*
1355 * If ALTQ is enabled on the parent interface, do
1356 * classification; the queueing discipline might
1357 * not require classification, but might require
1358 * the address family/header pointer in the pktattr.
1359 */
1360 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1361 switch (p->if_type) {
1362 case IFT_ETHER:
1363 altq_etherclassify(&p->if_snd, m);
1364 break;
1365 default:
1366 panic("%s: impossible (altq)", __func__);
1367 }
1368 }
1369 KERNEL_UNLOCK_ONE(NULL);
1370 #endif /* ALTQ */
1371
1372 bpf_mtap(ifp, m, BPF_D_OUT);
1373 /*
1374 * If the parent can insert the tag itself, just mark
1375 * the tag in the mbuf header.
1376 */
1377 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1378 vlan_set_tag(m, mib->ifvm_tag);
1379 } else {
1380 /*
1381 * insert the tag ourselves
1382 */
1383 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1384 if (m == NULL) {
1385 printf("%s: unable to prepend encap header",
1386 p->if_xname);
1387 ifp->if_oerrors++;
1388 continue;
1389 }
1390
1391 switch (p->if_type) {
1392 case IFT_ETHER:
1393 {
1394 struct ether_vlan_header *evl;
1395
1396 if (m->m_len < sizeof(struct ether_vlan_header))
1397 m = m_pullup(m,
1398 sizeof(struct ether_vlan_header));
1399 if (m == NULL) {
1400 printf("%s: unable to pullup encap "
1401 "header", p->if_xname);
1402 ifp->if_oerrors++;
1403 continue;
1404 }
1405
1406 /*
1407 * Transform the Ethernet header into an
1408 * Ethernet header with 802.1Q encapsulation.
1409 */
1410 memmove(mtod(m, void *),
1411 mtod(m, char *) + mib->ifvm_encaplen,
1412 sizeof(struct ether_header));
1413 evl = mtod(m, struct ether_vlan_header *);
1414 evl->evl_proto = evl->evl_encap_proto;
1415 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1416 evl->evl_tag = htons(mib->ifvm_tag);
1417
1418 /*
1419 * To cater for VLAN-aware layer 2 ethernet
1420 * switches which may need to strip the tag
1421 * before forwarding the packet, make sure
1422 * the packet+tag is at least 68 bytes long.
1423 * This is necessary because our parent will
1424 * only pad to 64 bytes (ETHER_MIN_LEN) and
1425 * some switches will not pad by themselves
1426 * after deleting a tag.
1427 */
1428 const size_t min_data_len = ETHER_MIN_LEN -
1429 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1430 if (m->m_pkthdr.len < min_data_len) {
1431 m_copyback(m, m->m_pkthdr.len,
1432 min_data_len - m->m_pkthdr.len,
1433 vlan_zero_pad_buff);
1434 }
1435 break;
1436 }
1437
1438 default:
1439 panic("%s: impossible", __func__);
1440 }
1441 }
1442
1443 if ((p->if_flags & IFF_RUNNING) == 0) {
1444 m_freem(m);
1445 continue;
1446 }
1447
1448 error = if_transmit_lock(p, m);
1449 if (error) {
1450 /* mbuf is already freed */
1451 ifp->if_oerrors++;
1452 continue;
1453 }
1454 ifp->if_opackets++;
1455 }
1456
1457 ifp->if_flags &= ~IFF_OACTIVE;
1458
1459 /* Remove reference to mib before release */
1460 vlan_putref_linkmib(mib, &psref);
1461 }
1462
1463 static int
1464 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1465 {
1466 struct ifvlan *ifv = ifp->if_softc;
1467 struct ifnet *p;
1468 struct ethercom *ec;
1469 struct ifvlan_linkmib *mib;
1470 struct psref psref;
1471 int error;
1472 size_t pktlen = m->m_pkthdr.len;
1473 bool mcast = (m->m_flags & M_MCAST) != 0;
1474
1475 mib = vlan_getref_linkmib(ifv, &psref);
1476 if (mib == NULL) {
1477 m_freem(m);
1478 return ENETDOWN;
1479 }
1480
1481 p = mib->ifvm_p;
1482 ec = (void *)mib->ifvm_p;
1483
1484 bpf_mtap(ifp, m, BPF_D_OUT);
1485
1486 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
1487 goto out;
1488 if (m == NULL)
1489 goto out;
1490
1491 /*
1492 * If the parent can insert the tag itself, just mark
1493 * the tag in the mbuf header.
1494 */
1495 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1496 vlan_set_tag(m, mib->ifvm_tag);
1497 } else {
1498 /*
1499 * insert the tag ourselves
1500 */
1501 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1502 if (m == NULL) {
1503 printf("%s: unable to prepend encap header",
1504 p->if_xname);
1505 ifp->if_oerrors++;
1506 error = ENOBUFS;
1507 goto out;
1508 }
1509
1510 switch (p->if_type) {
1511 case IFT_ETHER:
1512 {
1513 struct ether_vlan_header *evl;
1514
1515 if (m->m_len < sizeof(struct ether_vlan_header))
1516 m = m_pullup(m,
1517 sizeof(struct ether_vlan_header));
1518 if (m == NULL) {
1519 printf("%s: unable to pullup encap "
1520 "header", p->if_xname);
1521 ifp->if_oerrors++;
1522 error = ENOBUFS;
1523 goto out;
1524 }
1525
1526 /*
1527 * Transform the Ethernet header into an
1528 * Ethernet header with 802.1Q encapsulation.
1529 */
1530 memmove(mtod(m, void *),
1531 mtod(m, char *) + mib->ifvm_encaplen,
1532 sizeof(struct ether_header));
1533 evl = mtod(m, struct ether_vlan_header *);
1534 evl->evl_proto = evl->evl_encap_proto;
1535 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1536 evl->evl_tag = htons(mib->ifvm_tag);
1537
1538 /*
1539 * To cater for VLAN-aware layer 2 ethernet
1540 * switches which may need to strip the tag
1541 * before forwarding the packet, make sure
1542 * the packet+tag is at least 68 bytes long.
1543 * This is necessary because our parent will
1544 * only pad to 64 bytes (ETHER_MIN_LEN) and
1545 * some switches will not pad by themselves
1546 * after deleting a tag.
1547 */
1548 const size_t min_data_len = ETHER_MIN_LEN -
1549 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1550 if (m->m_pkthdr.len < min_data_len) {
1551 m_copyback(m, m->m_pkthdr.len,
1552 min_data_len - m->m_pkthdr.len,
1553 vlan_zero_pad_buff);
1554 }
1555 break;
1556 }
1557
1558 default:
1559 panic("%s: impossible", __func__);
1560 }
1561 }
1562
1563 if ((p->if_flags & IFF_RUNNING) == 0) {
1564 m_freem(m);
1565 error = ENETDOWN;
1566 goto out;
1567 }
1568
1569 error = if_transmit_lock(p, m);
1570 if (error) {
1571 /* mbuf is already freed */
1572 ifp->if_oerrors++;
1573 } else {
1574
1575 ifp->if_opackets++;
1576 ifp->if_obytes += pktlen;
1577 if (mcast)
1578 ifp->if_omcasts++;
1579 }
1580
1581 out:
1582 /* Remove reference to mib before release */
1583 vlan_putref_linkmib(mib, &psref);
1584 return error;
1585 }
1586
1587 /*
1588 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1589 * given source interface and tag, then run the real packet through the
1590 * parent's input routine.
1591 */
1592 void
1593 vlan_input(struct ifnet *ifp, struct mbuf *m)
1594 {
1595 struct ifvlan *ifv;
1596 uint16_t vid;
1597 struct ifvlan_linkmib *mib;
1598 struct psref psref;
1599 bool have_vtag;
1600
1601 have_vtag = vlan_has_tag(m);
1602 if (have_vtag) {
1603 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1604 m->m_flags &= ~M_VLANTAG;
1605 } else {
1606 struct ether_vlan_header *evl;
1607
1608 if (ifp->if_type != IFT_ETHER) {
1609 panic("%s: impossible", __func__);
1610 }
1611
1612 if (m->m_len < sizeof(struct ether_vlan_header) &&
1613 (m = m_pullup(m,
1614 sizeof(struct ether_vlan_header))) == NULL) {
1615 printf("%s: no memory for VLAN header, "
1616 "dropping packet.\n", ifp->if_xname);
1617 return;
1618 }
1619 evl = mtod(m, struct ether_vlan_header *);
1620 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1621
1622 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1623
1624 /*
1625 * Restore the original ethertype. We'll remove
1626 * the encapsulation after we've found the vlan
1627 * interface corresponding to the tag.
1628 */
1629 evl->evl_encap_proto = evl->evl_proto;
1630 }
1631
1632 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1633 if (mib == NULL) {
1634 m_freem(m);
1635 ifp->if_noproto++;
1636 return;
1637 }
1638 KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
1639
1640 ifv = mib->ifvm_ifvlan;
1641 if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1642 (IFF_UP | IFF_RUNNING)) {
1643 m_freem(m);
1644 ifp->if_noproto++;
1645 goto out;
1646 }
1647
1648 /*
1649 * Now, remove the encapsulation header. The original
1650 * header has already been fixed up above.
1651 */
1652 if (!have_vtag) {
1653 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1654 mtod(m, void *), sizeof(struct ether_header));
1655 m_adj(m, mib->ifvm_encaplen);
1656 }
1657
1658 m_set_rcvif(m, &ifv->ifv_if);
1659
1660 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
1661 goto out;
1662 if (m == NULL)
1663 goto out;
1664
1665 m->m_flags &= ~M_PROMISC;
1666 if_input(&ifv->ifv_if, m);
1667 out:
1668 vlan_putref_linkmib(mib, &psref);
1669 }
1670
1671 /*
1672 * Module infrastructure
1673 */
1674 #include "if_module.h"
1675
1676 IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)
1677